

Portable Cellular Phone SAR Test Report

Motorola Mobile Devices

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 23910-1 v99

Date of Report: 31 Aug, 2010, revised on 13 Oct, 2010

Date of Test: 8 – 10 July & 29 – 30 July & 10 – 23 Aug, 2010 & 27 – 28 Sep, 2010 & 7 Oct, 2010

FCC ID #: IHDP56LC1
Generic Name: MRO7-334411A11

Motorola Mobility, Inc. - Product Safety & Compliance Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Steven Hauswirth

Distinguished Member of the Technical Staff

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Accreditation:

UKAS TESTING

Testing Laboratory No. 2404

sts: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate IEC 62209-1 RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

On the following products or types of products:

On the following products or types of products: Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low

Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these

Statement of Compliance:

standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2010

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Antenna description	3
3. Test Equipment Used	5
3.1 Dosimetric System	5
3.2 Additional Equipment	5
4. Electrical parameters of the tissue simulating liquid	6
5. System Accuracy Verification	7
6. Test Results	9
6.1 Head Adjacent Test Results	13
6.2 Body Worn Test Results	18
References	22
Appendix 1: SAR distribution comparison for the system accuracy verification	ation
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	
Appendix 3: SAR distribution plots for Body Worn Configuration	
Appendix 4: Probe Calibration Certificate	
Appendix 5: Measurement Uncertainty Budget	
Appendix 6: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

For ANSI / IEEE C95.1 (1 g), the final stand-alone SAR readings for this phone are 1.47 W/kg for head-adjacent use and 0.62 W/kg for body-worn use. The final simultaneous-transmission SAR readings for this phone are 1.44 W/kg for head-adjacent use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Antenna for 1800 / 1900 MHz Bands

Type	Internal					
Location	Top Rear of Transceiver					
Dimondiana	Length	56 mm				
Dimensions	Width	13 mm				

Antenna for 850 / 900 MHz Bands

Type	Internal					
Location	Bottom Rear of Transceiver					
Dimondiana	Length	54 mm				
Dimensions	Width	12 mm				

Bluetooth / Wi-Fi Antenna

Bidetootii/ Wi i i Antenna									
Type	Internal								
Location	Right-Side Rear of Transceiver								
Dimondiana	Length	15 mm							
Dimensions	Width	2 mm							

2.2 Device description¹

Serial Number(s)	351575040016095 (Used for Conducted power & SAR tests of WCDMA 850) 351572040052121 (Used for Conducted power & SAR tests of GSM 850) 351573040004724 (Used for Conducted power & SAR tests of WCDMA 1900) 351575040007136 (Used for Conducted power & SAR tests of GSM1900 and WiFi)									
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	WCDMA 850	WCDMA 1900	Wi-Fi 802.11b/g/n	Bluetooth		
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	BPSK	GFSK		
Maximum Output Power Setting	33.0 dBm	33.0 dBm	30.5 dBm	30.5 dBm	24.0 dBm	24.0 dBm	20 dBm	10 dBm		
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1	1:1		
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	826.4 - 846.6 MHz	1852.4 - 1907.6 MHz	2412.0 - 2462.5 MHz	2402.0 - 2483.5 MHz		
Production Unit or Identical Prototype (47 CFR §2908)		Identical Prototype								
Device Category				Port	able					
RF Exposure Limits			Gene	eral Populati	on / Uncontr	olled				

Mode(s) of Operation	GPRS 850				GPR	S 900		GPRS 1800			GPRS 1900					
Modulation		GM	ISK		GMSK				GM	GMSK			GMSK			
Maximum Output Power Setting	33.0	31.0	29.0	27.0	33.0	31.0	29.0	27.0	30.5	28.5	26.5	24.5	30.5	28.5	26.5	24.5
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	82	24.2 - 84	48.8 MI	Нz	88	880.2 - 914.8 MHz			1710.2 - 1784.8 MHz			185	50.2 - 19	909.8 M	Hz	

Mode(s) of Operation	EDGE 850					EDG	E 900		EDGE 1800			EDGE 1900				
Modulation		8P	SK			8PSK			8PSK			8PSK				
Maximum Output Power Setting	28.5	26.5	24.5	22.5	28.5	26.5	24.5	22.5	27.5	25.5	23.5	21.5	27.5	25.5	23.5	21.5
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)	82	24.2 - 84	48.8 MI	łz	88	880.2 - 914.8 MHz			1710.2 - 1784.8 MHz			185	50.2 - 19	909.8 M	ΙΗz	

Note: Bolded entries indicate data mode configurations of highest time-average power output per band and data mode type.

¹ **Bolded** entries in the tables indicate data mode configurations of highest time-average power output per band and data mode type, and thus were utilized for SAR testing in this report.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table:

Description	Serial Number	Cal Date	Cal Due Date
DASY4™ DAE V1	440	Feb-17-2010	Feb-17-2011
E-Field Probe ES3DV3	3184	Sep-18-2009	Sep-18-2010
DASY4™ DAE V1	703	Sep-17-2009	Sep-17-2010
E-Field Probe ES3DV3	3037	Sep-18-2009	Sep-18-2010
DASY4™ DAE V1	376	Jul-13-2010	Jul-13-2011
E-Field Probe ES3DV3	3124	Aug-11-2010	Aug-11-2011
DASY4™ DAE V1	702	May-18-2010	May-18-2011
E-Field Probe ES3DV3	3183	Jul-14-2010	July-14-2011
S.A.M. Phantom used for 800/900 MHz	TP-1131		
S.A.M. Phantom used for 800/900 MHz	TP-1005		
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1250		
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1139		
Dipole Validation Kit, DV835V2	436TR	Mar-17-2010	Mar-17-2011
Dipole Validation Kit, DV835V2	420TR	Mar-17-2010	Mar-17-2011
Dipole Validation Kit, DV1800V2	272TR	Mar-17-2010	Mar-17-2011
Dipole Validation Kit, DV1800V2	259TR	Mar-17-2010	Mar-17-2011
Dipole Validation Kit, DV1800V2	2d160	Jun-15-2010	Jun-15-2012
Dipole Validation Kit, DV2450V2	766	Mar-17-2010	Mar-17-2011

3.2 Additional Equipment

Description	Serial Number	Cal Date	Cal Due Date
Signal Generator HP8648C	3847A04822	Apr-22-2009	Apr-22-2011
Power Meter E4419B	GB39511082	Apr-24-2009	Apr-24-2011
Power Sensor #1 - E9301A	US39210915	Dec-04-2009	Dec-04-2010
Power Sensor #2 - E9301A	US39210916	Nov-16-2009	Nov-16-2010
Signal Generator HP8648C	3847A04843	Apr-22-2009	Apr-22-2011
Power Meter E4419B	US39250622	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39210929	Nov-19-2009	Nov-19-2010
Power Sensor #2 - E9301A	US39210930	Nov-19-2009	Nov-19-2010
Signal Generator HP8648C	3847A04810	Oct-30-2009	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2009	Dec-22-2011
Power Sensor #1 - E9301A	US39211007	Dec-04-2009	Dec-04-2010
Power Sensor #2 - E9301A	US39211008	Dec-04-2009	Dec-04-2010
Network Analyzer HP8753ES	US39172529	Jun-04-2010	Jun-04-2011
Dielectric Probe Kit HP85070C	US99360070		

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1$ g/cm3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

E-field probes calibrated at 1810 MHz were used for "1900 MHz" band (1850 MHz - 1910 MHz) SAR measurements. FCC KDB 450824 provides additional requirements on page 3 of 6 for SAR testing that is performed with probe calibration points that are more than 50 MHz removed from the measured bands. The KDB requires; "(2) When nominal tissue dielectric parameters are specified in the probe calibration data, the tissue dielectric parameters measured for routine measurements should be less than the target Er and higher than the target Sigma values to minimize SAR underestimations". The 1900 MHz simulated tissues listed below meet this criteria.

			Diel	ectric Paran	neters
f (MHz)	Tissue	Limits / Measured		- (S/m)	Temp (°C)
(IVITZ)	type	T	ε _r	σ (S/m)	-
		Measured, 14 Aug, 2010	42.1	0.93	20.0
		Measured, 22 Aug, 2010	42.2	0.93	20.0
	Head	Measured, 23 Aug, 2010	41.4	0.92	19.9
	11000	Measured, 22 Sep, 2010	42.0	0.92	19.9
		Measured, 28 Sep, 2010	42.4	0.93	19.5
835		Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25
		Measured, 8 Aug, 2010	55.6	1.0	20.0
	Body	Measured, 16 Aug, 2010	55.6	1.0	20.0
		Measured, 20 Aug, 2010	54.9	1.0	19.8
		Measured, 23 Sep, 2010	55.3	1.0	19.9
		Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25
		Measured, 10 July, 2010	39.3	1.46	19.6
		Measured, 8 Aug, 2010	38.1	1.47	19.6
		Measured, 12 Aug, 2010	38.4	1.45	20.2
	Head	Measured, 27 Sep, 2010	38.4	1.46	19.0
1880		Measured, 7 Oct, 2010	38.7	1.47	19.5
		Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25
		Measured, 8 July, 2010	51.0	1.59	20.2
	Body	Measured, 11 Aug, 2010	50.9	1.58	20.3
	_	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25
		Measured, 18 Aug, 2010	37.4	1.87	19.8
	Head	Measured, 28 Sep, 2010	36.9	1.88	20.4
2450		Recommended Limits	39.2 ±10%	1.80 ±5%	18-25
	Body	Measured, 19 Aug, 2010	49.9	1.99	20.0
	Douy	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric P	arameters	Ambient	Tissue
(MHz)	Description	1gram	$oldsymbol{arepsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 9 Jul, 2010	9,43	41.3	0.91	19.8	20.7
	Measured, 14 Aug, 2010	9.68	42.1	0.93	20.0	20.1
	Measured, 20 Aug, 2010	9.58	41.9	0.92	20.0	20.3
	Measured, 22 Aug, 2010	9.65	42.2	0.93	20.6	20.3
835	Measured, 23 Aug, 2010	9.30	41.4	0.92	20.5	21.4
	Measured, 22 Sep, 2010	9.75	42.0	0.92	20.2	20.4
	Measured, 23 Sep, 2010	9.55	41.6	0.91	20.1	19.8
	Measured, 28 Sep, 2010	9.90	42.4	0.93	19.8	19.6
	Recommended Limits	9.56	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, 8 Jul, 2010	37.30	38.7	1.37	20.0	20.0
	Measured, 10 Jul, 2010	35.90	39.7	1.37	20.0	19.4
	Measured, 29-Jul, 2010	36.43	39.2	1.37	20.3	19.8
	Measured, 8 Aug, 2010	39.25	38.2	1.37	20.2	20.0
	Measured, 11 Aug, 2010	35.95	38.7	1.36	20.5	20.0
1800	Measured, 12 Aug, 2010	36.30	38.8	1.37	20.3	20.0
	Measured, 16 Aug, 2010	39.63	38.5	1.36	20.3	20.3
	Measured , 27 Sep, 2010	39.4	38.8	1.39	19.6	19.2
	Recommended Limits	38.40	$40.0 \pm 5\%$	1.4 ±5%	18-25	18-25
	Measured, 7 Oct, 2010	39.55	39.1	1.38	19.9	18.6
	Recommended Limits	38.50	$40.0 \pm 5\%$	1.4 ±5%	18-25	18-25
	Measured, 17 Aug, 2010	55.25	37.4	1.87	20.1	20.0
2450	Measured, 19 Aug, 2010	54.25	37.4	1.83	20.3	20.4
2450	Measured, 27 Sep, 2010	56.5	36.9	1.88	20.1	19.4
	Recommended Limits	52.40	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg#
		835	6.25	8 of 9
	SN3037	1810	5.05	8 of 9
		2450	4.41	8 of 9
E-Field Probe	SN3184	835	6.26	8 of 9
ES3DV3	SN3164	1810	5.14	8 of 9
	SN3124	835	4.89	8 of 9
	SN3124	2450	4.35	8 of 9
	SN3183	835	6.11	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5877A - 1500 mAH Battery

The location of peak SAR for a handset is a function of the type of antenna implemented, the frequencies of transmission, the configuration of phone placement against the measurement phantom, the shape of the measurement phantom, any unintended secondary radiating elements on the DUT, etc.. Therefore the location of peak SAR may not coincide with the location of the transmitting antenna.

Below is a test channel to actual channel frequency cross-reference listing:

Tx Band	Chn	F (MHz)
	128	824.20
GSM 850	190	836.60
	251	848.80
	4132	826.40
WCDMA 850	4180	836.00
	4233	846.60
	975	880.20
CSN4 000	1	890.20
GSM 900	62	902.40
	124	914.80
	2712	882.40
WCDMA 900	2787	897.40
	2863	912.60
	1312	1712.40
WCDMA 1700	1413	1732.50
	1513	1752.60

Tx Band	Chn	F (MHz)
	512	1710.20
GSM 1800	700	1747.80
	885	1785.00
	512	1850.20
GSM 1900	661	1880.00
	810	1909.80
	9262	1852.40
WCDMA 1900	9400	1880.00
	9538	1907.60
	9612	1922.40
WCDMA 2100	9750	1950.00
	9888	1977.60
).A.(:E:	1	2412.00
WiFi (802.11b/g)	6	2437.00
(002.110/g)	11	2462.00

Evaluation of WCDMA Modes

Per the "SAR Measurement Procedures for 3G Devices" released in October, 2007, 12.2 kbps RMC, 12.2 kbps AMR, HS-DPCCH Sub-test 1-4, and E-DCH Sub-test 1-5 modes were considered. The conducted power measurements (per section 5.2 of 3GPP TS 34.121) for each mode are shown in the table below.

Band	Channel					wer (dBm) i PA (Rel 5) M		WCDM		ted Power (d (HSUPA/HS) Modes
		RMC	AMR	Subtest 1	Subtest 2	Subtest 3	Subtest 4	Subtest 1	Subtest 2	Subtest 3	Subtest 4	Subtest 5
	4132	24.13	24.13	24.09	24.06	24.07	24.07	24.07	24.09	24.08	24.10	24.10
WCDMA 850	4180	24.11	23.93	23.89	24.05	24.06	24.15	24.17	24.14	24.16	24.14	24.12
030	4233	24.00	24.13	24.06	24.06	24.03	24.03	24.13	24.05	24.06	24.06	24.06
w.co.	9262	23.51	23.52	23.62	23.59	23.71	23.67	23.62	23.61	23.7	23.63	23.74
WCDMA 1900	9400	23.52	23.58	23.62	23.59	23.73	23.67	23.63	23.61	23.68	23.61	23.7
1500	9538	23.32	23.36	23.38	23.37	23.34	23.33	23.39	23.37	23.41	23.38	23.41

Maximum Power Reduction (MPR)

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1A: UE maximum output power with HS-DPCCH and E-DCH

UE transmit channel configuration	CM (dB)	MPR (dB)
For all combinations of; DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH	$0 \leq CM \leq 3.5$	MAX (CM-1, 0)

Note 1: CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to-average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present, the beta gains on those channels are reduced first to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a mechanism to compensate for the power back-off by increasing the gain of TX AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

Evaluation of Wi-Fi 802.11 Modes

Per "SAR Measurement Procedures for 802.11 a/b/g Transmitters" (FCC KDB 248227), power measurements were performed for 802.11 operational modes. The conducted power measurements for each mode are shown in the table below. SAR testing for 802.11 modes was performed with the transmitter mode and data rate set to the configurations highlighted in bold below.

Band	Channel		ducted Po 2.11b Mod	` ′	
Danu	Channel	1 2 5.5 Mbps Mbps Mbps M			
	1	17.04	17.17	17.11	17.1
Wi-Fi 2450 MHz	6	17.71	17.85	17.71	17.65
2420 MIIZ	11	18.47	18.54	18.53	18.57

Band	Channel		Condu	icted Powe	r (dBm) fo	r 802.11g l	Mode Data	Rates	
Danu	Channel	6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
	1	14.48	14.58	14.55	14.26	14.02	14.05	12.55	12.58
Wi-Fi 2450 MHz	6	17.37	17.31	16.83	16.71	14.63	14.69	13.29	13.45
2.00 1/112	11	18.17	18.21	17.83	17.43	15.44	15.54	14.2	14.07

Band	Channel				er (dBm) fo Channel, 80				
Бапа	Channel	6.5	13	19.5	26	39	52	58.5	65
		Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps	Mbps
	1	14.23	14.14	13.76	13.68	15.32	13.86	12.38	11.57
Wi-Fi 2450 MHz	6	17.06	16.64	16.39	14.67	14.5	13.08	13.08	12.12
2.20 11112	11	17.9	17.5	17.01	15.4	15.33	13.92	13.86	12.98

Band	Channel				r (dBm) fo Channel, 40				
Danu	Channel	7.2 Mbps	14.4 Mbps	21.6 Mbps	28.8 Mbps	43.3 Mbps	57.7 Mbps	65 Mbps	72.2 Mbps
	1	14.34	14.28	13.92	14.04	13.91	12.58	12.57	11.7
Wi-Fi 2450 MHz	6	17.22	16.74	16.4	14.72	14.66	13.3	13.21	12.49
2.00 MHZ	11	18.05	17.57	17.23	15.52	15.38	13.97	14.01	13.18

Evaluation of Bluetooth Mode

Per "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas" (FCC KDB 648474), the necessity of stand-alone and simultaneous SAR testing was evaluated for the Bluetooth transmitter of the device under test. Note that Bluetooth mode is not intended for use in configurations against the head, and this evaluation considers only the body-worn configurations.

