

Portable Cellular Phone SAR Test Report

Motorola Mobile Devices

Tests Requested By: 600 N. US Highway 45

Libertyville, IL 60048

Test Report #: 23882-1F **Date of Report:** Jul-21-2010

Date of Test: Jul-01-2010 to Jul-21-2010

FCC ID #: IHDP56LB1
Generic Name: MAQ6-34411B11

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Test Laboratory: 600 N. US Highway 45

Libertyville, IL 60048

Report Author: Thomas Knipple

Senior RF Engineer

Show Kngel

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Tests:

Electromagnetic Specific Absorption Rate

Procedures: IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

TESTING CERT #2518-02

Accreditation:

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of Compliance:

(none)

©Motorola, Inc. 2010

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	4
2.1 Antenna description	4
2.2 Device description	4
3. Test Equipment Used	5
3.1 Dosimetric System	5
3.2 Additional Equipment	5
4. Electrical parameters of the tissue simulating liquid	6
5. System Accuracy Verification	7
6. Test Results	8
6.1 Head Adjacent Test Results	9
6.2 Body Worn Test Results	12
References	15
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	
Appendix 3: SAR distribution plots for Body Worn Configuration	
Appendix 4: Probe Calibration Certificate	
Appendix 5: Measurement Uncertainty Budget	
Appendix 6: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ANSI / IEEE C95.1 (1 g), the final SAR reading for this phone is 0.38 W/kg for head-adjacent use and 0.58 W/kg for body-worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal				
Location	Bottom of Transceiver				
D'	Width	55 mm			
Dimensions	Length 20 mm				
Configuration	FICA				

2.2 Device description

Serial Number(s)		35	279104000	2188, 8620	319800020	10	
Mode(s) of Operation	GSM 900	GSM 1800	GSM 1900	TD-SCDMA Band A	TD-SCDMA Band B	Wi-Fi 802.11b/g	Bluetooth
Modulation Mode(s)	GSMK	GSMK	GSMK	QPSK	QPSK	BPSK	GFSK
Maximum Output Power Setting	33.3 dBm	30.5 dBm	30.5 dBm	24.5 dBm	24.5 dBm	18.5 dBm	10 dBm
Duty Cycle	1:8.3	1:8.3	1:8.3	1:7.4	1:7.4	1:1	1:1
Transmitting Frequency Range(s)	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	1880.8 - 1919.2 MHz	2010.8 - 2024.2 MHz	2412.0 - 2462.5 MHz	2402.0 - 2483.5 MHz
Production Unit or Identical Prototype (47 CFR §2908)			Ide	ntical Protot	ype		
Device Category				Portable			
RF Exposure Limits			General Po	pulation / U	ncontrolled		

Mode(s) of Operation	GP 90	RS 00	GP 18	PRS 00	GPRS 1900		
Modulation	GM	ISK	GM.	GMSK		ISK	
Maximum Output Power Setting	33.3 33.3		30.5 30.5		30.5 30.5		
Duty Cycle	1:8.3	2:8.3	1:8.3	2:8.3	1:8.3	2:8.3	
Transmitting Frequency Range(s)	880.2 - 914.8 MHz		1710.2 - 1784.8 MHz		1850.2 - 1909.8 MHz		

Mode(s) of	ED	GE	EDGE		EDGE	
Operation	90	00	18	1800		00
Modulation	8PSK		8PSK		8P	SK
Maximum Output Power Setting	27.5 27.5		27.0 27.0		27.0	27.0
Duty Cycle	1:8.3	2:8.3	1:8.3	2:8.3	1:8.3	2:8.3
Transmitting Frequency Range(s)	880.2 - 914.8 MHz		1710.2 - 1784.8 MHz		1850.2 - 1909.8 MHz	

Note: Bolded entries indicate data mode configurations of highest time-average power output per band and data mode type.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	440	Feb-17-2011
E-Field Probe ES3DV3	3184	Sep-18-2010
S.A.M. Phantom used for 800/900 MHz	TP-1131	
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1250	
Dipole Validation Kit, DV835V2	436TR	Mar-17-2011
Dipole Validation Kit, DV1800V2	272TR	Mar-17-2011
Dipole Validation Kit, DV1900V2	526TR	Mar-17-2011
Dipole Validation Kit, DV2450V2	766	Mar-17-2011

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04843	Apr-22-2011
Power Meter E4419B	US39250622	Dec-22-2011
Power Sensor #1 - E9301A	US39210929	Nov-19-2010
Power Sensor #2 - E9301A	US39210930	Nov-19-2010
Signal Generator HP8648C	3847A04810	Oct-30-2011
Power Meter E4419B	GB39511087	Dec-22-2011
Power Sensor #1 - E9301A	US39211007	Dec-04-2010
Power Sensor #2 - E9301A	US39211008	Dec-04-2010
Network Analyzer HP8753ES	US39172529	Jun-11-2011
Dielectric Probe Kit HP85070C	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tissue		Dielectric Parameters				
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (°C)		
	Head	Measured, Jul-01-2010	39.3	1.42	19.3		
1880	Heau	Recommended Limits	40.0 ±5%	1.40 ±5%	18-25		
1000	Body	Measured, Jul-05-2010	51.4	1.59	19.9		
	Douy	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25		
	Head	Measured, Jul-04-2010	35.8	1.82	19.8		
	Heau	Recommended Limits	39.2 ±10%	1.80 ±5%	18-25		
2450		Measured, Jul-04-2010	48.0	1.96	19.5		
	Body	Measured, Jul-15-2010	48.4	2.03	20.1		
		Recommended Limits	52.7 ±10%	1.95 ±5%	18-25		

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4 $^{\text{TM}}$ was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg), Dielectric Parameters		Ambient	Tissue	
(MHz)	Description	1 gram	ϵ_r	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, Jul-01-2010	35.85	39.7	1.39	20.3	19.3
1800	Measured, Jul-05-2010	37.125	39.0	1.39	20.1	18.8
1000	Measured, Jul-13-2010	37.375	40.0	1.37	20.0	19.6
	Recommended Limits	38.36	40.0 ±5%	1.40 ±5%	18-25	18-25
	Measured, Jul-04-2010	55.50	35.8	1.82	20.1	19.8
2450	Measured, Jul-15-2010	56.75	37.6	1.86	20.0	19.4
	Recommended Limits	54.55	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3		835	6.26	8 of 9
	3184	1810	5.14	8 of 9
		2450	4.44	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was set up to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850 MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5851A - 1380 mAH Battery

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

Evaluation of Wi-Fi 802.11 Modes

Per "SAR Measurement Procedures for 802.11 a/b/g Transmitters" (FCC KDB 248227), power measurements were performed for 802.11 operational modes. The conducted power measurements for each mode are shown in the table below. SAR testing for 802.11 modes was performed with the transmitter mode and data rate set to the configurations highlighted in bold below.

