

Portable Cellular Phone SAR Test Report

Test Report #: 22278-1F **Date of Report:** 9/3/2008

Date of Test: 8/15/2008 - 8/26/2008

FCC ID #: IHDP56JK2 **Generic Name:** MQ6-4411F11

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

600 N. US Highway 45 Laboratory:

Libertyville, Illinois 60048

Paul Ma **Report Author:** RF Engineer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

Tests: Procedures: Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

Accreditation: IEEE 1528 - 2003

> FCC OET Bulletin 65 (including Supplement C) Australian Communications Authority Radio

Communications (Electromagnetic Radiation - Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

TESTING CERT #2518-02

On the following products or types of products:

On the following products or types of products: Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including Cellular, Licensed Non-Broadcast and PCS); Low

Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

Statement of **Compliance:**

(none)

©Motorola, Inc. 2008

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

2
2
2
2
4
4
4
5
6
7
7
11
14
15
16
17
18
19
21

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1g average set in [3] and 2.0W/kg in a 10g average set in [2].

For ANSI / IEEE C95.1 (1g), the final SAR reading for this phone is 0.66 W/kg for head adjacent use and 0.92 W/kg for body worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal				
Location	Bottom of Transceiver				
Dimensions	Length	43 mm			
Dimensions	Width	13 mm			
Configuration]	FICA			

2.2 Device description

Serial Number		355	9080200006	05			
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	Bluetooth		
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	GFSK		
Maximum Output Power Setting	33.0 dBm	33.0 dBm	30.5 dBm	30.5 dBm	10.0 dBm		
Duty Cycle	1:8	1:8	1:8	1:8	1:1		
Transmitting Frequency Range(s)	824.2-848.8 MHz	880.2- 914.8 MHz	1710.2- 1784.8 MHz	1850.2- 1909.8 MHz	2400.0 - 2483.5 MHz		
Production Unit or Identical Prototype (47 CFR §2.908)		Ide	entical Prototypo	e			
Device Category	Portable						
RF Exposure Limits		General Population / Uncontrolled					

Mode(s) of Operation		GP 85	RS 50		GPRS 900			GPRS 1800			GPRS 1900					
Modulation Mode(s)	GMSK GMSK				GMSK				GMSK							
Maximum Output Power Setting	33.0 dBm	31.00 dBm	29.50 dBm	27.50 dBm	33.00 dBm	31.00 dBm	29.50 dBm	27.50 dBm	30.50 dBm	28.50 dBm	26.50 dBm	24.50 dBm	30.50 dBm	28.50 dBm	26.50 dBm	24.50 dBm
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)			- 848.8 Hz		880.2 - 914.8 1710.2 - 1784.8 MHz MHz				- 1909.8 Hz							

Mode(s) of Operation			GE 50		EDGE 900			EDGE 1800			EDGE 1900					
Modulation Mode(s)		8P	SK			8PSK			8PSK			8PSK				
Maximum Output Power Setting	27.50 dBm	26.50 dBm	24.50 dBm	22.50 dBm	27.50 dBm	26.50 dBm	24.50 dBm	22.50 dBm	26.50 dBm	25.50 dBm	23.50 dBm	21.50 dBm	26.50 dBm	25.50 dBm	23.50 dBm	21.50 dBm
Duty Cycle	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8	1:8	2:8	3:8	4:8
Transmitting Frequency Range(s)			- 848.8 Hz			880.2 - 914.8 MHz		1710.2 - 1784.8 MHz				1850.2 - 1909.8 MHz				

Note: Highest time-average power per band in bold type.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 5. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4W/kg to 10W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE4	661	1/28/2009
DASY4™ DAE3	434	1/28/2009
E-Field Probe ES3DV3	3124	3/17/2009
E-Field Probe ES3DV3	3115	5/12/2009
S.A.M. Phantom used for 800/900MHz	TP-1106	
S.A.M. Phantom used for 1800/1900/2450MHz	TP-1235	
S.A.M. Phantom used for 1800/1900/2450MHz	TP-1250	
Dipole Validation Kit, D900V2	78	4/22/2009
Dipole Validation Kit, D1800V2	281TR	4/22/2009
Dipole Validation Kit, D1800V2	272TR	4/22/2009
Dipole Validation Kit, D2450V2	740	4/22/2009

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04810	6/13/2009
Power Meter E4419B	GB39510961	1/24/2010
Power Sensor #1 – 9301A	US39210917	9/10/2008
Power Sensor #2 - 9301A	US39210918	9/10/2008
Network Analyzer HP8753ES	US39172529	9/10/2008
Dielectric Probe Kit HP85070C	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ε_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho=1$ g/cm3 was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f	Tissue		Diele	Dielectric Parameters				
(MHz)	type	Limits / Measured	ε _r	σ (S/m)	Temp (°C)			
	Head	Measured, 8/15/2008	41.8	0.94	19.7			
835	Heau	Recommended Limits	41.5 ±5%	$0.90 \pm 5\%$	18-25			
Bod	Dode	Measured, 8/21/2008	53.1	0.99	20.3			
	ьошу	Recommended Limits	55.2 ±5%	$0.97 \pm 5\%$	18-25			
	Head	Measured, 8/16/2008	40.1	0.97	20.0			
900	пеац	Recommended Limits	41.5 ±5%	0.97 ±5%	18-25			
	Dode	Measured, 8/21/2008	52.4	1.06	20.3			
Body		Recommended Limits	55.0 ±5%	1.05 ±5%	18-25			
		Measured, 8/17/2008	41.3	1.34	20.0			
	Head	Measured, 8/25/2008	40.8	1.33	20.0			
1750		Recommended Limits	40.1 ±5%	1.37 ±5%	18-25			
	Dode	Measured, 8/21/2008	52.1	1.43	19.8			
	Body	Recommended Limits	53.4 ±5%	1.49 ±5%	18-25			
		Measured, 8/16/2008	40.6	1.47	19.9			
		Measured, 8/19/2008	40.9	1.47	19.8			
	Head	Measured, 8/22/2008	40.3	1.46	19.8			
1880		Measured, 8/25/2008	40.2	1.47	19.8			
		Recommended Limits	40.0 ±5%	$1.40 \pm 5\%$	18-25			
	Dody	Measured , 8/21/2008	51.6	1.59	19.8			
	Body	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25			
2450	Body	Measured , 8/20/2008	47.9	1.97	20.0			
	Doug	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25			

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredien t	835MHz / 900 MHz Head	835MHz / 900 MHz Body	1800MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the DASY4TM was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated Appendix 6. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0cm ± 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric F	h	Ambient	Tissue
(MHz)	Description	1gram	$\mathbf{\epsilon}_r$	σ (S/m)	Temp (°C)	Temp (°C)
	Measured, 8/15/2008	10.7	40.8	0.98	20.3	20.1
900	Measured, 8/16/2008	10.5	40.1	0.97	20.4	20.0
700	Measured , 8/21/2008	10.6	39.8	0.96	20.4	20.3
	Recommended Limits	11.29	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, 8/16/2008	39.3	41.0	1.4	20.7	19.8
	Measured , 8/18/2008	38.7	41.3	1.38	20.6	20.0
1800	Measured , 8/21/2008	41.3	40.9	1.37	20.5	20.3
1000	Measured , 8/22/2008	38.6	40.7	1.37	20.4	20.2
	Measured , 8/25/2008	40.0	40.5	1.38	20.7	20.1
	Recommended Limits	37.7	40.0 ±5%	1.4 ±5%	18-25	18-25
2450	Measured , 8/20/2008	56.8	35.6	1.85	20.5	20.1
2430	Recommended Limits	56.5	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3115	900	5.63	8 of 9
ES3DV3	5143113	1800	4.93	8 of 9
E-Field Probe	SN3124	900	6.03	8 of 9
ES3DV3	5113124	1800	4.98	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (± 30%) at 850MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 mm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model #1-SNN5811A 780 mAH Battery

This battery was used to do all of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery.