The conditions under which the device under test can be excluded from stand-alone and simultaneous SAR testing, per FCC KDB 648474, are summarized as follows:

	2.45	5.15 - 5.35	5.47 - 5.85	GHz
PRef	12	6	5	mW
ice output power	1. 111			

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission— o output ≤ 60 f°. SAR not required o output > 60 f°. stand-alone SAR required When there is simultaneous transmission— Stand-alone SAR not required when o output ≤ 2P _{Bet} and antenna is ≥ 5.0 cm from other antennas o output ≤ P _{Bet} and antenna is ≥ 2.5 cm from other antennas o output ≤ P _{Bet} and antenna is ≥ 2.5 cm from other antennas o output ≤ P _{Bet} and antenna is > 2.5 cm from other antennas o output ≤ P _{Bet} and sintenna is > 2.5 cm from when stantennas, each with either output power ≤ P _{Bet} or 1-g SAR < 1.2 W/kg Otherwise stand-alone SAR is required When stand-alone SAR is required test SAR on highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is no required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is - 1.6 W/kg for all simultaneou transmitting antennas when SAR to peak location separation ratio of simultaneou transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs > 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition. Note: simultaneous transmission exposure conditions for head and only only the stand-alone for the configuration of th

Per the highlighted criteria:

- 1. The highest output conducted power measured for Bluetooth on the device under test is 9.62 mW [< 12 mW]
- 2. The separation distance between the Bluetooth antenna and the nearest main antenna is 1.64 cm [< 2.5 cm]
- 3. The highest 1-g Body-Worn SAR values for primary transmitters are: GSM 850 (0.46 $^{W}/_{kg}$); GSM 1900 (0.60 $^{W}/_{kg}$); WCDMA 850 (0.62 $^{W}/_{kg}$); WCDMA 1900 (0.55 $^{W}/_{kg}$) [< 1.2 $^{W}/_{kg}$]

Based on the output power of the Bluetooth transmitter, its antenna separation distance from the nearest primary antenna, and the SAR values of the primary transmitter modes, neither stand-alone nor simultaneous SAR measurements are required for the device under test.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(\text{-drift/10})}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2. The tables below also include the highest SAR value summations for primary and secondary co-located transmitters, except as noted below, with the results indicated in italics.

The guidelines provided in "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas" (KDB publication 648474 - D01 v01r05) were utilized for evaluation of the need for simultaneous transmission SAR testing. For GSM 850 and Wi-Fi in the Left Head Cheek position the SAR-to-peak-location separation ratio is 0.51.

For GSM 1900 and Wi-Fi in the Left Head Cheek position the SAR-to-peak-location separation ratio is 0.34. For WCDMA 850 and Wi-Fi in the Left Head Cheek position the SAR-to-peak-location separation ratio is 0.58. For WCDMA 1900 and Wi-Fi in the Left Head Cheek position the SAR-to-peak-location separation ratio is 0.35. For WCDMA 1900 and Wi-Fi in the Left Head 15degree tilt position the SAR-to-peak-location separation ratio is 1.08.

For these configurations, combined SAR measurements were required to determine the aggregate 1 g SAR for simultaneous transmission evaluation. The results of these measurement are given in table 1 below, with additional SAR plots of the combined measurements provided in Appendix 2

Additional SAR measurements for simultaneous transmission evaluation were performed for each of the single transmitters using an extended zoom scan. This extended zoom scan was created to encompass the zoom scan volumes that were found previously in each of the single transmit SAR tests. The location of this extended zoom scan was established by using X, Y grid offsets from the "Grid Reference Point" in DASY4.7. The results were then combined via the DASY4.7 Multi-Band Combiner feature. The extended zoom dimensions and the step sizes are given below:

- For GSM 850 MHz + Wi-Fi, the outer dimensions of the extended zoom scan were X = 64 mm, Y = 56 mm, Z = 30 mm with a step size of X = 8 mm, Y = 8 mm, Z = 5 mm.
- For WCDMA 850 MHz + Wi-Fi, the outer dimensions of the extended zoom scan were X = 64 mm, Y = 56 mm, Z = 30 mm with a step size of X = 8 mm, Y = 8 mm, Z = 5 mm.
- For GSM 1900 MHz + Wi-Fi, the outer dimensions of the extended zoom scan were X = 48 mm, Y = 88 mm, Z = 30 mm with a step size of X = 8 mm, Y = 8 mm, Z = 5 mm.
- For WCDMA 1900 MHz + Wi-Fi Left Head Cheek, the outer dimensions of the extended zoom scan were X = 48 mm, Y = 88 mm, Z = 30 mm with a step size of X = 8 mm, Y = 8 mm, Z = 5 mm.
- For WCDMA 1900 MHz + Wi-Fi Left Head Tilt, the outer dimensions of the extended zoom scan were X = 40 mm, Y = 64 mm, Z = 30 mm with a step size of X = 8 mm, Y = 8 mm, Z = 5 mm.

The location of this extended zoom scan was established by using X, Y grid offsets from the "Grid Reference Point" in DASY4.7. The results were then combined via the DASY4.7 Multi-Band Combiner feature. The methods used for these additional SAR measurements for simultaneous transmission evaluation are approved per FCC consultation contained within Pre PBA Tracking Number 294775 for this filing only.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23914-1

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be $15.0 \text{cm} \pm 0.5 \text{cm}$.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg#
		835	6.25	8 of 9
	SN3037	1810	5.05	8 of 9
		2450	4.41	8 of 9
E-Field Probe ES3DV3	SN3184	835	6.26	8 of 9
E-Field Flobe ESSDVS	5113164	1810	5.14	8 of 9
	SN3124	835	4.89	8 of 9
	SN3124	2450	4.35	8 of 9
	SN3183	835	6.11	8 of 9

	Left Head Cheek Position													
		Conducted			10g SA	10g SAR value		R value	Test Plot					
Transmit Band	Description	Output Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolate d (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Grid	Plot Pg				
	Channel 128	32.96	19	-0.026	0.575	0.58	0.784	0.79						
GSM 850	Channel 190	32.83	19	-0.80	0.608	0.62	0.83	0.85	5x5x7	55				
	Channel 251	32.83	20	-0.021	0.583	0.59	0.795	0.80						
	Channel 512	30.53												
GSM 1900	Channel 661	30.49	19.6	-0.044	0.418	0.42	0.767	0.77	5x5x7	60				
	Channel 810	30.34												
WCDMA	Channel 4132	24.13	21.3	0.008	0.677	0.68	0.891	0.89						
850	Channel 4180	24.11	19.6	-0.042	0.652	0.66	0.862	0.87						
	Channel 4233	24.00	19.5	-0.002	0.786	0.79	1.07	1.07	9x8x7	57				
WCDMA	Channel 9262	23.51	20	-0.032	0.494	0.50	0.89	0.90						
1900	Channel 9400	23.52	20.2	-0.008	0.482	0.48	0.877	0.88						
	Channel 9538	23.32	18.7	0.01	0.56	0.56	1.07	1.07	7x12x7	62				
Wi-Fi 2450	Channel 1	17.04	20.4	-0.038	0.400	0.40	0.896	0.90	7x12x7	64				
802.11b	Channel 6	17.71	19.8	-0.274	0.336	0.36	0.732	0.78						
1Mbps	Channel 11	18.47	19.8	-0.103	0.36	0.34	0.714	0.73						
GSM 850 + Wi-Fi						1.02		1.26 ²	9x8x7	67-68				
GSM 1900 + Wi-Fi						0.82		0.98 ³	7x12x7	72-73				
WCDMA 850 + Wi-Fi						1.19		1.29 ⁴	9x8x7	69-71				
WCDMA 1900 + WiFi						0.96		1.13 ⁵	7x12x7	74-75				

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

Exhibit 11

Per KDB publication 648474 and a request for clarification in Pre PBA Tracking Number 294775, simultaneous SAR evaluation was required to determine the aggregate 1-g SAR in this configuration because the simple sum-SAR > 1.6 and the SAR-to-peak-location separation ratio is 0.51 (greater than 0.3 limit). See Appendix 2 for SAR plots and further information.

³ Per KDB publication 648474 and a request for clarification in Pre PBA Tracking Number 294775, simultaneous SAR evaluation was required to determine the aggregate 1-g SAR in this configuration because the simple sum-SAR > 1.6 and the SAR-to-peak-location separation ratio is 0.34 (greater than 0.3 limit). See Appendix 2 for SAR plots and further information.

⁴ Per KDB publication 648474 and a request for clarification in Pre PBA Tracking Number 294775, simultaneous SAR evaluation was required to determine the aggregate 1-g SAR in this configuration because the simple sum-SAR > 1.6 and the SAR-to-peak-location separation ratio is 0.40 (greater than 0.3 limit). See Appendix 2 for SAR plots and further information.

Per KDB publication 648474 and a request for clarification in Pre PBA Tracking Number 294775, simultaneous SAR evaluation was required to determine the aggregate 1-g SAR in this configuration because the simple sum-SAR > 1.6 and the SAR-to-peak-location separation ratio is 0.58 (greater than 0.3 limit). See Appendix 2 for SAR plots and further information.

	Right Head Cheek Position													
		Conducted Output				AR value	1g SA	R value	Test	Plot				
Transmit Band	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolate d (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Grid	Plot Pg				
	Channel 128	32.96	19.1	-0.014	0.586	0.59	0.792	0.79						
GSM 850	Channel 190	32.83	19.4	-0.036	0.606	0.61	0.82	0.83						
020	Channel 251	32.83	19.2	-0.041	0.602	0.61	0.815	0.82						
	Channel 512	30.53												
GSM 1900	Channel 661	30.49	19.6	-0.028	0.279	0.28	0.517	0.52						
	Channel 810	30.34												
	Channel 4132	24.13	21.3	-0.022	0.767	0.77	1.01	1.02						
WCDMA 850	Channel 4180	24.11	19.7	-0.127	0.726	0.75	0.969	1.00						
424	Channel 4233	24.00	21.3	0.023	0.824	0.82	1.08	1.08	5x5x7	58				
WCDMA	Channel 9262	23.51												
1900	Channel 9400	23.52	20.1	-0.036	0.39	0.39	0.729	0.74						
	Channel 9538	23.32												
Wi-Fi 2450	Channel 1	17.04												
802.11b 1Mbps	Channel 6	17.71	19.8	0.118	0.204	0.20	0.44	0.44						
Tiviops	Channel 11	18.47												
GSM 850 + Wi-Fi						0.81		0.83 + 0.44 = 1.27						
GSM 1900 + Wi-Fi						0.48		0.52 + 0.44 = 0.96						
WCDMA 850 + Wi-Fi						1.02		1.08 + 0.44 = 1.52						
WCDMA 1900 + WiFi						0.59		0.74 + 0.44 = 1.18						

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position													
		Conducted			10g SA	g SAR value 1g SAR value		Test	Test Plot					
Transm it Band	Description	Output Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolate d (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Grid	Plot Pg				
	Channel 128	32.96												
GSM 850	Channel 190	32.83	19.0	0.035	0.385	0.39	0.526	0.53	5x5x7	56				
	Channel 251	32.83												
	Channel 512	30.53	19.6	-0.013	0.478	0.48	0.891	0.89						
GSM 1900	Channel 661	30.49	19.6	-0.040	0.501	0.51	0.941	0.95	5x5x7	61				
	Channel 810	30.34	19.6	-0.016	0.410	0.41	0.781	0.78						
	Channel 4132	24.13												
WCDMA 850	Channel 4180	24.11	19.7	-0.029	0.467	0.47	0.629	0.63						
0.00	Channel 4233	24.00												
WCDMA	Channel 9262	23.51	19.8	-0.138	0.654	0.68	1.25	1.29						
1900	Channel 9400	23.52	19.6	-0.009	0.758	0.76	1.47	1.47	5x5x7	63				
	Channel 9538 Channel 1	23.32 17.04	19.8	0.006	0.732	0.73	1.42	1.42						
Wi-Fi 2450 802.11b	Channel 6	17.71	19.8	-0.253	0.0929	0.10	0.169	0.18	5x5x7	65				
1Mbps	Channel 11	18.47	13.0	0.200	0.0020	0.10	0.100	0.10	OXOXI	00				
GSM 850 + Wi-Fi		19111				0.49		0.53 + 0.18 = 0.71						
GSM 1900 + Wi-Fi						0.61		0.95 + 0.18 = 1.13						
WCDMA 850 + Wi-Fi						0.57		0.63 + 0.18 = 0.81						
WCDMA 1900 + WiFi						0.86		1.44 ⁶	6x9x7	76-77				

Table 3: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

_

⁶ Per KDB publication 648474 and a request for clarification in Pre PBA Tracking Number 294775, simultaneous SAR evaluation was required to determine the aggregate 1-g SAR in this configuration because the simple sum-SAR > 1.6 and the SAR-to-peak-location separation ratio is 1.08 (greater than 0.3 limit). See Appendix 2 for SAR plots and further information.

	Right Head 15° Tilt Position													
		Conducted				10g SAR value		R value	Test Plot					
Transmit Band	Description	Output Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolate d (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	Grid	Plot Pg				
	Channel 128	32.96												
GSM 850	Channel 190	32.83	18.9	0.026	0.366	0.37	0.499	0.50						
050	Channel 251	32.83												
	Channel 512	30.53												
GSM 1900	Channel 661	30.49	19.6	0.0465	0.354	0.35	0.666	0.67						
•	Channel 810	30.34												
	Channel 4132	24.13												
WCDMA 850	Channel 4180	24.11	19.7	0.076	0.492	0.49	0.66	0.66	5x5x7	59				
	Channel 4233	24.00												
WCDMA	Channel 9262	23.51	20.1	-0.015	0.471	0.47	0.861	0.86						
1900	Channel 9400	23.52	20.1	0.015	0.527	0.53	0.985	0.99						
	Channel 9538	23.32	20.1	-0.022	0.522	0.52	1.01	1.02						
Wi-Fi 2450	Channel 1	17.04												
802.11b	Channel 6	17.71	19.8	-0.051	0.0978	0.10	0.188	0.19	5x5x7	66				
1Mbps	Channel 11	18.47												
GSM 850 + Wi-Fi						0.47		0.50+0.19 = 0.69						
GSM 1900 + Wi-Fi						0.45		0.67 + 0.19 = 0.86						
WCDMA 850 + Wi- Fi						0.59		0.66 + 0.19 = 0.85						
WCDMA 1900 + WiFi						0.63		1.02 + 0.19 = 1.21						

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 5 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is Extrapolated SAR = Measured SAR * $10^{(-drift/10)}$. The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall)...

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. A separation distance of 15mm between the device and the flat phantom was used for testing body-worn SAR. The device was tested with the front and back of the device facing the phantom. Both sides of the device were tested for Body SAR for the purpose of including the SAR evaluation for body-worn accessories that support the device with the front side facing the user.

The cellular phone was also tested in data mode operations. For these tests, a separation distance of 25 mm between the device and the flat phantom was used. The chosen separation distance of 25 mm is utilized in order to support any case or holder accessories offered or to be offered by Motorola for this product. The device was tested in the worst-case SAR position and channel configuration from the voice-mode body-worn testing.

The device was tested with the front and back of the device facing the phantom. Both sides of the device were tested for Body SAR for the purpose of including the SAR evaluation for body-worn accessories that support the device with the front side facing the user.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #		
E-Field Probe	CN2027	835	6.17	8 of 9		
	SN3037	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
ES3DV3	SN3184	1810	4.84	8 of 9		

	Body-Worn; Front of Phone 15mm from Phantom											
f		Conducted Output Power	Temp	Drift		AR value Extrapolated	1g SA	R value Extrapolated				
(MHz)	Description	(dBm)	(°C)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)				
667.5	Channel 128	32.96										
GSM 850	Channel 190	32.83	18.7	-0.07	0.208	0.21	0.288	0.29				
050	Channel 251	32.83										
CCM	Channel 512	30.53										
GSM 1900	Channel 661	30.49	20.2	-0.043	0.0698	0.07	0.115	0.12				
1700	Channel 810	30.34										
WCDMA	Channel 9262	23.51										
1900	Channel 9400	23.52	20.4	0.076	0.0855	0.09	0.135	0.14				
1700	Channel 9538	23.32										
WCDMA	Channel 4132	24.13										
850	Channel 4180	24.11	19.6	-0.075	0.185	0.19	0.251	0.25				
050	Channel 4233	24.00										
Wi-Fi 2450	Channel 1	17.04										
802.11b	Channel 6	17.71	20.0	-0.138	0.0228	0.02	0.0393	0.04				
1Mbps	Channel 11	18.47										
GSM 850 + Wi-Fi						0.23		0.29+0.04 = 0.33				
GSM 1900 + Wi-Fi						0.09		0.12+0.04 = 0.16				
Band II + Wi-Fi						0.11		0.14+0.04 = 0.18				
Band V + Wi-Fi						0.21		0.25+0.04 = 0.29				

Table 5: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 15mm from Phantom												
f (MHz)	Description	Conducted Output Power (dBm)	Temp (°C)	Drift (dB)		AR value Extrapolated (W/kg)	Ig SA. Measured (W/kg)	R value Extrapolated (W/kg)					
	Channel 128	32.96	()	(42)	(, , , = -8,	(· · · · - · · · · · · · · · · · · · ·	(· · · · · · · · · ·	(
GSM	Channel 190	32.83	18.7	-0.055	0.327	0.33	0.457	0.46					
850	Channel 251	32.83											
997.5	Channel 512	30.53											
GSM 1900	Channel 661	30.49	20.2	-0.034	0.323	0.33	0.60	0.60					
1900	Channel 810	30.34											
MCDMA	Channel 9262	23.51											
WCDMA 1900	Channel 9400	23.52	20.3	-0.006	0.299	0.30	0.545	0.55					
1500	Channel 9538	23.32											
WCDMA	Channel 4132	24.13											
WCDMA 850	Channel 4180	24.11	19.8	0.024	0.455	0.46	0.618	0.62					
050	Channel 4233	24.00											
Wi-Fi 2450	Channel 1	17.04											
802.11b	Channel 6	17.71	20.0	0.058	0.063	0.06	0.104	0.10					
1Mbps	Channel 11	18.47											
GSM 850 + Wi-Fi						0.39		0.46+0.10 = 0.56					
GSM 1900 + Wi-Fi						0.39		0.60+0.10 = 0.70					
Band II + Wi-Fi						0.36		0.55+0.10 = 0.65					
Band V + Wi-Fi						0.52		0.62+0.10 = 0.72					

Table 6: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	GPRS Class 10 (2 Uplink Timeslots) Body-Worn; Back of Phone 25 mm from Phantom												
f	Description	Conducted	Temp	Drift	10 g SA	R value	1 g SAR value						
(MHz)		Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)					
CCM	Channel 128	31.11											
GSM 850	Channel 190	30.91	20.0	-0.038	0.839	0.08	0.114	0.12					
850	Channel 251	30.84											
CCM	Channel 512	28.50											
GSM 1900	Channel 661	28.57	19.8	-0.077	0.0878	0.09	0.143	0.15					
1900	Channel 810	28.41											
Wi-Fi 2450	Channel 1	17.04											
802.11b	Channel 6	17.71	20.0	0.0235	0.008	0.01	0.0145	0.01					
1Mbps	Channel 11	18.47											
GSM 850 + WI-FI						0.09		0.12+0.01=0.13					
GSM 1900 + WI-FI						0.10		0.15+0.01=0.16					