Rand	Band Channel Conducted Power (dBm) for 802.11b Mode Data Rates					Conducted Power (dBm) for 802.11g Mode Data Rates							
Band Channe	Chamie	1 2 5.5 1 Mbps Mbps Mbps M				6 Mbps	9 Mbps	12 Mbps	18 Mbps	24 Mbps	36 Mbps	48 Mbps	54 Mbps
**/* E3*	1	19.63	19.66	19.78	19.77	18.79	19.03	17.12	16.87	15.87	15.76	14.48	14.28
Wi-Fi 2450	6	19.39	19.41	19.55	19.47	18.96	19.03	17.29	17.05	16.13	16.14	14.77	14.60
2750	11	18.83	18.86	18.77	18.97	18.56	18.60	17.31	17.14	16.15	16.12	14.70	14.69

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 4 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2. The tables below also include the highest SAR value summations for primary and secondary co-located transmitters, with the results indicated in italics.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for head-adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		835	6.26	8 of 9
E-Field Probe	3184	1810	5.14	8 of 9
ES3DV3		1950	4.94	8 of 9
		2450	4.44	8 of 9

	Left Head Cheek Position											
f (MHz)	Description	Conducted Output Tem	Temp	-	10 g SA	R value	1 g SAR value					
		Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
CCM	Channel 512	30.61										
GSM 1900	Channel 661	30.53	20.6	0.034	0.121	0.12	0.192	0.19				
1900	Channel 810	30.66										
**** *** * 4.50	Channel 1	19.63										
WI-FI 2450 1 Mbps	Channel 6	19.39	19.8	-0.008	0.190	0.19	0.377	0.38				
1 Mops	Channel 11	18.83										
GSM 1900 + WI-FI						0.31		0.57				

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position												
f (MHz)	Description	_	Temp	Drift	10 g SA	R value	1 g SAR value						
			(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)					
CCM	Channel 512	30.61											
GSM 1900	Channel 661	30.53	20.5	0.012	0.087	0.09	0.130	0.13					
1900	Channel 810	30.66											
**** *** * 4.50	Channel 1	19.63	20.1	0.010	0.171	0.17	0.347	0.35					
WI-FI 2450 1 Mbps	Channel 6	19.39	19.8	0.042	0.191	0.19	0.380	0.38					
1 Mops	Channel 11	18.83	20.1	0.144	0.149	0.15	0.305	0.31					
GSM 1900 + WI-FI						0.28		0.51					

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position											
f (MHz)	Description	Conducted Output	Temp	Drift (dB)	10 g SA	R value	1 g SAR value					
		Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
CCM	Channel 512	30.61										
GSM 1900	Channel 661	30.53	20.1	0.025	0.120	0.12	0.202	0.20				
1900	Channel 810	30.66										
**** *** * 4.50	Channel 1	19.63										
WI-FI 2450 1 Mbps	Channel 6	19.39	19.8	0.015	0.114	0.11	0.213	0.21				
1 1.100	Channel 11	18.83										
GSM 1900 + WI-FI						0.23		0.41				

Table 3: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Right Head 15° Tilt Position											
f (MHz)	Description	Conducted Output Te	Temp	Drift	10 g SA	R value	1 g SAR value					
		Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 512	30.61										
1900	Channel 661	30.53	20.5	-0.023	0.067	0.07	0.110	0.11				
1700	Channel 810	30.66										
W E 2450	Channel 1	19.63										
WI-FI 2450 1 Mbps	Channel 6	19.39	19.8	0.082	0.090	0.09	0.171	0.17				
1 1110ps	Channel 11	18.83										
GSM 1900 + WI-FI						0.16		0.28				

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 5 through 9 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3. The tables below also include the highest SAR value summations for primary and secondary co-located transmitters, with the results indicated in italics.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures $52.7 \text{ cm(long)} \times 26.7 \text{ cm(wide)} \times 21.2 \text{ cm(tall)}$. The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184 GHz.

The tissue stimulant depth was verified to be $15.0~\rm cm \pm 0.5~\rm cm$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories, testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no body-worn accessories available for this phone at the time of testing thus the device was tested per the Supplement C testing guidelines for devices that do not have body-worn accessories. A separation distance of 15 mm between the device and the flat phantom was used for testing body-worn SAR. The device was tested with the front and back of the device facing the phantom.

The cellular phone was also tested in data mode operations. For these tests, a separation distance of 25 mm between the device and the flat phantom was used. The device was tested in the worst-case SAR position and channel configuration from the voice-mode body-worn testing.

The following probe conversion factors were used on the E-Field probe(s) used for body-worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		835	6.08	8 of 9
E-Field Probe	3184	1810	4.84	8 of 9
ES3DV3		1950	4.81	8 of 9
		2450	4.28	8 of 9

	Body-Worn; Front of Phone 15 mm from Phantom											
f		Conducted	Temp	Drift	10 g SA	R value	1 g SAI	R value				
(MHz)	Description	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
CCM	Channel 512	30.61										
GSM 1900	Channel 661	30.53	19.8	-0.050	0.085	0.09	0.132	0.13				
1900	Channel 810	30.66										
W E 2450	Channel 1	19.63										
WI-FI 2450 1 Mbps	Channel 6	19.39	19.1	-0.012	0.049	0.05	0.085	0.09				
1 Mbps	Channel 11	18.83										
GSM 1900 + WI-FI						0.14		0.22				