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 8 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0cm ± 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for the head adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3115	900	5.63	8 of 9
ES3DV3	5113113	1800	4.93	8 of 9
E-Field Probe	SN3124	900	6.03	8 of 9
ES3DV3	5113124	1800	4.98	8 of 9

			Lef	t Head C	Cheek Position – S	Slider Up		
f		Conducted Output	Temp	Drift	10g SA	10g SAR value		R value
(MHz) Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
	Channel 128	32.90						
850MHz	Channel 190	32.91	20.1	-0.13	0.44	0.45	0.60	0.61
	Channel 251	32.98						
	Channel 512	30.43						
1900MHz	Channel 661	30.45	19.8	0.02	0.10	0.10	0.17	0.17
	Channel 810	30.36						

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head Cheek Position – Slider Down											
f		Conducted Output	Temp	Drift	10g SAR value		1g SAI	R value				
(MHz)	I DASCRINITAN		(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.09	0.37	0.38	0.49	0.50				
	Channel 251	32.98										
	Channel 512	30.43										
1900MHz	Channel 661	30.45	19.8	-0.06	0.18	0.18	0.28	0.29				
	Channel 810	30.36										

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position – Slider Up											
f		Conducted Output	Тетр	Drift	10g SAR value		1g SAI	1g SAR value				
(MHz)	Description	Power (dBm)	(°C)	(dB)			Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.29	0.46	0.49	0.61	0.66				
	Channel 251	32.98										
	Channel 512	30.43										
⊢	Channel 661	30.45	19.9	-0.09	0.14	0.14	0.24	0.24				
	Channel 810	30.36										

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position – Slider Down											
f		Conducted Output	Temp	Drift (dB)	10g SAR value		1g SAR value					
(MHz) Descrip	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.02	0.36	0.36	0.48	0.48				
	Channel 251	32.98										
	Channel 512	30.43										
1900MHz	Channel 661	30.45	19.8	-0.03	0.19	0.20	0.33	0.33				
	Channel 810	30.36										

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position – Slider Up											
f		Conducted Output	Temp Drift	10g SA	10g SAR value		R value					
(MHz) Description		Power (dBm)	ver (°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.05	0.21	0.22	0.29	0.29				
	Channel 251	32.98										
	Channel 512	30.43										
 -	Channel 661	30.45	19.8	0.05	0.11	0.11	0.18	0.18				
	Channel 810	30.36										

Table 5: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Left Head 15° Tilt Position – Slider Down											
f		Conducted Output	Temp	_	10g SA	R value	1g SAI	1g SAR value				
(MHz)	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.04	0.25	0.26	0.35	0.35				
	Channel 251	32.98										
	Channel 512	30.43										
-	Channel 661	30.45	19.8	-0.26	0.12	0.13	0.20	0.21				
	Channel 810	30.36										

Table 6: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Righ	t Head 1	5° Tilt Position –	Slider Up		
f		Conducted Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAR value	
(MHz) Descr	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
	Channel 128	32.90						
850MHz	Channel 190	32.91	19.7	-0.05	0.23	0.23	0.31	0.32
	Channel 251	32.98						
	Channel 512	30.43						
1900MHz	Channel 661	30.45	19.9	-0.03	0.07	0.07	0.13	0.13
	Channel 810	30.36						

Table 7: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Right Head 15° Tilt Position – Slider Down											
f		Conducted Output	Temp Dri	Drift	10g SA	10g SAR value		R value				
(MHz)	Description	Power (dBm)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	19.7	-0.07	0.24	0.24	0.32	0.33				
	Channel 251	32.98										
	Channel 512	30.43										
<u> </u>	Channel 661	30.45	19.8	-0.06	0.11	0.11	0.19	0.20				
	Channel 810	30.36										

Table 8: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 9 through 13 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test.

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 3. All other test conditions measured lower SAR values than those included in Appendix 3.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0mm. It measures 52.7cm(long) x 26.7cm(wide) x 21.2cm(tall). The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184GHz.

The tissue stimulant depth was verified to be $15.0 \,\mathrm{cm} \pm 0.5 \,\mathrm{cm}$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode operation, the phone was placed as a distance of 25mm from the phantom. For data mode operation, the phone was placed as a distance of 25mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe	SN3115	900	5.67	8 of 9
ES3DV3	5113113	1800	4.75	8 of 9
E-Field Probe	SN3124	900	5.64	8 of 9
ES3DV3	5113124	1800	5.08	8 of 9

	Body-Worn; Front of Phone 25mm from Phantom											
f		Conducted Output	Temp (°C)	Drift (dB)	10g SA	R value	1g SAI	R value				
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
	Channel 128	32.90										
850MHz	Channel 190	32.91	20.3	0	0.12	0.12	0.16	0.16				
	Channel 251	32.98										
	Channel 512	30.43										
1900MHz	Channel 661	30.45	19.9	-0.01	0.04	0.04	0.06	0.06				
	Channel 810	30.36										

Table 9: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25mm from Phantom											
f		Conducted Output	Тетр	Drift	10g SAR value		1g SAI	R value				
(MHz) Description	Power (dBm)	(°C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)					
	Channel 128	32.90										
850MHz	Channel 190	32.91	20.3	-0.03	0.18	0.18	0.24	0.24				
	Channel 251	32.98										
	Channel 512	30.43										
-	Channel 661	30.45	19.9	-0.13	0.30	0.31	0.52	0.53				
	Channel 810	30.36										

Table 10: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; GPRS Back of Phone 25mm from Phantom											
f		Conducted Output	Temp	Drift (dB)	10g SA	R value	1g SAI	R value				
(MHz) D	Description	Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
0.503.577	Channel 128	32.90										
850MHz Class 11	Channel 190	32.91	20.3	-0.06	0.22	0.23	0.31	0.31				
Citass 11	Channel 251	32.98										
40007 577	Channel 512	30.43	19.8	0.02	0.44	0.44	0.75	0.75				
Class 10	Channel 661	30.45	19.8	-0.12	0.52	0.54	0.90	0.92				
	Channel 810	30.36	19.9	-0.05	0.38	0.39	0.66	0.67				

Table 11: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn; EDGE Class 10 Back of Phone 25mm from Phantom										
f (MHz)	Description	Conducted Output		Drift (dB)	10g SAR value		1g SAR value			
		Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
850MHz	Channel 128	27.48								
	Channel 190	27.40	20.3	0.02	0.07	0.07	0.10	0.10		
	Channel 251	27.48								
1900MHz	Channel 512	26.48								
	Channel 661	26.46	19.8	-0.09	0.14	0.15	0.25	0.25		
	Channel 810	26.50								

Table 12: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Highest Extrapolated Body-Worn SAR Value Summation with Bluetooth										
f (MHz)	Description	Conducted Output	Temp	Drift (dB)	10g SAR value		1g SAR value			
		Power (dBm)	(°C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)		
GPRS Class11 25mm Back of	Channel 128									
	Channel 190	32.91	20.3	-0.06	0.22	0.23	0.31	0.31		
	Channel 251	32.98								
GPRS Class10 25mm Back of	Channel 512	30.43								
	Channel 661	30.45	19.8	-0.12	0.52	0.54	0.90	0.92		
	Channel 810									
Bluetooth Back 25mm	Channel 39	8.74	20.0	-0.17	0	0	0	0		
850+	Channel 190					0.23		0.31		
Bluetooth	Channel 39					0.23		0.51		
1900+ Bluetooth	Channel 661 Channel 39					0.54		0.92		

Table 13: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300MHz 3GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Date/Time: 8/15/2008 9:38:04 AM

Test Laboratory: Motorola

081508 900MHz GOOD -5.7%

DUT: Dipole 900 MHz; Type: D900V2; Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 078; PM1 Power = 200mW

Sim. Temp@meas = 20.1*C; Sim. Temp@SPC = 20.1*C; Room Temp @ SPC = 20.3*C

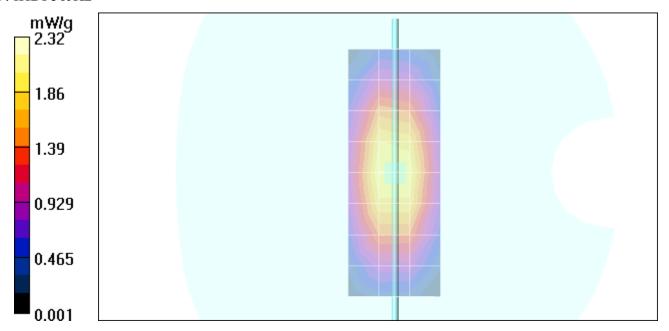
Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 40.8$; $\rho = 1000$ kg/m³

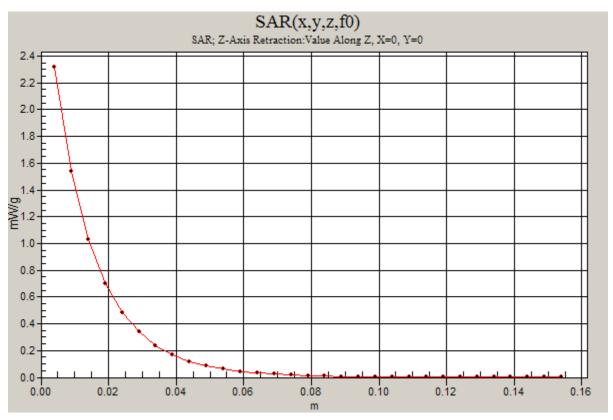
DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 2.03 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.8 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 3.20 W/kg **SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.38 mW/g**


SAR(1 g) = 2.14 mW/g; SAR(10 g) = 1.38 mW/gMaximum value of SAR (measured) = 2.33 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.8 V/m; Power Drift = -0.070 dB Peak SAR (extrapolated) = 3.15 W/kg

SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.36 mW/gMaximum value of SAR (measured) = 2.30 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.32 mW/g