Table 7: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	EDGE Class 10 (2 Uplink Timeslots) Body-Worn; Back of Phone 25 mm from Phantom											
f	Description	Conducted Output Power (dBm)	Temp (°C)	Drift	10 g SA	R value	1 g SAR value					
(MHz)				(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
CCM	Channel 128	26.70										
GSM 850	Channel 190	26.49	20.0	-0.005	0.0701	0.07	0.0942	0.09				
050	Channel 251	26.37										
CCM	Channel 512	25.57										
GSM 1900	Channel 661	25.55	19.8	-0.064	0.0481	0.05	0.0792	0.08				
1900	Channel 810	25.42										
GSM 850 + WI-FI						0.08		0.09+0.01=0.10				
GSM 1900 + WI-FI						0.06		0.08+0.01=0.09				

Table 8: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1992 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

PAGE INTENTIONAL LEFT BLANK

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 7/9/2010 10:41:36 AM

Test Laboratory: Motorola - 835 MHz Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:436TR

Procedure Notes: PM1 Power = 200mW Refl.Pwr PM3 = -29.5dB Sim.Temp@SPC = 20.7*C Room Temp @ SPC = 19.8*C

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(6.26, 6.26, 6.26); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.79 mW/g

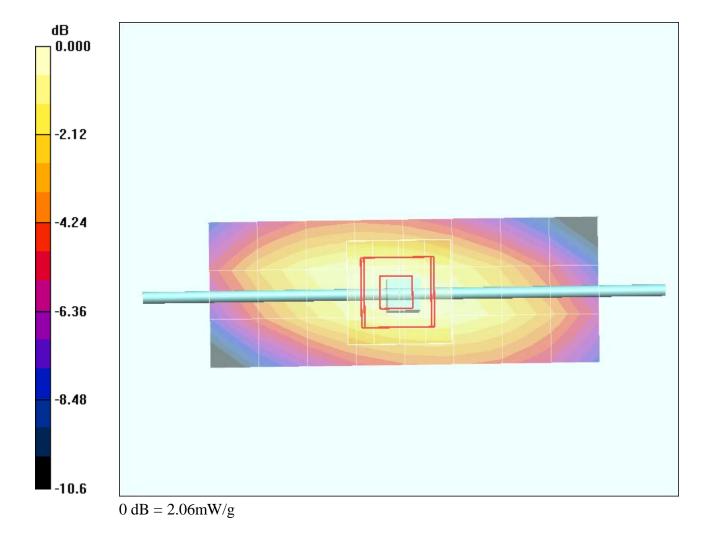
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.3 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(1 g) = 1.87 mW/g; SAR(10 g) = 1.23 mW/g

Maximum value of SAR (measured) = 2.03 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.3 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 2.72 W/kg

SAR(1 g) = 1.9 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2.06 mW/g

Date/Time: 8/14/2010 6:47:54 AM

Test Laboratory: Motorola - 835MHz Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420TR

Procedure Notes: PM2 Power = 201 mW Refl.Pwr PM3 = -24.50 dB Sim.Temp@SPC = 20.1 Room Temp @ SPC = 20

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.25, 6.25, 6.25); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.89 mW/g

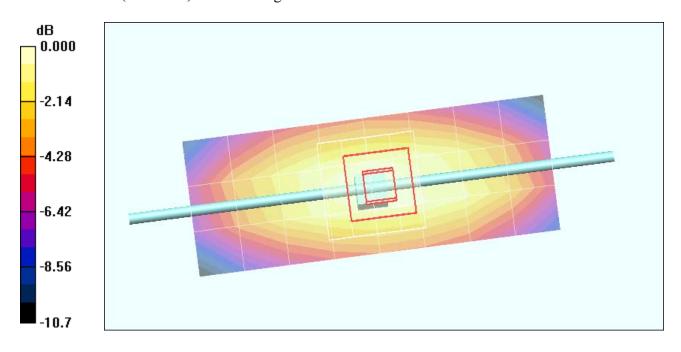
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.6 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 2.71 W/kg

SAR(1 g) = 1.95 mW/g; SAR(10 g) = 1.3 mW/g

Maximum value of SAR (measured) = 2.10 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.6 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.26 mW/g

Maximum value of SAR (measured) = 2.07 mW/g

Date/Time: 8/20/2010 8:32:06 AM

Test Laboratory: Motorola - 835 MHz Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420TR;

Procedure Notes: PM2 Power = 201 mW Refl.Pwr PM3 = -23.3 dB Sim.Temp@SPC = 20.3 Room Temp @ SPC = 20

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.25, 6.25, 6.25); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.95 mW/g

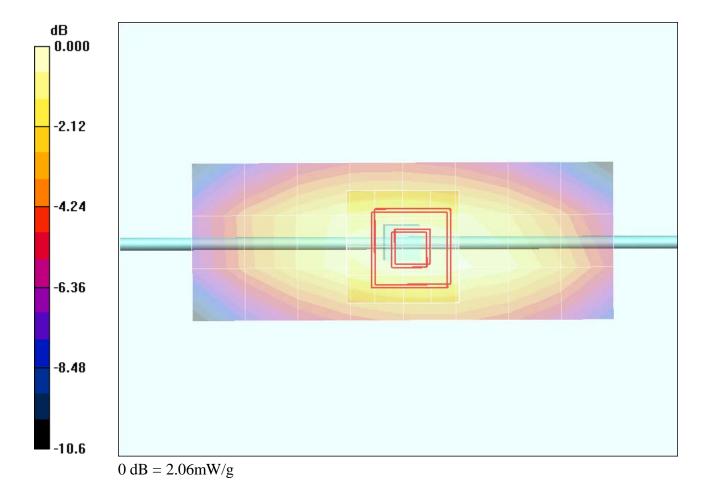
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.7 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 2.66 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.28 mW/g

Maximum value of SAR (measured) = 2.08 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.7 V/m; Power Drift = -0.052 dB

Peak SAR (extrapolated) = 2.76 W/kg

SAR(1 g) = 1.91 mW/g; SAR(10 g) = 1.25 mW/g

Maximum value of SAR (measured) = 2.06 mW/g

Date/Time: 8/22/2010 6:49:56 AM

Test Laboratory: Motorola - 835 MHz Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420tr;

Procedure Notes: PM2 Power = 200 mW Refl.Pwr PM3 = -25.78 dB Sim.Temp@SPC = 20.3 Room Temp @ SPC = 20.6

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.25, 6.25, 6.25); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.95 mW/g

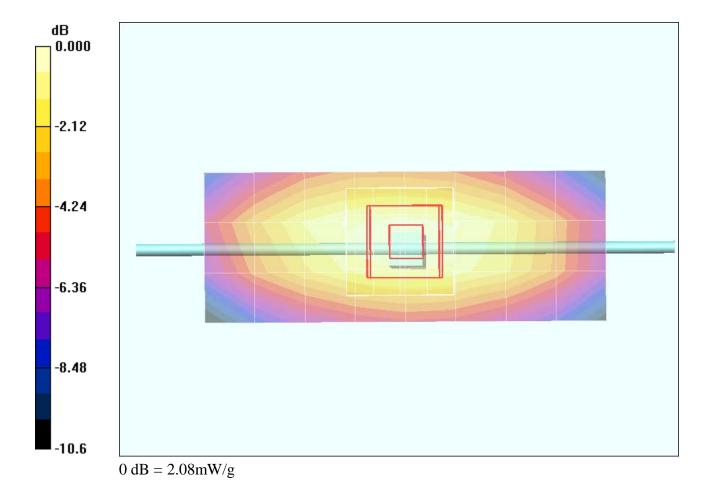
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.4 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 2.69 W/kg

SAR(1 g) = 1.94 mW/g; SAR(10 g) = 1.3 mW/g

Maximum value of SAR (measured) = 2.11 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 48.4 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 2.77 W/kg

SAR(1 g) = 1.92 mW/g; SAR(10 g) = 1.26 mW/g

Maximum value of SAR (measured) = 2.08 mW/g

Date/Time: 8/23/2010 8:30:20 AM

Test Laboratory: Motorola - 835 MHz Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:436tr;

Procedure Notes: PM2 Power = 198mW Refl.Pwr PM3 = -28.9dB Sim.Temp@SPC = 21.4*C Room Temp @ SPC = 20.5*C

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(6.26, 6.26, 6.26); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.75 mW/g

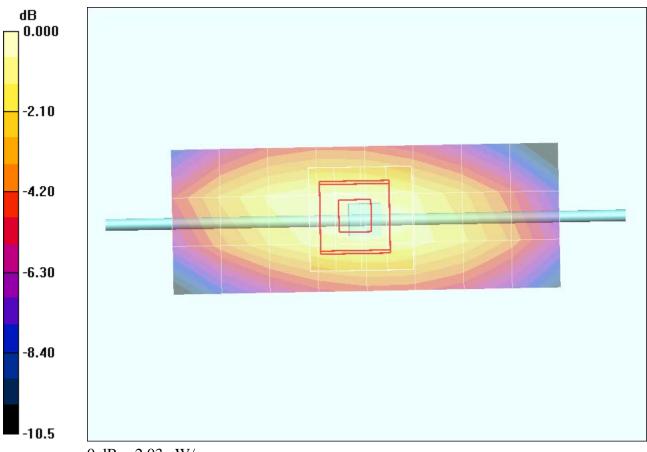
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.6 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.84 mW/g; SAR(10 g) = 1.22 mW/g

Maximum value of SAR (measured) = 2.00 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.6 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 2.67 W/kg

SAR(1 g) = 1.88 mW/g; SAR(10 g) = 1.24 mW/g

Maximum value of SAR (measured) = 2.03 mW/g

0 dB = 2.03 mW/g

Date/Time: 9/22/2010 9:14:26 AM

Test Laboratory: Motorola - 835 MHz System Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420tr;

Procedure Notes: 835 MHz System Performance Check / PM2 Power = 200 mW Refl.Pwr PM3 = -26.75 dB

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

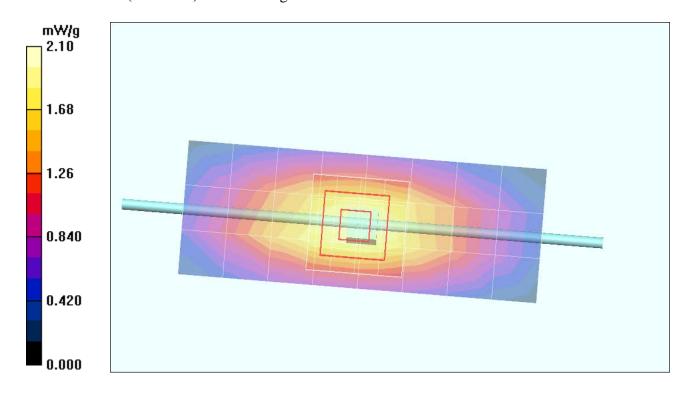
DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.89 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 48.2 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 2.94 W/kg

SAR(1 g) = 1.95 mW/g; SAR(10 g) = 1.27 mW/g

Maximum value of SAR (measured) = 2.11 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.10 mW/g

1 of 2 10/4/2010 10:55 AM

Date/Time: 9/23/2010 7:39:05 AM

Test Laboratory: Motorola - 835 MHz System Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420tr;

Procedure Notes: 835 MHz System Performance Check / PM2 Power = 200 mW Refl.Pwr PM3 = -25.75 dB Sim.Temp@SPC = 19.8 C Room Temp @ SPC = 20.1 C

Communication System: CW - Dipole; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.6$; $\rho = 1000$ kg/m³

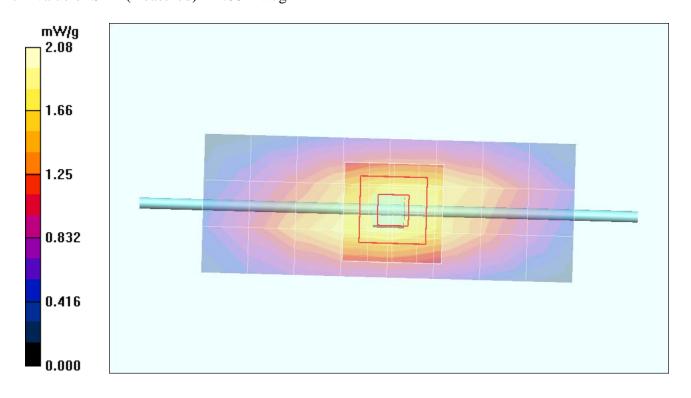
DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.87 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 48.3 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 2.88 W/kg

SAR(1 g) = 1.91 mW/g; SAR(10 g) = 1.24 mW/g

Maximum value of SAR (measured) = 2.07 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.08 mW/g

1 of 2 10/4/2010 10:50 AM

Date/Time: 9/28/2010 8:50:14 AM

Test Laboratory: Motorola - 835 MHz System Performance Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:420TR;

Procedure Notes: 835 MHz System Performance Check / Power = 200 mW Refl.Pwr PM3 = -24.03dB

Sim. Temp @ SPC = 19.6 Room Temp @ SPC = 19.8

Communication System: CW - Dipole; Frequency: 835 MHz; Communication System Channel Number: 3; Duty

Cycle: 1:1

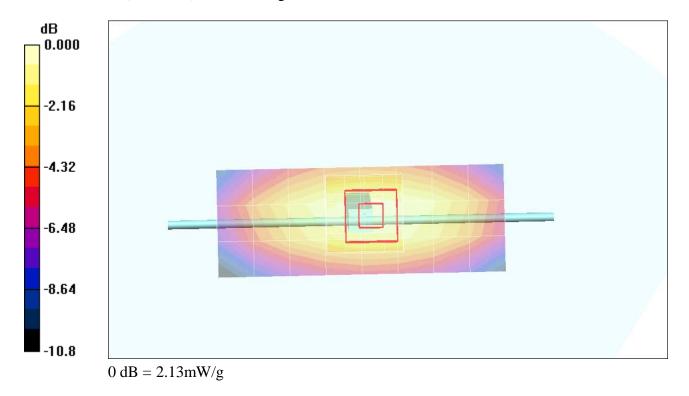
Medium: VALIDATION Only; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.97 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 47.7 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 2.99 W/kg

SAR(1 g) = 1.98 mW/g; SAR(10 g) = 1.28 mW/g

Maximum value of SAR (measured) = 2.13 mW/g

Date/Time: 7/8/2010 7:00:36 AM

Test Laboratory: Motorola

1800MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272TR;

Procedure Notes: PM1 Power = 200 mW Refl.Pwr PM3 = -30.02 dB Sim.Temp@SPC = 20.0 C Room Temp @SPC = 20

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 38.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.24 mW/g

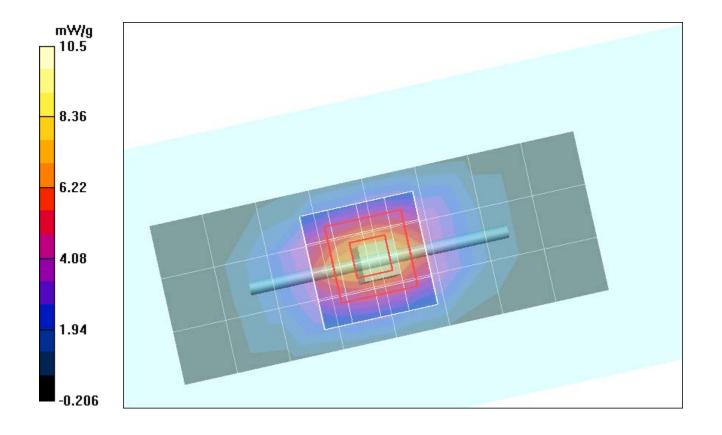
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 12.4 W/kg

SAR(1 g) = 7.38 mW/g; SAR(10 g) = 3.98 mW/g

Maximum value of SAR (measured) = 8.30 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.5 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 12.7 W/kg

SAR(1 g) = 7.54 mW/g; SAR(10 g) = 4.06 mW/g

Maximum value of SAR (measured) = 8.45 mW/g

2 of 2

Date/Time: 7/10/2010 5:11:09 AM

Test Laboratory: Motorola - 1800MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272TR;

Procedure Notes: PM2 Power = 200mW Refl.Pwr PM3 = -30dB Sim.Temp@SPC = 19.4*C Room Temp @ SPC = 20*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 39.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440: Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.41 mW/g

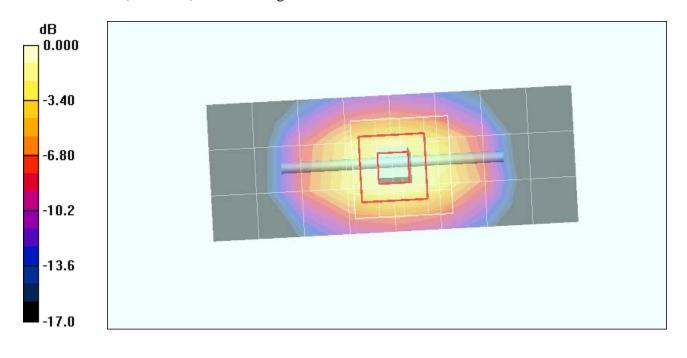
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.6 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 7.11 mW/g; SAR(10 g) = 3.83 mW/g

Maximum value of SAR (measured) = 8.01 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.6 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 12.2 W/kg

SAR(1 g) = 7.25 mW/g; SAR(10 g) = 3.9 mW/g

Maximum value of SAR (measured) = 8.14 mW/g

Date/Time: 7/29/2010 6:39:43 AM

Test Laboratory: Motorola - 1800 MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272tr;

Procedure Notes: PM2 Power = 199 mW Refl.Pwr PM3 = -27.55 dB Sim.Temp@SPC = 19.8 C Room Temp @ SPC = 20.3 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\varepsilon_r = 39.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.68 mW/g

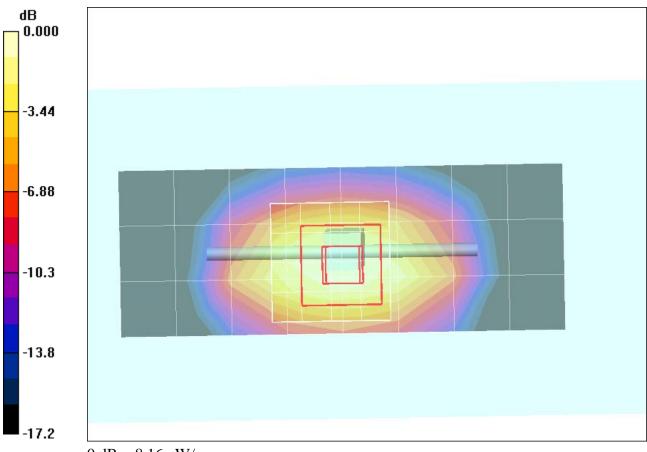
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 76.4 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 12.2 W/kg

SAR(1 g) = 7.19 mW/g; SAR(10 g) = 3.88 mW/g

Maximum value of SAR (measured) = 7.96 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 76.4 V/m; Power Drift = -0.017 dB

