

Portable Cellular Phone SAR Test Report

Motorola Mobile Devices

Tests Requested By: 9F, NO.9, SONGGAO RD

SINYI DISTRICT, TAIPEI CITY, 110, TAIWAN

Test Report #: 23114-1F **Date of Report:** 03-Jul-2009

Date of Test: 16-Jun-2009 ~ 18-Jun-2009

FCC ID #: IHDP56KP1 Generic Name: W403

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Test Laboratory: 11th Floor, Hibrand Living Hall,

215, Yanjae-Dong, Seocho-Gu, Seoul, 137-130,

South Korea Brian Lee RF Engineer

Report Author:

Brian Lee

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Procedures</u>:

Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 ARIB Std. T-56 (2002)

TESTING CERT #2518-03

Accreditation:

On the following products or types of products:

On the following products or types of products: Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low

Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of

Compliance:

(none)

©Motorola, Inc. 2009

This test report shall not be reproduced except in full, without written approval of the laboratory. The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report. Motorola encourages all feedback, both positive and negative, on this test report.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23114-1F

Table of Contents

1. Introduction	3
2. Description of the Device Under Test	3
2.1 Antenna description	3
2.2 Device description	3
3. Test Equipment Used	4
3.1 Dosimetric System	4
3.2 Additional Equipment	4
4. Electrical parameters of the tissue simulating liquid	5
5. System Accuracy Verification	6
6. Test Results	7
6.1 Head Adjacent Test Results	7
6.2 Body Worn Test Results	11
References	14
Appendix 1: SAR distribution comparison for the system accuracy verification	
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	
Appendix 3: SAR distribution plots for Body Worn Configuration	
Appendix 4: Probe Calibration Certificate	
Appendix 5: Measurement Uncertainty Budget	
Appendix 6: Dipole Characterization Certificate	

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

For ICNIRP (10g), the final SAR reading for this phone is 0.45 W/kg for head adjacent use and 0.24 W/kg for body worn use. For ANSI / IEEE C95.1 (1g), the final SAR reading for this phone is 0.87 W/kg for head adjacent use and 0.37 W/kg for body worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal Antenna			
Location	Bottom of the transceiver			
Dimensions	Width	18.92mm		
Dimensions	Length 31.88mm			
Configuration	FJA			

2.2 Device description

Serial number		004401020410136		
Mode(s) of Operation	GSM 850	GSM 1900	Bluetooth	
Modulation Mode(s)	GMSK	GMSK	GFSK	
Maximum Output Power Setting	32.50 dBm 29.50 dBm 4.0 dBm			
Duty Cycle	1:8	1:8	1:1	
Transmitting Frequency Rang(s)	824.2 - 848.8 MHz	1850.2 - 1909.8 MHz	2400.0 - 2483.5 MHz	
Production Unit or Identical Prototype (47 CFR §2908)	Identical Prototype			
Device Category	Portable			
RF Exposure Limits	Gen	eral Population / Unco	ntrolled	

Mode(s) of Operation	GPRS 850		GPRS 1900	
Modulation	GMSK		GMSK	
Maximum Output Power Setting	32.50 dBm	32.50 dBm 32.50 dBm		29.50 dBm
Duty Cycle	1:8	2:8	1:8	2:8
Transmitting Frequency Range(s)	824.2-848.8 MHz		z 1850.2 - 1909.8 MHz	

Note: Bolded entries indicate data mode of highest time-average power per band and data mode type.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE3	398	06-Nov-2009
E-Field Probe ES3DV3	3180	14-Jul-2009
S.A.M. Phantom used for 900MHz	TP-1155	
S.A.M. Phantom used for 1800/2450MHz	TP-1086	
Dipole Validation Kit, DV900V2	77	01-Apr-2010
Dipole Validation Kit, DV1800V2	280tr	01-Apr-2010
Dipole Validation Kit, DV2450V2	767	01-Apr-2010

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04630	Jan-21-2010
Power Meter E4419B	US39250623	Jan-21-2010
Power Sensor #1 - 8481A	US37296472	Jan-21-2010
Power Sensor #2 - 8481A	US39250623	Jan-21-2010
Network Analyzer HP8753ES	US39172714	Jan-22-2010
Dielectric Probe Kit HP85070C	US99936027	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1g/cm3$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

			Dielectric Parameters			
f (MHz)	Tissue type	Limits / Measured	$oldsymbol{arepsilon}_r$	σ (S/m)	Temp (°C)	
	Head	Measured, 16-Jun-2009	42.0	0.91	20.8	
835		Recommended Limits	41.5 ±5%	0.90 ±5%	18-25	
033	Body	Measured, 17-Jun-2009	54.4	1.01	20.8	
Dody		Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25	
Head 1880		Measured, 17-Jun-2009	38.9	1.46	21.1	
		Recommended Limits	40.0 ±5%	1.40 ±5%	18-25	
1000	Body	Measured, 18-Jun-2009	52.0	1.58	21.4	
Bouy		Recommended Limits	53.3 ±5%	1.52 ±5%	18-25	
2450	Body	Measured, 18-Jun-2009	49.2	2.00	21.3	
2430	Douy	Recommended Limits	52.7 ±10%	$1.95 \pm 5\%$	18-25	

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated in Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f (MHz)	Description	SAR (W/kg), 1gram	,		Ambient Temp (°C)	Tissue Temp (°C)
	Measured, 16-Jun-2009	11.30	41.3	0.97	21.1	21.5
900	Measured, 17-Jun-2009	11.25	41.4	0.97	21.5	21.4
	Recommended Limits	11.19	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, 17-Jun-2009	38.03	39.3	1.37	21.4	21.6
1800	Measured, 18-Jun-2009	38.78	39.3	1.38	21.7	21.4
	Recommended Limits	37.91	40.0 ±5%	1.4 ±5%	18-25	18-25
2450	Measured, 18-Jun-2009	55.50	36.8	1.89	21.8	23.1
2430	Recommended Limits	56.68	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ES3DV3		900	5.91	8 of 9
	SN3180	1810	5.15	8 of 9
		2450	4.47	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: SNN5804B - 910 mAH Battery SNN5813A - 910 mAH Battery

