

HAC Test Report for Near Field Emissions IHDP56JL1

Date of test: Jul-23-2008 to Sep-02-2008

Date of Report: Sep-26-2008

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45

Laboratory: Room: MW113

Libertyville, Illinois 60048

Test Responsible: Thomas Knipple

Statement of

Compliance:

Senior RF Engineer

Motorola declares under its sole responsibility that portable cellular telephone FCC IHDP56JL1 to which this declaration relates, complies with recommendations and guidelines FCC 47 CFR

§20.19. The measurements were performed to ensure compliance to the ANSI C63.19-2007. It also declares that the product was tested in accordance with the appropriate measurement

standards, guidelines and recommended practices. Any deviations from these standards, guidelines

and recommended practices are noted below:

(none)

Results Summary: M Category = M3

©Motorola, Inc. 2008

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. INTRODUCTION	3
2. DESCRIPTION OF THE DEVICE UNDER TEST	3
3. TEST EQUIPMENT USED	4
4. VALIDATION	5
5. PROBE MODULATION FACTOR	6
6. TEST RESULTS	8
7. MEASUREMENTS FOR CERTIFICATION OF 3G DEVICES	11
APPENDIX 1: DETAILS JUSTIFYING THE CONVERSION TO PEAK	12
A1.1 Procedure for PMF measurements	13
A1.2 0-Span Spectrum Plots for PMF measurements	14
APPENDIX 2: HAC DISTRIBUTION PLOTS FOR VALIDATION	16
APPENDIX 3: HAC DISTRIBUTION PLOTS FOR E-FIELD AND H-FIELD	17
APPENDIX 4: MOTOROLA UNCERTAINTY BUDGET	18
A4.1 Motorola Uncertainty Budget for RF HAC Testing	19
A4.2 Probe Rotation Contributions to Isotropy Error	20
APPENDIX 5: PICTURES OF TEST SETUP	21
APPENDIX 6: PROBE CALIBRATION CERTIFICATES	22
APPENDIX 7: DIPOLE CHARACTERIZATION CERTIFICATE	23

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed Hearing Aid Compatibility (HAC) measurements for the portable cellular phone (FCC ID IHDT56JL1). The portable cellular phone was tested in accordance with ANSI PC63.19-2007 standard. The test results presented herein clearly demonstrate compliance FCC 47 CFR § 20.19. This report demonstrates compliance for near field emissions only and not for the Telecoil performance compliance.

2. Description of the Device Under Test

Table 1: Information for the Device Under Test

Serial Number	80E30A01, 80E14AE9									
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	CDMA 800	CDMA 1900	Bluetooth	Wi-Fi 802.11b/g		
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	GFSK	GFSK		
Maximum Output Power Setting	33.25 dBm	33.25 dBm	30.25 dBm	29.00 dBm	25.00 dBm	25.00 dBm	8.0 dBm	18.0 dBm		
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1	1:1		
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2 - 1784.8 MHz	1850.2 - 1909.8 MHz	824.70 – 848.31 MHz	1851.25 – 1908.75 MHz	2400.0 - 2483.5 MHz	2412 - 2462 MHz		
Production Unit or Identical Prototype (47 CFR §2.908)		Identical Prototype								
Device Category		Portable								
RF Exposure Limits			G	eneral Population	on / Uncontrolle	ed				

Note: No Bluetooth profile exists in this phone that will allow a Bluetooth link while in a cellular call that passes audio to the earpiece. If the user had Bluetooth enabled and a link established, they could not be listening to the phone through the earpiece.

Note: Wi-Fi capability is included in this phone without measurements for hearing aid compatibility based on the interim ruling by the FCC according to paragraph 37 of the Federal Register, Volume 3, Number 89, as of May 7, 2008. Users shall be informed of this via the product user guide per the same FCC requirement.

3. Test Equipment Used

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the HAC measurements are taken within a shielded enclosure. The measurement uncertainty budget is given in Appendix 4. The list of calibrated equipment used for the measurements is shown below.

Table 2: Dosimetric System Equipment

Tubic 2. Dobinica ie bystem Equipment							
Description	Serial Number	Cal Due Date					
E-Field Probe ER3DV6R	2245	Nov-20-2008					
H-Field Probe H3DV6	6075	Nov-20-2008					
DAE3	440	Jan-28-2009					
DAE3	639	Nov-13-2008					
DAE3	437	Jul-11-2009					
835 MHz Dipole CD835V3	1076	Mar-11-2010					
1880 MHz Dipole CD1880V3	1034	Mar-11-2010					
1880 MHz Dipole CD1880V3	1059	Jul-16-2010					

Table 3: Additional Test Equipment

Description	Serial Number	Cal Due Date
Power Supply 6623A	US37360826	Nov-16-2008
Signal Generator E4438C	MY45090104	Sep-12-2009
Amplifier ZHL-42-SMA	1040	
3 db Attenuator 8491A	50577	Nov-14-2008
Directional Coupler 778D	18625	Nov-08-2008
Power Meter E4417A	MY45100481	Mar-07-2009
Power Sensor #1 – E9323A	MY44420676	Nov-06-2008
Power Sensor #2 - E9323A	MY44420704	Nov-06-2008
10 db attenuator 8491A	3929M50704	Dec-31-2008
Spectrum Analyzer E4403B	US39440480	Jan-29-2009

4. Validation

Validations of the DASY4 v4.7 test system were performed using the measurement equipment listed in Section 3.1. All validations occur in free space using the DASY4 test arch. Note that the 10 mm probe to dipole separation is measured from the top edge of the dipole to the calibration reference point of the probe. SPEAG uses the center point of the probe sensor(s) as the reference point when establishing targets for their dipoles. Therefore, because SPEAG's dipoles and targets are used, it is appropriate to measure the 10mm separation distance to the center of the sensors as they do. This reference point was used for validation only. Validations were performed at 835 MHz and/or 1880 MHz. These frequencies are within each operating band and are within 2 MHz of the mid-band frequency of the test device. The obtained results from the validations are displayed in the table below. The field contour plots are included in Appendix 2.

Validations were performed to verify that measured E-field and H-field values are within \pm 25% from the target reference values provided by the manufacturer (Ref: Appendix 7). Per Section 4.3.2.1 of the C63.19 standard, "Values within \pm 25% are acceptable, of which 12% is deviation and 13% is measurement uncertainty." Therefore, the E- and H-Field dipole verification results, shown in Table 4, are in accordance with the acceptable parameters defined by the standard.

Table 4: Dipole Measurement Summary

Date Measured	Dipole	F (MHz)	Protocol	Input Power (mW)	E-Field Results (V/m)	Target for Dipole (V/m)	% Deviation
Jul-22-2008	SN 1076	835	CW	100	162.3	159.0	2.1
Jul-22-2008	SN 1034	1880	CW	100	130.85	136.6	-4.2
Sep-02-2008	SN 1076	835	CW	100	162.5	159.0	2.2
Sep-02-2008	SN 1059	1880	CW	100	130.6	141.7	-7.8

Date Measured	Dipole	F (MHz)	Protocol	Input Power (mW)	H-Field Results (A/m)	Target for Dipole (A/m)	% Deviation
Jul-22-2008	SN 1076	835	CW	100	0.473	0.445	6.3
Jul-22-2008	SN 1034	1880	CW	100	0.469	0.466	0.6
Sep-02-2008	SN 1076	835	CW	100	0.453	0.445	1.8
Sep-02-2008	SN 1059	1880	CW	100	0.443	0.471	-5.9

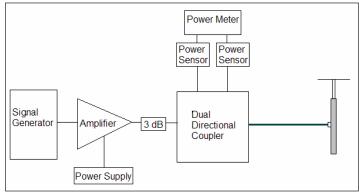


Figure 1: Setup for Validation

5. Probe Modulation Factor

After every probe calibration, the response of the probe to each applicable modulated signal (CDMA, GSM, etc) must be assessed at both 835 MHz and 1880 MHz. The response of the probe system to a CW field at the frequency(s) of interest is compared to its response to a modulated signal with equal peak amplitude. For each PMF assessment, a Signal Generator was used to replace the original CW signal with the desired modulated signal. The PMF results applicable to this test document are shown in Tables 5.

RF Field Probe Modulation Response was measured with the field probe and associated measurement equipment. The PMF was measured using a signal generator as follows:

- 1. Illuminate a dipole with a CW signal at the intended measured frequency.
- 2. Fix the probe at a set location relative to the dipole; typically located at the field reference point.
- 3. Record the reading of the probe measurement system of the CW signal.
- 4. Substitute a modulated signal of the same amplitude, using the same modulation as that used by the intended WD for the CW signal.
- 5. Record the reading of the probe measurement system of the modulated signal.
- 6 The ratio of the CW to modulated signal reading is the probe modulation factor.

Using dual directional coupler, the forward power and reverse power are measured and adjusted when connected to the dipole.

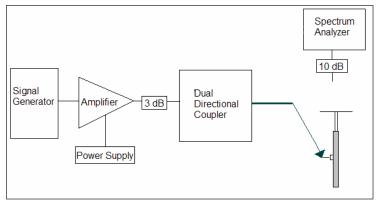


Figure 2a: Setup to Dipole

A spectrum analyzer is used to set the peak amplitude of the modulated signal equal to the amplitude of the CW signal. The procedure, used to ensure that the amplitude is the same, is shown in Appendix 1. The 0-span spectrum plots are also provided in Appendix 1.

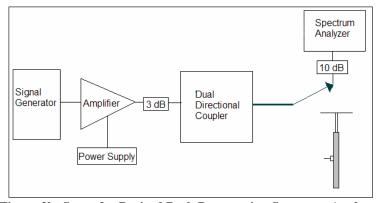


Figure 2b: Setup for Desired Peak Power using Spectrum Analyzer

When measuring PMF for a GSM signal, the power level which gives the field strength around M3 limit is used; therefore PMF was measured at the field strength around M3 limit.

When measuring PMF for CDMA, the signal is injected into the dipole. When peak power level produces the field strength less or around M3 limit, the peak power level is used. When peak power level produces the field strength much greater than M3 limit, the power level which gives the field strength around M3 limit is used.

Table 5: PMF Measurement Summary

Tuble 5.1 1vii Weasarement Summary								
f			-Field e SN 2245	H-Field Probe SN 6075				
(MHz)	Protocol	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor			
835	CW	284.6		0.8134				
833	GSM	99.7	2.85	0.3297	2.47			
1880	CW	85.53		0.2501				
1880	GSM	29.76	2.87	0.0949	2.64			

f (MHz)			-Field e SN 2245	H-Field Probe SN 6075		
	Protocol	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor	
	CW	198.7		0.8996		
835	CDMA, Full Rate Vocoder	192.0	1.03	0.8746	1.03	
•	CDMA, 1/8 Rate Vocoder	71.4	2.78	0.3544	2.54	
	CW	103.3		0.3411		
1880	CDMA, Full Rate Vocoder	96.42	1.07	0.3391	1.01	
	CDMA, 1/8 Rate Vocoder	35.77	2.89	0.1343	2.54	

f	£		-Field e SN 2245	H-Field Probe SN 6075		
(MHz)	Protocol	E-Field (V/m)	E-Field Modulation Factor	H-Field (A/m)	H-Field Modulation Factor	
835	CW	106.8		0.4990		
833	80% AM	66.37	1.61	0.3187	1.57	
1880	CW	145.7		0.4840		
	80% AM	90.41	1.61	0.3193	1.52	

6. Test Results

The phone was tested in normal configurations for the ear use. When applicable, configurations are tested with the antenna in its fully extended position. These test configurations are tested at the high, middle and low frequency channels of each applicable operating mode; for example, GSM, CDMA, and TDMA.

For CDMA operation, the signal was set up by creating and maintaining an over the air connection between the DUT and an Agilent 8960 Wireless Communications Test Set. The CDMA radio is available on CDMA 2000(1X) and IS-95. The test equipment was configured to use "all up bits" for RC1 / SO2 on J-STD-008 for CDMA 1900 and TSB-84 for CDMA 800 MHz.

For GSM operation, the WD's signal is the typical GMSK modulated signal used for GSM calls and connections in a cellular network. The signal was setup by creating and maintaining an over the air connection between the DUT and an Agilent 8960 Wireless Communications Test Set. This allows direct control over the DUT's cell band, transmit channel and power step.