Peak SAR (extrapolated) = 12.6 W/kg

SAR(1 g) = 7.38 mW/g; SAR(10 g) = 3.96 mW/g

Maximum value of SAR (measured) = 8.16 mW/g1 of 2

0 dB = 8.16 mW/g

Date/Time: 8/8/2010 7:19:37 AM

Test Laboratory: Motorola - 1800 MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259tr;

Procedure Notes: PM2 Power = 201mW Refl.Pwr PM3 = -20.45B Sim.Temp@SPC = 20 Room Temp @ SPC = 20.2 Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(5.05, 5.05, 5.05); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.61 mW/g

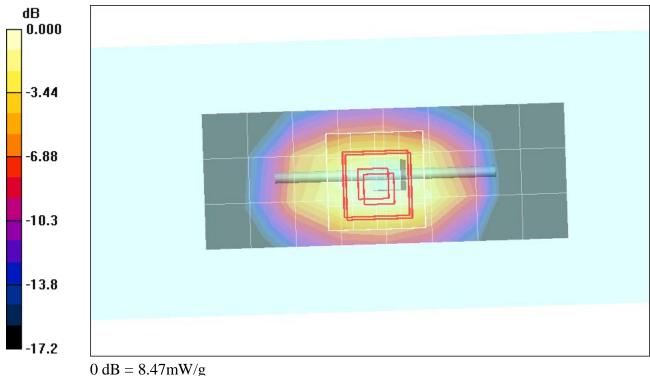
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.9 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 13.7 W/kg

SAR(1 g) = 7.91 mW/g; SAR(10 g) = 4.25 mW/g

Maximum value of SAR (measured) = 8.88 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.9 V/m; Power Drift = -0.091 dB

Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 7.79 mW/g; SAR(10 g) = 4.14 mW/g

Maximum value of SAR (measured) = 8.47 mW/g

Date/Time: 8/11/2010 6:34:50 AM

Test Laboratory: Motorola - 1800 MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272tr;

Procedure Notes: PM2 Power = 198 mW Refl.Pwr PM3 = -29.45 dB <u>Sim.Temp@SPC</u> = 20.0 C Room Temp @ SPC = 20.5 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.28 mW/g

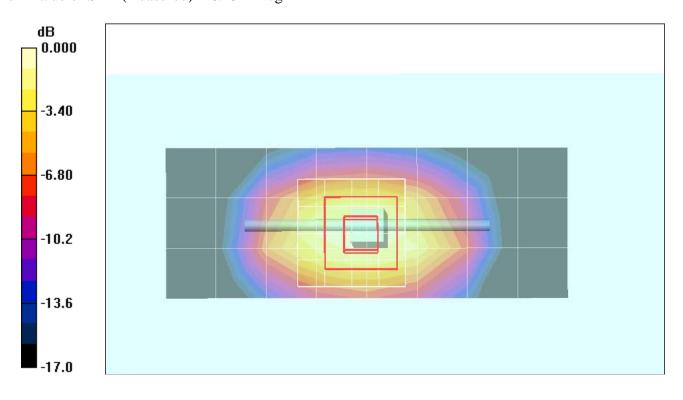
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 76.8 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 7.1 mW/g; SAR(10 g) = 3.82 mW/g

Maximum value of SAR (measured) = 7.93 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 76.8 V/m; Power Drift = -0.020 dB

Peak SAR (extrapolated) = 12.4 W/kg

SAR(1 g) = 7.28 mW/g; SAR(10 g) = 3.91 mW/g

Maximum value of SAR (measured) = 8.15 mW/g

Date/Time: 8/12/2010 7:06:45 AM

Test Laboratory: Motorola - 1800 MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272tr;

Procedure Notes: PM2 Power = 198 mW Refl.Pwr PM3 = -29.65 dB Sim.Temp@SPC = 20.05C Room Temp @ SPC = 20.35C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37$ mho/m; $\epsilon_r = 38.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.79 mW/g

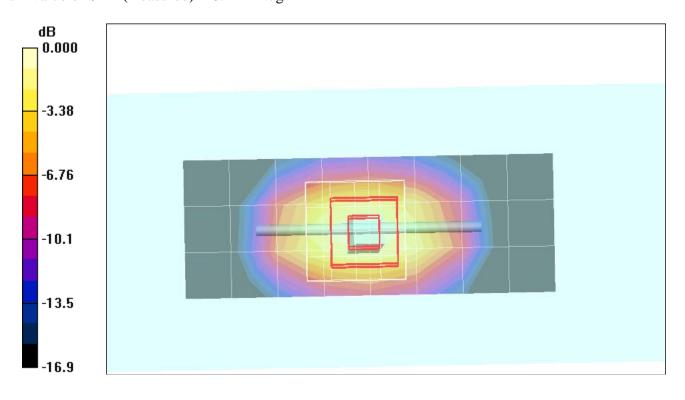
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.4 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 7.16 mW/g; SAR(10 g) = 3.86 mW/g

Maximum value of SAR (measured) = 8.00 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.4 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 12.5 W/kg

SAR(1 g) = 7.36 mW/g; SAR(10 g) = 3.95 mW/g

Maximum value of SAR (measured) = 8.24 mW/g

Date/Time: 8/16/2010 7:13:16 AM

Test Laboratory: Motorola - 1800 MHz Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:259TR

Procedure Notes: PM2 Power = 203 mW Refl.Pwr PM3 = -21.05 dB Sim.Temp@SPC = 20.3 C Room Temp @ SPC = 20.3 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.36$ mho/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(5.05, 5.05, 5.05); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.12 mW/g

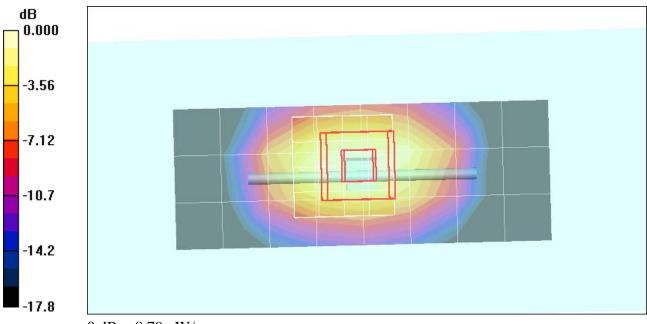
Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.7 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 13.7 W/kg

SAR(1 g) = 7.97 mW/g; SAR(10 g) = 4.3 mW/g

Maximum value of SAR (measured) = 8.83 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.7 V/m; Power Drift = -0.070 dB

Peak SAR (extrapolated) = 14.1 W/kg

SAR(1 g) = 7.88 mW/g; SAR(10 g) = 4.19 mW/g

Maximum value of SAR (measured) = 8.79 mW/g

0 dB = 8.79 mW/g

Date/Time: 9/27/2010 7:00:03 AM

Test Laboratory: Motorola - 1800 MHz System Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:272TR;

Procedure Notes: 1800 MHz System Performance Check / PM2 Power = 196 mW Refl.Pwr PM3 = -25.81 dB

Sim. Temp@SPC = 19.2 C Room Temp @ SPC = 19.6 C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty

Cycle: 1:1

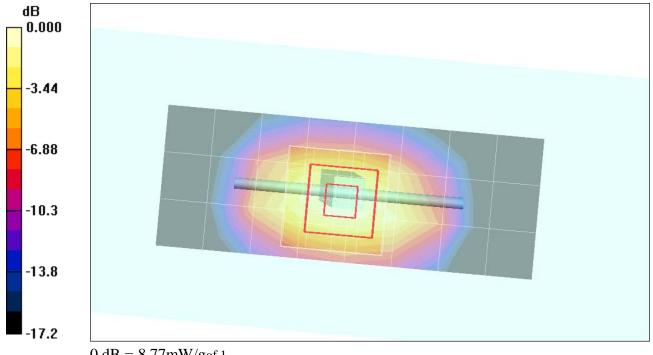
Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.95 mW/g


Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.0 V/m; Power Drift = -0.033 dB

Peak SAR (extrapolated) = 14.5 W/kg

SAR(1 g) = 7.88 mW/g; SAR(10 g) = 4.15 mW/g

Maximum value of SAR (measured) = 8.77 mW/g

0 dB = 8.77 mW/gof 1

Date/Time: 10/7/2010 7:03:09 AM

Test Laboratory: Motorola - 1800 MHz System Performance Check

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d160;

 $Procedure\ Notes:\ 1800\ MHz\ System\ Performance\ Check\ /\ PM2\ Power = 195\ mW\ Refl. Pwr\ PM3 = -28.55\ dB$

<u>Sim.Temp@SPC</u> = 18.6₺C Room Temp @ SPC = 19.9₺C

Communication System: CW - Dipole; Frequency: 1800 MHz; Communication System Channel Number: 8; Duty Cycle: 1:1

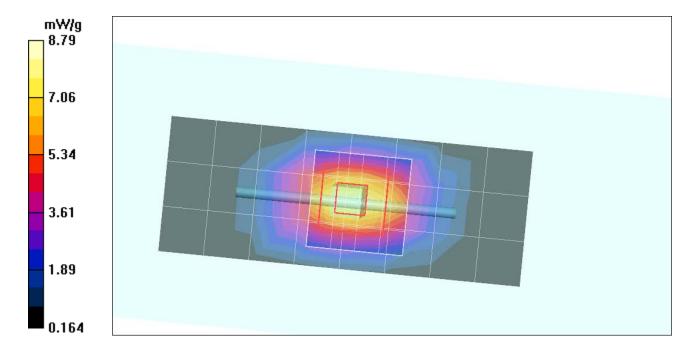
Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.38$ mho/m; $\varepsilon_r = 39.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.62 mW/g


Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.2 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 14.5 W/kg

SAR(1 g) = 7.91 mW/g; SAR(10 g) = 4.17 mW/g

Maximum value of SAR (measured) = 8.79 mW/g

1 of 1 10/7/2010 1:50 PM

Date/Time: 8/17/2010 3:52:13 PM

Test Laboratory: Motorola - 2450 MHz Performance Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:766;

Procedure Notes: PM2 Power = 200 mW Refl.Pwr PM3 = -20.9 dB Sim.Temp@SPC = 20 Room Temp @ SPC = 20.1

Communication System: CW - Dipole; Frequency: 2450 MHz; Communication System Channel Number: 11; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ mho/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(4.41, 4.41, 4.41); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.1 mW/g

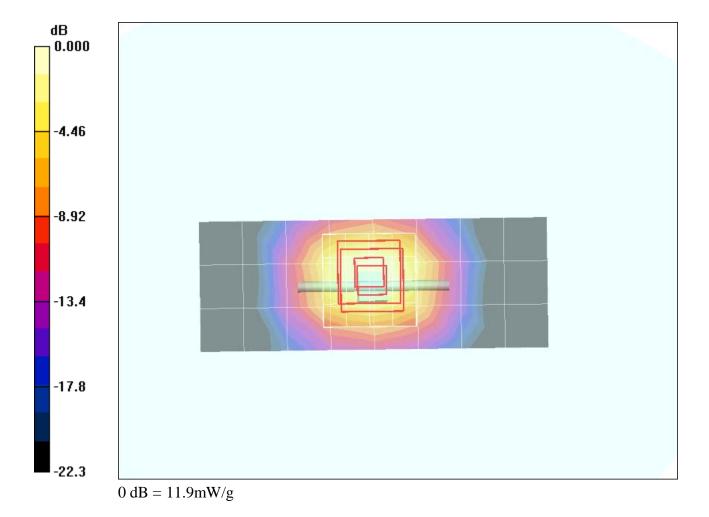
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.1 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 21.3 W/kg

SAR(1 g) = 11.1 mW/g; SAR(10 g) = 5.26 mW/g

Maximum value of SAR (measured) = 12.6 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.1 V/m; Power Drift = -0.056 dB

Peak SAR (extrapolated) = 22.3 W/kg

SAR(1 g) = 11 mW/g; SAR(10 g) = 5.13 mW/g

Maximum value of SAR (measured) = 11.9 mW/g

Date/Time: 8/19/2010 7:15:39 AM

Test Laboratory: Motorola - 2450 MHz Performance Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:766;

Procedure Notes: PM2 Power = 201 mW Refl.Pwr PM3 = -20.85dB Sim.Temp@SPC = 20.45C Room Temp @ SPC = 20.35C

Communication System: CW - Dipole; Frequency: 2450 MHz; Communication System Channel Number: 11; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.83$ mho/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(4.41, 4.41, 4.41); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 11.1 mW/g

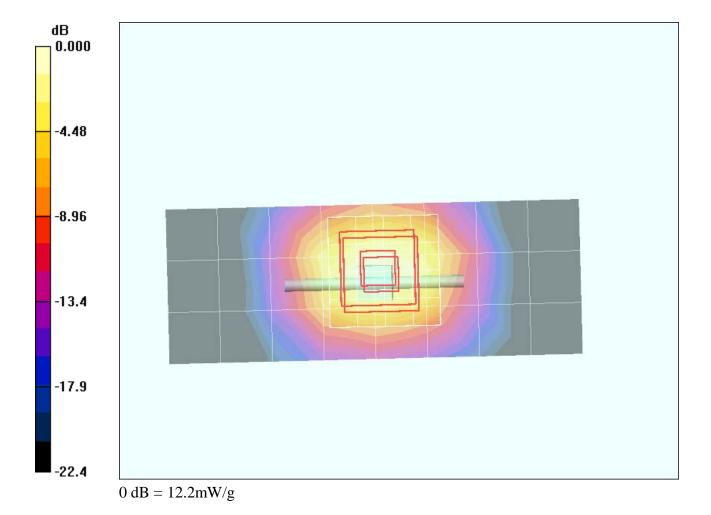
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.6 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 21.1 W/kg

SAR(1 g) = 10.9 mW/g; SAR(10 g) = 5.2 mW/g

Maximum value of SAR (measured) = 12.4 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.6 V/m; Power Drift = -0.013 dB

Peak SAR (extrapolated) = 21.6 W/kg

SAR(1 g) = 10.8 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 12.2 mW/g

Date/Time: 9/27/2010 2:30:24 PM

Test Laboratory: Motorola - 2450 MHz System Performance Check

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:766;

Procedure Notes: 2450 MHz System Performance Check / PM2 Power = 201 mW Refl.Pwr PM3 = -30.85dB

Sim. Temp @ SPC = 19.4 & Room Temp @ SPC = 20.1 & C

Communication System: CW - Dipole; Frequency: 2450 MHz; Communication System Channel Number: 11; Duty

Cycle: 1:1

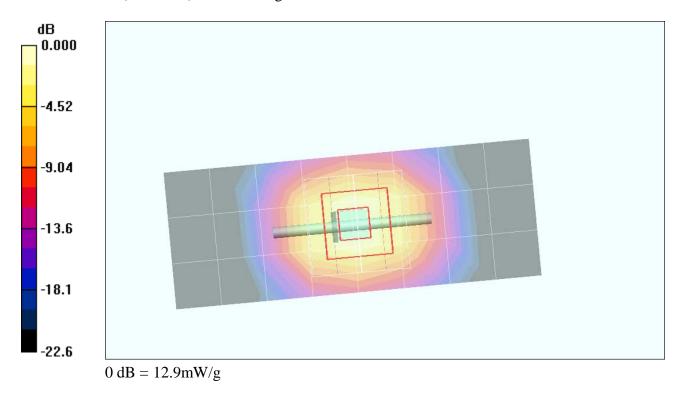
Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\epsilon_r = 36.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.70 mW/g


Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 84.7 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 23.7 W/kg

SAR(1 g) = 11.3 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 12.9 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 9/22/2010 9:32:39 PM

Test Laboratory: Motorola - GSM 850 Left Head Cheek Touch

DUT: Jordan; Type: Tablet; Serial: 351572040052121;

Procedure Notes: Pwr Step: 5 Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

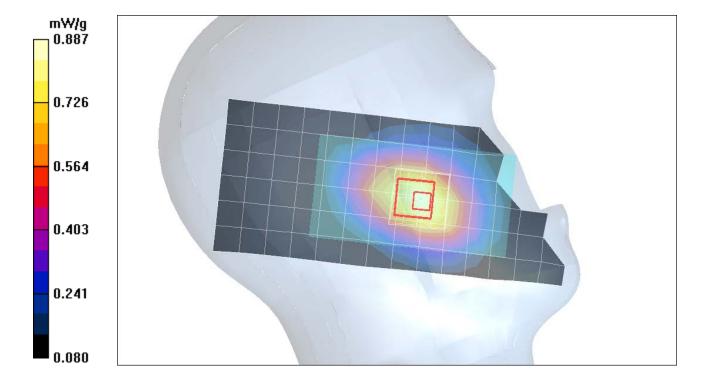
Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.872 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 30.4 V/m; Power Drift = -0.080 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.830 mW/g; SAR(10 g) = 0.608 mW/g

Maximum value of SAR (measured) = 0.887 mW/g

1 of 1 10/4/2010 10:39 AM

Date/Time: 9/22/2010 10:13:19 PM

Test Laboratory: Motorola - GSM 850 Left Head 15 Degree Tilt

DUT Serial: 351572040052121;

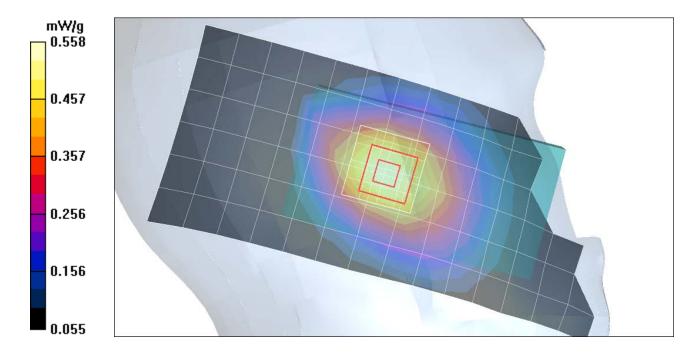
Procedure Notes: Pwr Step: 5 Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Tilt Communication System: GSM 850; Frequency: 836.6 MHz; Communication System Channel Number: 190; Duty Cycle: 1:8.3

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.541 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.0 V/m; Power Drift = 0.035 dB

Peak SAR (extrapolated) = 0.673 W/kg

SAR(1 g) = 0.526 mW/g; SAR(10 g) = 0.385 mW/g

Maximum value of SAR (measured) = 0.558 mW/g

1 of 1 10/13/2010 6:03 PM

Date/Time: 9/28/2010 11:34:17 AM

Test Laboratory: Motorola - WCDMA 850 Left Head Cheek

DUT Serial: 351575040016095;