The inbox battery is the SNN5804B Battery. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other batteries listed above.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 6 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3180	900	5.91	8 of 9
ES3DV3	5113100	1810	5.15	8 of 9

	Left Head Cheek Position								
		Conducted Output			10g SAR value		1g SAK	? value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 128	32.58							
850MHz	Channel 190	32.45	21.2	-0.1	0.27	0.28	0.394	0.40	
	Channel 251	32.45							
	Channel 512	29.46							
1900MHz	Channel 661	29.49	21.6	0.00	0.181	0.18	0.304	0.30	
	Channel 810	29.43							

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position											
		Conducted Output			10g SA	AR value	1g SAR value					
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.58	21.0	0.12	0.337	0.34	0.64	0.64				
850MHz	Channel 190	32.45	21.1	0.1	0.44	0.44	0.804	0.80				
	Channel 251	32.45	20.9	0.01	0.326	0.33	0.608	0.61				
	Channel 512	29.46										
1900MHz	Channel 661	29.49	21.4	-0.06	0.169	0.17	0.318	0.32				
	Channel 810	29.43										

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

		Highest	Head Ch	neek Posi	ition with SNN	5813A Battery		
		Conducted Output		10g SAR va		R value	1g SAR	. value
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
0503411	Channel 128	32.58						
850MHz Right	Channel 190	32.45	20.8	-0.01	0.449	0.45	0.859	0.86
Right	Channel 251	32.45						
10003/11	Channel 512	29.46						
1900MHz Right	Channel 661	29.49	21.1	0.01	0.173	0.17	0.324	0.32
Right	Channel 810	29.43						

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Lef	ft Head 1	5° Tilt Position	n		
		Conducted Output	1 10g SAR value 1g SAR value		10g SAR value		? value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.58						
850MHz	Channel 190	32.45	21.1	0.03	0.0504	0.05	0.0692	0.07
	Channel 251	32.45						
	Channel 512	29.46						
1900MHz	Channel 661	29.49	21.5	-0.1	0.0492	0.05	0.0824	0.08
	Channel 810	29.43						

Table 4: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Right Head 15° Tilt Position											
		Conducted Output			10g SA	R value	1g SAR	? value				
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.58										
850MHz	Channel 190	32.45	20.8	0.01	0.0489	0.05	0.0661	0.07				
	Channel 251	32.45										
	Channel 512	29.46										
1900MHz	Channel 661	29.49	21.3	-0.05	0.0345	0.03	0.0564	0.06				
	Channel 810	29.43										

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

		Highest l	Head 15°	Tilt Positi	ion with SNN	5813A Battery	Highest Head 15° Tilt Position with SNN5813A Battery											
		Conducted Output			10g SAR value		1g SAR	? value										
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)										
0503411	Channel 128	32.58																
850MHz Left	Channel 190	32.45	20.7	0.03	0.0473	0.05	0.0656	0.07										
Leji	Channel 251	32.45																
10003/11	Channel 512	29.46																
1900MHz Left	Channel 661	29.49	21.5	-0.0483	0.0484	0.05	0.0805	0.08										
Leji	Channel 810	29.43																

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23114-1F

The below SAR results were corrected for the tissue permittivity that was measured above the nominal target. Corrections were performed using the data provided in FCC KDB 450824. No correction was made for conductivity, since the measured tissue value already represents a conservative result in the measured SAR.

			The not	ed Head	position scaled	SAR		
		Conducted Output	1		10g SAR value		? value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
850MHz	Channel 128	32.58						
Right	Channel 190	32.45	20.8	-0.01	0.45	0.45	0.86	0.87
Cheek	Channel 251	32.45						
850MHz	Channel 512	32.58						
Left	Channel 661	32.45	21.1	0.03	0.05	0.05	0.07	0.07
Tilted	Channel 810	32.45						

6.2 Body Worn Test Results

The SAR results shown in tables 7 through 12 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be 15.0cm ±0.5cm. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There are no Body-Worn Accessories available for this phone at the time of testing hence the device was tested per the supplement C testing guidelines for devices that do not have body worn accessories. A separation distance of 15mm between the device and the flat phantom was used for testing body-worn SAR. The device was tested with the front and back of the device facing the phantom.

In addition to accessory testing, the cellular phone was tested in data mode operations with the front and back of the phone facing the phantom. For these tests, a separation distance of 25mm between the device and the flat phantom was used. The device was tested with the front and back of the device facing the phantom.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E E. 11 D 1		900	5.93	8 of 9
E-Field Probe ES3DV3	SN3180	1810	4.76	8 of 9
		2450	4.15	8 of 9

		Body-	Worn; F	ront of F	Phone 15mm fr	om Phantom		
		Conducted Output			10g SA	R value	1g SAR value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.58						
850MHz	Channel 190	32.45	21.1	-0.09	0.117	0.12	0.17	0.17
	Channel 251	32.45						
	Channel 512	29.46						
1900MHz	Channel 661	29.49	21.7	0.01	0.0845	0.08	0.13	0.13
	Channel 810	29.43						

Table 7: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

		Body-	Worn; B	ack of P	hone 15mm fro	om Phantom		
		Conducted Output			10g SAR value		? value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.58						
850MHz	Channel 190	32.45	21.0	-0.05	0.237	0.24	0.35	0.35
	Channel 251	32.45						
	Channel 512	29.46						
1900MHz	Channel 661	29.49	21.5	0.02	0.179	0.18	0.304	0.30
	Channel 810	29.43						

Table 8: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Bod	ly-Worn; Highe	st (Front or B	ack) posi	ition 25n	ım away from	flat phantom wit	th GPRS Class 1	0 mode
		Conducted Output	10g SAR value 1g SAR value		10g SAR value		R value	
f (MHz)	Description	Power (dBm)	Temp (°C)	Drift (dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
0.503.411	Channel 128	32.62						
850MHz Back	Channel 190	32.49	20.9	-0.11	0.2	0.21	0.282	0.29
Buck	Channel 251	32.49						
10003/11	Channel 512	29.43						
1900MHz Back	Channel 661	29.46	21.4	-0.05	0.23	0.23	0.364	0.37
Buck	Channel 810	29.40						