FCC ID: IHDP56JK2

Date/Time: 8/16/2008 6:01:45 AM

081608 900MHz Good -6.8%

DUT: Dipole 900 MHz; Type: D900V2; Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 078; PM1 Power = 200mW; Sim.Temp@meas = 20*C; Sim.Temp@SPC = 20*C; Room Temp @ SPC = 20.4*C

Communication System: CW - Dipole; Frequency: 900 MHz; Channel Number: 4; Duty Cycle: 1:1 Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.97$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

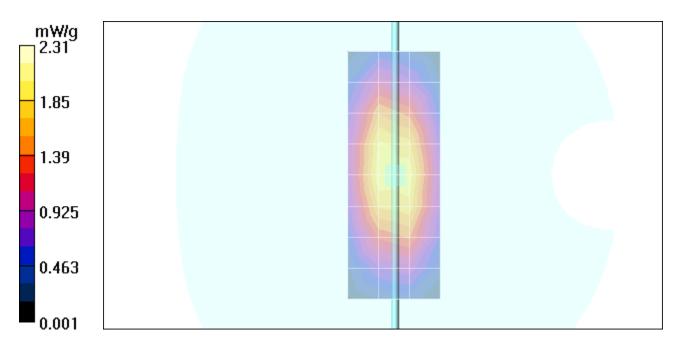
DASY4 Configuration:

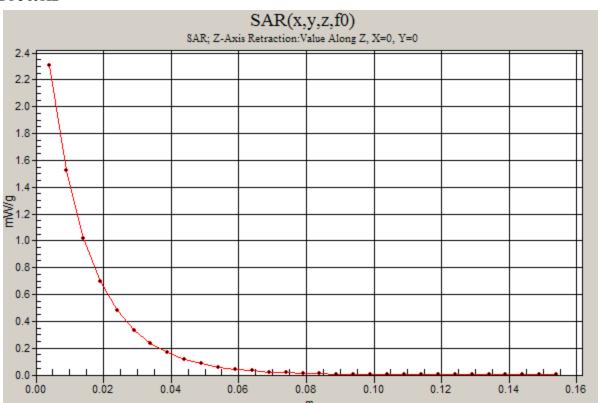
- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 1.98 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.5 V/m; Power Drift = -0.033 dB Peak SAR (extrapolated) = 3.17 W/kg

SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.36 mW/gMaximum value of SAR (measured) = 2.31 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 49.5 V/m; Power Drift = -0.033 dB


Peak SAR (extrapolated) = 3.12 W/kg

SAR(1 g) = 2.09 mW/g; SAR(10 g) = 1.35 mW/g

Maximum value of SAR (measured) = 2.27 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 8/16/2008 5:52:27 PM

081608 1800MHz Good +4.3%

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 281tr; PM1 Power = 200 mW; Sim.Temp@meas = 19.8; Sim.Temp@SPC = 19.8; Room Temp @ SPC = 20.7

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.4 \text{ mho/m}$; $\varepsilon_r = 41$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.46 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

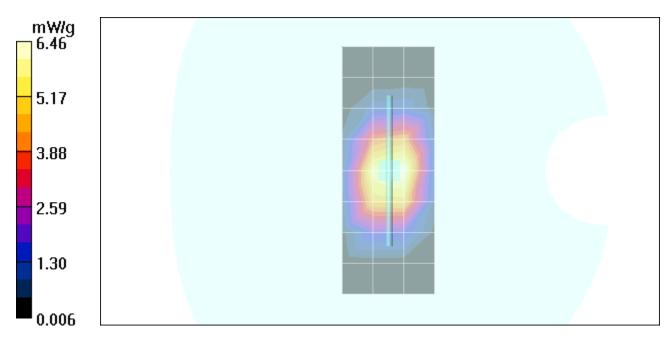
Reference Value = 81.1 V/m; Power Drift = 0.045 dB

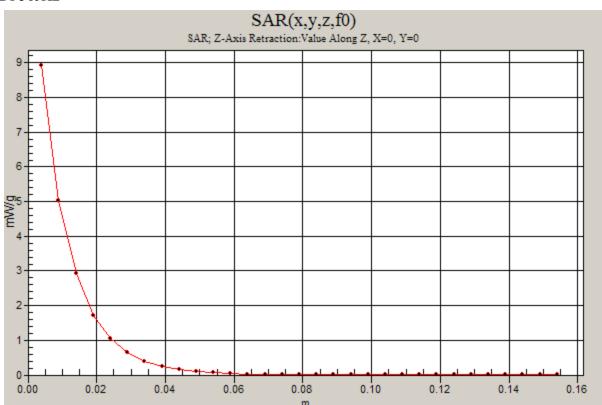
Peak SAR (extrapolated) = 14.1 W/kg

SAR(1 g) = 7.89 mW/g; SAR(10 g) = 4.18 mW/g

Maximum value of SAR (measured) = 8.88 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 81.1 V/m; Power Drift = 0.045 dB


Peak SAR (extrapolated) = 14.0 W/kg

SAR(1 g) = 7.84 mW/g; SAR(10 g) = 4.16 mW/g

Maximum value of SAR (measured) = 8.82 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.93 mW/g

Date/Time: 8/18/2008 8:52:05 AM

081808 1800MHz Good at +2.5%

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 272tr; PM1 Power =200mW; Sim.Temp@meas = 19.6*C; Sim.Temp@SPC =20*C; Room Temp @ SPC = 20.6*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.93, 4.93, 4.93); Calibrated: 5/12/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/28/2008
- Phantom: R4: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 8.02 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

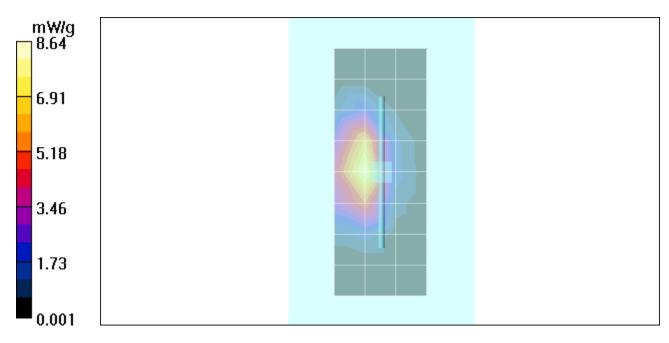
Reference Value = 55.9 V/m; Power Drift = -0.095 dB

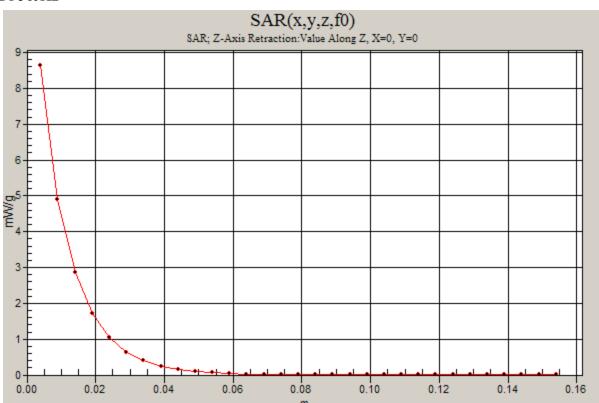
Peak SAR (extrapolated) = 13.8 W/kg

SAR(1 g) = 7.69 mW/g; SAR(10 g) = 4.08 mW/g

Maximum value of SAR (measured) = 8.42 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 55.9 V/m; Power Drift = -0.095 dB


Peak SAR (extrapolated) = 14.1 W/kg

SAR(1 g) = 7.77 mW/g; SAR(10 g) = 4.07 mW/g

Maximum value of SAR (measured) = 8.56 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 8.64 mW/g

Date/Time: 8/20/2008 10:26:07 AM

082008 2450MHz Good at +0.4%

DUT: Dipole 2450 MHz; Type: D2450V2; Procedure Notes: 2450 MHz System Performance Check / Dipole Sn# 740; PM1 Power =200mW; Sim.Temp@meas = 20.*C; Sim.Temp@SPC =20.1*C; Room Temp @ SPC = 20.5*C

Communication System: CW - Dipole; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\epsilon_r = 35.6$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.41, 4.41, 4.41); Calibrated: 5/12/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/28/2008
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

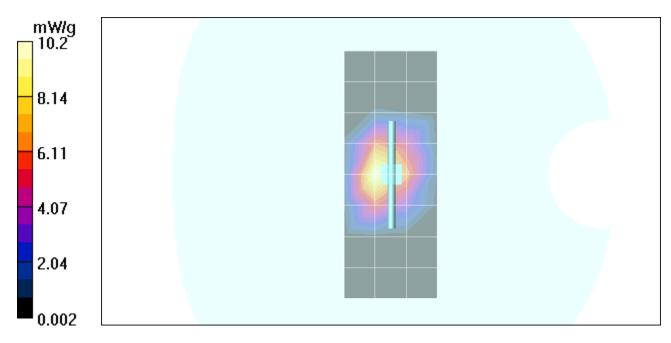
Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.2 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 82.5 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 24.4 W/kg