The Cellular Phone model covered by this report has the following battery options:

Battery #1 - SNN5824A - 1520 mAH Battery

Battery #2 – SNN5841A – 2320 mAH Battery

The DASY4 v4.7 measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAGTM setup. The default settings for the grid spacing of the scan were set to 5 mm as shown in the Field plots included in Appendix 2 and 3. The 5 cm x 5 cm area measurement grid is centered on the acoustic output of the device. The Test Arch provided by SPEAG is used to position the DUT. The pictures of the setup are included in Appendix 5. The WD reference plane is parallel to the device and contains the highest point on its contour in the area of the phone that normally rests against the user's ear. The measurement plane contains the center point of the probe sensor(s). The device is positioned such that the WD reference plane is located 15 mm from, and parallel to, the measurement plane. This is in accordance with section 4.4 of the standard, which states that "The WD reference plane is a plane parallel with the front "face" of the WD and containing the highest point on its contour in the area of the phone that normally rests against the user's ear."

The HAC Rating results for E-Field and H-field are shown in Tables 6 though 11. Also shown are the measured conducted output powers, the measured drifts, excluded areas, and the peak fields. PMF measurements are taken from Section 5. The worst-case test conditions are indicated with **bold numbers** in the tables and are detailed in Appendix 3: HAC distribution plots for E-Field and H-Field.

Drift was measured using the typical DASY4 v4.7 measurement routines. The field is measured at the reference location (center of the ear piece) at the beginning of the test. Then after completion of the E or H field measurement, the probe returns to the same reference location and takes another measurement. The drift is the delta between these two values and is included in the test report scans.

Per SPEAG's recommendation, the phone plots in Appendix 3 use the standard GSM transmitter ratio 1:8 and standard CDMA transmitter ratio 1:1 as "Duty Cycle." Per SPEAG's recommendation, in order to account for probe modulation response, PMF is applied during the SEMCAD (post-processing) portion. PMF also appears in the phone plots in Appendix 3.

GSM 850 Emissions Limits				
Rating E-Field				
М3	149.6 – 266.1 V/m			
M4	< 149.6 V/m			

GSM 1900 Emissions Limits					
Rating E-Field					
М3	47.3 – 84.1 V/m				
M4	< 47.3 V/m				

Table 6: HAC E-Field measurement results for the portable cellular telephone at highest possible output power.

Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
GSM 850 Internal	128	33.15		-0.068	8,9	151.1	M3	
	Internal	190	33.20	2.85	0.037	8,9	147.7	M4
G5W 650	internal	251	33.12		0.057	8,9	156.1	M3
		with Battery 2			0.020	8,9	165.4	M3
	512	29.15		0.022	6,8,9	70.9	M3	
GSM 1900	Internal	661	29.17	2.87	-0.059	6,8,9	78.8	M3
GSIVI 1900	Internal	810	28.93	2.87	0.098	6,8,9	83.1	M3
		with I	Battery 2		-0.042	6,8,9	82.3	M3

CDMA 800 Emissions Limits						
Rating	Rating E-Field					
М3	199.5 - 354.8 V/m					
M4	< 199.5 V/m					

CDMA 1900 Emissions Limits						
Rating	Rating E-Field					
М3	63.1 – 112.2 V/m					
M4	< 63.1 V/m					

Table 7: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (Full Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
		1013		-0.040	8,9	75.6	M4
CDMA 800	Internal	384	1.03	-0.038	8,9	83.1	M4
CDMA 600		777		-0.030	6,8,9	76.4	M4
		with Battery 2		-0.103	8,9	79.5	M4
		25	1.07	0.030	6,8,9	58.1	M4
CDMA 1900	Internal	600		-0.018	6,8,9	60.6	M4
	Internal	1175	1.07	-0.030	6,8,9	54.2	M4
		with Battery 2		-0.085	6,9	57.3	M4

Table 8: HAC E-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (V/m)	Rating
		1013		-0.160	8,9	71.3	M4
CDMA 800	Internal	384	2.78	0.064	2,3	93.5	M4
CDMA 800	mtemai	777		-0.120	8,9	73.8	M4
		with Battery 2		0.115	8,9	80.2	M4
		25		0.070	6,8,9	57.6	M4
CDMA 1900	T . 1	600	2.89	-0.045	6,8,9	59.2	M4
	Internal	1175	2.89	0.040	6,8,9	52.9	M4
		with Battery 2		-0.079	6,9	55.7	M4

GSM 850 Emissions Limits				
Rating	H-Field			
М3	0.45 - 0.80 A/m			
M4	< 0.45 A/m			

GSM 1900 Emissions Limits							
Rating	Rating H-Field						
М3	0.14 – 0.25 A/m						
M4	< 0.14 A/m						

Table 9: HAC H-Field measurement results for the portable cellular telephone at highest possible output power.

Frequency Band (MHz)	Antenna position	Channel Setting	Conducted Output Power (dBm)	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
		128	33.15		-0.131	1,4,7	0.193	M4
GSM 850	Internal	190	33.20	2.47	-0.064	1,4,7	0.190	M4
G5W 650		251	33.12		0.016	1,4,7	0.238	M4
		with Battery 2			0.101	1,4,7	0.244	M4
		512	29.15		-0.117	4,7,8	0.202	M3
GSM 1900	Internal	661	29.17	2.64	-0.005	4,7,8	0.229	M3
G3W 1900	Internal	810	28.93	2.04	-0.021	4,7,8	0.232	M3
		with I	Battery 2		-0.015	4,7,8	0.227	M3

CDMA 800 Emissions Limits				
Rating	H-Field			
М3	0.60 - 1.07 A/m			
M4	< 0.60 A/m			

CDMA 1900 Emissions Limits					
Rating	H-Field				
M3	0.19 – 0.34 A/m				
M4	< 0.19 A/m				

Table 10: HAC H-Field measurement results for the portable cellular telephone at highest possible output power (Full Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
		1013		-0.076	1,4,7	0.125	M4
CDMA 800	Internal	384	1.03	-0.052	1,4,7	0.139	M4
CDMA 800		777		-0.023	4,7,8	0.136	M4
		with Battery 2		0.035	1,4,7	0.122	M4
		25		-0.218	4,7,8	0.150	M4
CDMA 1900	Internal	600	1.01	0.015	4,7,8	0.155	M4
	Internal	1175	1.01	0.038	4,7,8	0.141	M4
		with Battery 2		0.067	1,4,7	0.160	M4

Table 11: HAC H-Field measurement results for the portable cellular telephone at highest possible output power (1/8 Rate).

Frequency Band (MHz)	Antenna position	Channel Setting	Measured PMF	Drift (dB)	Excluded Cells	Peak Field (A/m)	Rating
		1013		0.042	1,4,7	0.091	M4
CDMA 800	Internal	384	2.54	-0.0.14	1,4,7	0.110	M4
CDMA 800	mternar	777		-0.063	1,4,7	0.115	M4
		with Battery 2		0.032	1,4,7	0.102	M4
	25 600		-0.067	4,7,8	0.137	M4	
CDMA 1900		600	2.54	-0.239	4,7,8	0.143	M4
	internal	1175	2.34	-0.033	4,7,8	0.128	M4
		with Battery 2		0.039	1,4,7	0.144	M4

7. Measurements for Certification of 3G Devices

For CDMA devices, RC1 and RC3 CDMA modes are considered in S055 service option. In addition, RC1 and RC3 modes are considered in S02 service option. The conducted power measurements for each mode are shown in the table below.

Conducted power (dBm) for CDMA modes									
	Channel	R	RC1		C3	RC3 (FCH + SCH)			
	Chamiei	SO2	SO55	SO2	SO55	RC3 (FCH + 3CH)			
CDMA	1013	24.86	24.88	24.91	24.86	D. M. tanala desirana dha massimum			
800	384	24.90	24.95	24.97	25.01	Per Motorola designs, the maximum			
800	777	25.02	25.01	24.90	24.95	power, when in a mode that allows supplemental channels, will always be less			
CDMA	25	24.94	24.97	24.92	24.95	than the RC3/RC1 maximum conducted			
1900	600	25.04	25.02	25.03	25.02	power limit.			
1900	1175	25.08	25.03	24.94	25.02	power mint.			

Appendix 1

Details justifying the conversion to peak

A1.1 Procedure for PMF measurements

- 1. Setup the HAC validation rack as you would for a normal CW HAC validation with forward power = 100 mW
- 2. Setup the dipole and phantom as you would for a normal CW HAC validation.
- **3.** Open the "HAC Probe Mod Factor" template and verify the following parameters:

Medium = "Air";

Communication System = "HAC – Dipole";

Ensure the proper probe & DAE are installed and laser aligned

- **4. MEASURE CW:** Using the original CW signal, run the jobs in the "CW Measurement" procedure.
- 5. Do <u>not</u> turn off the signal generator power
- **6. Setting the CW Reference Level on the Spectrum Analyzer:** To set the Reference level on the Spectrum Analyzer, remove the Validation Rack's Main Cable from the dipole and connect to the Spectrum Analyzer INPUT using a 10 dB attenuator and an adapter.
- 7. Set-Up the Spectrum Analyzer for the following Settings: Frequency: Freq. being tested (EX: 835/1880)

Frequency: Freq. being tested (Expan: Zero Span

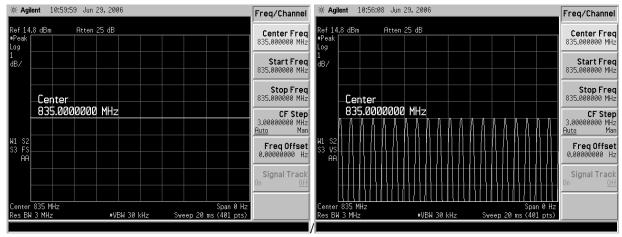
Res BW: iDEN – 100 kHz; GSM – 300 kHz; CDMA – 3 MHz; WCDMA – 5 MHz;

Video BW: iDEN – 300 kHz; GSM – 1MHz; CDMA and WCDMA – 30 kHz**;

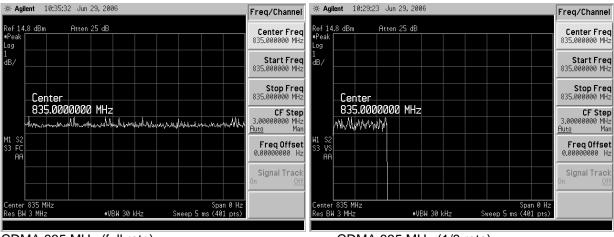
Sweep Time: 20 ms; 120 ms for iDEN

Scale: 1dB

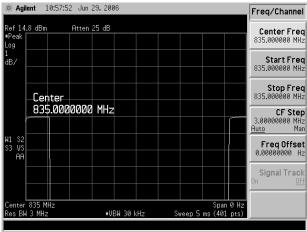
Detector: PEAK / Manual


8. Adjust REF level until the CW signal is aligned with the Center Line (approx. 15dB). NOTE: After this point, the Reference Line must remain fixed. Do not change it.

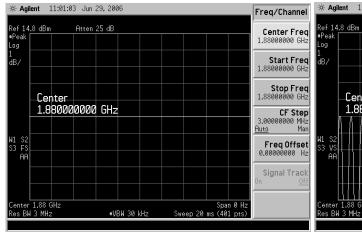
9. MEASURE THE MODULATED SIGNAL(S):

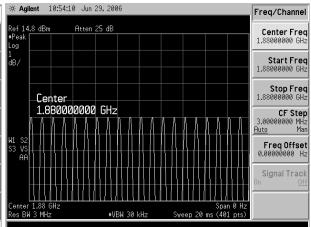

- 9.1. Change the signal generator to the desired modulation.
- 9.2. Set the Spectrum Analyzer Sweep Time to 20ms.
- 9.3. With the Main cable still connected to the Spectrum Analyzer, adjust the amplitude of the power on the signal generator so that the PEAK of the modulated signal is at the CW Reference Line:
 - 9.3.1 On the Spectrum Analyzer, press the [View Trace] button and then select (Max Hold), this will show only the Peak output.
 - 9.3.2 Press (Clear Write) and then (Max Hold) each time an amplitude adjustment is made.
- 9.4. Allow the Max Hold line to stabilize. Then check that the highest peak of the Max Hold line corresponds with the CW Reference Line (without going over). If not correct, repeat section 6.
- 9.5. Remove the validation main cable from the spectrum analyzer and re-connect it to the Dipole.
- **10.** Repeat 9 until all remaining modulation(S) have been completed.