Table 5: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 15 mm from Phantom											
f		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description	Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 512	30.61										
1900	Channel 661	30.53	19.9	0.013	0.312	0.31	0.579	0.58				
1900	Channel 810	30.66										
**** *** * 4.50	Channel 1	19.63	20.0	-0.065	0.162	0.16	0.294	0.30				
WI-FI 2450 1 Mbps	Channel 6	19.39	19.5	-0.044	0.165	0.17	0.294	0.30				
1 Wibps	Channel 11	18.83	20.0	-0.008	0.130	0.13	0.230	0.23				
Dl44h	Channel 0	11.06										
Bluetooth 2450	Channel 39	11.33	20.1	-0.063	0.00025	0.00	0.00123	0.00				
4450	Channel 78	11.25										
GSM 1900 + WI-FI						0.48		0.88				

Table 6: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn, Back of Phone 25 mm from Phantom										
f (MHz) Descri		Conducted	Temp	Drift	10 g SA	R value	1 g SA	R value			
	Description	ription Output Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
**** *** * 4.50	Channel 1	19.63									
WI-FI 2450 1 Mbps	Channel 6	19.39	19.3	-0.013	0.058	0.06	0.096	0.10			
титоро	Channel 11	18.83									

Table 7: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	GPRS Class 10 (2 Uplink Timeslots) Body-Worn; Back of Phone 25 mm from Phantom											
f (MHz)	Description	Conducted Output Power (dBm)	Temp (°C)	Drift (dB)	10 g SA Measured (W/kg)	R value Extrapolated (W/kg)	1 g SAI Measured (W/kg)	R value Extrapolated (W/kg)				
CCM	Channel 512	30.61			(11138)	(11138)	(11128)	(· · · · · · · · · · · · · · · · · · ·				
GSM 1900	Channel 661	30.56	19.9	0.009	0.187	0.19	0.306	0.31				
1900	Channel 810	30.65										
GSM 1900 + WI-FI						0.25		0.41				

Table 8: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	EDGE Class 10 (2 Uplink Timeslots) Body-Worn; Back of Phone 25 mm from Phantom											
f (MHz)	Description	Conducted Output Power	Temp	Drift	10 g SAR value Measured Extrapolated		I g SAR value Measured Extrapolated					
		(dBm)	(°C)	(dB)	(W/kg)	(W/kg)	(W/kg)	(W/kg)				
GSM	Channel 512	26.82										
1900	Channel 661	26.86	19.9	0.014	0.103	0.10	0.170	0.17				
1700	Channel 810	27.05										
GSM 1900 + WI-FI						0.16		0.27				

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 7/1/2010 7:15:54 AM

Test Laboratory: Motorola - Jul-01-2010 1800 MHz

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 272TR; FCC ID: IHDP56LB1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 272TR; Input Power = 200 mW Sim.Temp@meas = 19.3*C; Sim.Temp@SPC = 19.3*C; Room Temp @ SPC = 20.3*C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39.7$; $\rho = 1000 \text{ kg/m}^3$

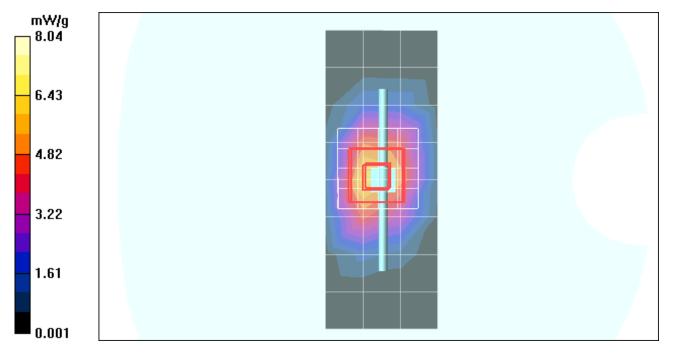
DASY4 Configuration:

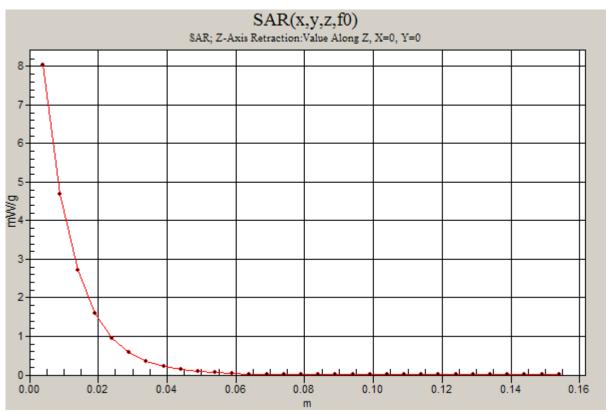
- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.37 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.8 V/m; Power Drift = 0.038 dB; Peak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 7.09 mW/g; SAR(10 g) = 3.81 mW/g; Maximum value of SAR (measured) = 7.97 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 77.8 V/m; Power Drift = 0.038 dB; Peak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 7.25 mW/g; SAR(10 g) = 3.89 mW/g; Maximum value of SAR (measured) = 8.08 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.04 mW/g

Date/Time: 7/5/2010 8:46:42 AM

Test Laboratory: Motorola - Jul-05-2010 1800 MHz

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 272TR; FCC ID: IHDP56LB1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 272TR; Input Power = 200 mW Sim.Temp@meas = 18.7*C; Sim.Temp@SPC = 18.8*C; Room Temp @ SPC = 20.1*C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.39 \text{ mho/m}$; $\varepsilon_r = 39$; $\rho = 1000 \text{ kg/m}^3$

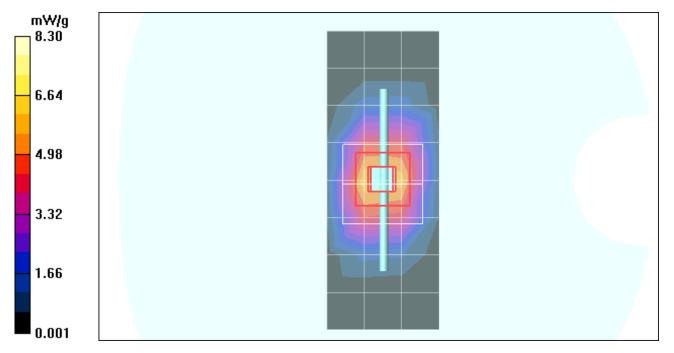
DASY4 Configuration:

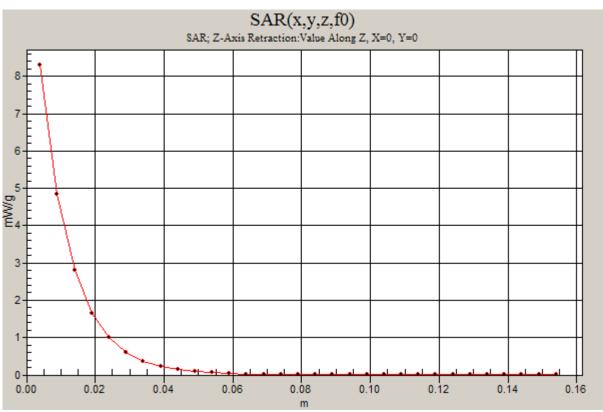
- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.09 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.3 V/m; Power Drift = -0.035 dB; Peak SAR (extrapolated) = 12.5 W/kg SAR(1 g) = 7.36 mW/g; SAR(10 g) = 3.94 mW/g; Maximum value of SAR (measured) = 8.33 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 80.3 V/m; Power Drift = -0.035 dB; Peak SAR (extrapolated) = 12.7 W/kg SAR(1 g) = 7.49 mW/g; SAR(10 g) = 4.01 mW/g; Maximum value of SAR (measured) = 8.45 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.30 mW/g

Date/Time: 7/13/2010 6:55:18 AM

Test Laboratory: Motorola - Jul-13-2010 1800 MHz

DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 272TR; FCC ID: IHDP56LB1 Procedure Notes: 1800 MHz System Performance Check; Dipole Sn# 272TR; Input Power = 200 mW Sim.Temp@meas = 19.6 °C; Sim.Temp@SPC = 19.6 °C; Room Temp @ SPC = 20.0 °C Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40$; $\rho = 1000 \text{ kg/m}^3$

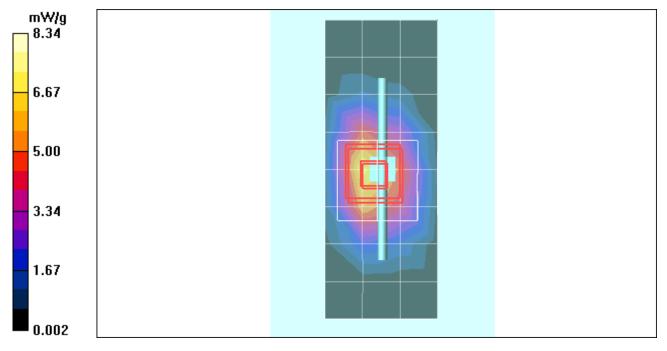
DASY4 Configuration:

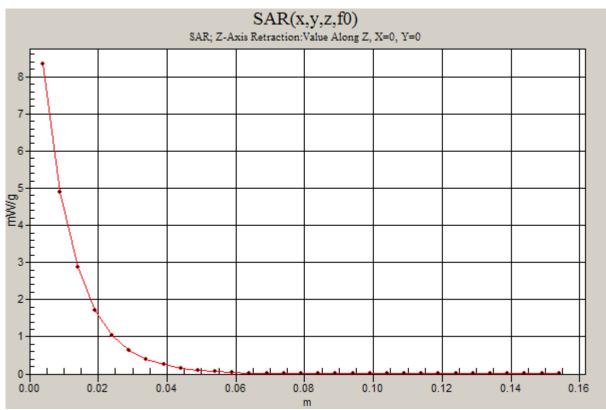
- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 6.94 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.7 V/m; Power Drift = -0.011 dB; Peak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 7.37 mW/g; SAR(10 g) = 3.97 mW/g; Maximum value of SAR (measured) = 8.29 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 78.7 V/m; Power Drift = -0.011 dB; Peak SAR (extrapolated) = 12.9 W/kg SAR(1 g) = 7.58 mW/g; SAR(10 g) = 4.06 mW/g; Maximum value of SAR (measured) = 8.38 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 8.34 mW/g

Date/Time: 7/4/2010 11:17:59 AM

Test Laboratory: Motorola - Jul-04-2010 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 766; FCC ID: IHDP56LB1

Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 766; Input Power = 200 mW

Sim.Temp@meas = 19.7*C; Sim.Temp@SPC = 19.8*C; Room Temp @ SPC = 20.1*C

Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz; $\sigma = 1.82$ mho/m; $\varepsilon_r = 35.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(4.44, 4.44, 4.44); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 9.01 mW/g

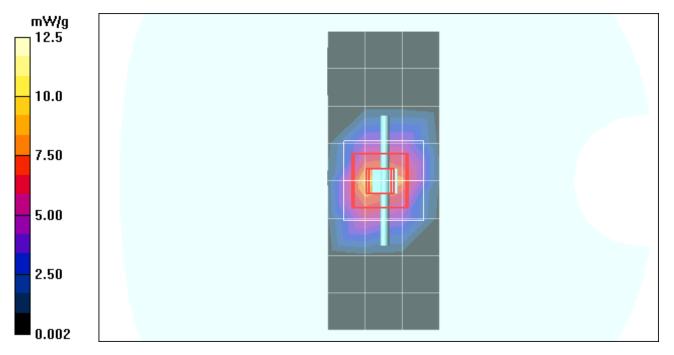
Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0:

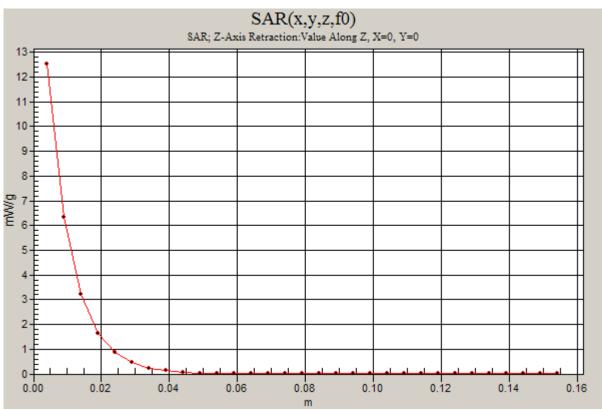
Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 85.6 V/m; Power Drift = 0.003 dB; Peak SAR (extrapolated) = 21.9 W/kg

SAR(1 g) = 11 mW/g; SAR(10 g) = 5.12 mW/g; Maximum value of SAR (measured) = 12.5 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 85.6 V/m; Power Drift = 0.003 dB; Peak SAR (extrapolated) = 22.6 W/kg