SAR(1 g) = 11.4 mW/g; SAR(10 g) = 5.22 mW/g

Maximum value of SAR (measured) = 12.8 mW/g


Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 82.5 V/m; Power Drift = 0.009 dB

Peak SAR (extrapolated) = 23.9 W/kg

SAR(1 g) = 11.3 mW/g; SAR(10 g) = 5.23 mW/g

Maximum value of SAR (measured) = 12.7 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 12.9 mW/g

Date/Time: 8/21/2008 9:33:49 AM

082108 900MHz Good -5.9%

DUT: Dipole 900 MHz; Type: D900V2; Procedure Notes: 900 MHz System Performance Check / Dipole Sn# 78; PM1 Power = 200 mW; Sim. Temp@meas = 20.3; Sim. Temp@SPC = 20.3; Room Temp @ SPC = 20.4

Communication System: CW - Dipole; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 900 MHz; $\sigma = 0.96 \text{ mho/m}$; $\epsilon_r = 39.8$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.11 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

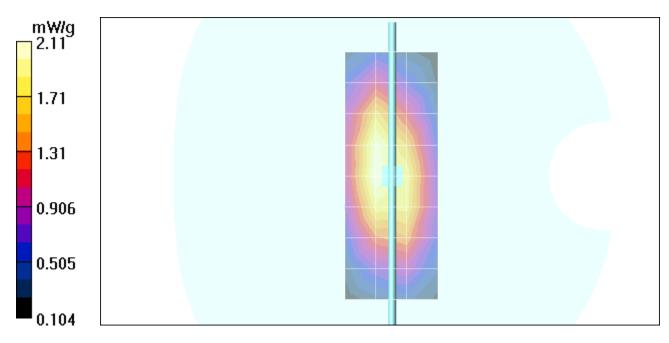
Reference Value = 49.4 V/m; Power Drift = 0.004 dB

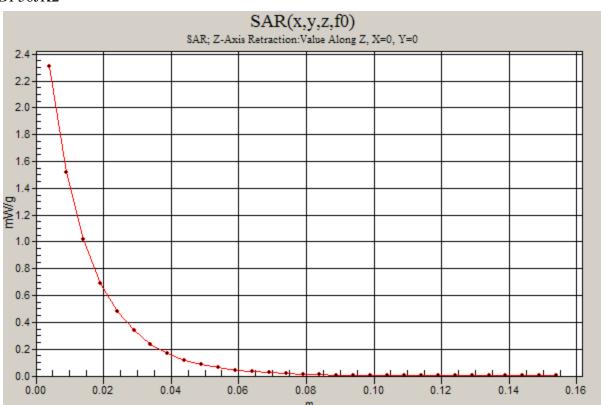
Peak SAR (extrapolated) = 3.19 W/kg

SAR(1 g) = 2.13 mW/g; SAR(10 g) = 1.37 mW/g

Maximum value of SAR (measured) = 2.32 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 49.4 V/m; Power Drift = 0.004 dB


Peak SAR (extrapolated) = 3.15 W/kg

SAR(1 g) = 2.12 mW/g; SAR(10 g) = 1.36 mW/g

Maximum value of SAR (measured) = 2.29 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 2.31 mW/g

Date/Time: 8/21/2008 8:50:11 AM

082108 1800MHz Good +9.5%

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 281TR; PM1 Power = 200 mW Sim.Temp@meas = 20.1; Sim.Temp@SPC = 20.3; Room Temp @ SPC = 20.5

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.48 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.6 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 14.8 W/kg

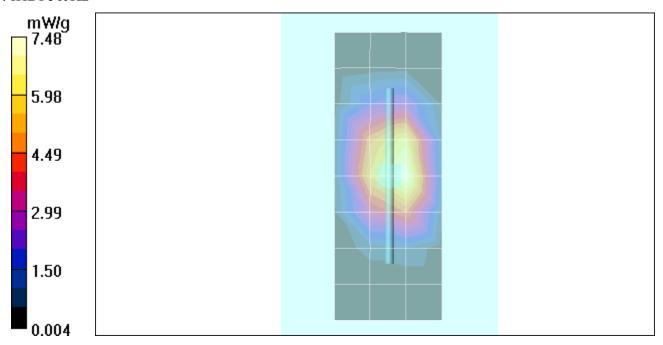
SAR(1 g) = 8.29 mW/g; SAR(10 g) = 4.4 mW/g

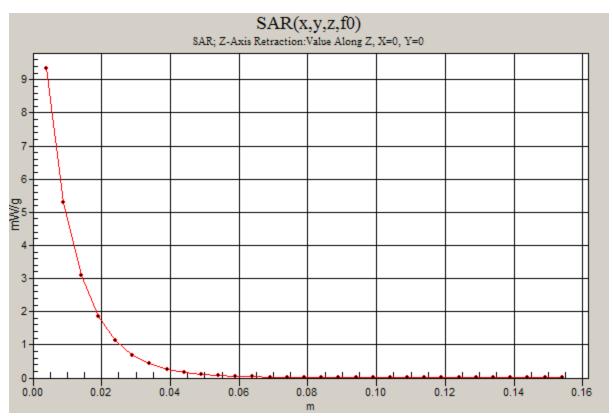
Maximum value of SAR (measured) = 9.35 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 83.6 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 14.7 W/kg


SAR(1 g) = 8.23 mW/g; SAR(10 g) = 4.37 mW/g


Maximum value of SAR (measured) = 9.08 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 9.34 mW/g

FCC ID: IHDP56JK2

Date/Time: 8/22/2008 8:36:08 AM

Test Laboratory: Motorola

082208 1800MHz Good +2.3%

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 281TR; PM1 Power = 200 mW; Sim.Temp@meas = 20; Sim.Temp@SPC = 20.2; Room Temp @ SPC = 20.4

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.37 \text{ mho/m}$; $\varepsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.66 mW/g

Daily SPC Check/0-Degree, 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 77.9 V/m; Power Drift = 0.020 dB

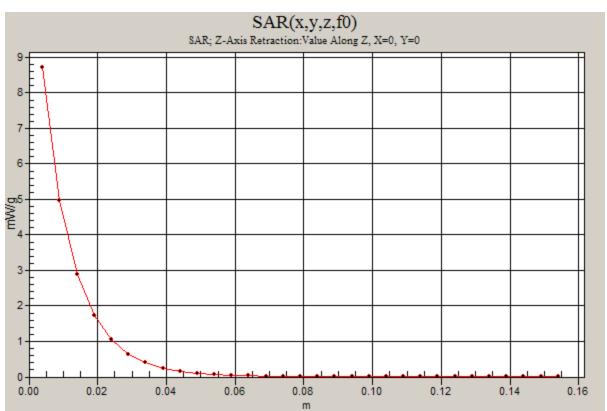
Peak SAR (extrapolated) = 13.7 W/kg

SAR(1 g) = 7.72 mW/g; SAR(10 g) = 4.11 mW/g

Maximum value of SAR (measured) = 8.72 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 77.9 V/m; Power Drift = 0.020 dB


Peak SAR (extrapolated) = 13.7 W/kg

SAR(1 g) = 7.7 mW/g; SAR(10 g) = 4.09 mW/g

Maximum value of SAR (measured) = 8.68 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Date/Time: 8/25/2008 10:19:41 AM

082508 1800MHz Good +6.1%

DUT: Dipole 1800 MHz; Type: D1800V2; Procedure Notes: 1800 MHz System Performance Check / Dipole Sn# 281tr; PM1 Power = 200mW; Sim.Temp@meas = 20.1*C; Sim.Temp@SPC = 20.1*C; Room Temp @ SPC = 20.7*C

Communication System: CW - Dipole; Frequency: 1800 MHz; Duty Cycle: 1:1

Medium: VALIDATION Only; Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ mho/m}$; $\varepsilon_r = 40.5$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Daily SPC Check/Dipole Area Scan (9x4x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 7.30 mW/g

Daily SPC Check/0-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.4 V/m; Power Drift = 0.029 dB