^{**} The use of 30 kHz VBW is validated. The power measurements are verified using an average power meter.

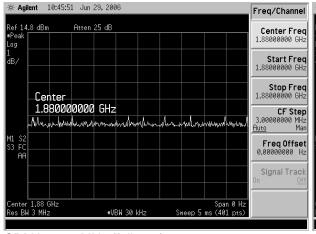

A1.2 0-Span Spectrum Plots for PMF measurements

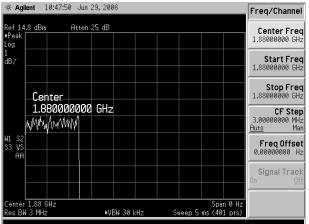
CW 835 MHz 80% AM 835 MHz



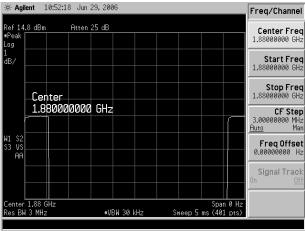

CDMA 835 MHz (full rate)

CDMA 835 MHz (1/8 rate)


GSM 835 MHz



CW 1880 MHz


80% AM 1880 MHz

CDMA 1880 MHz (full rate)

CDMA 1880 MHz (1/8 rate)

GSM 1880 MHz

Appendix 2

HAC distribution plots for Validation

Date/Time: 7/22/2008 7:42:59 AM

Test Laboratory: Motorola - 072208, E - 835 CW + 2.1% GOOD

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1076; FCC ID: IHDP56JL1

Procedure Notes: 835 MHz HAC Validation; Dipole Sn# 1076; Input Power = 100 mW

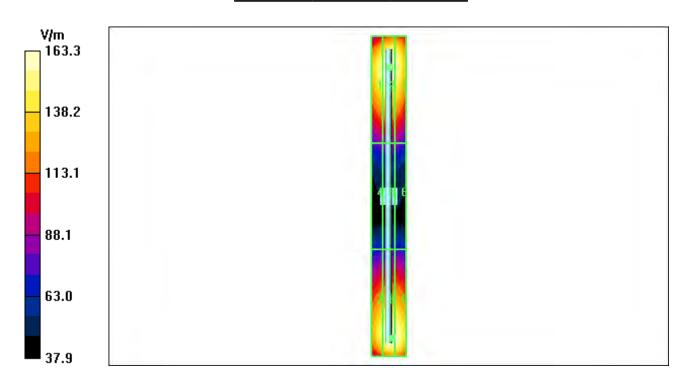
Communication System: CW - HAC; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn440; Calibrated: 1/28/2008
- Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x361x1):


Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm; Reference Value = 102.4 V/m; Power Drift = 0.100 dB Maximum value of Total (interpolated) = 163.3 V/m

Average value of Total (interpolated) = (163.3 + 161.3) / 2 = 162.3 V/m

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
157.5 M4	163.3 M4	159.5 M4
Grid 4	Grid 5	Grid 6
84.6 M4	87.1 M4	85.3 M4
Grid 7	Grid 8	Grid 9
151.4 M4	161.3 M4	160.4 M4

Date/Time: 7/22/2008 8:28:51 AM

Test Laboratory: Motorola - 072208, E - 1880 CW - 4.2% GOOD

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034; FCC ID: IHDP56JL1

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1034; Input Power = 100 mW

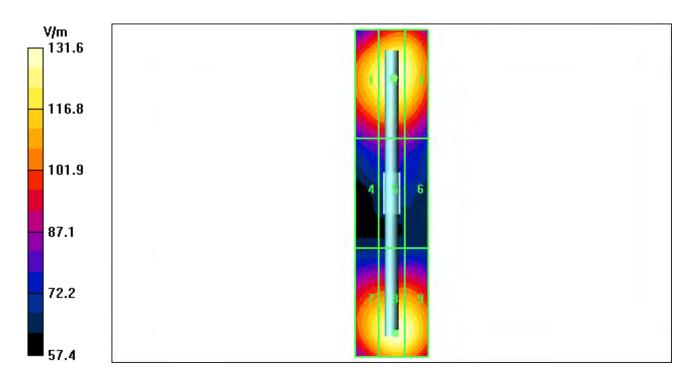
Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn440; Calibrated: 1/28/2008
- Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x181x1):


Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm; Reference Value = 146.8 V/m; Power Drift = 0.019 dB Maximum value of Total (interpolated) = 131.6 V/m

Average value of Total (interpolated) = (131.6 + 130.1) / 2 = 130.85 V/m

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
125.3 M2	130.1 M2	128.0 M2
Grid 4	Grid 5	Grid 6
87.7 M3	90.5 M3	87.5 M3
Grid 7	Grid 8	Grid 9
123.4 M2	131.6 M2	129.9 M2

Date/Time: 9/2/2008 6:42:35 AM

Test Laboratory: Motorola - 090208, E - 835 CW +2.2% GOOD

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1076; FCC ID: IHDP56JL1

Procedure Notes: 835 MHz HAC Validation; Dipole Sn# 1076; Input Power = 100 mW

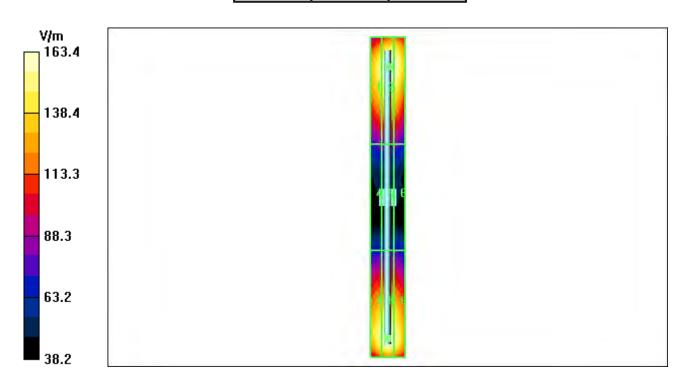
Communication System: CW - HAC; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn440; Calibrated: 1/28/2008
- Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x361x1):


Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 104.0 V/m; Power Drift = -0.125 dB Maximum value of Total (interpolated) = 163.4 V/m

Average value of Total (interpolated) = (163.4 + 161.6) / 2 = 162.5 V/m

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
153.8 M4	163.4 M4	160.9 M4
Grid 4	Grid 5	Grid 6
82.1 M4	85.4 M4	83.7 M4
Grid 7	Grid 8	Grid 9
156.5 M4	161.6 M4	158.0 M4

Date/Time: 9/2/2008 7:31:48 AM

Test Laboratory: Motorola - 090208, E - 1880 CW -7.8% GOOD

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059; FCC ID: IHDP56JL1

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1059; Input Power = 100 mW

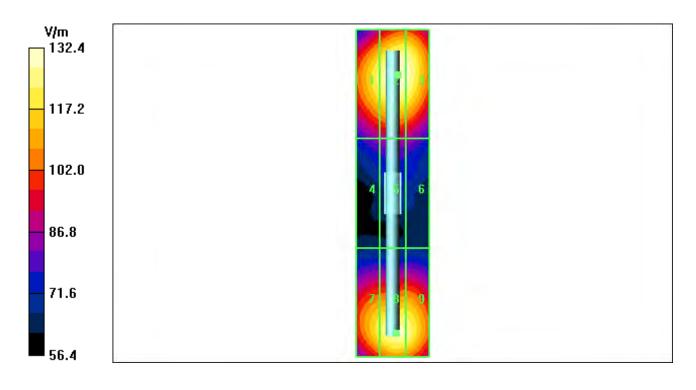
Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

- Probe: ER3DV6R SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007
- Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)
- Electronics: DAE3 Sn440; Calibrated: 1/28/2008
- Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x181x1):


Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 144.4 V/m; Power Drift = 0.009 dB Maximum value of Total (interpolated) = 132.4 V/m

Average value of Total (interpolated) = (132.4 + 128.8) / 2 = 130.6 V/m

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
125.2 M2	132.4 M2	131.0 M2
Grid 4	Grid 5	Grid 6
86.6 M3	90.1 M3	87.6 M3
Grid 7	Grid 8	Grid 9
121.6 M2	128.8 M2	127.3 M2

Date/Time: 7/22/2008 8:02:33 AM

Test Laboratory: Motorola - 072208, H - 835 CW + 6.3% GOOD

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1076; FCC ID: IHDP56JL1

Procedure Notes: 835 MHz HAC Validation; Dipole Sn# 1076; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

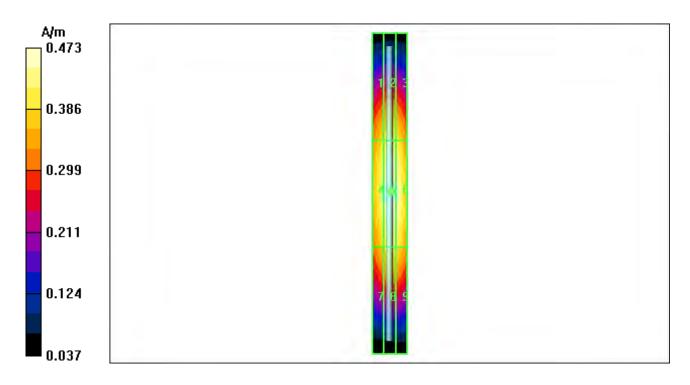
• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

• Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2007

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184


H Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm; Reference Value = 0.498 A/m; Power Drift = -0.002 dB Maximum value of Total (interpolated) = 0.473 A/m

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.391 M4	0.420 M4	0.405 M4
Grid 4	Grid 5	Grid 6
0.437 M4	0.473 M4	0.457 M4
Grid 7	Grid 8	Grid 9
0.382 M4	0.415 M4	0.403 M4

Date/Time: 7/22/2008 8:16:38 AM

Test Laboratory: Motorola - 072208, H - 1880 CW + 0.8% GOOD

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034; FCC ID: IHDP56JL1

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1034; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

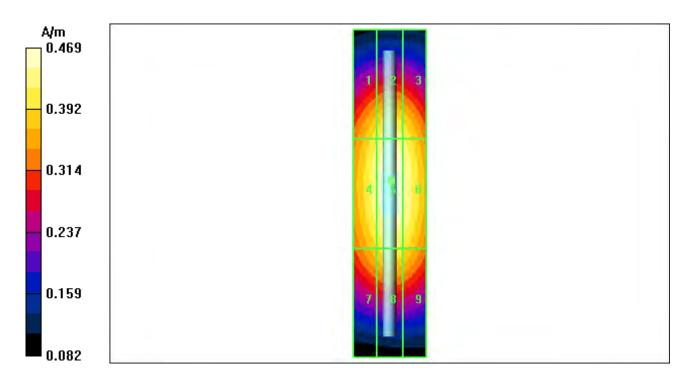
• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

• Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2007

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184


H Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm; Reference Value = 0.494 A/m; Power Drift = 0.013 dB Maximum value of Total (interpolated) = 0.469 A/m

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.413 M2	0.440 M2	0.422 M2
Grid 4	Grid 5	Grid 6
0.441 M2	0.469 M2	0.452 M2
Grid 7	Grid 8	Grid 9
0.389 M2	0.417 M2	0.402 M2

Date/Time: 9/2/2008 7:01:50 AM

Test Laboratory: Motorola - 090208, H - 835 CW +1.9% GOOD

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1076; FCC ID: IHDP56JL1

Procedure Notes: 835 MHz HAC Validation; Dipole Sn# 1076; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

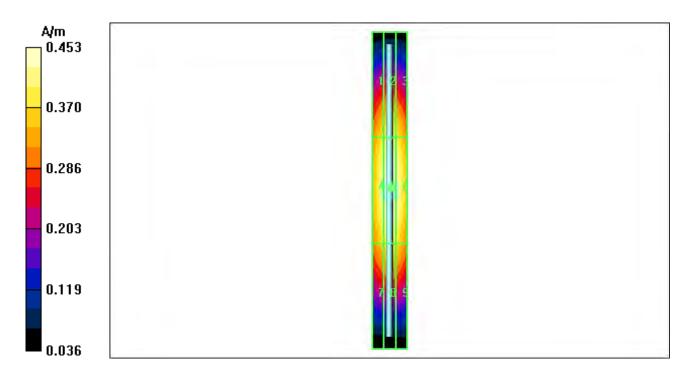
• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

• Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn437; Calibrated: 7/11/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


H Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 0.477 A/m; Power Drift = 0.050 dB Maximum value of Total (interpolated) = 0.453 A/m

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.384 M4	0.408 M4	0.394 M4
Grid 4	Grid 5	Grid 6
0.427 M4	0.453 M4	0.435 M4
Grid 7	Grid 8	Grid 9
0.370 M4	0.395 M4	0.378 M4

Date/Time: 9/2/2008 7:14:46 AM

Test Laboratory: Motorola - 090208, H - 1880 CW -6.0% GOOD

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059; FCC ID: IHDP56JL1

Procedure Notes: 1880 MHz HAC Validation; Dipole Sn# 1059; Input Power = 100 mW

Communication System: CW - HAC; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

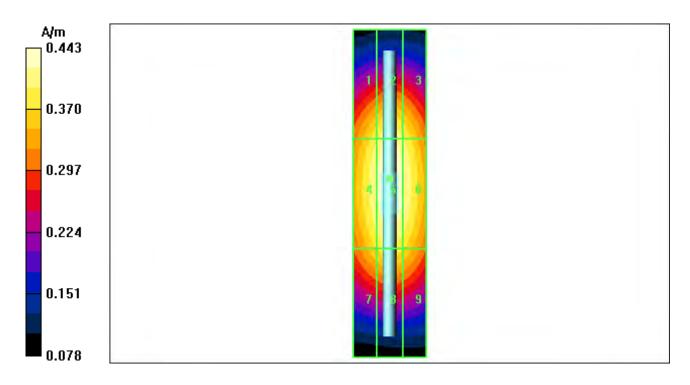
• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

• Sensor-Surface: 0mm (Fix Surface)Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn437; Calibrated: 7/11/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


H Scan - Probe center 10mm above Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm; Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 0.466 A/m; Power Drift = 0.041 dB Maximum value of Total (interpolated) = 0.443 A/m

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.393 M2	0.418 M2	0.398 M2
Grid 4	Grid 5	Grid 6
0.419 M2	0.443 M2	0.423 M2
Grid 7	Grid 8	Grid 9
0.372 M2	0.391 M2	0.374 M2

Appendix 3

HAC distribution plots for E-Field and H-Field

Date/Time: 9/2/2008 8:38:07 AM

Test Laboratory: Motorola - GSM 850 E-Field

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: N/A Battery Model #: SNN5841A; PMF Value: 2.85; Positioner: SPEAG Clamp

Communication System: GSM 850; Frequency: 848.8 MHz; Channel Number: 251; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m³

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

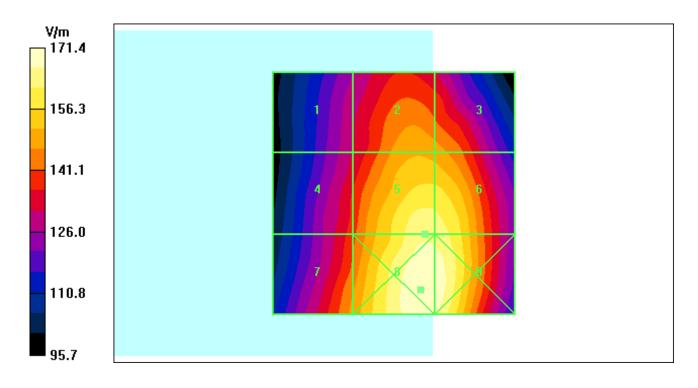
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 165.4 V/m; Probe Modulation Factor = 2.85

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 66.9 V/m; Power Drift = 0.020 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
131.6 M4	150.7 M3	149.1 M4
Grid 4	Grid 5	Grid 6
120 5 N/A	165 4 M2	164 0 M2
139.5 M4	105.4 MIS	104.0 MIS
		Grid 9

Date/Time: 7/23/2008 2:12:03 PM

Test Laboratory: Motorola - GSM 1900 E-Field

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 00; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 2.87; Positioner: SPEAG Clamp

Communication System: GSM 1900; Frequency: 1909.8 MHz; Channel Number: 810; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

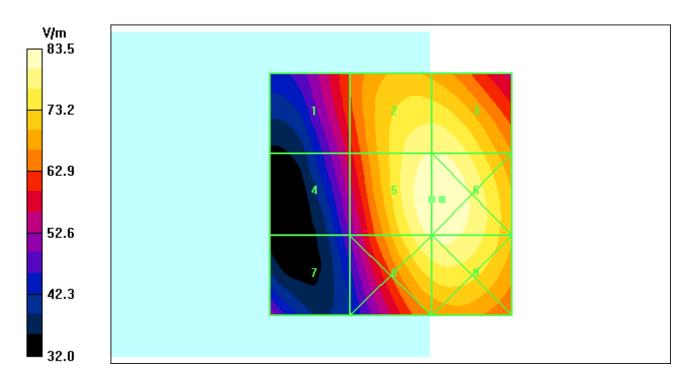
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 83.1 V/m; Probe Modulation Factor = 2.87

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 32.2 V/m; Power Drift = 0.098 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
62.8 M3	80.2 M3	80.2 M3
Grid 4	Grid 5	Grid 6
58.0 M3	23 1 M3	23 5 M3
30.0 113	05.1 1115	03.3 1113
		Grid 9

Date/Time: 7/23/2008 11:10:07 PM

Test Laboratory: Motorola - CDMA 800 E-Field, Full Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 1.03; Positioner: SPEAG Clamp

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

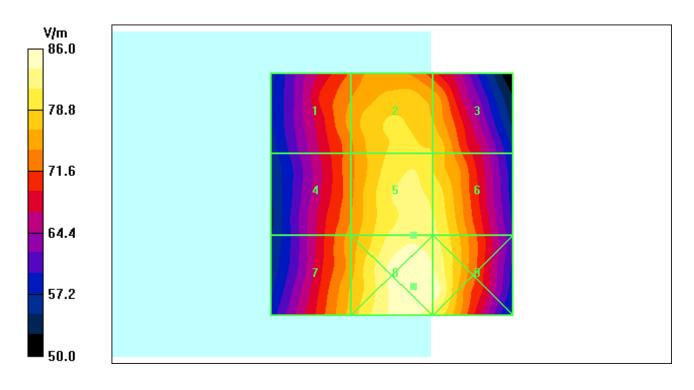
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 83.1 V/m; Probe Modulation Factor = 1.03

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 94.6 V/m; Power Drift = -0.038 dB

Peak E-field in V/m

		Grid 3
74.9 M4	79.9 M4	78.7 M4
Grid 4	Grid 5	Grid 6
75.0 M4	83.1 M4	82.0 M4
		0210 111 1
		Grid 9

Date/Time: 7/23/2008 11:54:16 PM

Test Laboratory: Motorola - CDMA 1900 E-Field, Full Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 1.07; Positioner: SPEAG Clamp

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

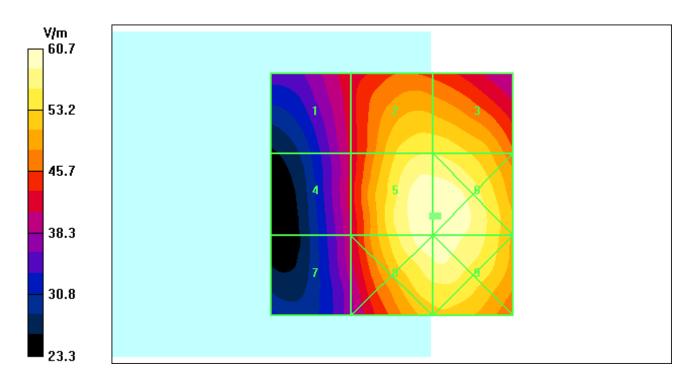
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 60.6 V/m; Probe Modulation Factor = 1.07

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 64.8 V/m; Power Drift = -0.018 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
42.3 M4	55.6 M4	55.6 M4
Grid 4	Grid 5	Grid 6
42.1 M4	60.6 M4	60.7 M4
	Grid 8	60.7 M4 Grid 9

Date/Time: 7/24/2008 12:48:51 AM

Test Laboratory: Motorola - CDMA 800 E-Field, 1/8th Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 2.78; Positioner: SPEAG Clamp

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

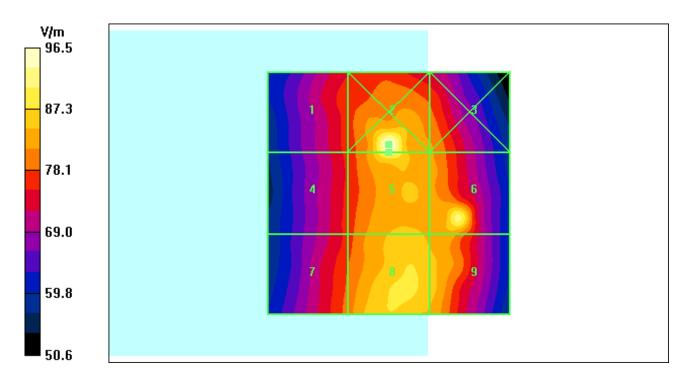
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 93.5 V/m; Probe Modulation Factor = 2.78

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 35.9 V/m; Power Drift = 0.064 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
77.0 M4	96.5 M4	81.8 M4
Grid 4	Grid 5	Grid 6
76.5 M4	93.5 M4	91.5 M4
Grid 7	Grid 8	Grid 9

Date/Time: 7/24/2008 1:24:04 AM

Test Laboratory: Motorola - CDMA 1900 E-Field, 1/8th Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 2.89; Positioner: SPEAG Clamp

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_{r} = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: ER3DV6R - SN2245; ConvF(1, 1, 1); Calibrated: 11/20/2007

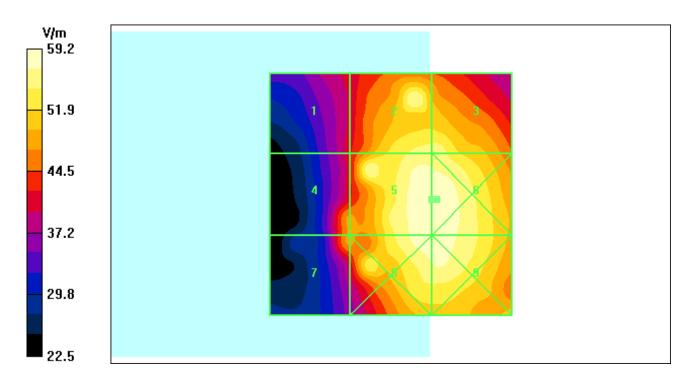
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn440; Calibrated: 1/28/2008

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 59.2 V/m; Probe Modulation Factor = 2.89

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 24.2 V/m; Power Drift = -0.045 dB

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
41.5 M4	56.9 M4	55.5 M4
Grid 4	Grid 5	Grid 6
48.0 M4	50.2 MA	50.2 MA
TU.U 1V14	37.2 1114	37.2 1114
		Grid 9

Date/Time: 9/2/2008 8:50:27 AM

Test Laboratory: Motorola - GSM 850 H-Field

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5841A; PMF Value: 2.47; Positioner: SPEAG Clamp

Communication System: GSM 850; Frequency: 848.8 MHz; Channel Number: 251; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m³

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

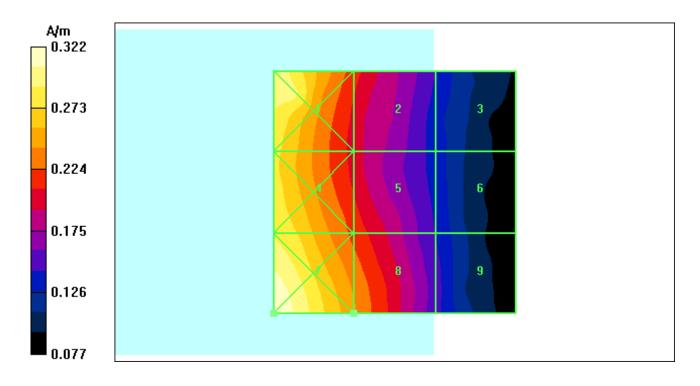
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn437; Calibrated: 7/11/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.244 A/m; Probe Modulation Factor = 2.47

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 0.073 A/m; Power Drift = 0.101 dB

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.305 M4	0.217 M4	0.143 M4
Grid 4	Grid 5	Grid 6
0.288 M4	0.220 M4	0.142 M4
Grid 7	Grid 8	Grid 9