SAR(1 g) = 11.2 mW/g; SAR(10 g) = 5.18 mW/g; Maximum value of SAR (measured) = 12.4 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 7/15/2010 10:15:01 AM

Test Laboratory: Motorola - Jul-15-2010 2450 MHz

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 766; FCC ID: IHDP56LB1 Procedure Notes: 2450 MHz System Performance Check; Dipole Sn# 766; Input Power = 200 mW Sim.Temp@meas = 19.4 _{\(\Gamma\)}C; Sim.Temp@SPC = 19.4 _{\(\Gamma\)}C; Room Temp @ SPC = 20.0 _{\(\Gamma\)}C Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only

Medium parameters used: f = 2450 MHz; $\sigma = 1.86 \text{ mho/m}$; $\varepsilon_r = 37.6$; $\rho = 1000 \text{ kg/m}^3$

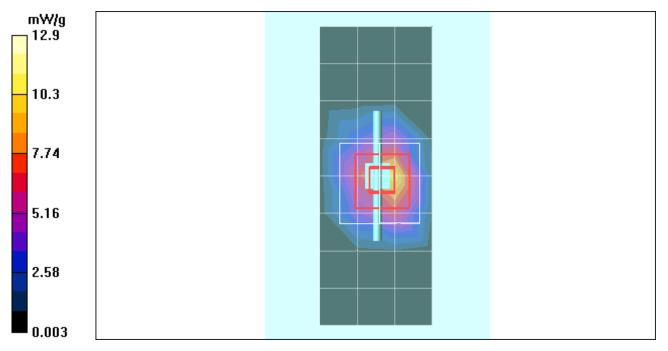
DASY4 Configuration:

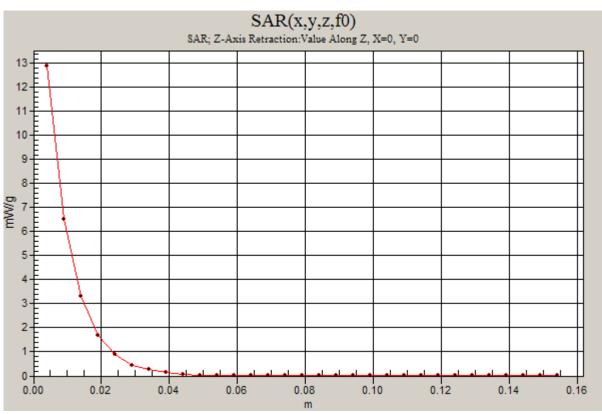
- Probe: ES3DV3 SN3184; ConvF(4.44, 4.44, 4.44); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (9x4x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 10.3 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.2 V/m; Power Drift = -0.062 dB; Peak SAR (extrapolated) = 22.5 W/kg SAR(1 g) = 11.2 mW/g; SAR(10 g) = 5.22 mW/g; Maximum value of SAR (measured) = 12.7 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 85.2 V/m; Power Drift = -0.062 dB; Peak SAR (extrapolated) = 23.3 W/kg SAR(1 g) = 11.5 mW/g; SAR(10 g) = 5.32 mW/g; Maximum value of SAR (measured) = 13.2 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm; Maximum value of SAR (measured) = 12.9 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 7/1/2010 5:16:11 PM

Test Laboratory: Motorola - GSM 1900 Cheek

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5851A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8.3

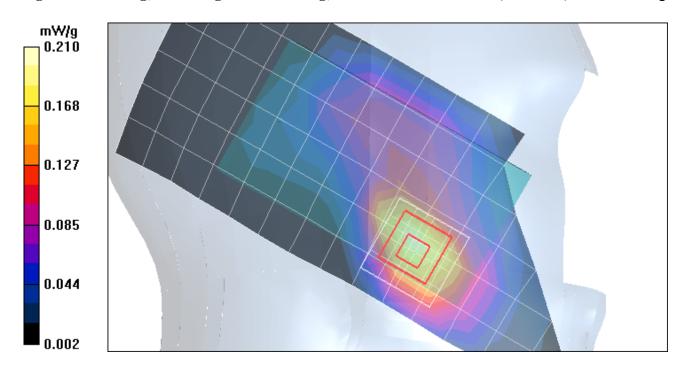
Medium: Regular Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn440; Calibrated: 2/17/2010
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.200 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.3 V/m; Power Drift = 0.034 dB; Peak SAR (extrapolated) = 0.277 W/kg

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.121 mW/g; Maximum value of SAR (measured) = 0.210 mW/g

Date/Time: 7/4/2010 11:43:03 AM

Test Laboratory: Motorola - Wi-Fi 2450 Cheek

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5851A; DEVICE POSITION: Cheek

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\varepsilon_r = 35.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

• Probe: ES3DV3 - SN3184; ConvF(4.44, 4.44, 4.44); Calibrated: 9/18/2009

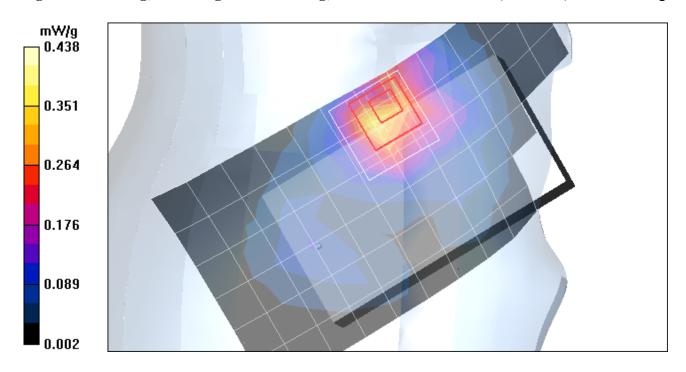
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.365 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = 0.042 dB; Peak SAR (extrapolated) = 0.751 W/kg

SAR(1 g) = 0.380 mW/g; SAR(10 g) = 0.191 mW/g; Maximum value of SAR (measured) = 0.438 mW/g

Date/Time: 7/1/2010 6:24:41 PM

Test Laboratory: Motorola - GSM 1900 Tilt

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5851A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8.3

Medium: Regular Glycol Head 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.42 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