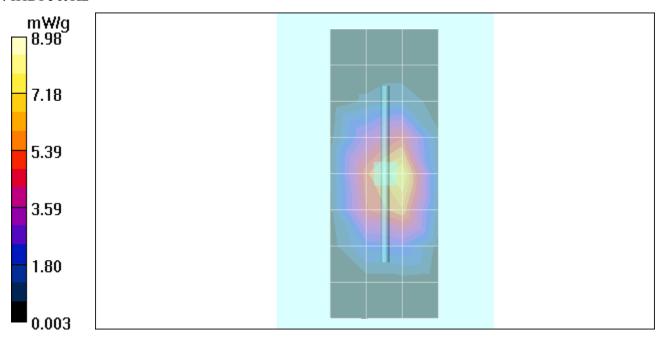
Peak SAR (extrapolated) = 14.4 W/kg

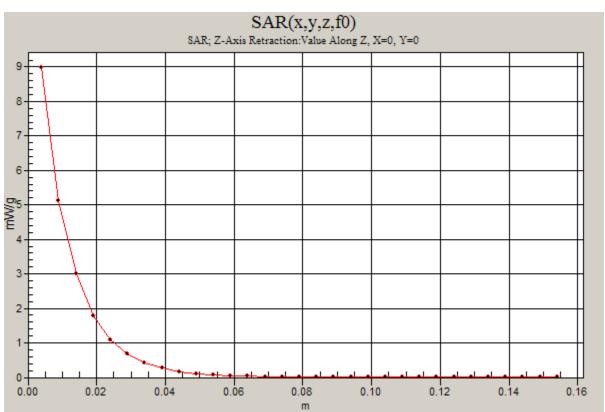
SAR(1 g) = 8.03 mW/g; SAR(10 g) = 4.25 mW/g

Maximum value of SAR (measured) = 9.07 mW/g

Daily SPC Check/90-Degree 5x5x7 Cube (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 81.4 V/m; Power Drift = 0.029 dB


Peak SAR (extrapolated) = 14.2 W/kg


SAR(1 g) = 7.97 mW/g; SAR(10 g) = 4.23 mW/g

Maximum value of SAR (measured) = 8.94 mW/g

Daily SPC Check/Z-Axis Retraction (1x1x31): Measurement grid: dx=20mm, dy=20mm, dz=5mm

Maximum value of SAR (measured) = 8.98 mW/g

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 8/15/2008 4:43:56 PM

Test Laboratory: Motorola

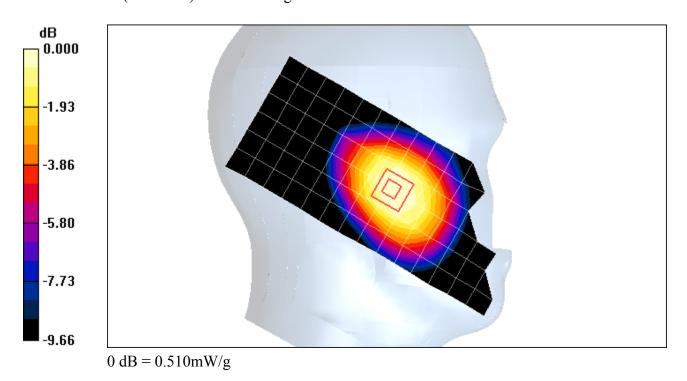
850 Cheek - Slider Down

Serial: 355908020000605; Procedure Notes: Pwr Step: 5; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): cheek; Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; ε_r

= 41.8; ρ = 1000 kg/m³; DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.519 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.1 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.576 W/kg

SAR(1 g) = 0.491 mW/g; SAR(10 g) = 0.374 mW/g

Maximum value of SAR (measured) = 0.510 mW/g

Date/Time: 8/15/2008 7:49:13 PM

Test Laboratory: Motorola

850 Cheek Slider Up

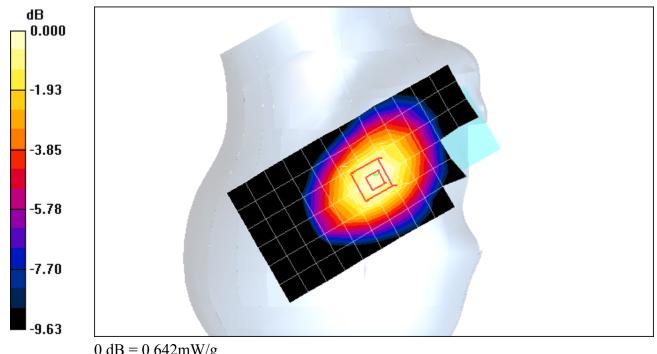
Serial: 355908020000605; Procedure Notes: Pwr Step: 5; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): cheek; Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; ε_r = 41.8: $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661: Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.654 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dv=8mm, dz=5mm

Reference Value = 25.8 V/m; Power Drift = -0.285 dB

Peak SAR (extrapolated) = 0.736 W/kg

SAR(1 g) = 0.614 mW/g; SAR(10 g) = 0.457 mW/g

Maximum value of SAR (measured) = 0.642 mW/g

0 dB = 0.642 mW/g

Date/Time: 8/15/2008 5:08:33 PM

Test Laboratory: Motorola

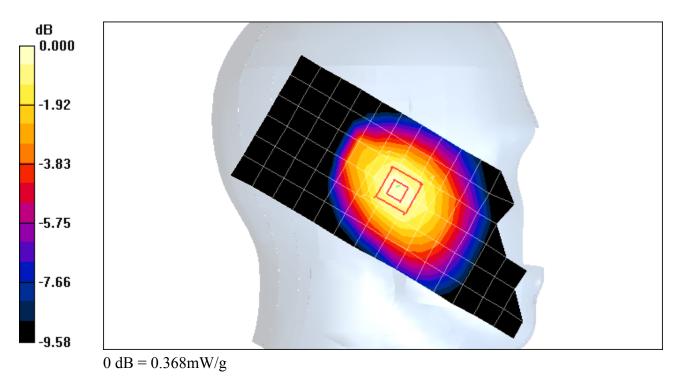
850 Tilt Slider Down

Serial: 355908020000605; Procedure Notes: Pwr Step: 5; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): rotated; Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 41.8$: $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R#_2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.356 mW/g


Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.042 dB

Peak SAR (extrapolated) = 0.439 W/kg

SAR(1 g) = 0.346 mW/g; SAR(10 g) = 0.254 mW/g

Maximum value of SAR (measured) = 0.368 mW/g

Date/Time: 8/15/2008 8:21:24 PM

Test Laboratory: Motorola

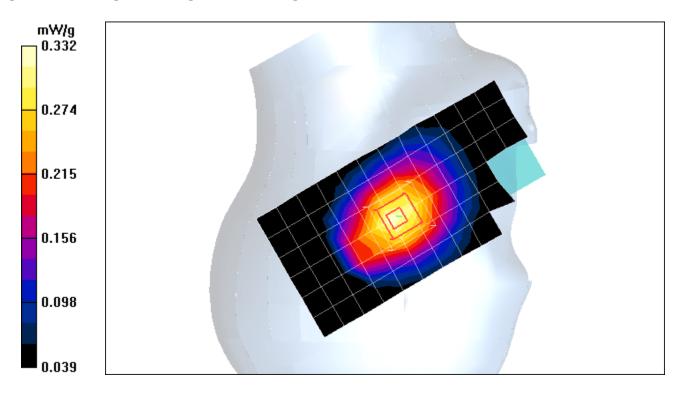
850 Tilt Slider Up

Serial: 355908020000605; Procedure Notes: Pwr Step: 5; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): rotated; Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8; Medium: Low Freq Head; Medium parameters used: f = 835 MHz; $\sigma = 0.94$ mho/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(6.03, 6.03, 6.03); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1106;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.332 mW/g


Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,

dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.394 W/kg

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.231 mW/g

Date/Time: 8/22/2008 12:07:05 PM

Test Laboratory: Motorola

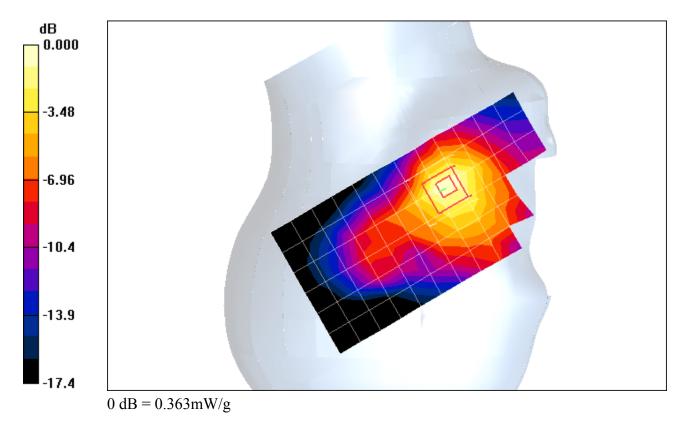
1900 Cheek Slider Down

Serial: 355908020000605; Procedure Notes: Pwr Step:0; Antenna Position: INTERNAL; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): CHEEK; Communication System: GSM 1900; Frequency: 1880 MHz; Communication System Channel Number: 661; Duty Cycle: 1:8; Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.46$ mho/m; $\epsilon_r = 40.3$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.338 mW/g


Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dv=8mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = -0.026 dB