Date/Time: 7/25/2008 11:13:37 PM

Test Laboratory: Motorola - GSM 1900 H-Field

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: 00; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 2.64; Positioner: SPEAG Clamp

Communication System: GSM 1900; Frequency: 1909.8 MHz; Channel Number: 810; Duty Cycle: 1:8

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

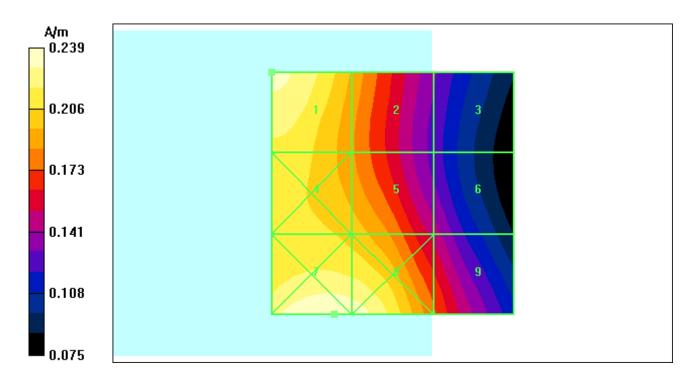
• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2007

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.232 A/m; Probe Modulation Factor = 2.64

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 0.064 A/m; Power Drift = -0.021 dB

Peak H-field in A/m

Grid 1 0.232 M3	Grid 3 0.132 M4
Grid 4 0.214 M3	Grid 6 0.147 M3
Grid 7 0.239 M3	Grid 9 0.176 M3

Date/Time: 7/25/2008 4:19:06 PM

Test Laboratory: Motorola - CDMA 800 H-Field, Full Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 1.03; Positioner: SPEAG Clamp

Communication System: CDMA 835; Frequency: 836.52 MHz; Channel Number: 384; Duty Cycle: 1:1

Medium: Air; Medium parameters used: σ = 0 mho/m, ϵ_r = 1; ρ = 0 kg/m 3

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

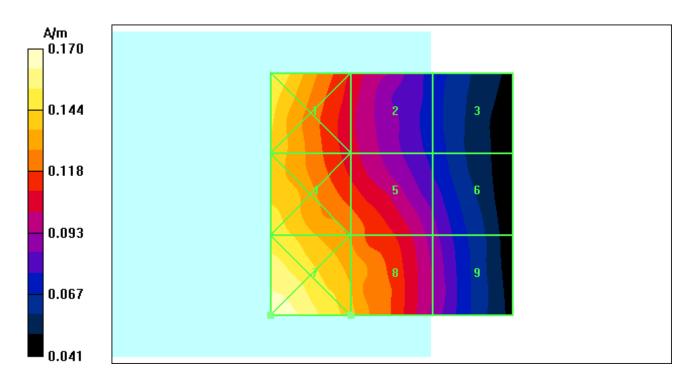
• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2007

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.139 A/m; Probe Modulation Factor = 1.03

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 0.115 A/m; Power Drift = -0.052 dB

Peak H-field in A/m

Grid 1 0.156 M4	Grid 3 0.073 M4
Grid 4 0.150 M4	Grid 6 0 088 M4
	Grid 9
0.170 M4	

Date/Time: 9/2/2008 12:51:19 PM

Test Laboratory: Motorola - CDMA 1900 H-Field, Full Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5841A; PMF Value: 1.01; Positioner: SPEAG Clamp

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:1

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

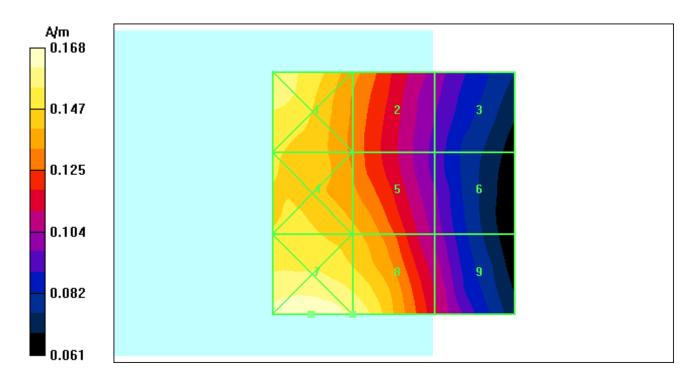
• Sensor-Surface: (Fix Surface)

• Electronics: DAE3 Sn437; Calibrated: 7/11/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.160 A/m; Probe Modulation Factor = 1.01

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 0.122 A/m; Power Drift = 0.067 dB

Peak H-field in A/m

		Grid 3
0.160 M4	0.135 M4	0.101 M4
Grid 4	Grid 5	Grid 6
0.149 M4	0.142 M4	0.102 M4
Grid 7	Grid 8	Grid 9
0.168 M4	0.160 M4	0.113 M4

Date/Time: 7/25/2008 5:33:52 PM

Test Laboratory: Motorola - CDMA 800 H-Field, 1/8th Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5824A; PMF Value: 2.54; Positioner: SPEAG Clamp

Communication System: CDMA 835; Frequency: 848.31 MHz; Channel Number: 777; Duty Cycle: 1:8

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

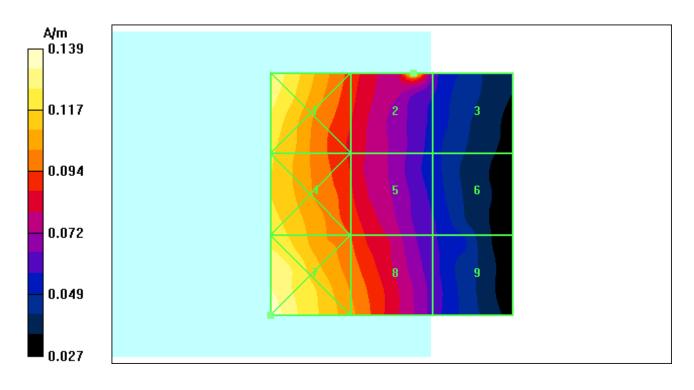
• Sensor-Surface: (Fix Surface)

• Electronics: DAE4 Sn639; Calibrated: 11/13/2007

• Phantom: PCS-3, MOD HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 100x;

• Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.115 A/m; Probe Modulation Factor = 2.54

Device Reference Point: 0.000, 0.000, 353.7 mm; Reference Value = 0.030 A/m; Power Drift = -0.063 dB

Peak H-field in A/m

Grid 1 0.130 M4		Grid 3 0.065 M4
	Grid 5	Grid 6
	Grid 8	Grid 9

Date/Time: 9/2/2008 12:28:46 PM

Test Laboratory: Motorola - CDMA 1900 H-Field, 1/8th Vocoder

Serial: 80E30A01; FCC ID: IHDP56JL1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: N/A

Battery Model #: SNN5841A; PMF Value: 2.54; Positioner: SPEAG Clamp

Communication System: CDMA 1900; Frequency: 1880 MHz; Channel Number: 600; Duty Cycle: 1:8

Medium: Air; Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 0$ kg/m³

DASY4 Configuration:

• Probe: H3DV6 - SN6075; ; Calibrated: 11/20/2007

• Sensor-Surface: (Fix Surface)

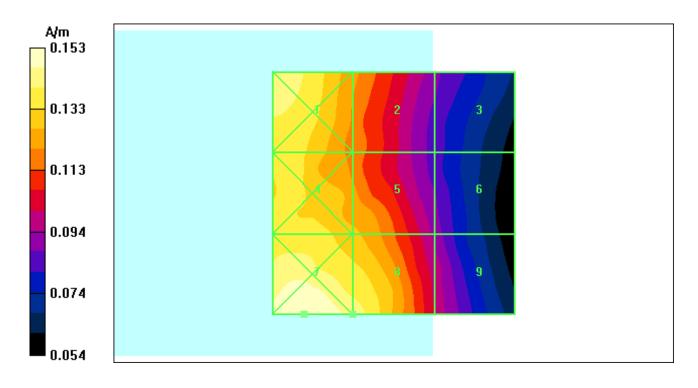
• Electronics: DAE3 Sn437; Calibrated: 7/11/2008

• Phantom: R-3, HAC Test Arch (rev.2); Type: SD HAC P01 BA; Serial: 1071;

• Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - Sensor center 15mm above WD, Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.144 A/m; Probe Modulation Factor = 2.54

Device Reference Point: 0.000, 0.000, -6.30 mm; Reference Value = 0.044 A/m; Power Drift = 0.039 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1 0.144 M4	Grid 3 0.089 M4
Grid 4 0.137 M4	Grid 6 0.092 M4
Grid 7 0.153 M4	Grid 9 0.100 M4

Appendix 4

Measurement Uncertainty Budget

A4.1 Motorola Uncertainty Budget for RF HAC Testing

TABLE A4.1: Motorola Uncertainty Budget

UNCERTAINTY DESCRIPTION	Uncertainty Value (+/- %)	Prob Dist.	Div.	(ci) E	(ci) H	Std. Unc. E	Std. Unc. H
MEASUREMENT SYSTEM							•
Probe Calibration	5.1%	N	1.0000	1	1	5.1%	5.1%
Axial Isotropy	7.8%	R	1.7321	1	0.786	4.5%	3.5%
Sensor Displacement	16.5%	R	1.7321	1	0.145	9.5%	1.4%
Test Arch	7.2%	R	1.7321	1	0	4.2%	0.0%
Linearity	4.7%	R	1.7321	1	1	2.7%	2.7%
Scaling to Peak Envelope Power	2.0%	R	1.7321	1	1	1.2%	1.2%
System Detection Limit	1.0%	R	1.7321	1	1	0.6%	0.6%
Readout Electronics	0.3%	N	1.0000	1	1	0.3%	0.3%
Response Time	0.8%	R	1.7321	1	1	0.5%	0.5%
Integration Time	2.6%	R	1.7321	1	1	1.5%	1.5%
RF Reflections	5.6%	R	1.7321	1	1	3.2%	3.2%
Probe Positioner	1.2%	R	1.7321	1	0.67	0.7%	0.5%
Probe Positioning	4.7%	R	1.7321	1	0.67	2.7%	1.8%
Extrap. & Interpolation	1.0%	R	1.7321	1	1	0.6%	0.6%
TEST SAMPLE RELATED							
Total Device Positioning	3.2%	R	1.7321	1	1.306	1.8%	2.4%
Device Holder & Phantom	2.4%	R	1.7321	1	1	1.4%	1.4%
Power Drift	5.0%	R	1.7321	1	1	2.9%	2.9%
PHANTOM AND SETUP RELATED							
Phantom Thickness	2.4%	R	1.7321	1	0.67	1.4%	0.9%
Combined Std.Uncertainty on Power						14.1%	9.1%
Combined Std.Uncertainty on Field					7.1%	4.6%	
Combined Stu. Oncertainty on Field						/.1/0	4.070
Expanded Std. Uncertainty on Power	Expanded Std. Uncertainty on Power					28.3%	18.2%
Expanded Std. Uncertainty on Field						14.1%	9.1%

APPLICANT: MOTOROLA, INC. FCC ID: IHDP56JL1

A4.2 Probe Rotation Contributions to Isotropy Error

Probe rotation data was taken "for special focus on spherical isotropicity in measurement uncertainty and perturbation of EM fields." This data was taken at the interpolated maximum and directly accounted for in the uncertainty budget as "Axial Isotropy." Thirteen mobile devices were used to determine the probe isotropy uncertainty factors in section A4.1. Based on the resulting 82 E-Field probe rotations and 82 H-Field probe rotations, the upper 95% confidence interval value was calculated for each. These values represent a conservative assessment of the effect of the probe isotropy and have been appropriately included in the respective E- and H-uncertainty budgets.

TABLE A4.2: Probe Rotation Data Summary

	AVE	ST.DE V	Sample Size (n)	2σ	(ci)	Standard Uncertaint y
E-field	4.4%	1.7%	82	7.8%	1	4.5%
H-field	3.8%	1.2%	82	6.1%	0.786	3.5%

Isotropy error measurements were taken for 13 products across the respective frequency bands. The $+2\sigma$ values of all measurements was used as a worst case value for the uncertainty budget. Any significant differences between bands were also evaluated.