• Probe: ES3DV3 - SN3184; ConvF(5.14, 5.14, 5.14); Calibrated: 9/18/2009

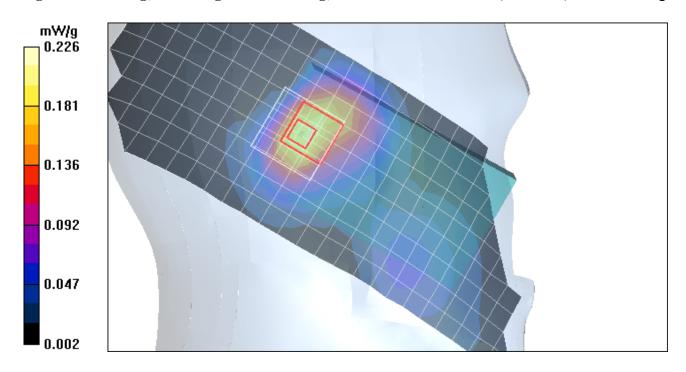
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal Extended (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.205 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = 0.025 dB; Peak SAR (extrapolated) = 0.314 W/kg

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.120 mW/g; Maximum value of SAR (measured) = 0.226 mW/g

Date/Time: 7/4/2010 12:37:11 PM

Test Laboratory: Motorola - Wi-Fi 2450 Tilt

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5851A; DEVICE POSITION: Tilt

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.82 \text{ mho/m}$; $\varepsilon_r = 35.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

• Probe: ES3DV3 - SN3184; ConvF(4.44, 4.44, 4.44); Calibrated: 9/18/2009

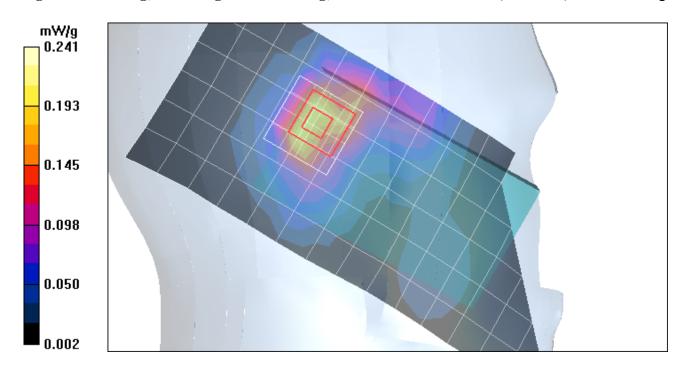
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.198 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.9 V/m; Power Drift = 0.015 dB; Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.213 mW/g; SAR(10 g) = 0.114 mW/g; Maximum value of SAR (measured) = 0.241 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 7/5/2010 10:40:58 AM

Test Laboratory: Motorola - GSM 1900 Body-Worn

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Battery Model #: SNN5851A

Device Position: Body Worn, Back of Phone 15 mm from Phantom

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8.3

Medium: Regular Glycol Body 1750/1880

Medium parameters used: f = 1880 MHz; $\sigma = 1.59 \text{ mho/m}$; $\varepsilon_r = 51.4$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

• Probe: ES3DV3 - SN3184; ConvF(4.84, 4.84, 4.84); Calibrated: 9/18/2009

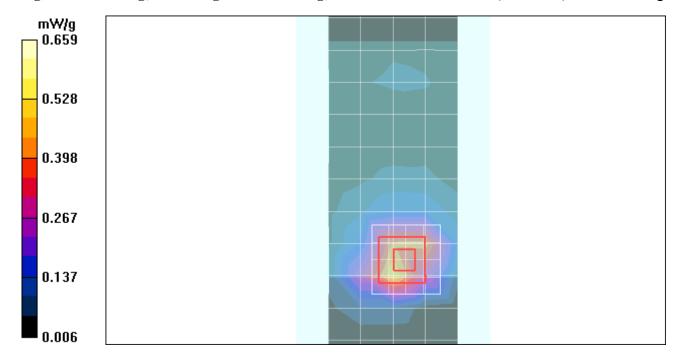
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.489 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 14.1 V/m; Power Drift = 0.013 dB; Peak SAR (extrapolated) = 0.958 W/kg

SAR(1 g) = 0.579 mW/g; SAR(10 g) = 0.312 mW/g; Maximum value of SAR (measured) = 0.659 mW/g

Date/Time: 7/4/2010 1:17:47 PM

Test Laboratory: Motorola - Wi-Fi 2450 Body-Worn

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5851A

Device Position: Body Worn, Back of Phone 15 mm from Phantom

Communication System: Wi-Fi 2450; Frequency: 2437 MHz; Channel Number: 6; Duty Cycle: 1:1

Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 48$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3184; ConvF(4.28, 4.28, 4.28); Calibrated: 9/18/2009

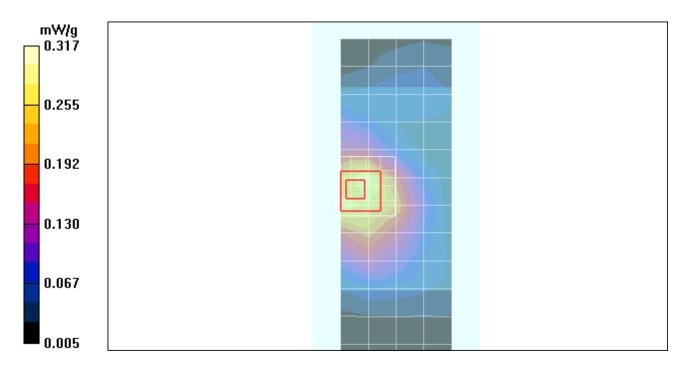
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.282 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.2 V/m; Power Drift = -0.044 dB; Peak SAR (extrapolated) = 0.540 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.165 mW/g; Maximum value of SAR (measured) = 0.317 mW/g

Date/Time: 7/15/2010 2:22:27 PM

Test Laboratory: Motorola - Bluetooth Body-Worn

Serial: 352791040002188; FCC ID: IHDP56LB1

Procedure Notes: Pwr Step: N/A; Antenna Position: Internal; Battery Model #: SNN5851A

Device Position: Body Worn, Back of Phone 15 mm from Phantom

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ mho/m}$; $\varepsilon_r = 48.4$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