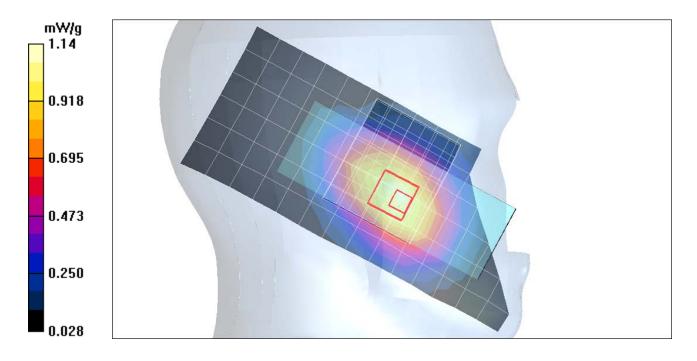
Procedure Notes: Pwr Step: always up Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): cheek Communication System: 3G-WCDMA 850; Frequency: 846.6 MHz; Communication System Channel Number: 4233; Duty Cycle: 1:1

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.11 mW/g


Left Head Template/MegaZoom Zoom Scan (<=3GHz) (9x8x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.6 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 1.38 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.786 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

1 of 1 10/6/2010 12:19 PM

Date/Time: 8/23/2010 11:12:51 AM

Test Laboratory: Motorola - WCDMA 850 Right Head Cheek Touch

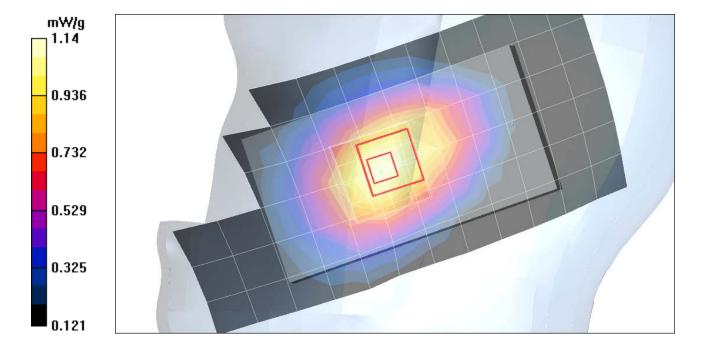
DUT Serial: 351575040016095;

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: SNN5877A DEVICE POSITION CHEEK Communication System: 3G-WCDMA 850; Frequency: 846.6 MHz; Communication System Channel Number: 4233; Duty Cycle: 1:1

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(6.26, 6.26, 6.26); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.14 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 34.2 V/m; Power Drift = 0.023 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.824 mW/g

1 of 1 10/13/2010 2:55 PM

Date/Time: 8/22/2010 9:02:58 AM

Test Laboratory: Motorola - WCDMA 850 - Right Head 15 Degree Tilt

DUT Serial: 351575040016095;

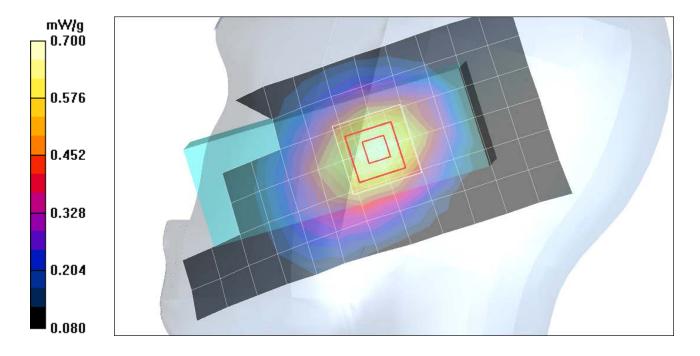
Procedure Notes: Pwr Step: always up Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): TILT Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Communication System Channel Number: 4180; Duty Cycle: 1:1

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.25, 6.25, 6.25); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.702 mW/g


Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.4 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 0.794 W/kg

SAR(1 g) = 0.660 mW/g; SAR(10 g) = 0.492 mW/g

Maximum value of SAR (measured) = 0.700 mW/g

1 of 1 10/13/2010 2:57 PM

Date/Time: 7/10/2010 5:41:49 AM

Test Laboratory: Motorola - GSM 1900 Left Head Cheek Touch

DUT Serial: 351575040007136;

Procedure Notes: Pwr Step: 0 Battery Model #: SNN5877A DEVICE POSITION CHEEK

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty

Cycle: 1:8.3

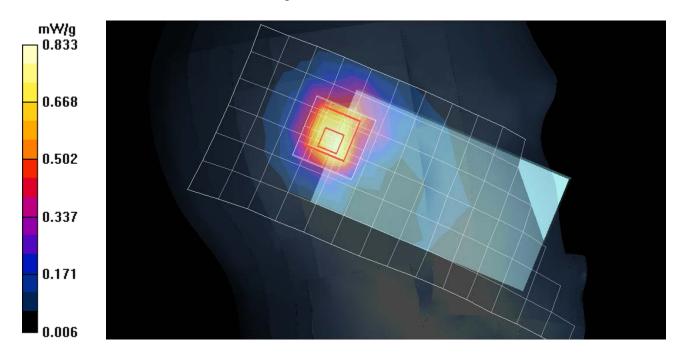
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.810 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 22.0 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.767 mW/g; SAR(10 g) = 0.418 mW/g

Maximum value of SAR (measured) = 0.833 mW/g..

Date/Time: 7/10/2010 5:59:26 AM

Test Laboratory: Motorola - GSM 1900 Left Head 15 Degree Tilt

DUT Serial: 351575040007136;

Procedure Notes: Pwr Step: 0 Battery Model #: SNN5877A DEVICE POSITION TILT

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty

Cycle: 1:8.3

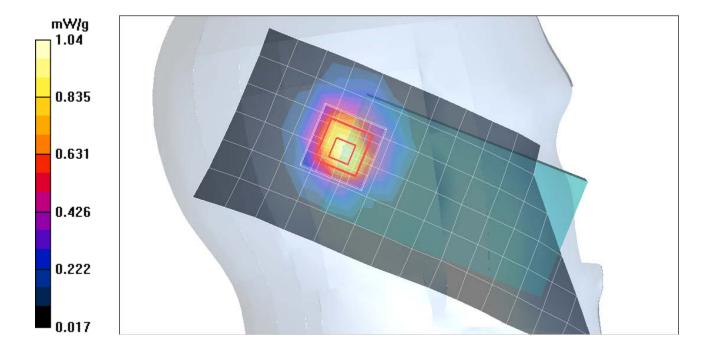
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 39.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.01 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.040 dB

Peak SAR (extrapolated) = 1.73 W/kg

SAR(1 g) = 0.941 mW/g; SAR(10 g) = 0.501 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

1 of 1

Date/Time: 10/7/2010 9:02:34 AM

Test Laboratory: Motorola - WCDMA 1900 Left Head Cheek Touch

DUT Serial: 351573040004724;

Procedure Notes: Pwr Step: ALL UP BITS Battery Model #: SNN5877A DEVICE POSITION CHEEK Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Communication System Channel Number: 9538; Duty Cycle: 1:1

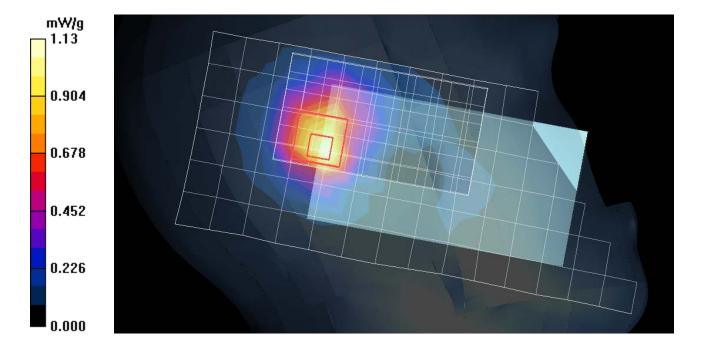
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f=1880 MHz; $\sigma=1.47$ mho/m; $\epsilon_r=38.7$; $\rho=1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.16 mW/g

Left Head Template/Zoom Scan (<=3GHz) (7x12x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 23.2 V/m; Power Drift = 0.010 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.560 mW/g

Maximum value of SAR (measured) = 1.13 mW/g

1 of 1 10/7/2010 12:48 PM

Date/Time: 8/8/2010 12:32:40 PM

Test Laboratory: Motorola - WCDMA 1900 Left Head 15 Degree Tilt

DUT Serial: 351573040004724;

Procedure Notes: Pwr Step: always up Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Tilt Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Communication System Channel Number: 9400; Duty Cycle: 1:1

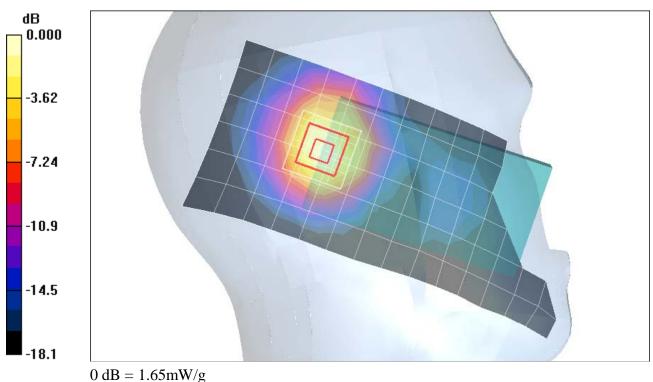
Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 38.1$; $\rho =$ 1000 kg/m^3

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(5.05, 5.05, 5.05); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1 Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.58 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 27.6 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 2.75 W/kg

SAR(1 g) = 1.47 mW/g; SAR(10 g) = 0.758 mW/g

Maximum value of SAR (measured) = 1.65 mW/g

Date/Time: 9/28/2010 7:34:05 AM

Test Laboratory: Motorola - Wi-Fi Left Head Cheek Touch

DUT Serial: 351575040007136;

Procedure Notes: Pwr Step: 802.11b 1Mpbs Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): Cheek

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

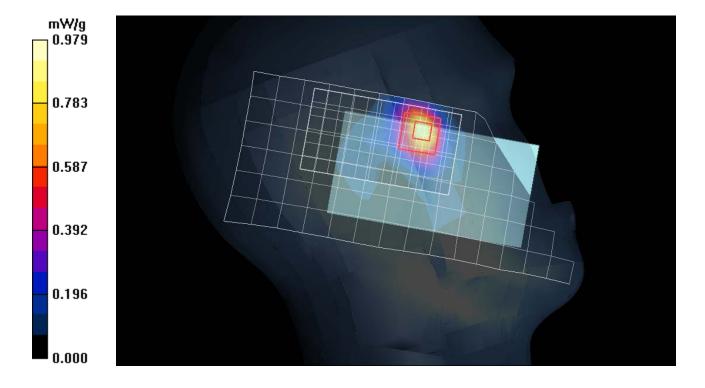
Medium: 2450 Glycol Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 36.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.999 mW/g

Left Head Template/MegaZoom Zoom Scan (<=3GHz) (7x12x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.038 dB

Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.896 mW/g; SAR(10 g) = 0.400 mW/g

Maximum value of SAR (measured) = 0.979 mW/g

1 of 1 9/30/2010 8:59 AM

Date/Time: 8/18/2010 10:39:21 AM

Test Laboratory: Motorola - WiFi - Left Head 15 Degree Tilt

DUT Serial: 351575040007136;

Procedure Notes: Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): tilt

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Communication System Channel Number: 6; Duty

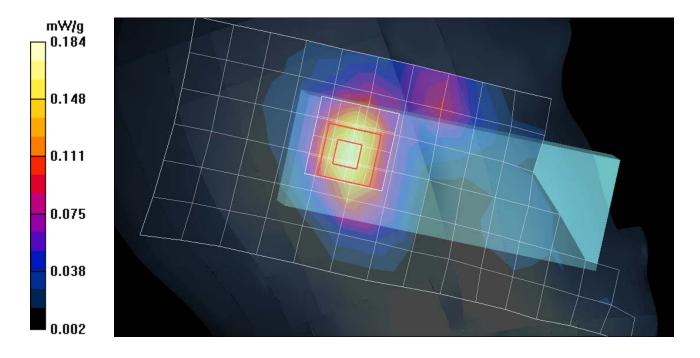
Cycle: 1:1

Medium: 2450 Glycol Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ mho/m; $\varepsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(4.41, 4.41, 4.41); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.175 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.22 V/m; Power Drift = -0.253 dB

Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.169 mW/g; SAR(10 g) = 0.093 mW/g

Maximum value of SAR (measured) = 0.184 mW/g

1 of 1 10/13/2010 1:57 PM

Date/Time: 8/18/2010 11:29:09 AM

Test Laboratory: Motorola - WiFi Right Head 15 Degree Tilt

DUT Serial: 351575040007136;

Procedure Notes: Battery Model #: SNN5877A DEVICE POSITION (cheek or rotated): titlt

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Communication System Channel Number: 6; Duty

Cycle: 1:1

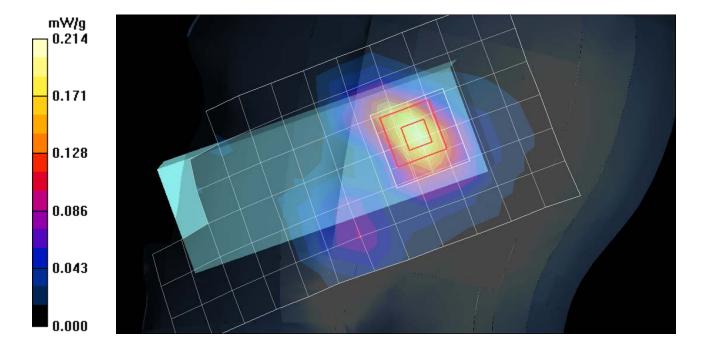
Medium: 2450 Glycol Head; Medium parameters used: f = 2450 MHz; $\sigma = 1.87$ mho/m; $\epsilon_r = 37.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(4.41, 4.41, 4.41); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Glycol, SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.165 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.051 dB

Peak SAR (extrapolated) = 0.338 W/kg

SAR(1 g) = 0.188 mW/g; SAR(10 g) = 0.098 mW/g

Maximum value of SAR (measured) = 0.214 mW/g

1 of 1 10/13/2010 2:30 PM

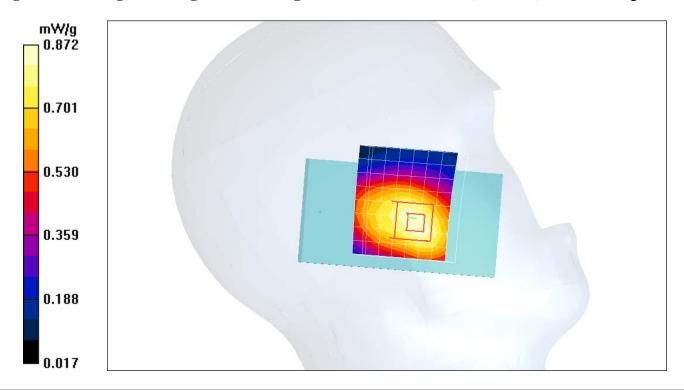
GSM 850 and WiFi Left Head Cheek Touch - Simultaneous Transmission

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

DUT Serial: 351572040052121

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Low Freq Head Medium parameters used: f = 835 MHz; $\sigma = 0.93$ mho/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³


Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ES3DV3 SN3124; ConvF(5.89, 5.89, 5.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1131
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (9x8x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimensions: x=64mm, y=56mm, z=30mm Reference Value = 31.2 V/m; Power Drift = -0.263 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.835 mW/g; SAR(10 g) = 0.614 mW/g Maximum value of SAR (measured) = 0.872 mW/g

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

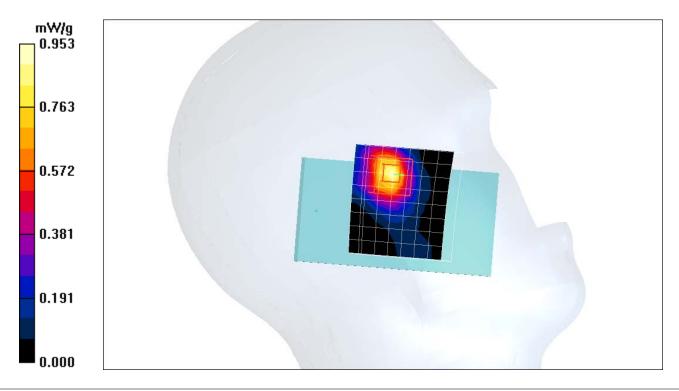
DUT Serial: 351575040007136

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

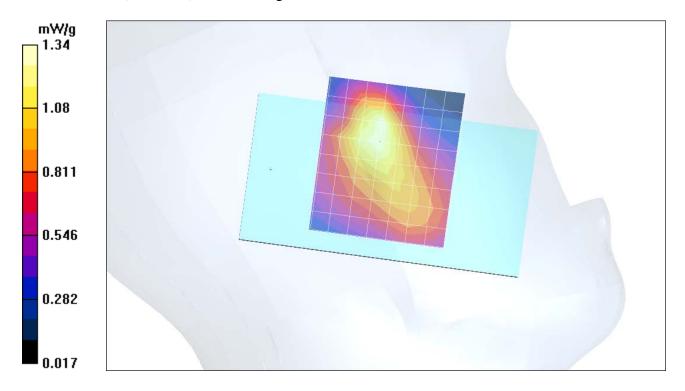
Medium: 2450 Glycol Head Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ mho/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)


- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)

1 of 2 10/4/2010 3:22 PM


- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (9x8x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimensions: x=64mm, y=56mm, z=30mm Reference Value = 16.1 V/m; Power Drift = -0.041 dB Peak SAR (extrapolated) = 1.90 W/kg SAR(1 g) = 0.857 mW/g; SAR(10 g) = 0.389 mW/g Maximum value of SAR (measured) = 0.953 mW/g

Multi Band Result: SAR(1 g) = 1.26 mW/g; SAR(10 g) = 0.777 mW/g Maximum value of SAR (measured) = 1.34 mW/g

2 of 2 10/4/2010 3:22 PM

WCDMA 850 and WiFi Left Head Cheek Touch Simultaneous Transmisstion Tests

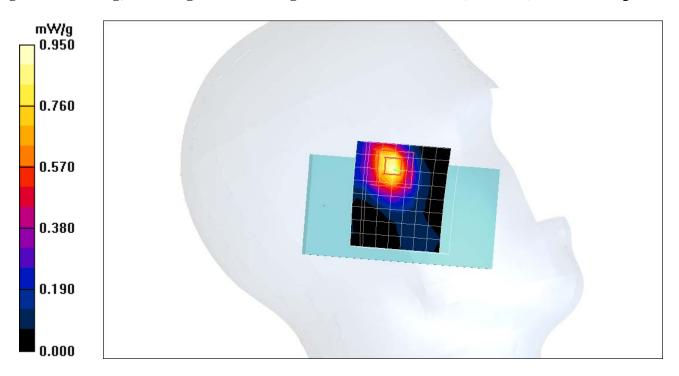
DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