Appendix 5

Pictures of Test Setup

See Exhibit 7B

Appendix 6

Probe Calibration Certificates

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ER3-2245 Nov07

CALIBRATION CERTIFICATE

Object ER3DV6R - SN:2245

Calibration procedure(s) QA CAL-02.v5

Calibration procedure for E-field probes optimized for close near field

evaluations in air

Calibration date: November 20, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe ER3DV6	SN: 2328	2-Oct-07 (SPEAG, No. ER3-2328_Oct07)	Oct-08
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	
Approved by:	Niels Kuster	Quality Manager	
		/	

Issued: November 20, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,y,z

DCP

sensitivity in free space diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 for XY sensors and θ = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2245_Nov07 Page 2 of 9

Probe ER3DV6R

SN:2245

Manufactured:

February 1, 2000

Last calibrated:

September 20, 2006

Recalibrated:

November 20, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ER3-2245 Nov07

Page 3 of 9

DASY - Parameters of Probe: ER3DV6R SN:2245

Sensitivity in Free Space $[\mu V/(V/m)^2]$

Diode Compression^A

NormX

1.60 ± 10.1 % (k=2)

DCP X

94 mV

NormY

1.53 ± 10.1 % (k=2)

DCP Y

94 mV

NormZ

2.01 ± 10.1 % (k=2)

DCP Z

97 mV

Frequency Correction

Χ

0.0

Υ

0.0

Ζ

0.0

Sensor Offset

(Probe Tip to Sensor Center)

Х

2.5 mm

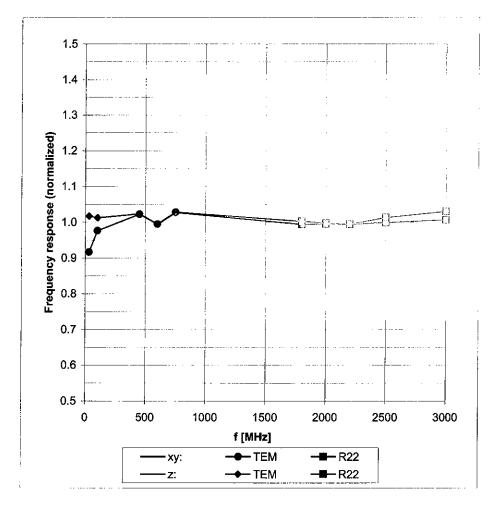
Υ

2.5 mm

Ζ

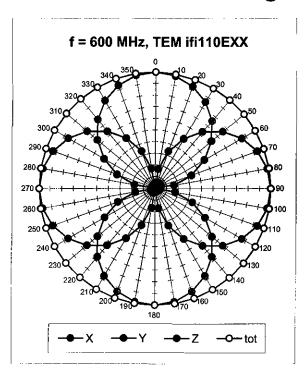
2.5 mm

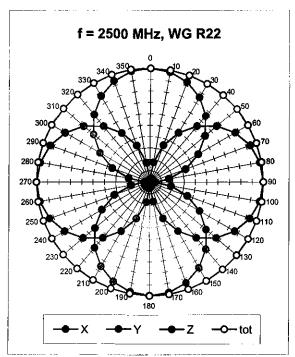
Connector Angle

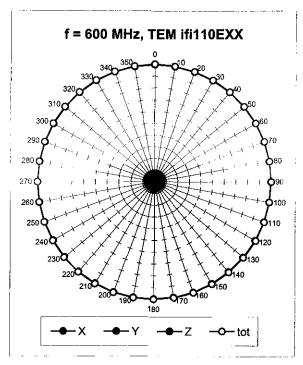

-323°

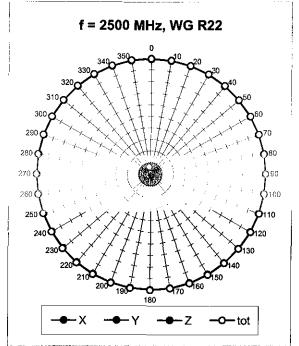
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

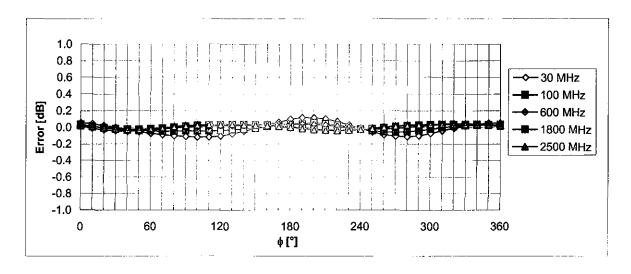
A numerical linearization parameter: uncertainty not required


Frequency Response of E-Field

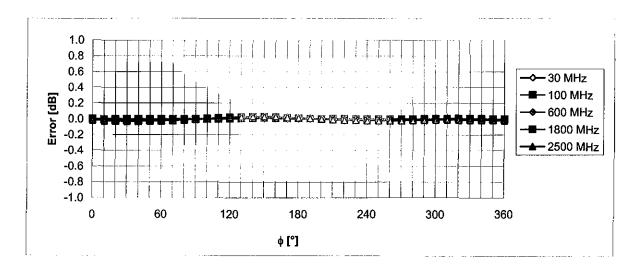

(TEM-Cell:ifi110 EXX, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



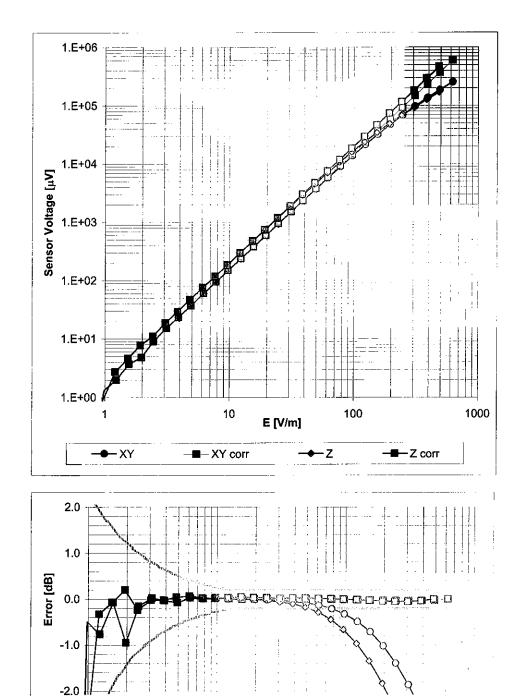
Receiving Pattern (ϕ), ϑ = 90°



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Receiving Pattern (ϕ), ϑ = 90°

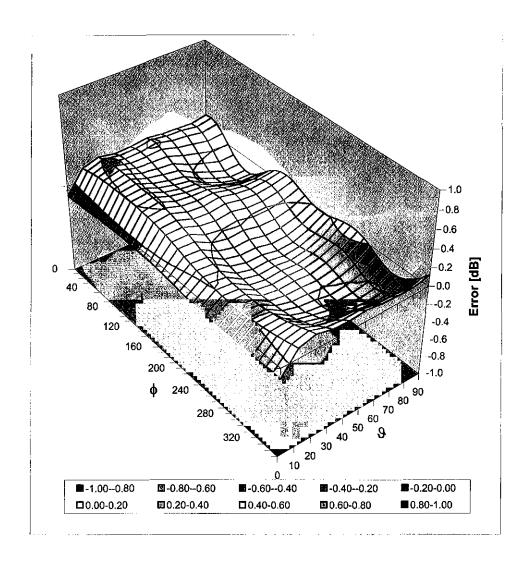


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

1000

Dynamic Range f(E-field)

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: ± 0.6% (k=2)

E [V/m]

100

10

Deviation from Isotropy in Air Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

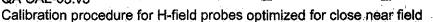
Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108


Certificate No: H3-6075_Nov07

CALIBRATION CERTIFICATE

Object H3DV6 - SN:6075

Calibration procedure(s)

QA CAL-03.v5

evaluations in air

Calibration date:

November 20, 2007

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe H3DV6	SN: 6182	2-Oct-07 (SPEAG, No. H3-6182_Oct07)	Oct-08
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	
		AND COMMENT	
Approved by:	Niels Kuster	Quality Manager	and Joseph Marine
Approved by.	Meia Mastel	Quality Wanager	//-/2 O
		Control of the second s	

Issued: November 20, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: H3-6075_Nov07

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

NORMx,v,z

DCP

sensitivity in free space diode compression point

Polarization o

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot

coordinate system

Calibration is Performed According to the Following Standards:

a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- X, Y, Z_a0a1a2: Assessed for E-field polarization θ = 90 for XY sensors and θ = 0 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f) a0a1a2= X,Y,Z a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X a0a1a2 (no uncertainty required).

Certificate No: H3-6075_Nov07 Page 2 of 8

Probe H3DV6

SN:6075

Manufactured: October 2, 2000

Last calibrated: September 20, 2006 Recalibrated: November 20, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: H3-6075_Nov07 Page 3 of 8

DASY - Parameters of Probe: H3DV6 SN:6075

Sensitivity in Free Space [A/m / $\sqrt{(\mu V)}$]

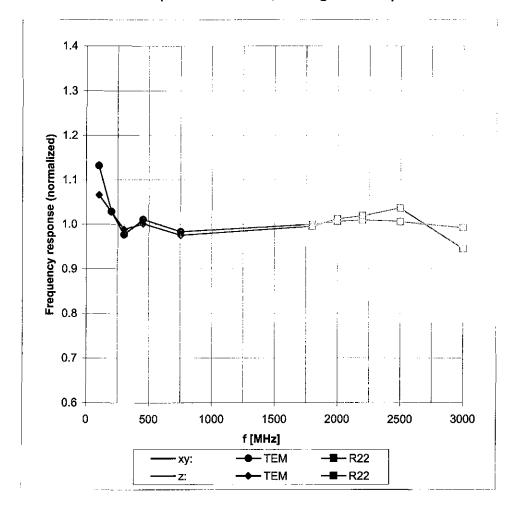
a0 a1 a2 X 2.783E-03 7.531E-6 -1.972E-5 ± 5.1 % (k=2) Y 2.610E-03 -1.024E-4 -1.923E-5 ± 5.1 % (k=2) Z 2.981E-03 -2.312E-4 -1.796E-4 ± 5.1 % (k=2)

Diode Compression¹

DCP X **85** mV DCP Y **85** mV DCP Z **82** mV

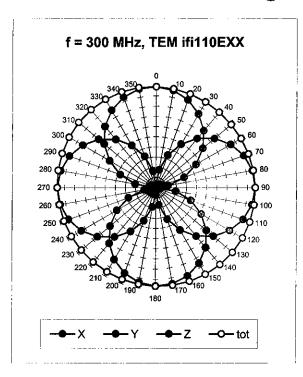
Sensor Offset (Probe Tip to Sensor Center)

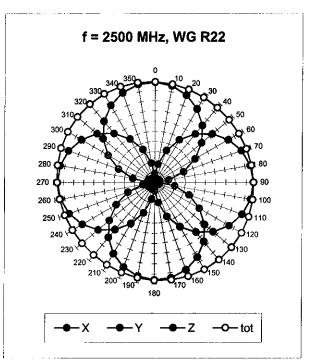
X 3.0 mm Y 3.0 mm Z 3.0 mm

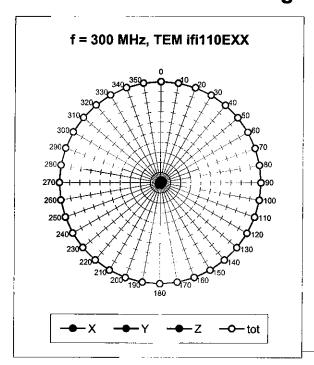

Connector Angle -201 °

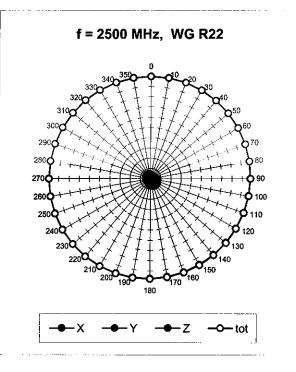
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

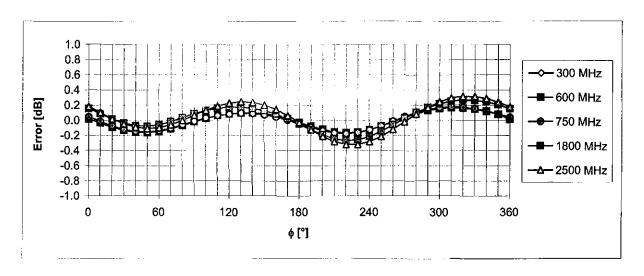
¹ numerical linearization parameter: uncertainty not required