Peak SAR (extrapolated) = 0.521 W/kg

SAR(1 g) = 0.332 mW/g; SAR(10 g) = 0.194 mW/g

Maximum value of SAR (measured) = 0.363 mW/g

Date/Time: 8/16/2008 8:06:13 PM

Test Laboratory: Motorola 1900 Cheek Slider Up

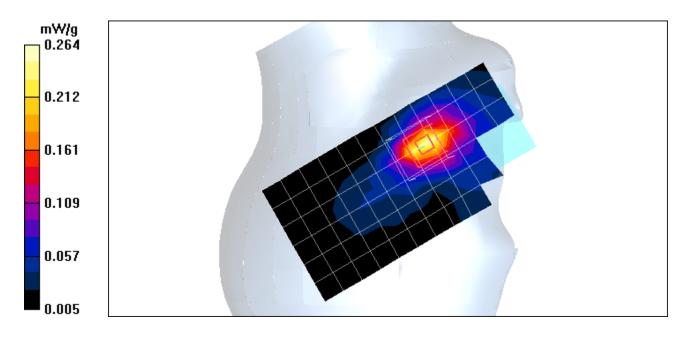
Serial: 355908020000605; Procedure Notes: Pwr Step: 0; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): cheek; Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8; Medium: Backup Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 40.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Right Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.258 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm,


dy=8mm, dz=5mm

Reference Value = 13.0 V/m; Power Drift = -0.086 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.135 mW/g

Maximum value of SAR (measured) = 0.264 mW/g

Date/Time: 8/19/2008 12:22:45 AM

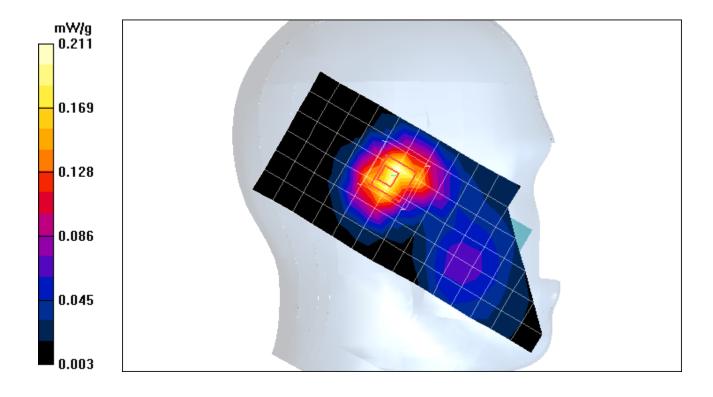
Test Laboratory: Motorola

1900 Tilt Slider Down

Serial: 355908020000605; Procedure Notes: Pwr Step: 0; Antenna Position: internal; Battery Model #: snn5811a; DEVICE POSITION tilt; Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8; Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 40.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.93, 4.93, 4.93); Calibrated: 5/12/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/28/2008
- Phantom: R#4 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1250;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.209 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.263 dB

Peak SAR (extrapolated) = 0.310 W/kg

SAR(1 g) = 0.199 mW/g; SAR(10 g) = 0.122 mW/gMaximum value of SAR (measured) = 0.211 mW/g

Date/Time: 8/25/2008 10:46:48 PM

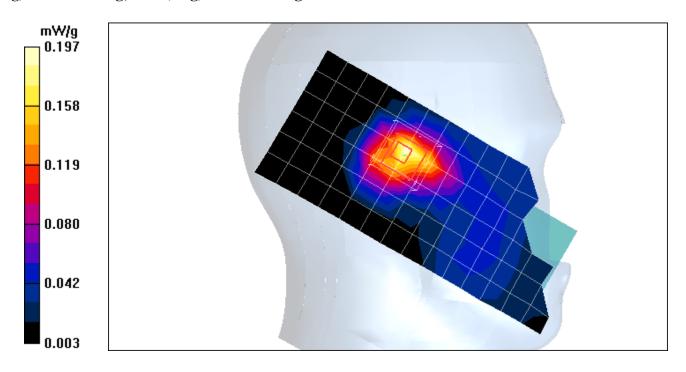
Test Laboratory: Motorola

1900 Tilt Slider Up

Serial: 355908020000605; Procedure Notes: Pwr Step: 0; Antenna Position: internal; Battery Model #: SNN5811A; DEVICE POSITION (cheek or rotated): tilted; Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8; Medium: Regular Glycol Head 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 40.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(4.98, 4.98, 4.98); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R# 2 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1235;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


Left Head Template/Area Scan - Normal (15mm) (7x17x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.197 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.1 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.184 mW/g; SAR(10 g) = 0.111 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 8/21/2008 2:15:42 PM

Test Laboratory: Motorola

850 Bodyworn

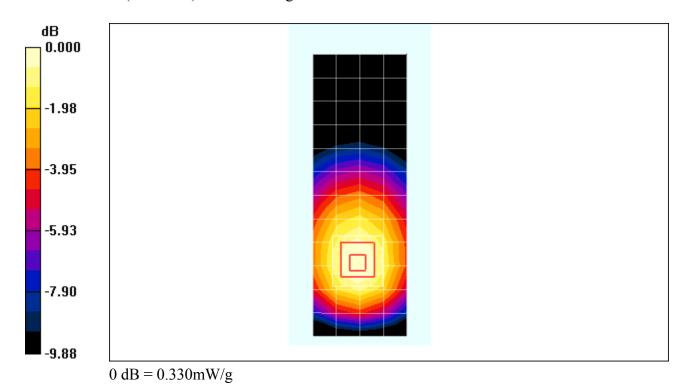
Serial: 355908020000605; Procedure Notes: Pwr Step: 05; Antenna Position: INTERNAL; Battery Model #: SNN5811A; Accessory Model # = GPRS Class 11 (3 UPLINK SLOTS) Bodyworn Back of Phone 25 mm Away From Phantom; Communication System: GPRS 850 - Class 11; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:2.67

Medium: Low Freq Body; Medium parameters used: f = 835 MHz; $\sigma = 0.99$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m 3 ; DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.64, 5.64, 5.64); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 2, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.329 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.055 dB

Peak SAR (extrapolated) = 0.404 W/kg

SAR(1 g) = 0.310 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.330 mW/g

Date/Time: 8/21/2008 7:53:02 PM

Test Laboratory: Motorola

1900 Bodyworn

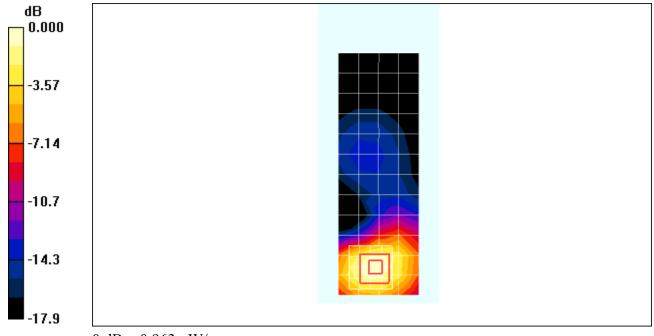
Serial: 355908020000605; Procedure Notes: Pwr Step: 00; Antenna Position: INTERNAL; Battery Model #: SNN5811A; Accessory Model # = BACK of Phone 25mm Away From Phantom; Communication System: GPRS 1900 - Class 10; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:4; Medium: Regular Glycol Body 1750/1880; Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.6$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3124; ConvF(5.08, 5.08, 5.08); Calibrated: 3/17/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn661; Calibrated: 1/28/2008
- Phantom: R2 Section 1, Amy Twin, Rev2 (23-June-04); Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.850 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.9 V/m; Power Drift = -0.120 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.895 mW/g; SAR(10 g) = 0.522 mW/g

Maximum value of SAR (measured) = 0.963 mW/g

0 dB = 0.963 mW/g

FCC ID: IHDP56JK2

Date/Time: 8/20/2008 4:05:00 PM

Test Laboratory: Motorola Bluetooth Bodyworn

Serial: 355908020000605; Procedure Notes: Antenna Position: INTERNAL; Battery Model #: SNN5811A;

Accessory Model # = back 25mm; Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

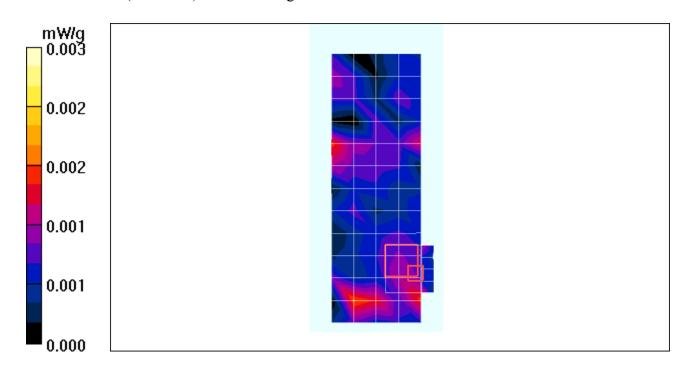
Medium: 2450 Glycol Body; Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 47.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ES3DV3 SN3115; ConvF(4.1, 4.1, 4.1); Calibrated: 5/12/2008
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn434; Calibrated: 1/28/2008
- Phantom: R4: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1): Measurement grid: dx=15mm, dv=15mm