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest Body-Worn with SNN5813A Battery											
f		Conducted Output	Temp	Drift (dB)	10g SA	R value	1g SAI	1g SAR value				
(MHz)	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128											
850MHz	Channel 190	32.49	20.8	-0.06	0.239	0.24	0.353	0.36				
Buck 15mm	Channel 251	32.49										
1900MHz	Channel 512	29.43										
	Channel 661		21.3	-0.02	0.223	0.22	0.352	0.35				
GPRS	Channel 810	29.40										

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Bluetooth Stand-alone with Noted highest Body-Worn configuration										
f			Temp	Drift	10g SA	AR value	1g SAI	R value			
(MHz)	Description		(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
2450MHz	Channel 0										
Back 15mm	Channel 39		21.3	0.26	0.00432	0.00	0.00934	0.01			
SNN5813A	Channel 78										
2450MHz	Channel 0										
Back 25mm SNN5804B	Channel 39		21.4	0.44	0.00176	0.00	0.00454	0.00			
	Channel 78										

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Highest Extrapolated Body-Worn SAR values summation with Bluetooth Stand-alone							
f (MHz)	Description	10g SAR value			1g SAR value		
		Measured (W/kg)	Bluetooth Measurement (W/Kg)	Extrapolate d (W/kg)	Measured (W/kg)	Bluetooth Measurement (W/Kg)	Extrapolated (W/kg)
850MHz	Body-Worn: Back of phone 15mm away from phantom with SNN5813A	0.24	0.00	0.24	0.36	0.01	0.37
1900MHz	Body-Worn: Back of phone 25mm away from phantom with SNN5804B	0.23	0.00	0.23	0.37	0.00	0.37

Table 12: SAR measurement results at the highest possible output power, calculated in a body-worn position against the ICNIRP and ANSI SAR Limit.

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23114-1F

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to $300~\mathrm{GHz}$)"

Appendix 1

SAR distribution comparison for the system accuracy verification

FCC ID: IHDP56KP1 20090616_900MHz_Good +1.0%

Date/Time: 6/16/2009 9:21:23 AM

Test Laboratory: Motorola 20090616_900MHz_Good +1.0%

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 077 PM1 Power = 200 mW

Sim.Temp@meas = 21.4C Sim.Temp@SPC = 21.5C Room Temp @ SPC = 21.1C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 41.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(5.91, 5.91, 5.91); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_ Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1155;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.15 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = 0.014 dB

Peak SAR (extrapolated) = 3.32 W/kg

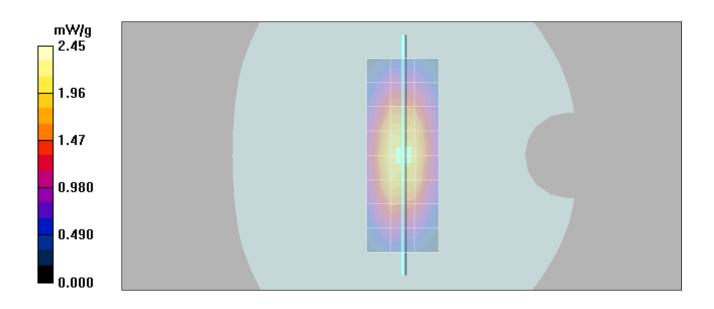
SAR(1 g) = 2.25 mW/g; SAR(10 g) = 1.45 mW/g

Maximum value of SAR (measured) = 2.44 mW/g

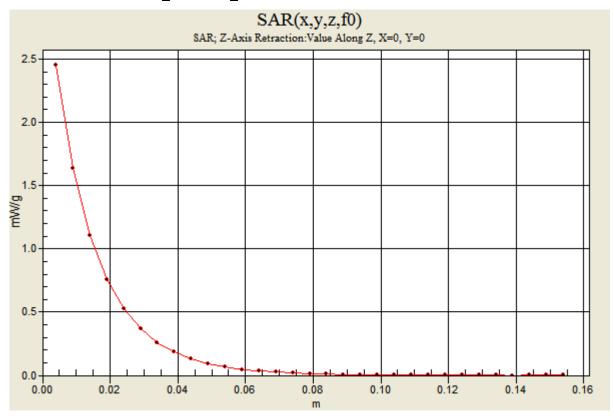
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = 0.014 dB


Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.27 mW/g; SAR(10 g) = 1.47 mW/g


Maximum value of SAR (measured) = 2.46 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.45 mW/g

FCC ID: IHDP56KP1 20090616_900MHz_Good +1.0%

FCC ID: IHDP56KP1 20090617_900MHz_Good +0.5%

Date/Time: 6/17/2009 9:28:27 AM

Test Laboratory: Motorola 20090617_900MHz_Good +0.5%

Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 077 PM1 Power = 200 mW

Sim. Temp@meas = 21.4C Sim. Temp@SPC = 21.4C Room Temp @ SPC = 21.5C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 41.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(5.91, 5.91, 5.91); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1155;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.12 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.0 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 3.30 W/kg

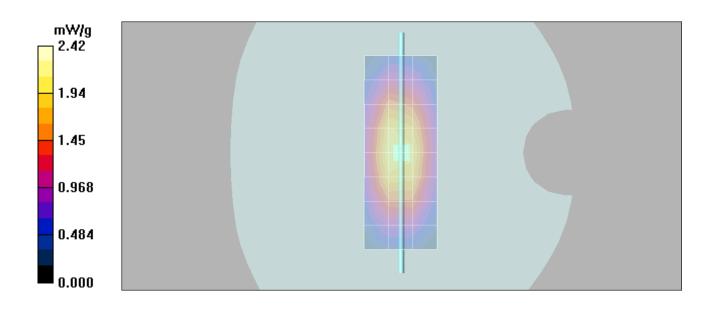
SAR(1 g) = 2.24 mW/g; SAR(10 g) = 1.44 mW/g