Frequency Response of H-Field

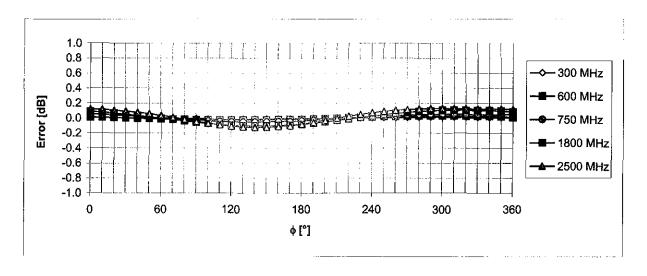

(TEM-Cell:ifi110, Waveguide R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), ϑ = 90°

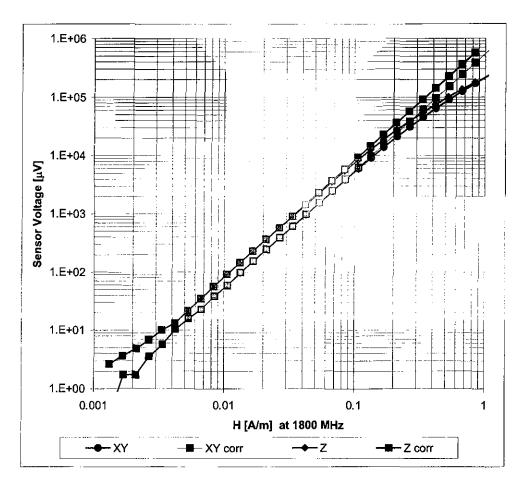


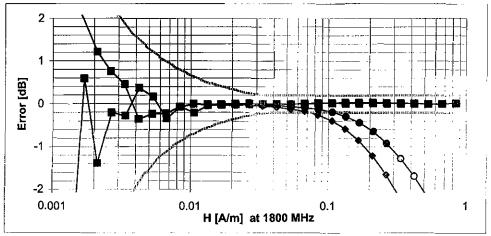
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Receiving Pattern (ϕ), ϑ = 90°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(H-field)

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: H3-6075_Nov07 Page 8 of 8

APPLICANT: MOTOROLA, INC. FCC ID: IHDP56JL1

Appendix 7

Dipole Characterization Certificate

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Motorola MDb

Certificate No: CD835V3-1076 Mar08

CALIBRATION CERTIFICATE

Object CD835V3 - SN: 1076

Calibration procedure(s) QA CAL-20.v4

Calibration procedure for dipoles in air

Calibration date: March 11, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Probe ER3DV6	SN: 2336	31-Dec-07 (SPEAG, No. ER3-2336_Dec07)	Dec-08
Probe H3DV6	SN: 6065	31-Dec-07 (SPEAG, No. H3-6065Dec07)	Dec-08
DAE4	SN: 781	2-Oct-07 (SPEAG, No. DAE4-781_Oct07)	Oct-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-4419B	GB42420191	11-May-05 (SPEAG, in house check Oct -07)	In house check: Nov-08
Power sensor HP 8482A	US37295597	11-May-05 (SPEAG, in house check Oct -07)	In house check: Nov-08
Power sensor HP 8482H	3318A09450	08-Jan-02 (SPEAG, in house check Oct -07)	In house check: Nov-08
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Nov-09
RF generator E4433B	MY 41310391	22-Nov-04 (SPEAG, in house check Oct-07)	In house check: Nov-09
	Name	Function	Signature
Calibrated by:	Mike Maill		Signature
Calibrated by:	WIKE IVIEIII	Laboratory Technician	The way

Issued: March 13, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Fin Bomholt

Certificate No: CD835V3-1076_Mar08

Approved by:

Technical Director

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-C63.19-2006

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole
 connector is set with a calibrated power meter connected and monitored with an auxiliary power meter
 connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to
 the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

Certificate No: CD835V3-1076_Mar08

Page 2 of 12

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B61
DASY PP Version	SEMCAD	V1.8 B176
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.445 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	160.4 V/m
Maximum measured above low end	100 mW forward power	157.6 V/m
Averaged maximum above arm	100 mW forward power	159.0 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

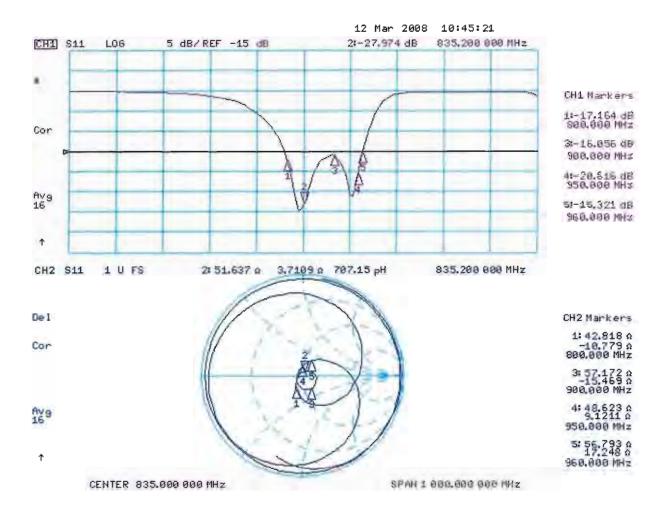
3.1 Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.7 dB	(42.7 – j11.6) Ohm
835 MHz	23.9 dB	(47.0 + j5.4) Ohm
900 MHz	18.6 dB	(58.8 – j9.4) Ohm
950 MHz	19.2 dB	(51.4 + j11.1) Ohm
960 MHz	14.0 dB	(60.4 + j19.7) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1076_Mar08 Page 3 of 12

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

3.3.2 DASY4 H-field result

Date/Time: 11.03.2008 11:59:27

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

• Sensor-Surface: (Fix Surface)

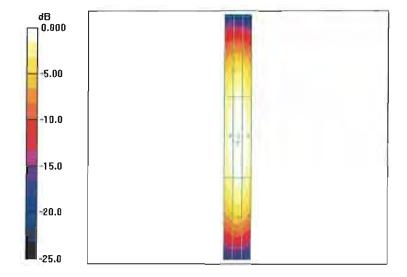
• Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

H Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.443 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.471 A/m; Power Drift = 0.002 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.371 M4	0.391 M4	0.370 M4
Grid 4	Grid 5	Grid 6
0.419 M4	0.443 M4	0.420 M4
Grid 7	Grid 8	Grid 9
0.367 M4	0.391 M4	0.370 M4

0 dB = 0.443 A/m

Certificate No: CD835V3-1076_Mar08

3.3.3 DASY4 E-Field result

Date/Time: 10.03.2008 13:12:08

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076 Communication System: CW; Frequency: 835; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

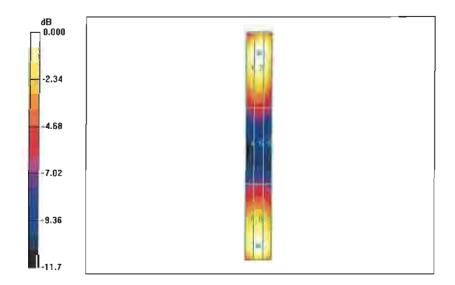
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD835 Dipole/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 157.2 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 101.7 V/m; Power Drift = 0.009 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
152.8 M4	157.2 M4	152.8 M4
Grid 4	Grid 5	Grid 6
83.9 M4	85.8 M4	82.5 M4
Grid 7	Grid 8	Grid 9
149.0 M4	153.7 M4	149.6 M4

 $0 dB \approx 157.2 V/m$

Certificate No: CD835V3-1076_Mar08

4. Additional Measurements

4.1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B53
DASY PP Version	SEMCAD	V1.8 B172
Phantom	HAC Test Arch	SD HAC P01 BA, #1002
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, $dy = 5 mm$	area = 20 x 180 mm
Frequency	813 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

4.1.1 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.448 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	172.5 V/m
Maximum measured above low end	100 mW forward power	163.8V/m
Averaged maximum above arm	100 mW forward power	168.2 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

4.1.2 DASY4 H-field result

Date/Time: 11.03.2008 11:59:27

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076Communication System: CW; Frequency: 813 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

• Sensor-Surface: (Fix Surface)

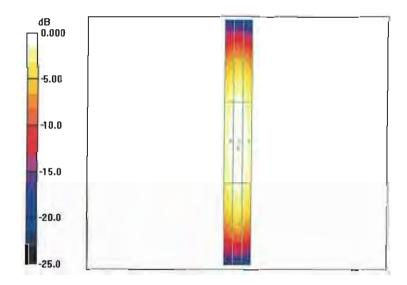
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

H Scan - Sensor Center 10mm above CD835 Dipole @ 813MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.452 A/m

Probe Modulation Factor = 1.00

Reference Value = 0.481 A/m; Power Drift = -0.003 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid I	Grid 2	Grid 3
0.374 M4	0.395 M4	0.374 M4
Grid 4	Grid 5	Grid 6
0.427 M4	0.452 M4	0.429 M4
Grid 7	Grid 8	Grid 9
0.371 M4	0.395 M4	0.373 M4

0 dB = 0.452 A/m

4.1.3 DASY4 E-field result

Date/Time: 10.03.2008 13:12:08

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076 Communication System: CW; Frequency: 813; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

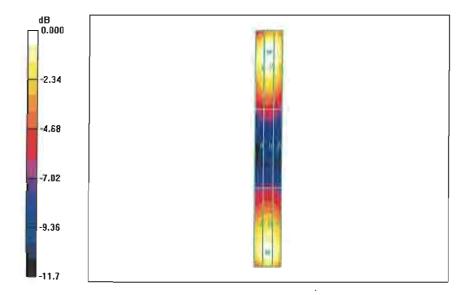
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD835 Dipole @ 813MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 161.6 V/m

Probe Modulation Factor = 1.00

Reference Value = 104.9 V/m; Power Drift = 0.006 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
157.3 M4	161.6 M4	157.1 M4
Grid 4	Grid 5	Grid 6
86.3 M4	88.2 M4	85.2 M4
Grid 7	Grid 8	Grid 9
151.8 M4	156.5 M4	152.3 M4

0 dB = 161.6 V/m

Certificate No: CD835V3-1076_Mar08 Page 9 of 12

4.2 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY4	V4.7 B53
SEMCAD	V1.8 B172
HAC Test Arch	SD HAC P01 BA, #1002
10 mm	
dx, dy = 5 mm	area = 20 x 180 mm
898 MHz ± 1 MHz	
20.0 dBm = 100mW	
< 0.05 dB	
	SEMCAD HAC Test Arch 10 mm dx, dy = 5 mm 898 MHz ± 1 MHz 20.0 dBm = 100mW

4.2.1 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.416 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	158.8 V/m
Maximum measured above low end	100 mW forward power	143.9 V/m
Averaged maximum above arm	100 mW forward power	151.4 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

4.2.2 DASY4 H-field result

Date/Time: 11.03.2008 11:59:27

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076 Communication System: CW; Frequency: 898 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 02.10.2007

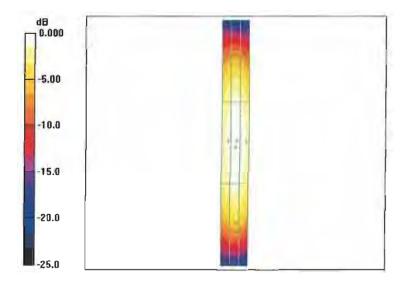
Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

H Scan - Sensor Center 10mm above CD835 Dipole @ 898MHz/Hearing Aid Compatibility Test (41x361x1): Measurement

grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.425 A/m


Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm

Reference Value = 0.445 A/m; Power Drift = -0.036 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.373 M4	0.394 M4	0.372 M4
Grid 4	Grid 5	Grid 6
0.402 M4	0.425 M4	0.403 M4
Grid 7	Grid 8	Grid 9
0.372 M4	0.396 M4	0.375 M4

0 dB = 0.425 A/m

Certificate No: CD835V3-1076_Mar08

4.2.3 DASY4 E-field result

Date/Time: 10.03.2008 13:12:08

Test Laboratory: SPEAG Lab 2

DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1076 Communication System: CW; Frequency: 898; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

• Sensor-Surface: (Fix Surface)