Probe: ES3DV3 - SN3184; ConvF(4.28, 4.28, 4.28); Calibrated: 9/18/2009

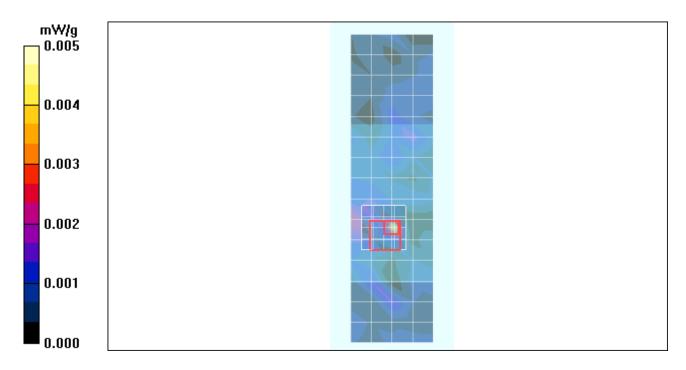
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn440; Calibrated: 2/17/2010

• Phantom: R4: Sect.1, Amy Twin, Rev.3 (3-Feb-10); Type: Amy Twin Flat; Serial: n/a;

• Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Extended Body (15mm) (16x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.002 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.07 V/m; Power Drift = -0.063 dB; Peak SAR (extrapolated) = 0.005 W/kg

SAR(1 g) = 0.00123 mW/g; SAR(10 g) = 0.00025 mW/g; Maximum value of SAR (measured) = 0.005 mW/g

FCC ID: IHDP56LB1

Appendix 4 Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3184_Sep09

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3184

Calibration procedure(s)

QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2 Calibration procedure for dosimetric E-field probes

Calibration date:

September 18, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

B41293874 Y41495277 Y41498087 N: S5054 (3c) N: S5086 (20b) N: S5129 (30b) N: 3013	1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028) 31-Mar-09 (No. 217-01027)	Apr-10 Apr-10 Apr-10 Mar-10
Y41498087 N: S5054 (3c) N: S5086 (20b) N: S5129 (30b)	1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Apr-10 Mar-10 Mar-10
N: S5054 (3c) N: S5086 (20b) N: S5129 (30b)	31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01028)	Mar-10 Mar-10
N: S5086 (20b) N: S5129 (30b)	31-Mar-09 (No. 217-01028)	Mar-10
N: S5129 (30b)		
	31-Mar-09 (No. 217-01027)	
V: 3013		Mar-10
1. 0010	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
N: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
#	Check Date (in house)	Scheduled Check
S3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
S37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
ame	Function	Signature
ton Kastrati	Laboratory Technician	- 6-
		20
		11 1 11
	537390585 ame	18-Oct-01 (in house check Oct-08) The sum of the sum o

Issued: September 21, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3184 Sep09 Page 2 of 9

Probe ES3DV3

SN:3184

Manufactured:

August 19, 2008

Last calibrated:

September 22, 2008

Recalibrated:

September 18, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3184

Constitute in Free opace	Sensitivity	in	Free	Space ^A	
--------------------------	-------------	----	------	--------------------	--

Diode Compression^B

NormX	1.28 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.36 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	1.27 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

835 MHz

Typical SAR gradient: 5 % per mm

Sensor Center t	o Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.1	7.3
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

TSL

1810 MHz

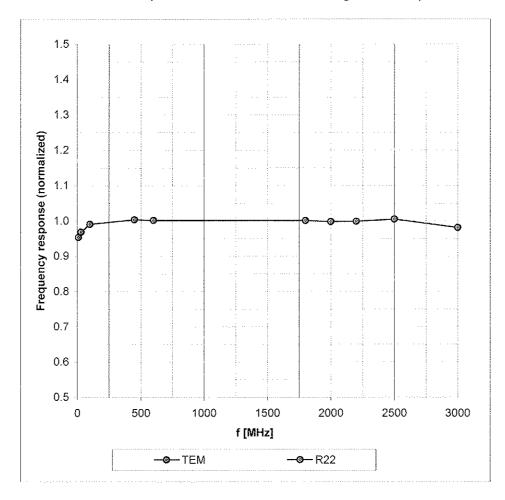
Typical SAR gradient: 10 % per mm

Sensor Center t	3.0 mm	4.0 mm	
SAR _{be} [%]	Without Correction Algorithm	12.1	8.3
SAR _{be} [%]	With Correction Algorithm	8.0	0.4

Sensor Offset

Probe Tip to Sensor Center

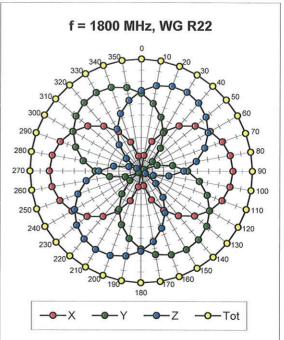
2.0 mm

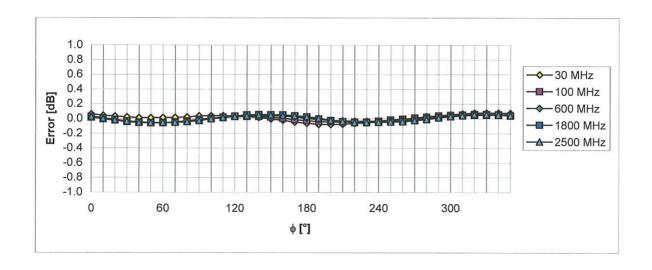

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

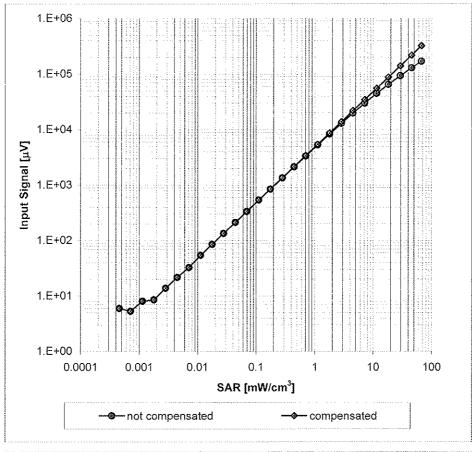
Frequency Response of E-Field

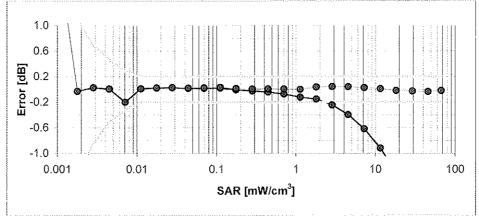

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

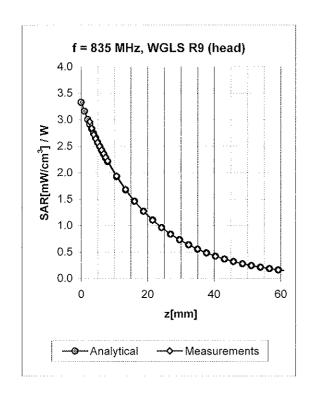
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