Maximum value of SAR (measured) = 2.43 mW/g

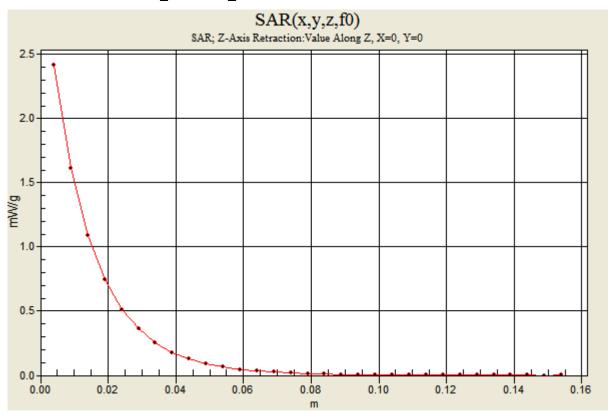
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 51.0 V/m; Power Drift = 0.009 dB


Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.26 mW/g; SAR(10 g) = 1.46 mW/g


Maximum value of SAR (measured) = 2.46 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.42 mW/g

FCC ID: IHDP56KP1 20090617_900MHz_Good +0.5%

FCC ID: IHDP56KP1 20090617_1800MHz_Good +0.2%

Date/Time: 6/17/2009 11:43:03 AM

Test Laboratory: Motorola 20090617_1800MHz_Good +0.2%

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 280tr PM1 Power = 200 mW

Sim. Temp@meas = 21.7C Sim. Temp@SPC = 21.6C Room Temp @ SPC = 21.4C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(5.15, 5.15, 5.15); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1086;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.49 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 13.8 W/kg

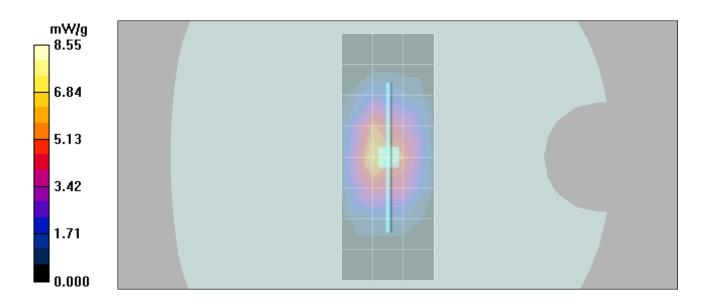
SAR(1 g) = 7.56 mW/g; SAR(10 g) = 3.98 mW/g

Maximum value of SAR (measured) = 8.47 mW/g

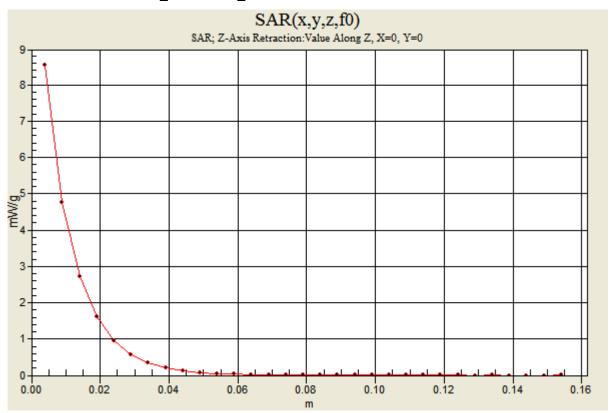
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 78.8 V/m; Power Drift = -0.006 dB


Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 7.65 mW/g; SAR(10 g) = 4.01 mW/g


Maximum value of SAR (measured) = 8.46 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.55 mW/g

FCC ID: IHDP56KP1 20090617_1800MHz_Good +0.2%

FCC ID: IHDP56KP1 20090618_1800MHz_Good +2.7%

Date/Time: 6/18/2009 10:58:12 AM

Test Laboratory: Motorola 20090618_1800MHz_Good +2.7%

Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 280tr PM1 Power = 200 mW

Sim. Temp@meas = 21.5C Sim. Temp@SPC = 21.4C Room Temp @ SPC = 21.7C

Communication System: CW - Dipole; Frequency: 1800 MHz; Channel Number: 8; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(5.15, 5.15, 5.15); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1086;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.96 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.8 V/m; Power Drift = 0.036 dB

Peak SAR (extrapolated) = 14.1 W/kg

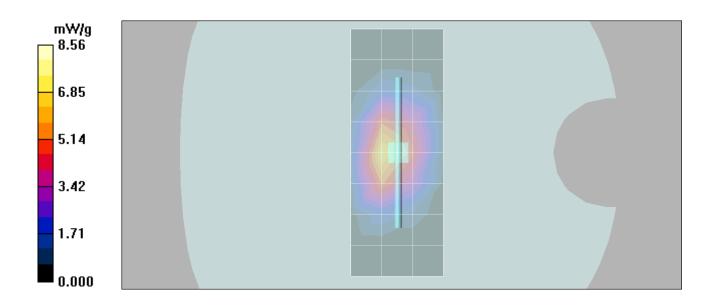
SAR(1 g) = 7.71 mW/g; SAR(10 g) = 4.04 mW/g

Maximum value of SAR (measured) = 8.60 mW/g

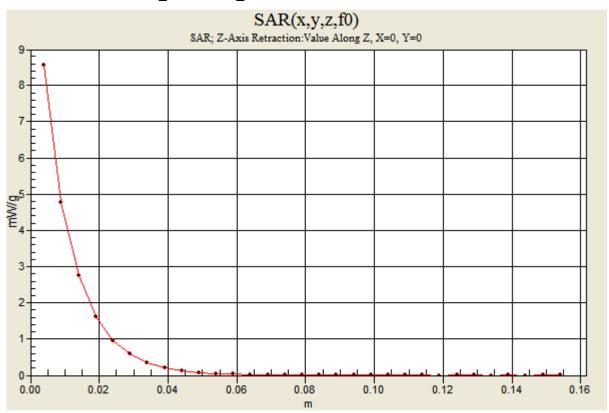
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.8 V/m; Power Drift = 0.036 dB


Peak SAR (extrapolated) = 14.4 W/kg

SAR(1 g) = 7.8 mW/g; SAR(10 g) = 4.06 mW/g


Maximum value of SAR (measured) = 8.72 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.56 mW/g