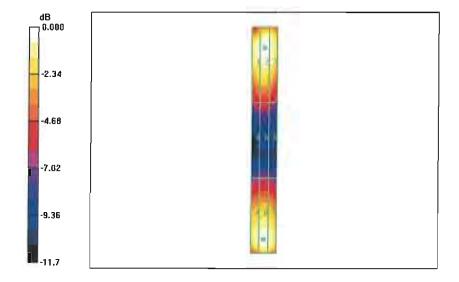
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

• Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD835 Dipole @ 898MHz/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 154.8 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 93.0 V/m; Power Drift = -0.013 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
150.5 M4	154.8 M4	150.5 M4
Grid 4	Grid 5	Grid 6
74.3 M4	76.0 M4	73.2 M4
Grid 7	Grid 8	Grid 9
148.9 M4	153.5 M4	149.5 M4

0 dB = 154.8 V/m

Certificate No: CD835V3-1076_Mar08

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Callbration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Motorola MDb

Certificate No: CD1880V3-1034_Mar08

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object CD1880V3 - SN: 1034

Calibration procedure(s) QA CAL-20 v4

Calibration procedure for dipoles in air

Calibration date: March 11, 2008

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards

Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Probe ER3DV6	SN: 2336	31-Dec-07 (SPEAG, No. ER3-2336_Dec07)	Dec-08
Probe H3DV6	SN: 6065	31-Dec-07 (SPEAG, No. H3-6065Dec07)	Dec-08
DAE4	SN: 781	2-Oct-07 (SPEAG, No. DAE4-781_Oct07)	Oct-08
	1		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-4419B	GB42420191	11-May-05 (SPEAG, in house check Oct-07)	In house check: Nov-08
Power sensor HP 8482A	US37295597	11-May-05 (SPEAG, in house check Oct-07)	In house check: Nov-08
Power sensor HP 8482H	3318A09450	08-Jan-02 (SPEAG, in house check Oct-07)	In house check: Nov-08
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Nov-09
RF generator E4433B	MY 41310391	22-Nov-04 (SPEAG, in house check Oct-07)	In house check: Nov-09

Cal Date (Calibrated by, Certificate No.)

Name Function Signature
Calibrated by: Mike Meili Laboratory Technician

C / Peri

Approved by: Fin Bomholt Technical Director

Issued: March 12, 2008

Scheduled Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD1880V3-1034_Mar08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schwelzerlscher Kalibrierdienst
Service suisse d'étalonnage
Servizlo svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

References

[1] ANSI-C63.19-2006

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1034_Mar08 Page 2 of 6

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B61
DASY PP Version	SEMCAD	V1.8 B176
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, $dy = 5 mm$	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.466 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	137.7 V/m
Maximum measured above low end	100 mW forward power	135.5 V/m
Averaged maximum above arm	100 mW forward power	136.6 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

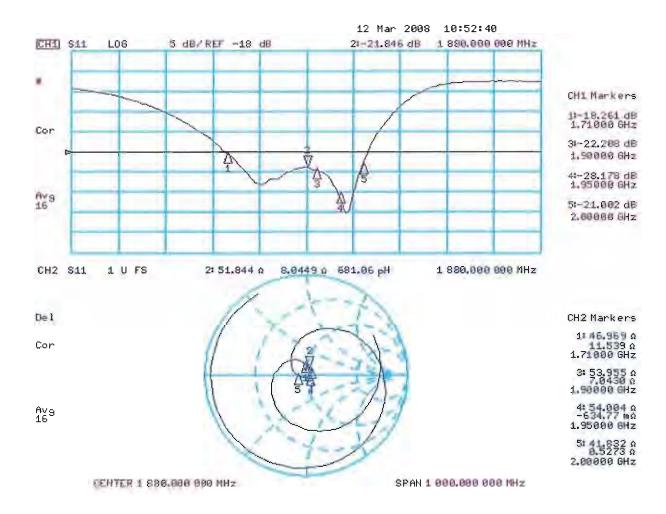
3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	18.3 dB	(47.0 + j11.5) Ohm
1880 MHz	21.8 dB	(51.8 + 8.0) Ohm
1900 MHz	22.2 dB	(54.0 + j7.0) Ohm
1950 MHz	28.2 dB	(54.0 – j0.6) Ohm
2000 MHz	21.0 dB	(41.8 + j0.5) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.


Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1034_Mar08

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Date/Time: 11.03.2008 14:51:15

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: [:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: H Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

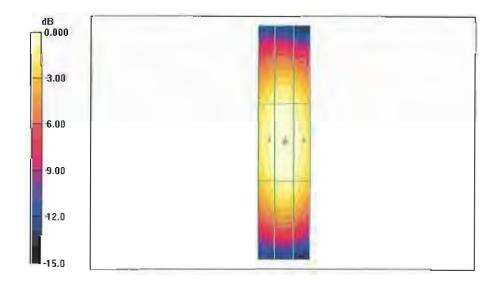
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.466 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 0.494 A/m; Power Drift = -0.002 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.408	0.428	0.407
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.443	0.466	0.446
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.401	0.427	0.407
M2	M2	M2

0 dB = 0.466 A/m

Certificate No: CD1880V3-1034_Mar08

Date/Time: 10.03.2008 16:09:38

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1034 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: E Dipole Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

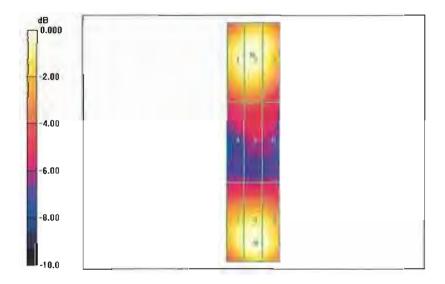
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

Phantom: HAC Test Arch with Coil; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 61; Postprocessing SW: SEMCAD, V1.8 Build 176

E Scan - Sensor Center 10mm above CD1880V3 Dipole/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 137.7 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, 354.7 mm Reference Value = 153.3 V/m; Power Drift = 0.007 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
132.6	135.5	129.7
M2	M2	M2
Grid 4	Grid 5	Grid 6
88.2	89.6	85.4
M3	M3	M 3
Grid 7	Grid 8	Grid 9
129.7	137.7	135.1
M2	M2	M2

0 dB = 137.7 V/m

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Motorola MDb

Certificate No: CD1880V3-1059_Jul08

CALIBRATION CERTIFICATE Object CD1880V3 - SN: 1059 **QA CAL-20.v4** Calibration procedure(s) Calibration procedure for dipoles in air Calibration date: July 16, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards Cal Date (Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 04-Oct-07 (No. 217-00736) Oct-08 Power sensor HP 8481A US37292783 04-Oct-07 (No. 217-00736) Oct-08 Probe ER3DV6 SN: 2336 31-Dec-07 (No. ER3-2336_Dec07) Dec-08 Probe H3DV6 SN: 6065 31-Dec-07 (No. H3-6065_-Dec07) Dec-08 SN: 781 DAE4 2-Oct-07 (No. DAE4-781_Oct07) Oct-08 Secondary Standards ID# Check Date (in house) Scheduled Check Power meter EPM-4419B GB42420191 11-May-05 (in house check Oct-07) In house check: Oct-08 Power sensor HP 8482A US37295597 11-May-05 (in house check Oct-07) In house check: Oct-08 Power sensor HP 8482H 3318A09450 08-Jan-02 (in house check Oct-07) In house check: Oct-08 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-07) In house check: Oct-09 Name Function Signature Calibrated by: Claudio Leubler Laboratory Technician Approved by: Fin Bomholt **Technical Director**

Issued: July 23, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2006

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate.
 All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1059 Jul08

Page 2 of 9

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B71
DASY PP Version	SEMCAD	V1.8 B184
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.471 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	142.6 V/m
Maximum measured above low end	100 mW forward power	140.8 V/m
Averaged maximum above arm	100 mW forward power	141.7 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1710 MHz	20.1 dB	(49.8 + j9.8) Ohm
1880 MHz	22.2 dB	(51.4 + j7.8) Ohm
1900 MHz	22.8 dB	(53.7 + j6.6) Ohm
1950 MHz	33.1 dB	(52.1 – j0.7) Ohm
2000 MHz	19.3 dB	(40.5 + j2.4) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.


The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Date/Time: 15.07.2008 15:44:14

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

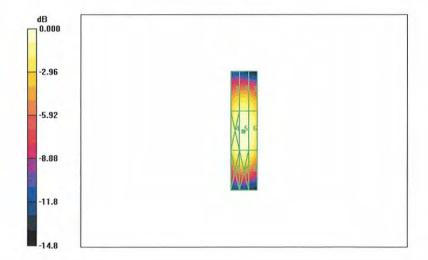
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.471 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.499 A/m; Power Drift = 0.011 dB **Hearing Aid Near-Field Category: M2 (AWF 0 dB)**

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.411	0.428	0.406
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.453	0.471	0.445
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.417	0.435	0.406
M2	M2	M2

0 dB = 0.471 A/m

3.3.2 DASY4 E-Field Result

Date/Time: 16.07.2008 17:26:14

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059 Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

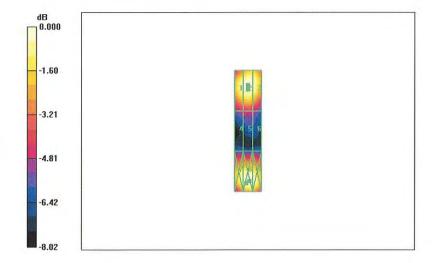
• Electronics: DAE4 Sn781; Calibrated: 02.10.2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 142.6 V/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 156.3 V/m; Power Drift = -0.006 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
136.1	140.8	137.5
M2	M2	M2
Grid 4	Grid 5	Grid 6
86.7	88.8	85.2
M3	M3	M3
Grid 7	Grid 8	Grid 9
136.5	142.6	139.7
M2	M2	M2

0 dB = 142.6 V/m

Certificate No: CD1880V3-1059_Jul08

4 Additional Measurements

4.1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7 B71
DASY PP Version	SEMCAD	V1.8 B184
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1730 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

4.2 Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured	100 mW forward power	0.492 A/m

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	154.4 V/m
Maximum measured above low end	100 mW forward power	148.2 V/m
Averaged maximum above arm	100 mW forward power	151.3 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

4.3.1 DASY4 H-Field Result

Date/Time: 15.07.2008 15:44:14

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Communication System: CW; Frequency: 1730 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: H3DV6 - SN6065; Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

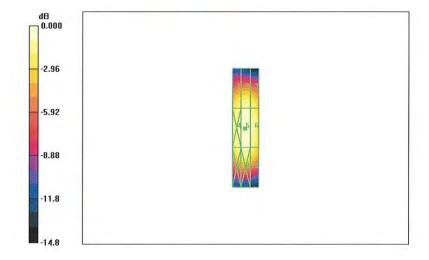
Electronics: DAE4 Sn781; Calibrated: 02.10.2007

• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.492 A/m

Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.523 A/m; Power Drift = 0.012 dB **Hearing Aid Near-Field Category: M2 (AWF 0 dB)**

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.413	0.428	0.403
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.475	0.492	0.459
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.422	0.436	0.400
M2	M2	M2

0 dB = 0.471 A/m

4.3.2 DASY4 E-Field Result

Date/Time: 16.07.2008 17:26:14

Test Laboratory: SPEAG Lab 2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1059

Communication System: CW; Frequency: 1730 MHz; Duty Cycle: 1:1

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

• Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 31.12.2007

Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 02.10.2007

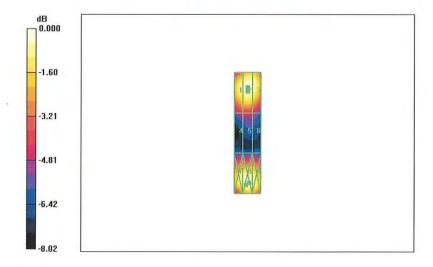
• Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 148.2 V/m


Probe Modulation Factor = 1.00

Device Reference Point: 0.000, 0.000, -6.30 mm

Reference Value = 176.1 V/m; Power Drift = -0.016 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
144.1	148.2	143.0
M2	M2	M2
Grid 4	Grid 5	Grid 6
106.5	108.4	102.5
M3	M3	M3
Grid 7	Grid 8	Grid 9
151.3	154.4	142.8
M2	M2	M2

0 dB = 142.6 V/m