Maximum value of SAR (measured) = 0.002 mW/g


Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.624 V/m; Power Drift = -0.165 dB

Peak SAR (extrapolated) = 0.003 W/kg

SAR(1 g) = 0.000228 mW/g; SAR(10 g) = 6.34e-005 mW/g

Maximum value of SAR (measured) = $\bar{0}.004 \text{ mW/g}$

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3115_May08

CALIBRATION CERTIFICATE ES3DV3 - SN:3115 Object QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes Calibration date: May 12, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** Cal Date (Certificate No.) Scheduled Calibration ID# Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 8-Aug-07 (No. 217-00719) Aug-08 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: S5129 (30b) 8-Aug-07 (No. 217-00720) Aug-08 Reference Probe ES3DV2 SN: 3013 Jan-09 2-Jan-08 (No. ES3-3013_Jan08) DAE4 SN: 660 3-Sep-07 (No. DAE4-660_Sep07) Sep-08 ID# Secondary Standards Check Date (in house) Scheduled Check US3642U01700 RF generator HP 8648C 4-Aug-99 (in house check Oct-07) In house check: Oct-09 US37390585 Network Analyzer HP 8753E 18-Oct-01 (in house check Oct-07) In house check: Oct-08 Name **Function** Signature Calibrated by: Katja Pokovic **Technical Manager** Approved by: Fin Bomholt **R&D Director** Issued: May 13, 2008

Certificate No: ES3-3115 May08

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConvF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization ϕ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

ES3DV3 SN:3115 May 12, 2008

Probe ES3DV3

SN:3115

Manufactured:

March 6, 2006

Last calibrated:

July 16, 2007

Repaired:

April 28, 2008

Recalibrated:

May 12, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3 SN:3115 May 12, 2008

DASY - Parameters of Probe: ES3DV3 SN:3115

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.26 ± 10.1%	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	1.32 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	96 mV
NormZ	1.20 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.9	5.9
SAR _{be} [%]	With Correction Algorithm	0.8	0.7

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

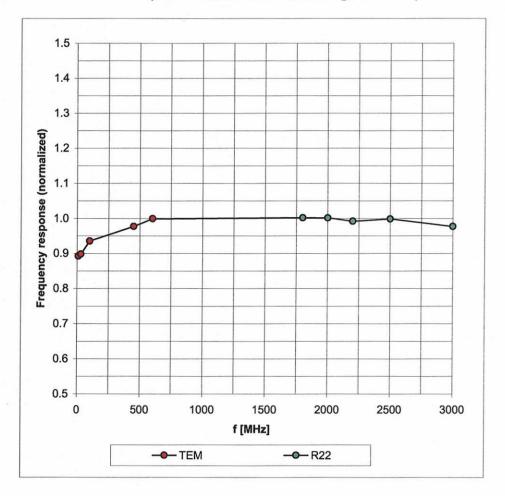
Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.5	5.6
SAR _{be} [%]	With Correction Algorithm	0.2	0.2

Sensor Offset

Probe Tip to Sensor Center

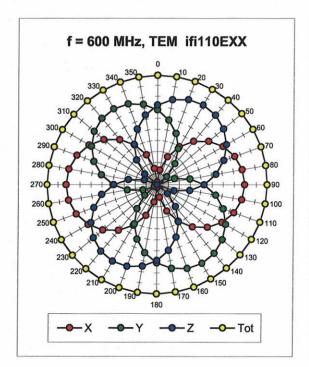
2.0 mm

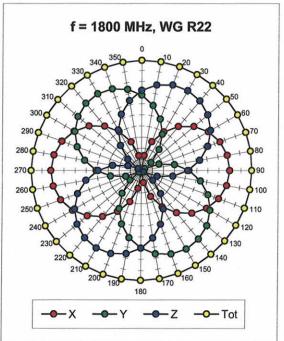
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

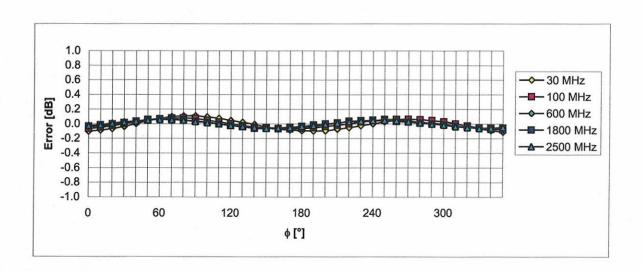

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

ES3DV3 SN:3115 May 12, 2008

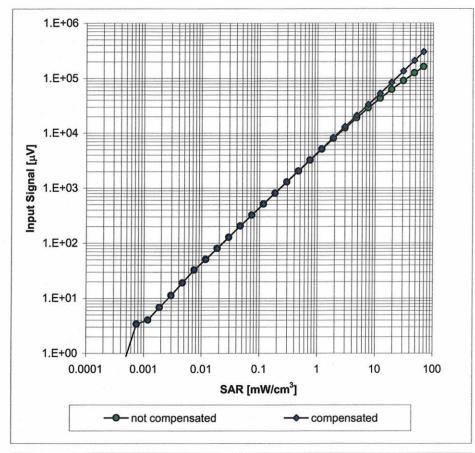

Frequency Response of E-Field

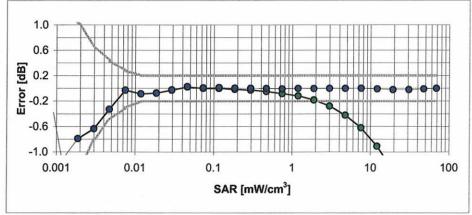

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

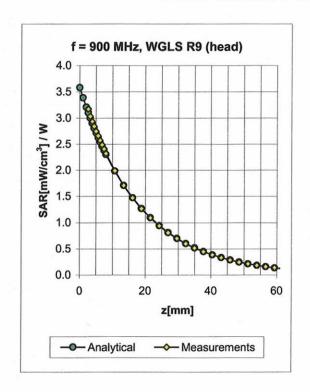
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

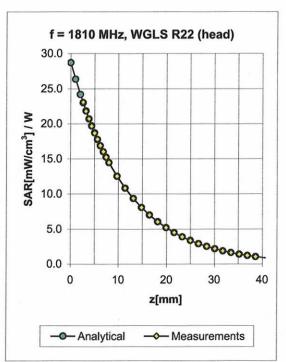




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

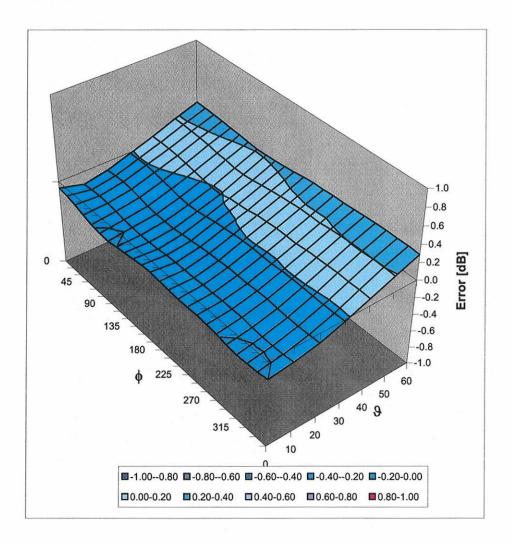
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.45	1.40	5.63 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.48	1.54	4.93 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.53	1.46	4.71 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.88	1.17	4.41 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.61	1.35	5.67 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.71	1.30	4.75 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.60	1.45	4.66 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.80	1.25	4.10 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Motorola MDb

Accreditation No.: SCS 108

Certificate No: ES3-3124_Mar08

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3124

Calibration procedure(s)

QA CAL-01.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

March 17, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41495277	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Power sensor E4412A	MY41498087	29-Mar-07 (METAS, No. 217-00670)	Mar-08
Reference 3 dB Attenuator	SN: S5054 (3c)	8-Aug-07 (METAS, No. 217-00719)	Aug-08
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-07 (METAS, No. 217-00671)	Mar-08
Reference 30 dB Attenuator	SN: S5129 (30b)	8-Aug-07 (METAS, No. 217-00720)	Aug-08
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (SPEAG, No. ES3-3013_Jan08)	Jan-09
DAE4	SN: 654	20-Apr-07 (SPEAG, No. DAE4-654_Apr07)	Apr-08
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Ela- Ul
Approved by:	Niels Kuster	Quality Managar	11
Approved by.	Meis Kuster	Quality Manager	1.120

Issued: March 17, 2008

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3124_Mar08

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z

DCP sensitivity in TSL / NORMX,y,2

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3124 Mar08 Page 2 of 9

Probe ES3DV3

SN:3124

Manufactured:

July 11, 2006

Last calibrated:

March 20, 2007

Recalibrated:

March 17, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ES3DV3 SN:3124 March 17, 2008