FCC ID: IHDP56KP1 20090618_1800MHz_Good +2.7%

FCC ID: IHDP56KP1 20090618 2450MHz Good -2.1%

Date/Time: 6/18/2009 1:52:22 PM

Test Laboratory: Motorola 20090618_2450MHz_Good -2.1%

Procedure Notes: 2450 MHz System Performance Check / Dipole Sn# 767 PM1 Power = 200 mW

Sim. Temp@meas = 24.0C Sim. Temp@SPC = 23.1C Room Temp @ SPC = 21.8C

Communication System: CW - Dipole; Frequency: 2450 MHz; Channel Number: 11; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.89 \text{ mho/m}$; $\varepsilon_r = 36.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(4.47, 4.47, 4.47); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1086;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.85 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.2 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 26.0 W/kg

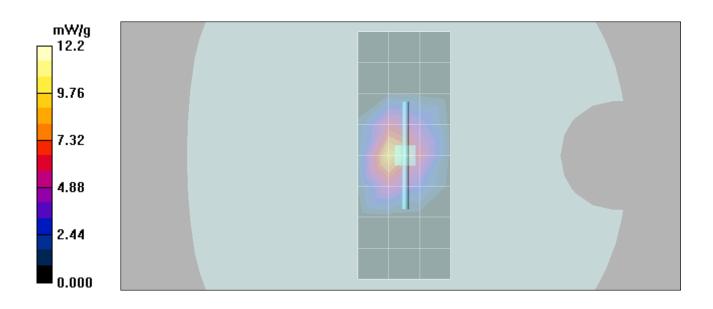
SAR(1 g) = 11 mW/g; SAR(10 g) = 4.83 mW/g

Maximum value of SAR (measured) = 12.1 mW/g

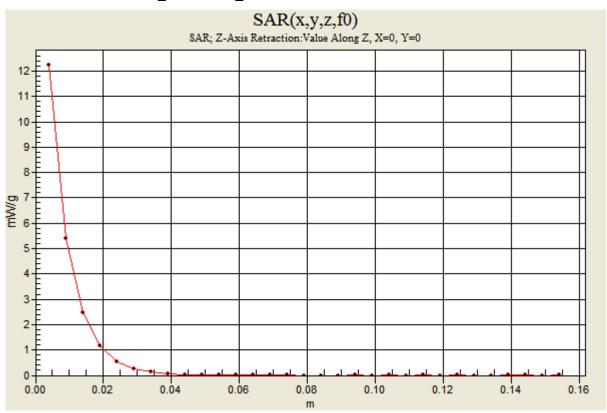
Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.2 V/m; Power Drift = 0.071 dB


Peak SAR (extrapolated) = 26.6 W/kg

SAR(1 g) = 11.2 mW/g; SAR(10 g) = 4.91 mW/g


Maximum value of SAR (measured) = 12.3 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31):

Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 12.2 mW/g

FCC ID: IHDP56KP1 20090618_2450MHz_Good -2.1%

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

FCC ID: IHDP56KP1 GSM850 Cheek

Date/Time: 6/16/2009 4:44:48 PM

Test Laboratory: Motorola GSM850 Cheek

004401020410136;

Procedure Notes: Pwr Step: 05(OTA) Antenna Position: Internal

Battery Model #: SNN5813A DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

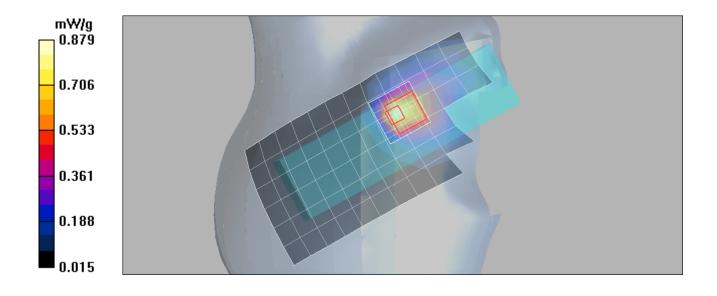
- Probe: ES3DV3 SN3180; ConvF(5.91, 5.91, 5.91); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1155;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.01 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 32.0 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 2.42 W/kg

SAR(1 g) = 0.859 mW/g; SAR(10 g) = 0.449 mW/g

Maximum value of SAR (measured) = 0.879 mW/g

FCC ID: IHDP56KP1 GSM850 Tilted

Date/Time: 6/16/2009 2:28:58 PM

Test Laboratory: Motorola GSM850 Tilted

004401020410136;

Procedure Notes: Pwr Step: 05(OTA) Antenna Position: Internal

Battery Model #: SNN5804B; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

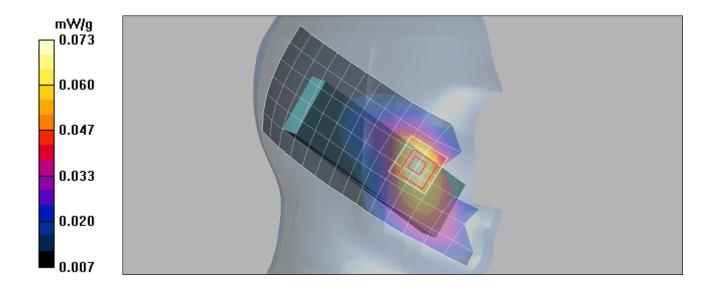
- Probe: ES3DV3 SN3180; ConvF(5.91, 5.91, 5.91); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1155;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.071 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.03 V/m; Power Drift = 0.033 dB

Peak SAR (extrapolated) = 0.089 W/kg

SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.050 mW/g

Maximum value of SAR (measured) = 0.073 mW/g

FCC ID: IHDP56KP1 GSM1900 Cheek

Date/Time: 6/17/2009 2:46:12 PM

Test Laboratory: Motorola GSM1900 Cheek

004401020410136;

Procedure Notes: Pwr Step: 00(OTA) Antenna Position: Internal

Battery Model #: SNN5813A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\varepsilon_r = 38.9$; $\rho = 38.9$; $\rho = 38.9$

 1000 kg/m^3

DASY4 Configuration:

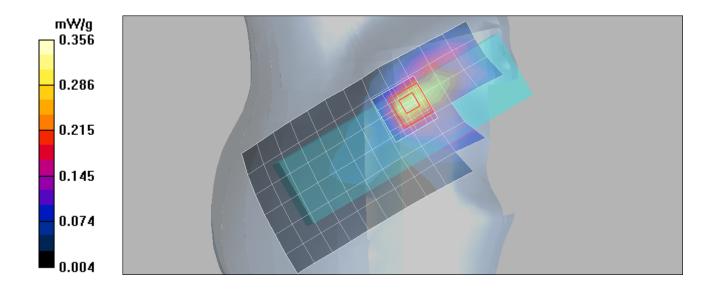
- Probe: ES3DV3 SN3180; ConvF(5.15, 5.15, 5.15); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_ Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1086;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Right Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.317 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.0 V/m; Power Drift = 0.013 dB

Peak SAR (extrapolated) = 0.611 W/kg

SAR(1 g) = 0.324 mW/g; SAR(10 g) = 0.173 mW/g

Maximum value of SAR (measured) = 0.356 mW/g

FCC ID: IHDP56KP1 GSM1900 Tilted

Date/Time: 6/17/2009 1:18:59 PM

Test Laboratory: Motorola GSM1900 Tilted

004401020410136;

Procedure Notes: Pwr Step: 00(OTA) Antenna Position: Internal

Battery Model #: SNN5804B; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 38.9$; $\rho = 1.46$ mho/m; $\epsilon_r = 38.9$; $\epsilon_r = 38.9$

 1000 kg/m^3

DASY4 Configuration:

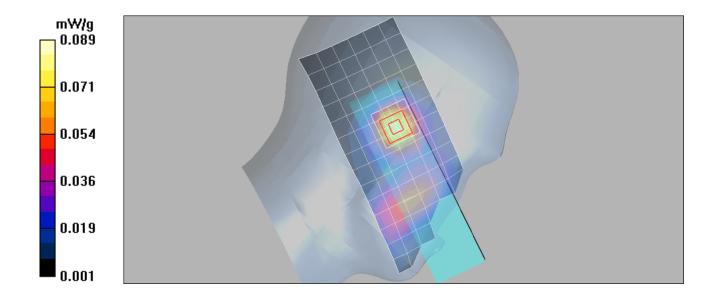
- Probe: ES3DV3 SN3180; ConvF(5.15, 5.15, 5.15); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_ Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1086;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Left Head Template/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.084 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.83 V/m; Power Drift = -0.096 dB

Peak SAR (extrapolated) = 0.129 W/kg

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.049 mW/g

Maximum value of SAR (measured) = 0.089 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

FCC ID: IHDP56KP1 GSM850 BodyWorn

Date/Time: 6/17/2009 11:23:33 AM

Test Laboratory: Motorola GSM850 BodyWorn

004401020410136;

Procedure Notes: Pwr Step: 05(OTA) Antenna Position: Internal

Battery Model #: SNN5813A; Device Position: Back of phone 15mm away from flat phantom

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 54.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

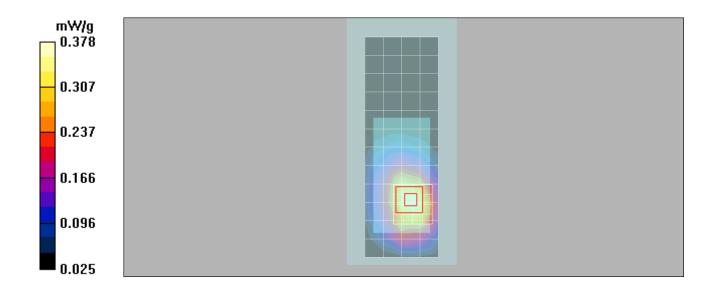
- Probe: ES3DV3 SN3180; ConvF(5.93, 5.93, 5.93); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_ Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.350 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = -0.059 dB

Peak SAR (extrapolated) = 0.499 W/kg

SAR(1 g) = 0.353 mW/g; SAR(10 g) = 0.239 mW/g

Maximum value of SAR (measured) = 0.378 mW/g

FCC ID: IHDP56KP1 GSM1900 BodyWorn

Date/Time: 6/18/2009 10:07:38 AM

Test Laboratory: Motorola GSM1900 BodyWorn

004401020410136;

Procedure Notes: Pwr Step: 00(OTA) Antenna Position: Internal

Battery Model #: SNN5804B: Device Position: Back of phone 25mm away from flat phantom(GPRS Class10 mode) Communication System: GPRS 1900 - Class 10; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:4 Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 52$; $\rho = 1000$ kg/m³

DASY4 Configuration:

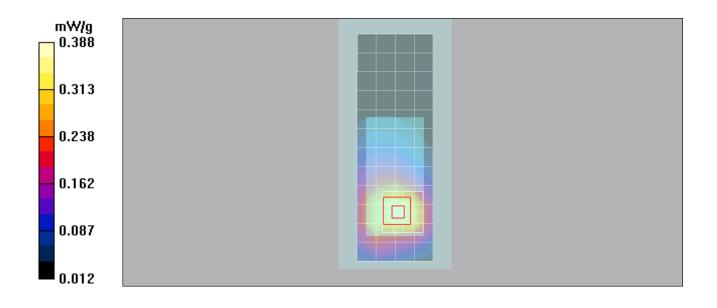
- Probe: ES3DV3 SN3180; ConvF(4.76, 4.76, 4.76); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.376 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.563 W/kg

SAR(1 g) = 0.364 mW/g; SAR(10 g) = 0.230 mW/g

Maximum value of SAR (measured) = 0.388 mW/g

FCC ID: IHDP56KP1 Bluetooth2450 BodyWorn

Date/Time: 6/18/2009 4:08:16 PM

Test Laboratory: Motorola Bluetooth2450 BodyWorn

004401020410136;

Procedure Notes: Pwr Step: CMU200 Antenna Position: Internal

Battery Model #: SNN5813A; Device Position: Back of phone 15mm away from flat phantom

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Body; Medium parameters used: f = 2450 MHz; $\sigma = 2$ mho/m; $\varepsilon_r = 49.2$; $\rho = 1000$ kg/m³