Date/Time: 9/28/2010 7:09:28 AM

Serial: 351575040007136 FCC ID: IHDP56LC3

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 36.9$; $\rho = 1000 \text{ kg/m}^3$


Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

- Probe: ES3DV3 SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (9x8x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimensions: x=64mm, y=56mm, z=30mm Reference Value = 14.8 V/m; Power Drift = -0.069 dB Peak SAR (extrapolated) = 1.93 W/kg SAR(1 g) = 0.865 mW/g; SAR(10 g) = 0.393 mW/g Maximum value of SAR (measured) = 0.950 mW/g

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

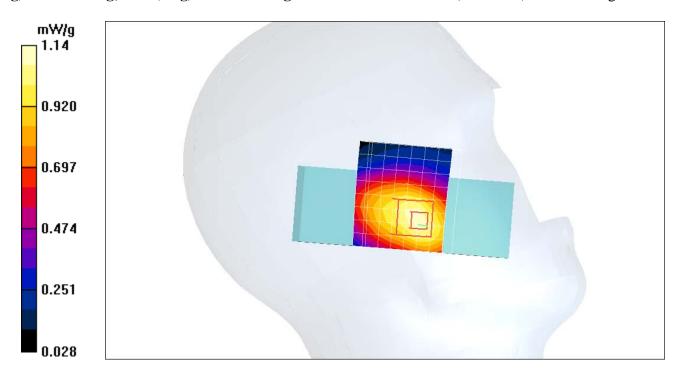
Date/Time: 9/28/2010 11:45:18 AM

Serial: 351575040016095 FCC ID: IHDP56LC3

Communication System: 3G-WCDMA 850; Frequency: 846.6 MHz; Duty Cycle: 1:1

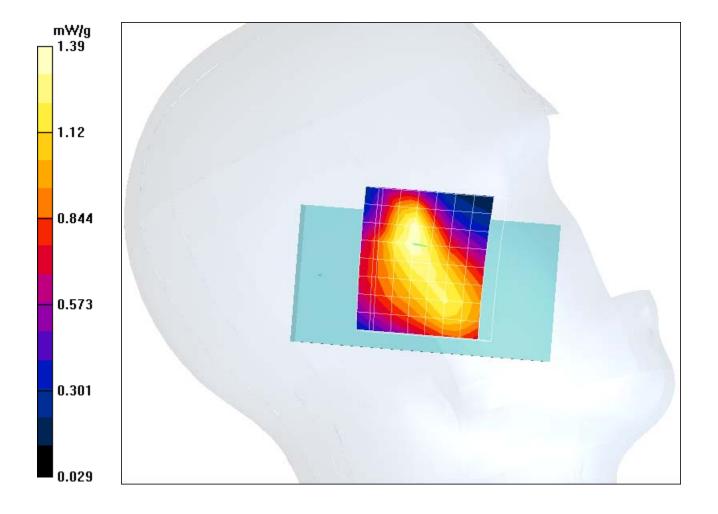
Medium: f = 850 MHz; $\sigma = 0.93 \text{ mho/m}$; $\varepsilon_r = 42.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section


Measurement Standard: DASY4 (High Precision Assessment)

• Probe: ES3DV3 - SN3183; ConvF(6.11, 6.11, 6.11); Calibrated: 7/14/2010...

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1156
- Measurement SW: DASY4, V4.7 Build 80


Left Head Template/Zoom Scan (<=3GHz) (9x8x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimensions: x=64mm, y=56mm, z=30mm Reference Value = 34.6 V/m; Power Drift = -0.002 dB Peak SAR (extrapolated) = 1.38 W/kg SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.786 mW/g Maximum value of SAR (measured) = 1.14 mW/g

Multi Band Result:

SAR(1 g) = 1.29 mW/g; SAR(10 g) = 0.870 mW/gMaximum value of SAR (measured) = 1.39 mW/g

3 of 3

GSM 1900 and WiFi Left Head Cheek Touch - Simultaneous Transmission

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

Date/Time: 9/28/2010 7:43:42 AM **DUT Serial: 351575040007136**

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

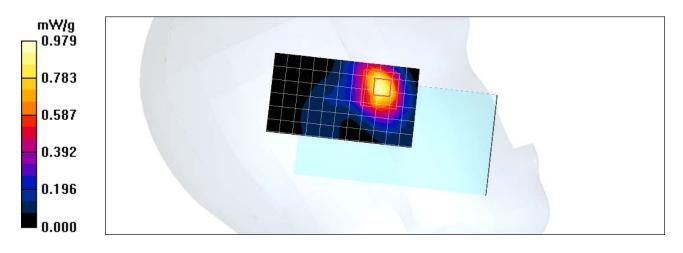
Medium: f = 2450 MHz; $\sigma = 1.88 \text{ mho/m}$; $\varepsilon_r = 36.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

• Probe: ES3DV3 - SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)


• Electronics: DAE4 Sn376; Calibrated: 7/13/2010

• Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250

• Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (7x12x7)/Cube 0:

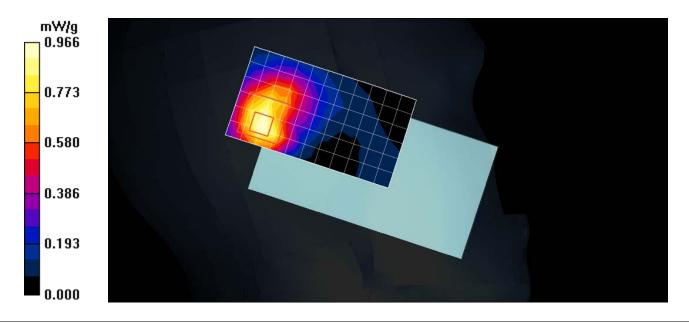
Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimenstions: x=48mm, y=88mm, z=30mm Reference Value = 14.9 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 2.07 W/kg SAR(1 g) = 0.896 mW/g; SAR(10 g) = 0.400 mW/g Maximum value of SAR (measured) = 0.979 mW/g

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

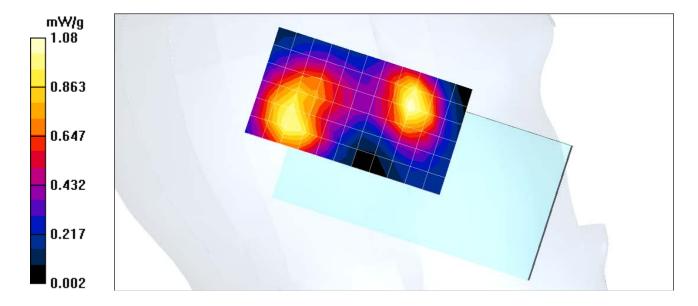
Date/Time: 9/27/2010 1:37:12 PM **DUT Serial: 351575040007136**

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: f=1880 MHz; $\sigma=1.46$ mho/m; $\epsilon_r=38.4$; $\rho=1000$ kg/m 3


Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)


- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/ Zoom Scan (<=3GHz) (7x12x7)/Cube 0:...

Measurement grid: dx=8mm, dy=8mm, dz=5mm; Volume Outer Dimensions: x=48mm, y=88mm, z=30mm Reference Value = 23.4 V/m; Power Drift = -0.012 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 0.886 mW/g; SAR(10 g) = 0.466 mW/g Maximum value of SAR (measured) = 0.966 mW/g

Multi Band Result: SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.499 mW/g. Maximum value of SAR (measured) = 1.08 mW/g..

WCDMA 1900 and WiFi - Left Head Cheek Touch

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

Date/Time: 9/28/2010 7:43:42 AM **DUT Serial: 351575040007136**

Communication System: Wi-Fi 2450; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium: 2450 Glycol Head Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 36.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

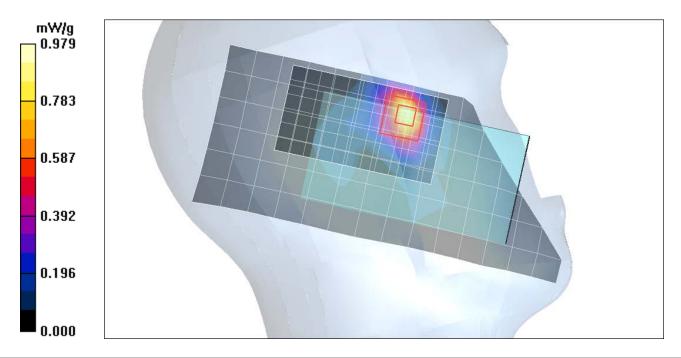
Measurement Standard: DASY4 (High Precision Assessment)

• Probe: ES3DV3 - SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn376; Calibrated: 7/13/2010

• Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250


• Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (7x12x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.9 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 2.07 W/kg

SAR(1 g) = 0.896 mW/g; SAR(10 g) = 0.400 mW/g Maximum value of SAR (measured) = 0.979 mW/g

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

Date/Time: 10/7/2010 9:12:13 AM **DUT Serial: 351573040004724**

Communication System: 3G/WCDMA 1900; Frequency: 1907.5 MHz; Duty Cycle: 1:1

Medium: Regular Glycol Head 1750/1880 Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 38.7$; $\rho =$

 1000 kg/m^3

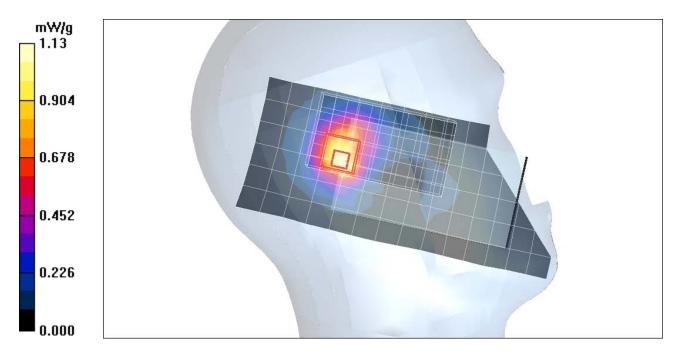
Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)

• Probe: ES3DV3 - SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010

1 of 2 10/7/2010 1:20 PM

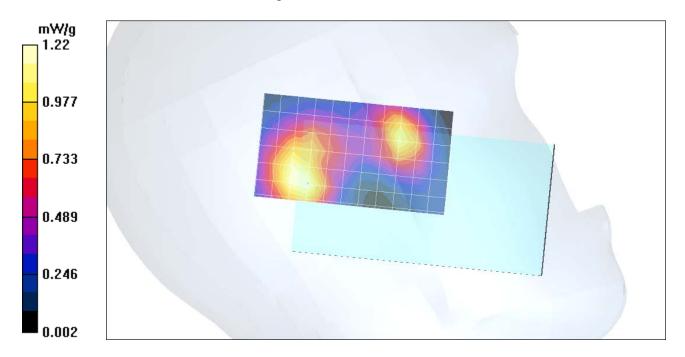
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80


Left Head Template/Zoom Scan (<=3GHz) (7x12x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.2 V/m: Power Drift = 0.010 dB. Peak

Reference Value = 23.2 V/m; Power Drift = 0.010 dB Peak SAR (extrapolated) = 2.07 W/kg


SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.560 mW/g Maximum value of SAR (measured) = 1.13 mW/g

Multi Band Result:

SAR(1 g) = 1.13 mW/g; SAR(10 g) = 0.598 mW/g

Maximum value of SAR (measured) = 1.22 mW/g

2 of 2

WCDMA 1900 and WiFi - Left Head 15 Degree Tilt

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

Date/Time: 10/7/2010 9:56:49 AM **DUT Serial: 351573040004724**

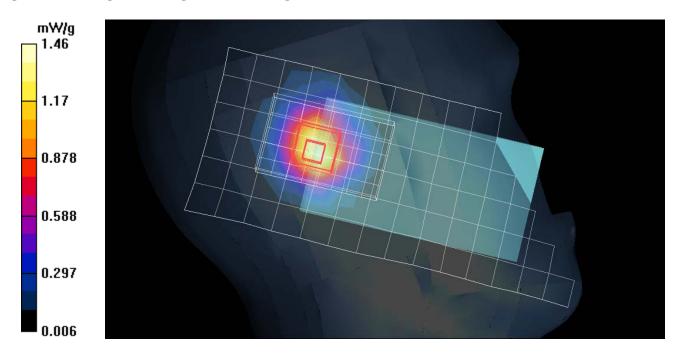
Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Regular Glycol Head 1750/1880 Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 38.7$; $\rho =$

 1000 kg/m^3

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)


- Probe: ES3DV3 SN3124; ConvF(4.89, 4.89, 4.89); Calibrated: 8/11/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (6x9x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.0 V/m; Power Drift = 0.078 dB Peak SAR (extrapolated) = 2.57 W/kg

SAR(1 g) = 1.36 mW/g; SAR(10 g) = 0.706 mW/g

DASY4 Configuration for DASY4, SAM Left Head/Left Head Template/Zoom Scan (<=3GHz):

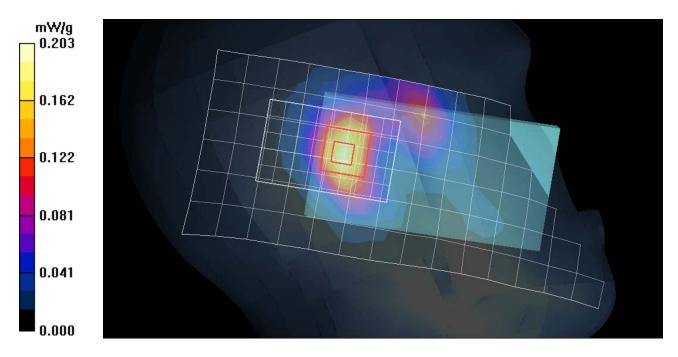
Date/Time: 9/28/2010 8:26:03 AM **DUT Serial: 351575040007136**

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Duty Cycle: 1:1

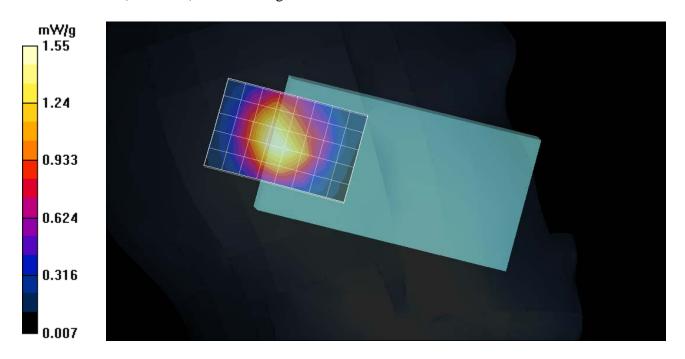
Medium: 2450 Glycol Head Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 36.9$; $\rho = 1000$ kg/m³

Phantom section: Left Section

Measurement Standard: DASY4 (High Precision Assessment)


• Probe: ES3DV3 - SN3124; ConvF(4.35, 4.35, 4.35); Calibrated: 8/11/2010

1 of 2 10/7/2010 1:31 PM


- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn376; Calibrated: 7/13/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250
- Measurement SW: DASY4, V4.7 Build 80

Left Head Template/Zoom Scan (<=3GHz) (6x9x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.1 V/m; Power Drift = -0.055 dB Peak SAR (extrapolated) = 0.333 W/kg SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.094 mW/g Maximum value of SAR (measured) = 0.203 mW/g

Multi Band Result: SAR(1 g) = 1.44 mW/g; SAR(10 g) = 0.765 mW/g Maximum value of SAR (measured) = 1.55 mW/g

2 of 2

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 9/23/2010 9:54:19 AM

Test Laboratory: Motorola - GSM 850 - Body Worn

DUT: Jordan; Type: Tablet; Serial: 351572040052121;

Procedure Notes: Pwr Step: 5 Battery Model #: SNN5877A Accessory Model # = Back of Phone 15mm from Phantom

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\varepsilon_r = 55.3$; $\rho = 1000$ kg/m³

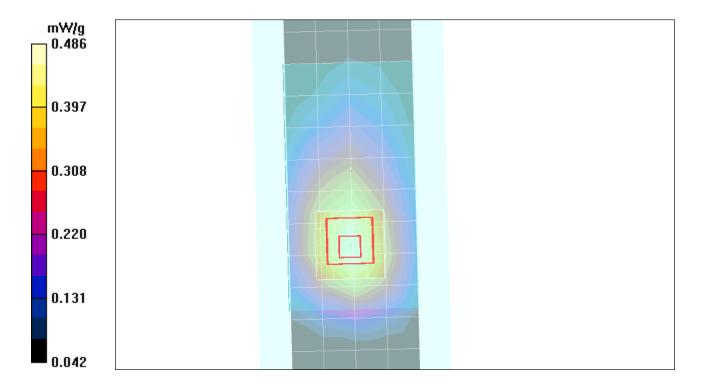
DASY4 Configuration:

- Probe: ES3DV3 SN3183; ConvF(6.15, 6.15, 6.15); Calibrated: 7/14/2010
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn702; Calibrated: 5/18/2010
- Phantom: R1_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.483 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 21.2 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 0.607 W/kg

SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.327 mW/g

Maximum value of SAR (measured) = 0.486 mW/g

1 of 1 10/4/2010 10:42 AM

Date/Time: 8/20/2010 11:58:59 PM

Test Laboratory: Motorola - WCDMA 850 Body Worn

DUT Serial: 351575040016095;

Procedure Notes: Pwr Step: All Up Bits Battery Model #: SNN5877A Accessory Model # = Back of Phone 15mm

from Flat Phantom

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Communication System Channel Number: 4180;

Duty Cycle: 1:1

Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 1$ mho/m; $\epsilon_r = 54.9$; $\rho = 1000$ kg/m³

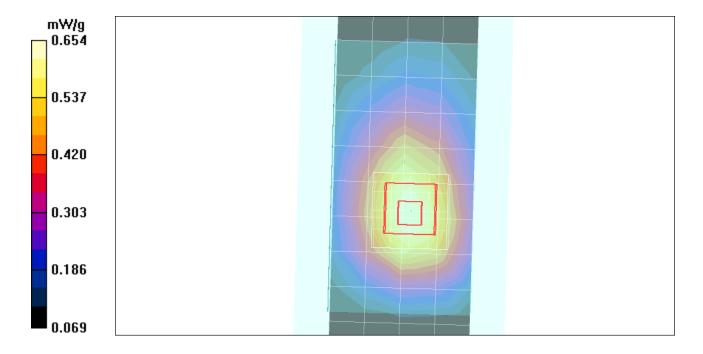
DASY4 Configuration:

- Probe: ES3DV3 SN3037; ConvF(6.17, 6.17, 6.17); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Section 1, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.644 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = 0.024 dB

Peak SAR (extrapolated) = 0.774 W/kg

SAR(1 g) = 0.618 mW/g; SAR(10 g) = 0.455 mW/g

Maximum value of SAR (measured) = 0.654 mW/g

1 of 1 10/13/2010 2:52 PM

Date/Time: 7/8/2010 12:49:20 PM

Test Laboratory: Motorola - GSM 1900 Body Worn

DUT Serial: 351573040004518;

Procedure Notes: Pwr Step: 00 Battery Model #: SNN5877A Accessory Model # = BACK of Phone 15mm from Phantom

Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:8.3

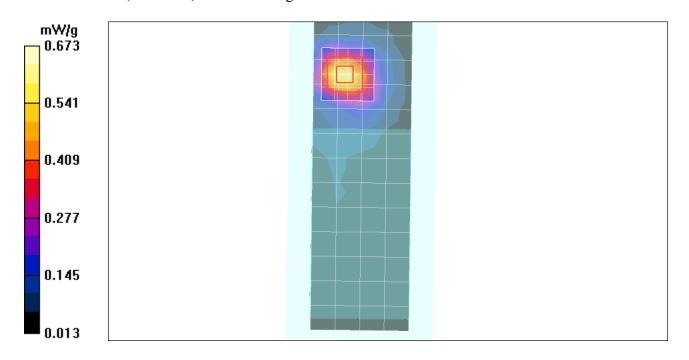
Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(4.84, 4.84, 4.84); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.551 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.035 dB

Peak SAR (extrapolated) = 0.995 W/kg

SAR(1 g) = 0.600 mW/g; SAR(10 g) = 0.323 mW/g

Maximum value of SAR (measured) = 0.673 mW/g

1 of 1 10/13/2010 2:38 PM

Date/Time: 8/11/2010 10:07:33 PM

Test Laboratory: Motorola - WCDMA 1900 Body Worn

DUT Serial: 351573040004724;

Procedure Notes: Pwr Step: All Up Bits Battery Model #: SNN5877A Accessory Model # = Back of Phone 15mm from Flat Phantom

Simulate Temp when Measured: 20.0C Simulate Temp after Test: 20.3C

Communication System: 3G/WCDMA 1900; Frequency: 1880 MHz; Communication System Channel Number:

9400; Duty Cycle: 1:1

Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 50.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

• Probe: ES3DV3 - SN3184; ConvF(4.84, 4.84, 4.84); Calibrated: 9/18/2009

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;

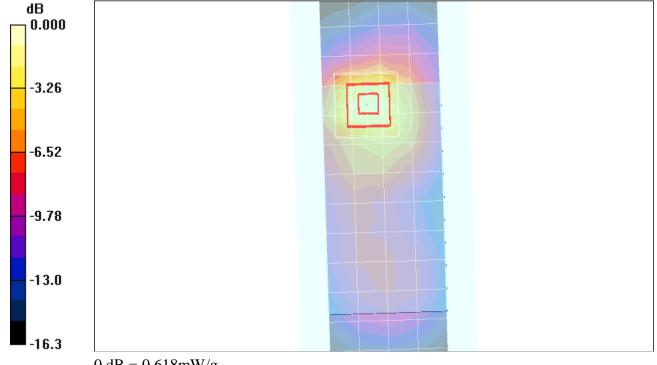
• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.496 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.894 W/kg

SAR(1 g) = 0.545 mW/g; SAR(10 g) = 0.299 mW/g

Maximum value of SAR (measured) = 0.618 mW/g

0 dB = 0.618 mW/g

1 of 1 8/31/2010 10:30 AM

Date/Time: 8/19/2010 10:25:32 AM

Test Laboratory: Motorola - Wi-Fi Body Worn

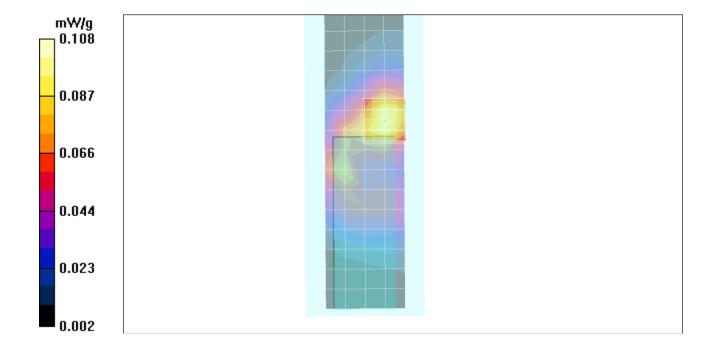
DUT Serial: 351575040007136;

Procedure Notes: Battery Model #: SNN5877A Accessory Model # = BODY WORN, BACK OF PHONE 15MM FROM PHONE

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Communication System Channel Number: 6; Duty Cycle: 1:1

Medium: 2450 Glycol Body; Medium parameters used: f = 2450 MHz; $\sigma = 1.99$ mho/m; $\varepsilon_r = 49.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:


- Probe: ES3DV3 SN3037; ConvF(4.29, 4.29, 4.29); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn703; Calibrated: 9/17/2009
- Phantom: R1_ Section 2, Amy Twin, Rev3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.103 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.29 V/m; Power Drift = -0.029 dB Maximum value of SAR (measured) = 0.108 mW/g

1 of 1 10/13/2010 2:27 PM

Appendix 4 Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Motorola MDb

Certificate No: ES3-3124_Aug10

CALIBRATION CERTIFICATE Object ES3DV3 - SN:3124 QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure(s) Calibration procedure for dosimetric E-field probes August 11, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Apr-11 Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) Mar-11 30-Mar-10 (No. 217-01160) Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 Secondary Standards ID# Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Approved by: Technical Manager Issued: August 14, 2010

Certificate No: ES3-3124_Aug10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124_Aug10 Page 2 of 11

Probe ES3DV3

SN:3124

Manufactured: July 11, 2006
Last calibrated: April 21, 2009
Recalibrated: August 11, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3124_Aug10 Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	1.26	1.33	1.34	± 10.1%
DCP (mV) ⁸	92.9	96.4	96.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^e (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Y	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

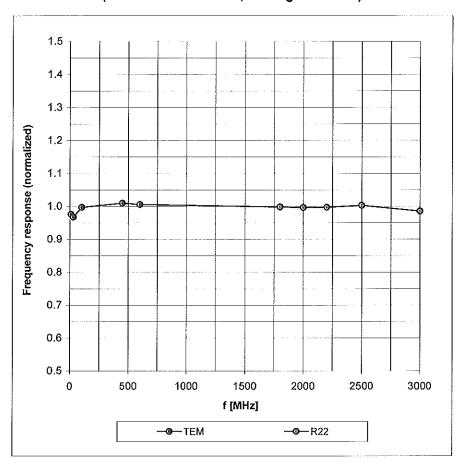
Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY Co	nvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.89	5.89	5.89	0.97	1.07 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.89	4.89	4.89	0.49	1.54 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.68	4.68	4.68	0.50	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.35	4.35	4.35	0.45	1.78 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

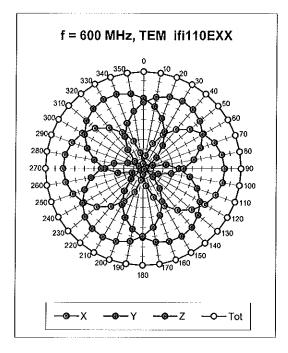
DASY/EASY - Parameters of Probe: ES3DV3 SN:3124

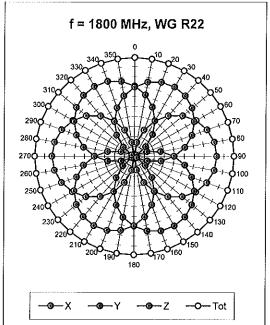
Calibration Parameter Determined in Body Tissue Simulating Media

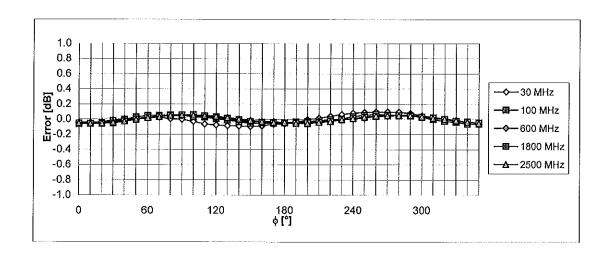

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.86	5.86	5.86	0.96	1.11 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.76	4.76	4.76	0.41	1.84 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.78	4.78	4.78	0.32	2.33 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.19	4.19	4.19	0.69	1.29 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ES3-3124_Aug10 Page 6 of 11

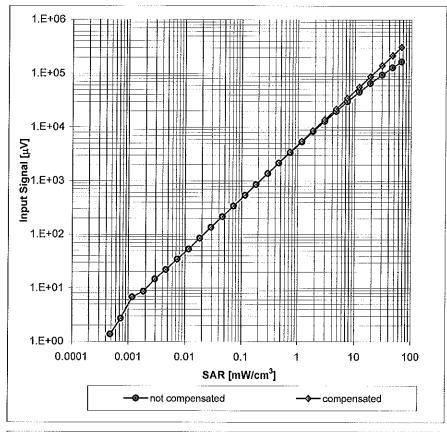

Frequency Response of E-Field

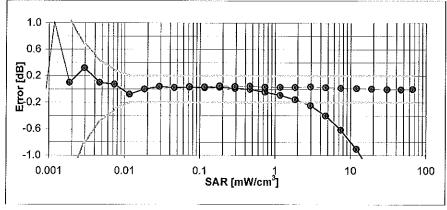

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

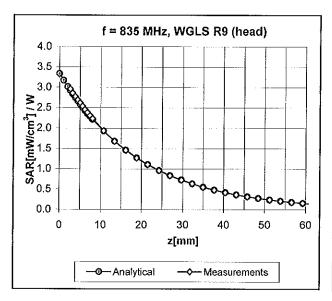
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

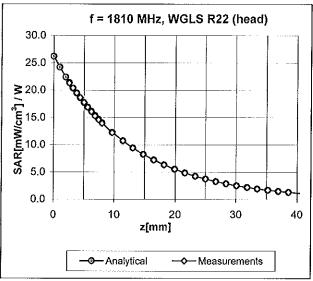




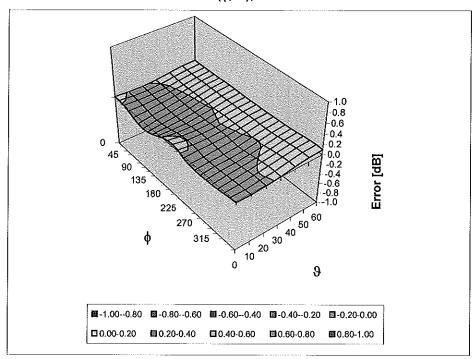
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ES3-3124_Aug10

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3037_Sep09

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3037

Calibration procedure(s)

QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes

Calibration date:

September 18, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1-1-
Approved by:	Katja Pokovic	Technical Manager	A 100
	7.442 7 5.0000	, common munuger	Se ly

Issued: September 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3037 Sep09

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL. tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point
Polarization φ rotation around probe axis

Polarization ϑ 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3037

Manufactured:

August 21, 2003

Last calibrated:

September 23, 2008

Recalibrated:

September 18, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3037 Sep09

ES3DV3 SN:3037

Page 3 of 9

DASY - Parameters of Probe: ES3DV3 SN:3037

NormX	1.17 ± 10.1%	μ V/(V/m) ²	DCP X	95 mV
NormY	0.81 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	97 mV
NormZ	0.97 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	97 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 835 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.0	6.2
SAR _{be} [%]	With Correction Algorithm	0.8	0.6

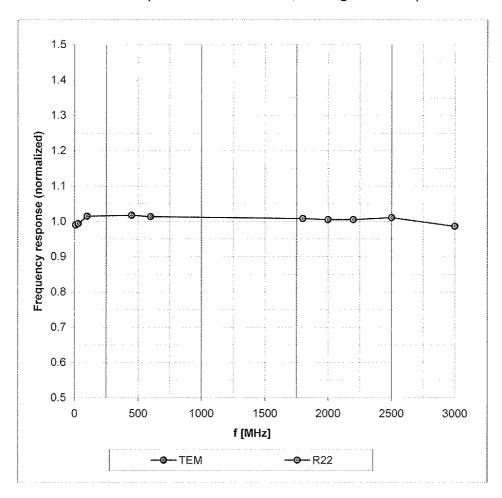
TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center t	o Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.3	5.9
SAR _{be} [%]	With Correction Algorithm	0.6	0.4

Sensor Offset

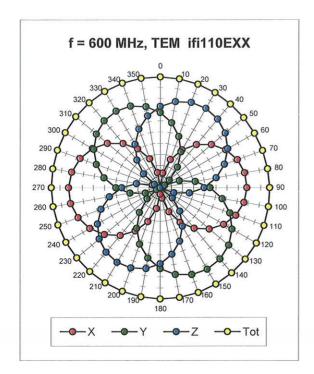
Probe Tip to Sensor Center

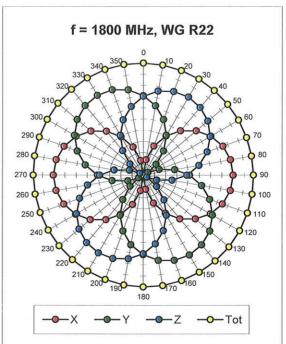
2.0 mm

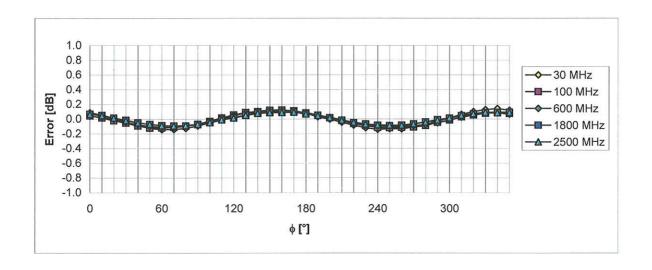

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter; uncertainty not required.

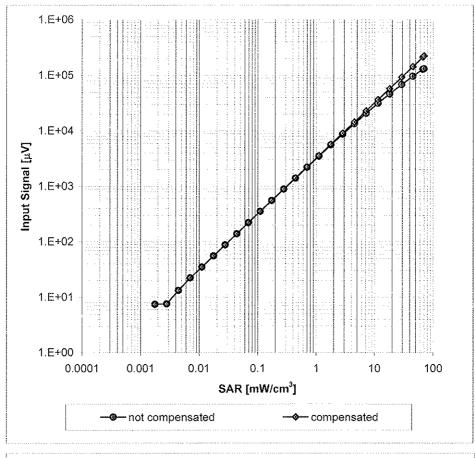

Frequency Response of E-Field

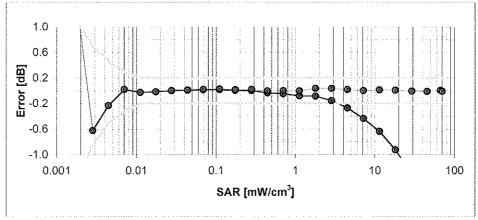

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

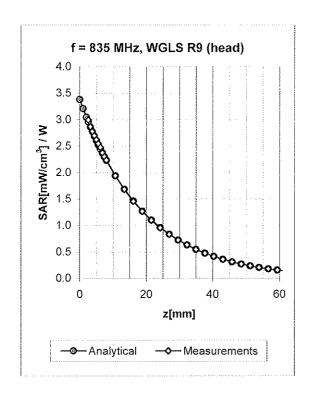
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

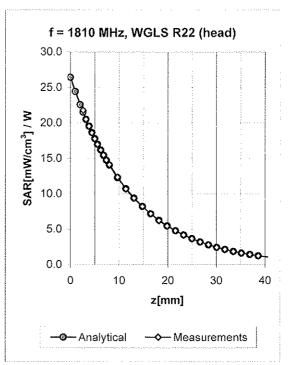




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

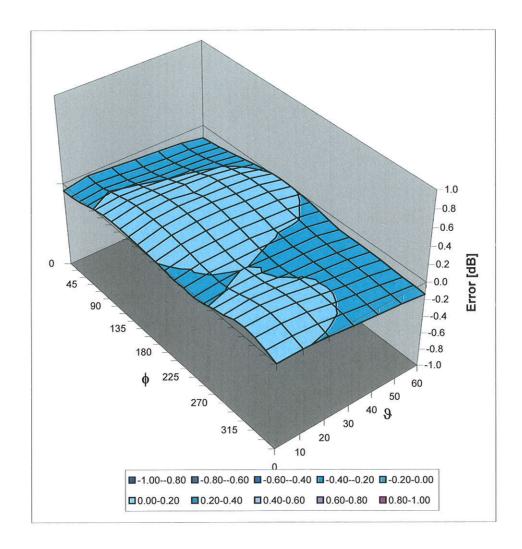
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.34	1.78	6.25 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.37	1.74	5.05 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.40	1.62	4.87 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.35	1.96	4.41 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.75	1.16	6.17 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.36	1.94	4.96 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.27	3.10	4.78 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.70	1.18	4.29 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3184_Sep09

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3184

Calibration procedure(s)

QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes

Calibration date:

September 18, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-660_Sep08)	Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Sep-09
1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Apr-10 Mar-10 Mar-10 Mar-10 Jan-10
31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Mar-10 Mar-10 Mar-10 Jan-10
31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Mar-10 Mar-10 Jan-10
31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Mar-10 Jan-10
2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
· · · · · · · · · · · · · · · · · · ·	
9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Check Date (in house)	Scheduled Check
4-Aug-99 (in house check Oct-07)	In house check: Oct-09
18-Oct-01 (in house check Oct-08)	In house check: Oct-09
Function	Signature
Laboratory Technician	1-12
	V 20

Issued: September 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3184 Sep09 Page 2 of 9

Probe ES3DV3

SN:3184

Manufactured:

August 19, 2008

Last calibrated:

September 22, 2008

Recalibrated:

September 18, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3184

Diode Compression^B

NormX	1.28 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.36 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	1.27 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

835 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.1	7.3
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