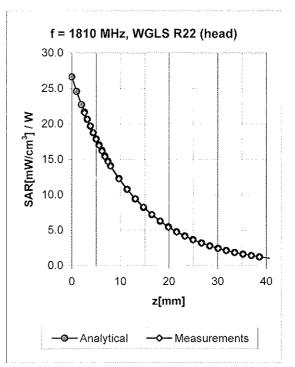




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

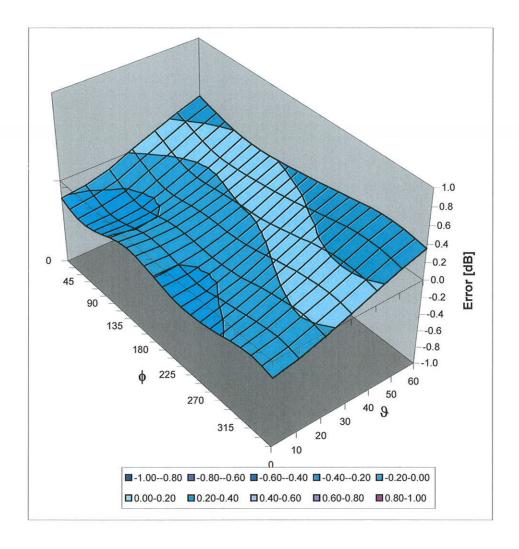
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	0.27	2.21	6.26 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.26	2.94	5.14 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.23	3.55	4.94 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.34	2.33	4.44 ± 11.0% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.32	1.92	6.08 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.37	2.02	4.84 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.30	2.95	4.81 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.99	1.20	4.28 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

FCC ID: IHDP56LB1

Appendix 5 Measurement Uncertainty Budget

				e =			h = c x f	i = c x g	
а	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	V _i
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	8
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	8
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	8
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	8
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	8
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	8
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	8
Max. SAR Evaluation (ext.,	□.0.3	1.4	N	1.73	!	ı	0.6	0.0	- &
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	8
Test sample Related									
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue									
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	8
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	8
Liquid Conductivity									
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity	F 0 0	4.0	, . I	4.00	0.0	0.40		0.0	
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	8
Combined Standard Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1.00					10.0	
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

Appendix 6

Dipole Characterization Certificate

FCD-1806, rev-1

-Historical Data-

	835 MHz	
Reference Target:	9.56	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	26March09 - 15Mar10	
# of tests performed:	244	
Grand Average:	9.59	(W/kg)
% Delta (Average - Reference Target)	0.3%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 432tr, 417tr, 420tr, 422tr, 423tr, 424tr, 425tr, 431tr, 434tr, 421tr, 436tr	

-New System Performance Check Targets- per WI-0396

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
835 MHz	9.59	41.5 +/- 5%	0.90 +/- 5%

Approvals- Submitted by:	Marge Kaunas	Date:	17-Mar-10
Signed:	Marge Kawas	. Date.	T7-IMAI-TO
Comments:	Data file available upon req	uest.	
Approved by:	Steve Hauswirth	Date:	17-Mar-10
<u>Signed:</u>	Steven Hauswort		
Comments:			

FCD-1806, rev-1

-Historical Data-

	1800 MHz	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	26March09 - 15Mar10	
# of tests performed:	654	
Grand Average:	38.36	(W/kg)
% Delta (Average - Reference Target)	-0.1%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's:	
	246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr,	
	277tr, 279tr, 280tr, 281tr,	
	283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

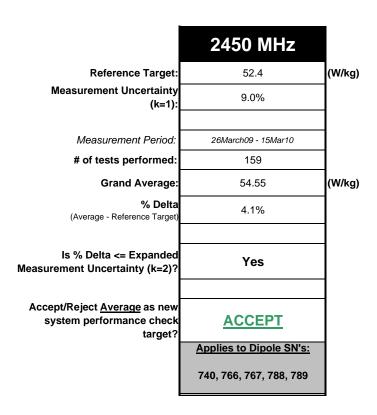
Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
1800 MHz	38.36	40.0 +/- 5%	1.40 +/- 5%

-Approvals-			
Submitted by:	Marge Kaunas	Date:	17-Mar-10
Signed:	Marge Kauvas		
Comments:	Data file available upon request.		
Approved by:	Steve Hauswirth	Date:	17-Mar-10
Signed:	Steven Hauswort		
Comments:			

FCD-1806, rev-1

-Historical Data-

_		_
	1900 MHz	
Reference Target:	39.7	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	27May08 - 15Mar10	
# of tests performed:	52	
Grand Average:	40.16	(W/kg)
% Delta (Average - Reference Target)	1.2%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 513tr, 514tr, 518tr, 519tr, 520tr, 523tr, 524tr, 526tr, 527tr, 528tr, 529tr, 530tr, 533tr	


-New System Performance Check Targets- per WI-0396

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
1900 MHz	40.16	40.0 +/- 5%	1.40 +/- 5%

•Approvals- Submitted by: <u>Signed:</u>	Marge Kaunas Marge Kaunas	Date: 17-Mar-10
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 17-Mar-10
<u>Signed:</u>	Steven Hauswart	
Comments:		

FCD-1806, rev-1

-Historical Data-

-New System Performance Check Targets- per WI-0396

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %
2450 MHz	54.55	39.2 +/- 10%	1.80 +/- 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 17-Mar-10
Signed:	Marge Kawas	
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 17-Mar-10
<u>Signed:</u>	Steven Hausenst	
Comments:		

FCC ID: IHDP56LB1

END OF REPORT