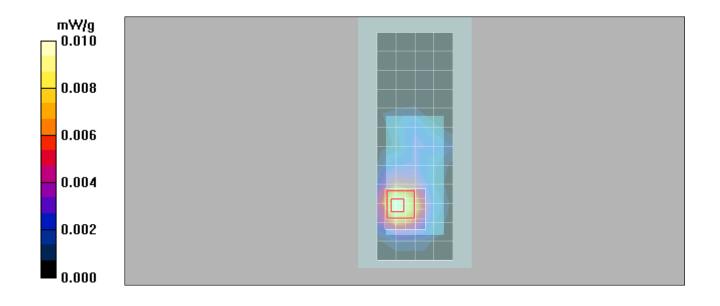
DASY4 Configuration:

- Probe: ES3DV3 SN3180; ConvF(4.15, 4.15, 4.15); Calibrated: 7/14/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn398; Calibrated: 11/6/2008
- Phantom: PCS-10_ Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.010 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.79 V/m; Power Drift = 0.261 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.00934 mW/g; SAR(10 g) = 0.00432 mW/g

Appendix 4 Probe Calibration Certificate

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Issued: July 14, 2008

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola Korea

Accreditation No.: SCS 108

Gertificate No: ES3-3180 Jul08

Object QACAL-01/v6 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes July:14,-2008 Calibration date: In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration **Primary Standards** ID# Cal Date (Certificate No.) Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 MY41498087 1-Apr-08 (No. 217-00788) Power sensor E4412A Jul-09 SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Reference 3 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Арг-09 Reference 20 dB Attenuator 1-Jul-08 (No. 217-00866) Jul-09 Reference 30 dB Attenuator SN: S5129 (30b) 2-Jan-08 (No. ES3-3013 Jan08) Jan-09 Reference Probe ES3DV2 SN: 3013 SN: 660 3-Sep-07 (No. DAE4-660_Sep07) Sep-08 DAE4 Scheduled Check ID# Check Date (in house) Secondary Standards US3642U01700 In house check: Oct-09 RF generator HP 8648C 4-Aug-99 (in house check Oct-07) US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Network Analyzer HP 8753E Name Function Signature Katja Poković Technical Manager Calibrated by: Niels Kuster Quality Manager Approved by:

Certificate No: ES3-3180_Jul08

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a
 flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3180_Jul08 Page 2 of 9

Probe ES3DV3

SN:3180

Manufactured:

March 25, 2008

Calibrated: July 14, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ES3-3180_Jul08

DASY - Parameters of Probe: ES3DV3 SN:3180

Sensitivity in Free Space ^A			Diode C	ompression ^E	3
NormX	1.18 ± 10.1%	μ V/(V/m) ²	DCP X	95 mV	
NormY	1.03 ± 10.1%	μV/(V/m)²	DCP Y	93 mV	
NormZ	1.01 ± 10.1%	μV/(V/m) ²	DCP Z	94 mV	

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.4	5.8
SAR _{be} [%]	With Correction Algorithm	0.6	0.3

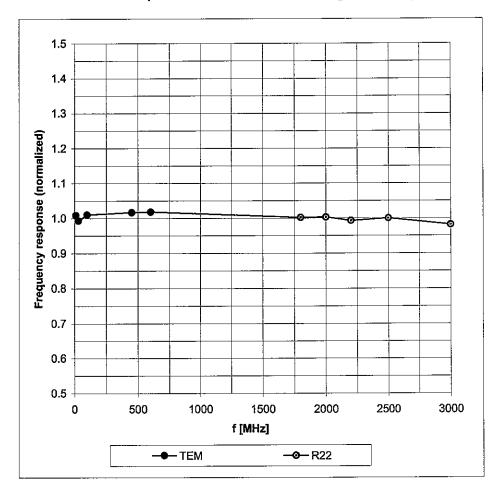
TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance			4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.1	5.3
SAR _{be} [%]	With Correction Algorithm	0.5	0.3

Sensor Offset

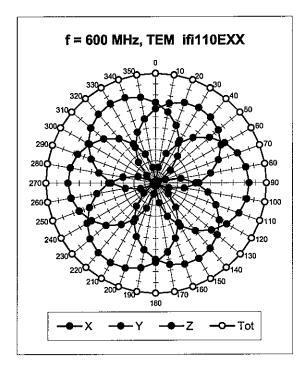
Probe Tip to Sensor Center

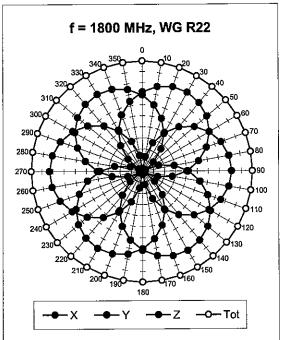
2.0 mm

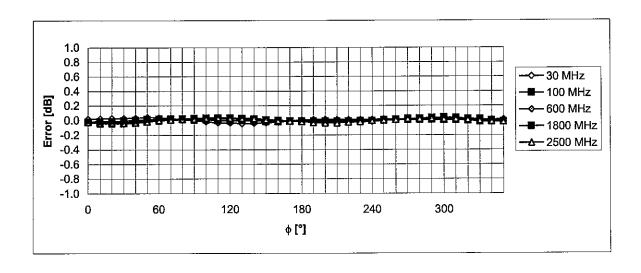

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

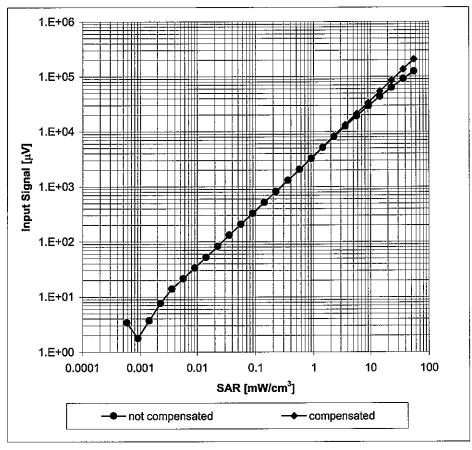

Frequency Response of E-Field

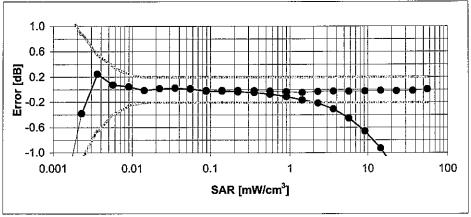

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

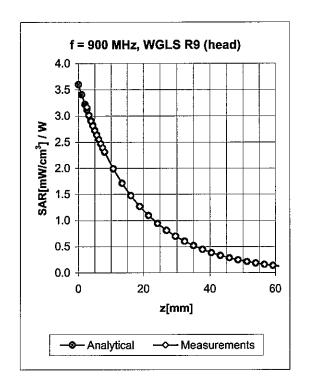
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