DASY - Parameters of Probe: ES3DV3 SN:3124

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.25 ± 10.1%	$\mu V/(V/m)^2$	DCP X	97 mV
NormY	1.32 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.33 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.1	5.9
SAR _{be} [%]	With Correction Algorithm	0.9	0.8

TSL

1810 MHz

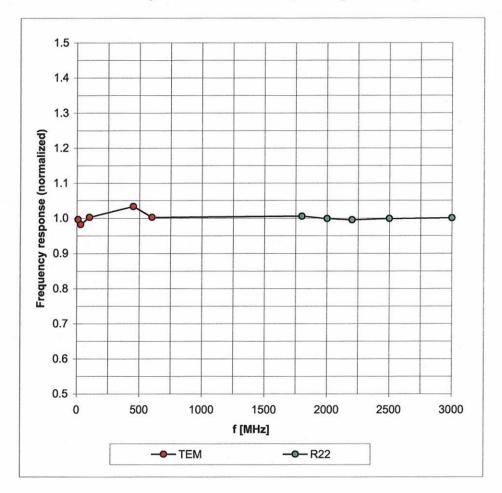
Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.0	6.0
SAR _{be} [%]	With Correction Algorithm	8.0	0.7

Sensor Offset

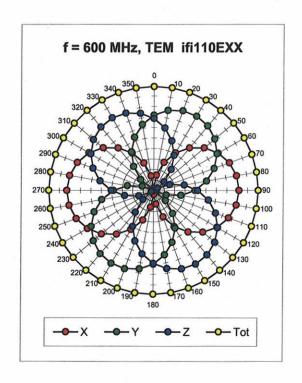
Probe Tip to Sensor Center

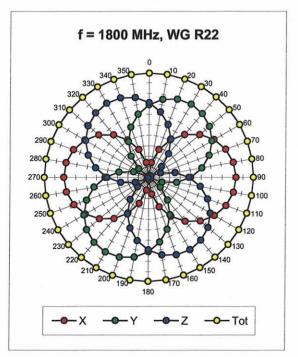
2.0 mm

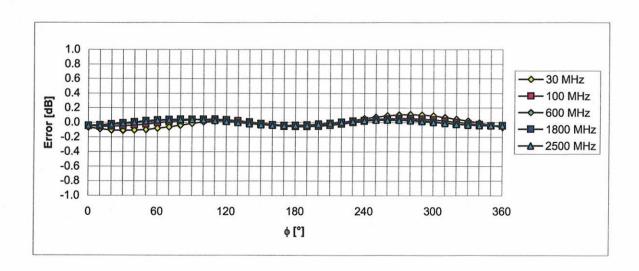

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

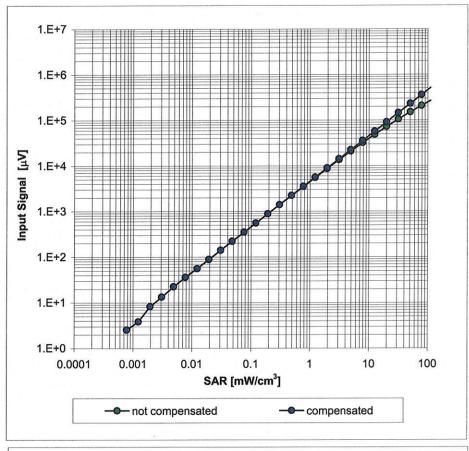

Frequency Response of E-Field

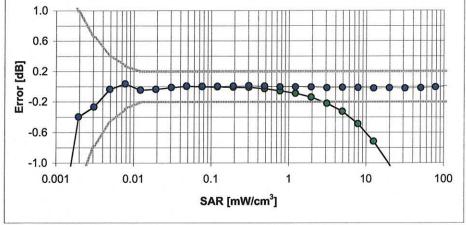

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

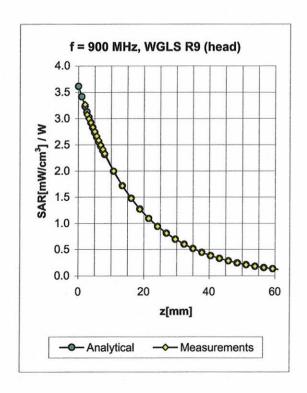
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

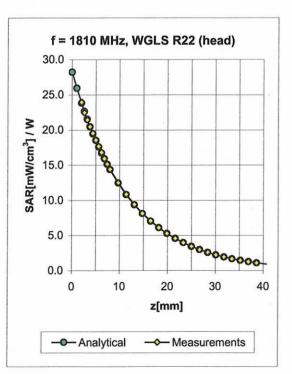




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

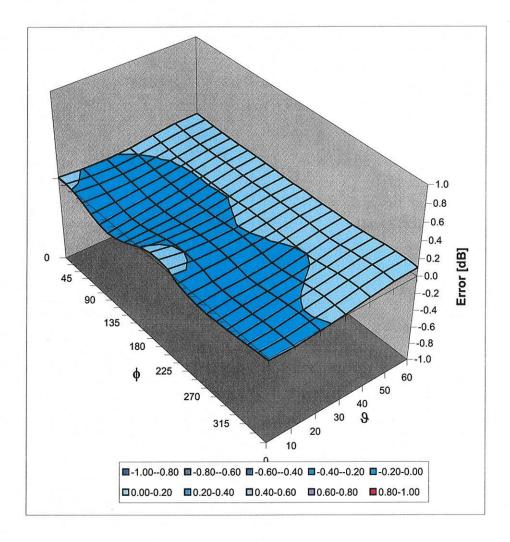
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.95	1.18	6.03 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.84	1.31	4.98 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.81	1.33	4.80 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.95	1.18	4.51 ± 11.8% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.95	1.20	5.64 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.69	1.44	5.08 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.92	1.22	4.88 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.85	1.26	4.19 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

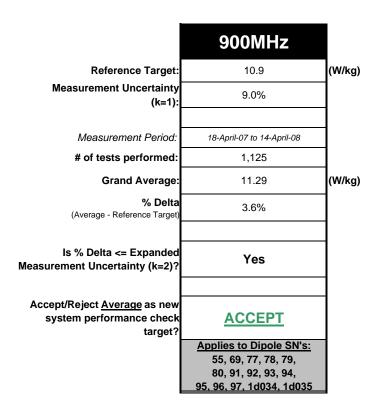
Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget


							h=	i =	
	-			e =	_		cxf	cxg	1-
<u>а</u>	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	Ci	1 g	10 g	
	1528	(- 0/)			(4 =)	(10			
Haracasta tarta a Carana a a and	section	(± %)	Dist	D:	(1 g)	g)	u_i	u_i	
Uncertainty Component				Div.			(±%)	(±%)	V _i
Measurement System	504	5 0		4.00	4	4	5 0	5 0	
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	8
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.									
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t			_						
Phantom	E.6.3	1.4	R	1.73	1	1	8.0	8.0	∞
Max. SAR Evaluation (ext.,		0.4	_	4.70		_	0.0	0.0	
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related	-			4.00	_				
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue									
Parameters	5 0 4	4.0		4.70	4	4	0.0	0.0	
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity	F 0 0	0.0	, I	4.00	0.04	0.40	0.4		
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	Egg	1.0	N.	1.00	0.6	0.40	4.4	0.0	
(measurement) Combined Standard	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	
Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1100				11.1	10.0	711
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	
(95% CONFIDENCE LEVEL)			K=Z				22.2	21.0	

Appendix 6

Dipole Characterization Certificate

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)	
900MHz	11.29	41.5 ± 5%	0.97 ± 5%	

-Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurements	is available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
Signed:	Mark Porglas	
Comments:		

Certification of System Performance Check Targets

Based on WI-0396

-Historical Data-

	1800MHz	
Reference Target:	38.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	1,028	
Grand Average:	37.7	(W/kg)
% Delta (Average - Reference Target)	-1.7%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr, 277tr, 279tr, 280tr, 281tr, 283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
1800MHz	37.7	40.0 ± 5%	1.40 ± 5%

-Approvals-				
• •	bmitted by:	Marge Kaunas	Date:	16-Apr-08
	Signed:	Marge Kawas		
C	Comments:	Spreadsheet detailing referenced historical measurement	ents is available upon reque	est.
App	proved by:	Mark Douglas	Date:	22-Apr-08
	<u>Signed:</u>	Mark Morgla		
С	omments:			

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	2450MHz	
Reference Target:	52.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	18-April-07 to 14-April-08	
# of tests performed:	77	
Grand Average:	56.5	(W/kg)
% Delta (Average - IEEE1528 Target)	7.8%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	-
	Applies to Dipole SN's: 740, 766, 767, 788, 789	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
2450MHz	56.5	39.2 ± 5%	1.80 ± 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 16-Apr-08
Signed:	Marge Kawas	
Comments:	Spreadsheet detailing referenced historical measurement	ents is available upon request.
Approved by:	Mark Douglas	Date: 22-Apr-08
Signed:	Mark Monglas	
Comments:		