TSL

1810 MHz

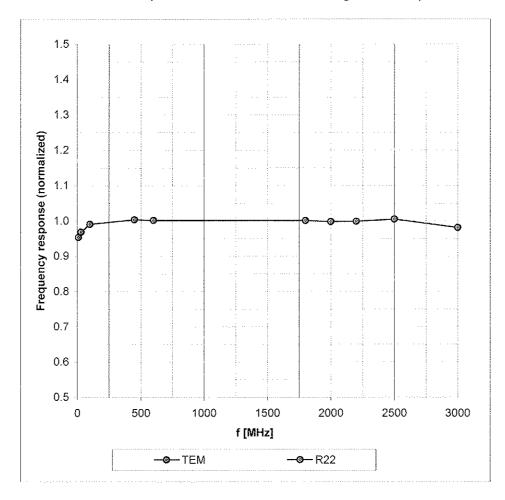
Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	12.1	8.3
SAR _{be} [%]	With Correction Algorithm	8.0	0.4

Sensor Offset

Probe Tip to Sensor Center

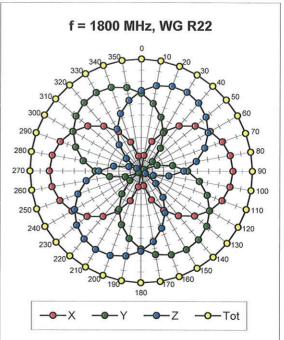
2.0 mm

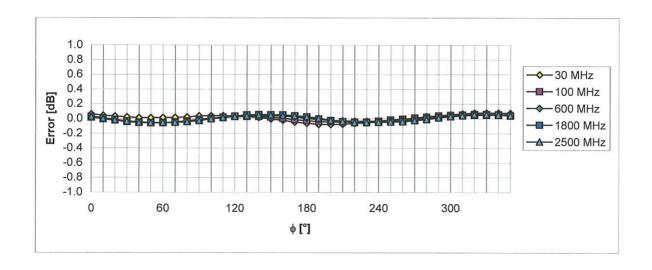

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^] The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

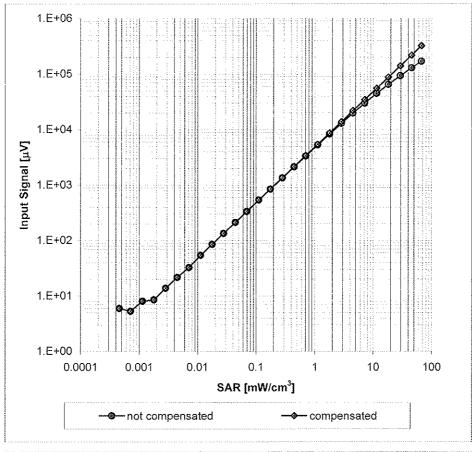
Frequency Response of E-Field

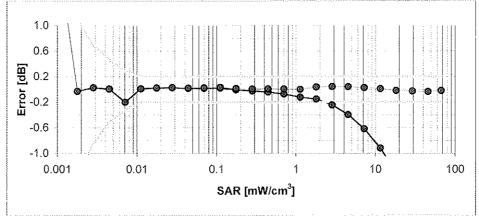

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

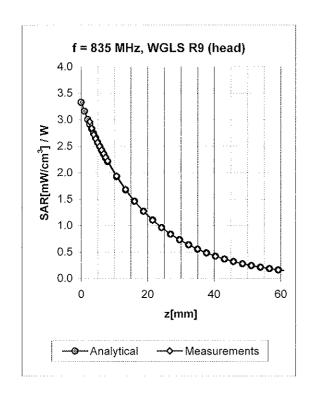
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

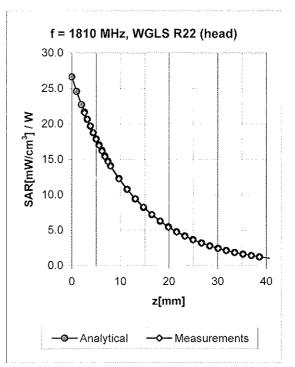




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

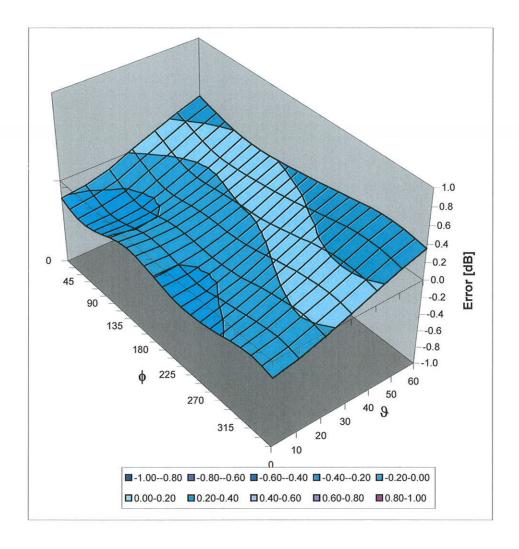
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.27	2.21	6.26 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.26	2.94	5.14 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.23	3.55	4.94 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.34	2.33	4.44 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.32	1.92	6.08 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.37	2.02	4.84 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.30	2.95	4.81 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	1.20	4.28 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Motorola MDb

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Certificate No: ES3-3183_Jul10

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE ES3DV3 - SN:3183 Object Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes July 14, 2010 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Scheduled Calibration Cal Date (Certificate No.) GB41293874 Power meter E4419B 1-Apr-10 (No. 217-01136) Apr-11 Power sensor E4412A MY41495277 1-Apr-10 (No. 217-01136) Арг-11 Арг-11 Power sensor E4412A MY41498087 1-Apr-10 (No. 217-01136) Reference 3 dB Attenuator SN: S5054 (3c) 30-Mar-10 (No. 217-01159) Mar-11 Reference 20 dB Attenuator SN: S5086 (20b) 30-Mar-10 (No. 217-01161) Mar-11 Reference 30 dB Attenuator SN: S5129 (30b) 30-Mar-10 (No. 217-01160) Mar-11 Reference Probe ES3DV2 SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) Dec-10 DAE4 SN: 660 20-Apr-10 (No. DAE4-660_Apr10) Apr-11 ID# Secondary Standards Check Date (in house) Scheduled Check RF generator HP 8648C US3642U01700 4-Aug-99 (in house check Oct-09) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-09) In house check: Oct10 Name Function Signature Jeton Kastrati Calibrated by: Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: July 15, 2010

Certificate No: ES3-3183_Jul10

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3183_Jul10 Page 2 of 11

Probe ES3DV3

SN:3183

Manufactured:

Last calibrated:

Recalibrated:

March 25, 2008

August 17, 2009

July 14, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3183_Jul10

Page 3 of 11

DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.21	1.15	1.07	± 10.1%
DCP (mV) ^B	88.6	86.9	89.5	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k≃2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
			Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX, Y, Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter; uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

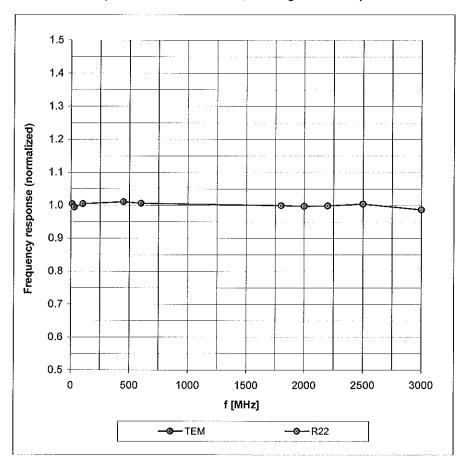
DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY (ConvF Z	Alpha	Depth Unc (k=2)
835	±50/±100	41.5 ± 5%	0.90 ± 5%	6.11	6.11	6.11	0.99	1.04 ± 11.0%
1810	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.05	5.05	5.05	0.58	1.33 ± 11.0%
1950	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.82	4.82	4.82	0.54	1.37 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.49	4.49	4.49	0.44	1.70 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

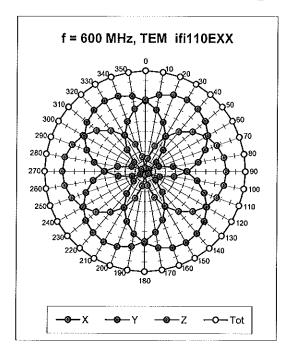
DASY/EASY - Parameters of Probe: ES3DV3 SN:3183

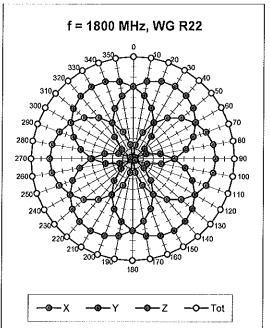

Calibration Parameter Determined in Body Tissue Simulating Media

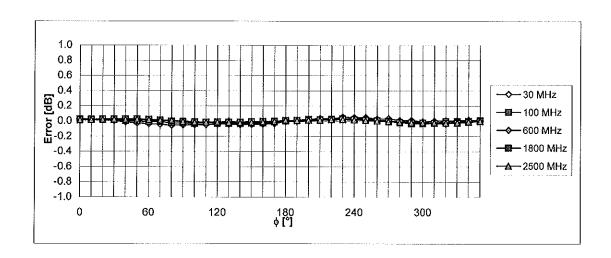
f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Con	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.15	6.15	6.15	0.95	1.10 ± 11.0%
1810	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.84	4.84	4.84	0.39	1.87 ± 11.0%
1950	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.86	4.86	4.86	0.28	2.80 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.36	4.36	4.36	0.69	1.31 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Frequency Response of E-Field

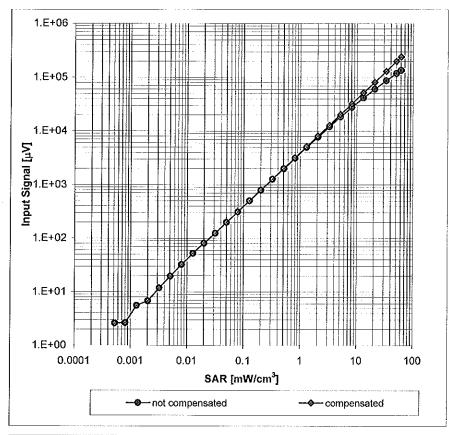

(TEM-Cell:ifi110 EXX, Waveguide: R22)

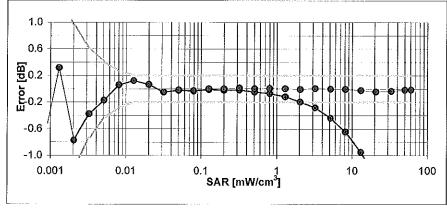



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

ES3DV3 SN:3183

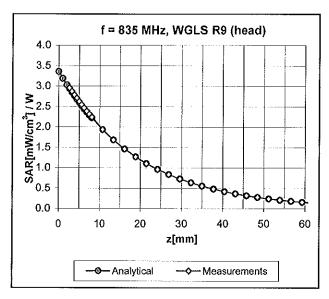
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

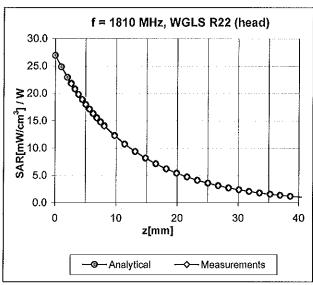


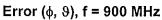


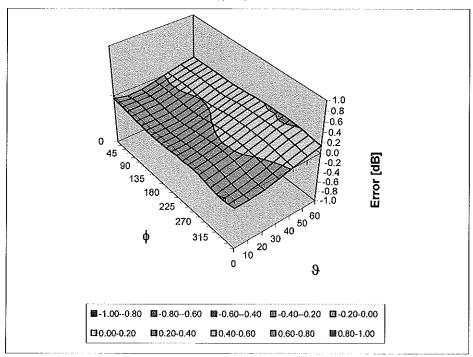
Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Conversion Factor Assessment

Deviation from Isotropy in HSL

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Appendix 5 Measurement Uncertainty Budget

							h=	i =	
a	b	С	d	e = f(d,k)	f	g	cxf /e	cxg /e	k
a	D			I(U,K)					, A
	IEEE	Tol.	Prob		Ci	C _i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10	11.	11.	
Uncertainty Component	section	(± /0)	Dist	Div.	(19)	g)	<i>u_i</i> (±%)	<i>u_i</i> (±%)	V.
Measurement System				DIV.			(± /0)	(± /0)	V _i
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	-
Axial Isotropy									∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.			_						
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t	F 6 3	4.4	Б	4 70	4	4	0.0	0.0	_
Phantom May CAR Frequetion (aut	E.6.3	1.4	R	1.73	1	1	8.0	8.0	∞
Max. SAR Evaluation (ext., int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	L.J	3.4	IX	1.73	ı	1	2.0	2.0	8
•	E.4.2	3.2	N	1.00	1	1	3.2	3.2	20
Test Sample Positioning				1.00	-	1			29 8
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	8
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	
,					-				∞
Liquid Conductivity (target) Liquid Conductivity	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	8
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.64	0.49	1.7	1.4	8
Liquid Permittivity (target) Liquid Permittivity	∟.3.∠	5.0	11	1.73	0.0	0.48	1.7	1.4	3
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard			. ,		0.0	0.10		0.0	
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			<i>k</i> =2				22.2	21.6	

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets

FCD-1806, rev-1

-Historical Data-

	835 MHz	
Reference Target:	9.56	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	26March09 - 15Mar10	
# of tests performed:	244	
Grand Average:	9.59	(W/kg)
% Delta (Average - Reference Target)	0.3%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 432tr, 417tr, 420tr, 422tr, 423tr, 424tr, 425tr, 431tr, 434tr, 421tr, 436tr	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
835 MHz	9.59	41.5 +/- 5%	0.90 +/- 5%	

Approvals-		
Submitted by:	Marge Kaunas	Date: 17-Mar-10
Signed:	Marge Kawas	
Comments:	Data file available upon request	
Approved by:	Steve Hauswirth	Date: 17-Mar-10
<u>Signed:</u>	Steven Hauswart	
Comments:		

Certification of System Performance Check Targets

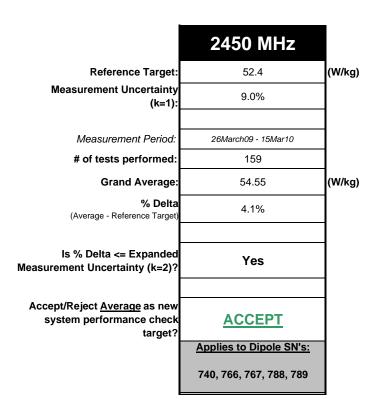
FCD-1806, rev-1

-Historical Data-

	1800 MHz	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	26March09 - 15Mar10	
# of tests performed:	654	
Grand Average:	38.36	(W/kg)
% Delta (Average - Reference Target)	-0.1%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's:	
	246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr,	
	277tr, 279tr, 280tr, 281tr,	
	283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)


Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
1800 MHz	38.36	40.0 +/- 5%	1.40 +/- 5%

•Approvals- Submitted by: Signed:	Marge Kaunas Marge Kaunas	Date: 17-Mar-10
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 17-Mar-10
<u>Signed:</u>	Steven Hauswort	
Comments:		

Certification of System Performance Check Targets

FCD-1806, rev-1

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
2450 MHz	54.55	39.2 +/- 10%	1.80 +/- 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 17-Mar-10
Signed:	Marge Kawas	
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 17-Mar-10
<u>Signed:</u>	Steven Hausenat	
Comments:		

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client SPEAG Replacement

Calibration date:

Certificate No: D1800V2-2d160_Jun10

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE Object D1800V2 - SN: 2d160 Calibration procedure(s) QA CAL-05.v7 Calibration procedure for dipole validation kits

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

June 15, 2010

Calibration Equipment used (M&TE critical for calibration)

Primary Standards] ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-09 (No. 217-01086)	Oct-10
Power sensor HP 8481A	US37292783	06-Oct-09 (No. 217-01086)	Oct-10
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
	•		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-09)	In house check: Oct-10
	Name	Function	Signature
Calibrated by:	Dimce Illey	Laboratory Technician	1/1W 1
			W. Liler
Approved by:	Katja Pokovic	Technical Manager	
rippiorod by.	riaga i Onovio	i oomilaa Managel	LL - 118 -

Issued: September 24, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1800V2-2d160_Jun10

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage

Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1800V2-2d160_Jun10 Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1800 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.38 mho/m ± 6 %
Head TSL temperature during test	(22.3 ± 0.2) °C		4 M 4 M

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.57 mW / g
SAR normalized	normalized to 1W	38.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	38.5 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 m W / g
SAR normalized	normalized to 1W	20.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.2 mW /g ± 16.5 % (k=2)

Certificate No: D1800V2-2d160_Jun10

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.6 Ω - 1.9 jΩ
Return Loss	- 32.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.214 ns
L.	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 30, 2007

Certificate No: D1800V2-2d160_Jun10 Page 4 of 6

DASY5 Validation Report for Head TSL

Date/Time: 14.06.2010 12:22:37

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN:2d160

Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.05, 5.05, 5.05); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

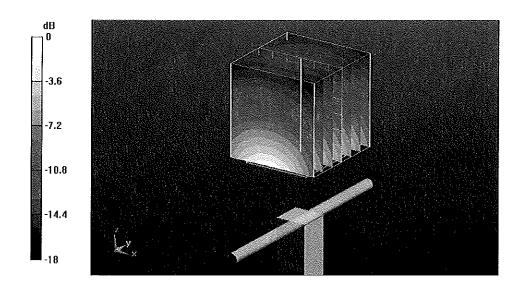
• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)

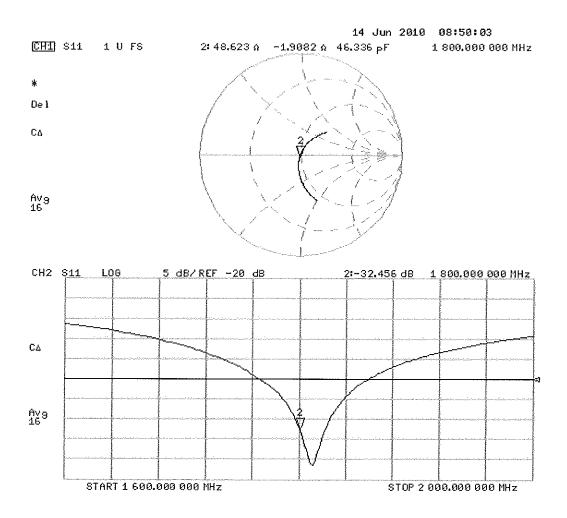
Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe) 2/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.3 V/m; Power Drift = 0.017 dB

Peak SAR (extrapolated) = 17.5 W/kg


SAR(1 g) = 9.57 mW/g; SAR(10 g) = 5.04 mW/g

Maximum value of SAR (measured) = 12 mW/g

0 dB = 12 mW/g

Impedance Measurement Plot for Head TSL

END OF REPORT