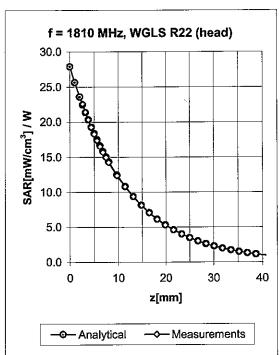



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3180_Jul08

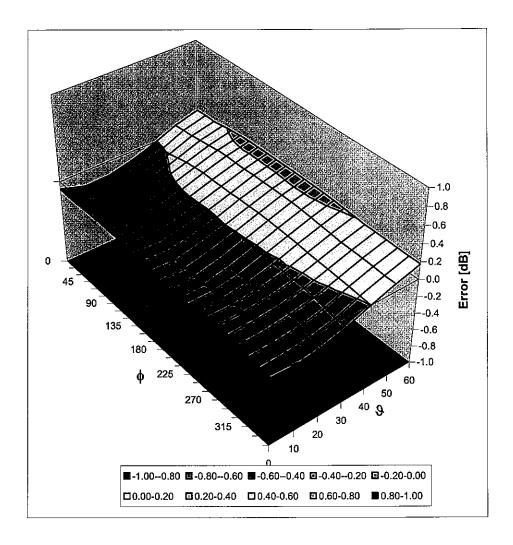
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.21	2.35	5.91 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.40	1.64	5.15 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.78	1.17	4.89 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.70	1.25	4.47 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.37	1.69	5.93 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.35	1.92	4.76 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.63	1.37	4.67 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.75	1.25	4.15 ± 11.0% (k=2)

Certificate No: ES3-3180_Jul08 Page 8 of 9

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5 Measurement Uncertainty Budget

MOTOROLA, INC. Portable Cellular Phone SAR Test Report Number: 23114-1F

				_			h =	i=	
				e =			cxf	$c \times g$	
a	b	С	d	f(d,k)	f	g	/e	/e	k
				, (u,n)			<u> </u>		
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(, 0/)	D:		(1 ~)	(10		.,	
Uncertainty Component	section	(± %)	Dist	Div.	(1 g)	g)	u_i	_ u ; _	.,
·				DIV.			(±%)	(±%)	V _i
Measurement System	F 0.4	5 0	N.	4.00	4	4	5 0	5.0	
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.			_	4 70			0.0	0.0	
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t	ГСЭ	4.4	В	4 70	4	4	0.0	0.0	
Phantom Max. SAR Evaluation (ext., int.,	E.6.3	1.4	R	1.73	1	1	8.0	8.0	∞
avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	L.0	0.4	11	1.70			2.0	2.0	30
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue	0.0.2	5.0	N	1.73	ı	I	2.9	2.9	ω
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞ ∞
Liquid Conductivity (target)	L.J.Z	5.0	11	1.73	0.04	0.40	1.0	1.4	~
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity			- ` `	0	5.0	5.10			-
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard									
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty									
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets

FCD-1806, rev-1

-Historical Data-

	900 MHz	
Reference Target:	10.9	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	15April08 - 26March09	
# of tests performed:	1,099	
Grand Average:	11.19	(W/kg)
% Delta (Average - Reference Target)	2.7%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?		
	Applies to Dipole SN's: 55, 69, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 1d034, 1d035	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
900 MHz	11.19	41.5 +/- 5%	0.97 +/- 5%	

-Approvals-		
Submitted by:	Marge Kaunas	Date: 1-Apr-09
Signed:	Marge Kauvas	
Comments:	Data file available upon reques	st.
Approved by:	Steve Hauswirth	Date: 1-Apr-09
<u>Signed:</u>	Steven Hauswart	
Comments:		

Certification of System Performance Check Targets

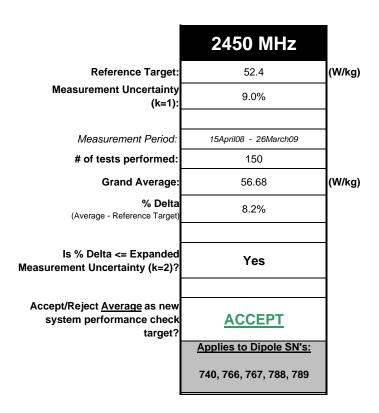
FCD-1806, rev-1

-Historical Data-

	1800 MHz	
	TOOU WILLS	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	15April08 - 26March09	
# of tests performed:	929	
Grand Average:	37.91	(W/kg)
% Delta (Average - Reference Target)	-1.3%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	-
Accept/Reject <u>Average</u> as new system performance check target?		
	Applies to Dipole SN's: 246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr, 277tr, 279tr, 280tr, 281tr, 283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)


Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
1800 MHz	37.91	40.0 +/- 5%	1.40 +/- 5%	

-Approvals-		
Submitted by:	Marge Kaunas	Date: 1-Apr-09
Signed:	Marge Kauvas	
Comments:	Data file available upon reques	st.
Approved by:	Steve Hauswirth	Date: 1-Apr-09
<u>Signed:</u>	Stenen Hauswart	
Comments:		

Certification of System Performance Check Targets

FCD-1806, rev-1

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity Target +/- %	Conductivity (S/m) Target +/- %	
2450 MHz	56.68	39.2 +/- 10%	1.80 +/- 5%	

Approvals-		
Submitted by:	Marge Kaunas	Date: 1-Apr-09
Signed:	Marge Kauvas	
Comments:	Data file available upon request.	
Approved by:	Steve Hauswirth	Date: 1-Apr-09
<u>Signed:</u>	Steven Hauswort	
Comments:		

END OF REPORT