

Portable Cellular Phone SAR Test Report

Test Report #: 21244-1F *Rev. A* **Date of Report:** Oct-30-2007

Date of Test: Oct-11-2007 to Oct-29-2007

FCC ID #: IHDP56HA1

Generic Name: MRQ6-334411B12

Motorola Mobile Devices Business Product Safety & Compliance Laboratory

Laboratory: 600 N. US Highway 45

Libertyville, Illinois 60048

Report Author: Thomas Nipple RF Engineer

Accreditation:

TESTING CERT #2518-02

Statement of

Compliance:

Nipple neer

This laboratory is accredited to ISO/IEC 17025-2005 to perform the following tests:

<u>Tests</u>: <u>Procedures</u>:

Electromagnetic Specific Absorption Rate IEC 62209-1

RSS-102

IEEE 1528 - 2003

FCC OET Bulletin 65 (*including Supplement C*) Australian Communications Authority Radio

Communications (Electromagnetic Radiation – Human

Exposure) Standard 2003 CENELEC EN 50360 (2001) CENELEC EN 50361 (2001) ARIB Std. T-56 (2002)

On the following products or types of products:

Wireless Communications Devices (Examples): Two Way Radios; Portable Phones (including

Cellular, Licensed Non-Broadcast and PCS); Low Frequency Readers; and Pagers

Motorola declares under its sole responsibility that the portable cellular telephone model to which this declaration relates, is in conformity with the appropriate General Population/Uncontrolled RF exposure standards, recommendations and guidelines (FCC 47 CFR §2.1093) as well as with CENELEC en50360:2001 and ANSI / IEEE C95.1. It also declares that the product was tested in accordance with IEEE 1528 / CENELEC EN62209-1 (2006), as well as other appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below:

(none)

©Motorola, Inc. 2007

This test report shall not be reproduced except in full, without written approval of the laboratory.

The results and statements contained herein relate only to the items tested. The names of individuals involved may be mentioned only in connection with the statements or results from this report.

Motorola encourages all feedback, both positive and negative, on this test report.

Table of Contents

1. Introduction	2
2. Description of the Device Under Test	2
2.1 Antenna description	2
2.2 Device description	2
3. Test Equipment Used	3
3.1 Dosimetric System	3
3.2 Additional Equipment	3
4. Electrical parameters of the tissue simulating liquid	4
5. System Accuracy Verification	5
6. Test Results	6
6.1 Head Adjacent Test Results	7
6.2 Body Worn Test Results	15
References	19
Appendix 1: SAR distribution comparison for system accuracy verification	20
Appendix 2: SAR distribution plots for Phantom Head Adjacent Use	21
Appendix 3: SAR distribution plots for Body Worn Configuration	22
Appendix 4: Probe Calibration Certificate	23
Appendix 5: Measurement Uncertainty Budget	24
Appendix 6: Photographs of the device under test	26
Appendix 7: Dipole Characterization Certificate	33

1. Introduction

The Motorola Mobile Devices Business Product Safety Laboratory has performed measurements of the maximum potential exposure to the user of the portable cellular phone covered by this test report. The Specific Absorption Rate (SAR) of this product was measured. The portable cellular phone was tested in accordance with [1], [4] and [5]. The SAR values measured for the portable cellular phone are below the maximum recommended levels of 1.6 W/kg in a 1 g average set in [3] and 2.0 W/kg in a 10 g average set in [2].

For ICNIRP (10 g), the final SAR reading for this phone is 0.56 W/kg for head adjacent use and 0.45 W/kg for body worn use. For ANSI / IEEE C95.1 (1 g), the final SAR reading for this phone is 0.94 W/kg for head adjacent use and 0.64 W/kg for body worn use. These measurements were performed using a Dasy4TM v4.7 system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich Switzerland.

2. Description of the Device Under Test

2.1 Antenna description

Type	Internal		
Location	Bottom of Phone		
Dimondiana	Length	49 mm	
Dimensions	Width 17.5 mm		
Configuration	FICA		

2.2 Device description

Serial Number	LCS04E0001, LCS04E0002						
Mode(s) of Operation	GSM 850	GSM 900	GSM 1800	GSM 1900	WCDMA 850	WCDMA 1900	Bluetooth
Modulation Mode(s)	GMSK	GMSK	GMSK	GMSK	QPSK	QPSK	GFSK
Maximum Output Power Setting	32.50 dBm	33.00 dBm	30.00 dBm	30.00 dBm	24.00 dBm	24.00 dBm	6.5 dBm
Duty Cycle	1:8	1:8	1:8	1:8	1:1	1:1	1:1
Transmitting Frequency Range(s)	824.2 - 848.8 MHz	880.2 - 914.8 MHz	1710.2-1784.8 MHz	1850.2- 909.8 MHz	826.4 - 846.6 MHz	1852.4-1907.6 MHz	2400.0-2483.5 MHz
Production Unit or Identical Prototype (47 CFR §2.908)	Identical Prototype						
Device Category	Portable						
RF Exposure Limits			General	Population / Unco	ntrolled		_

Mode(s) of Operation	GPR	S 850	GPR	S 900	GPRS	S 1800	GPRS	5 1900
Modulation	GM.	ISK	GM	ISK	GM	ISK	GM	ISK
Maximum Output Power Setting	32.50 dBm	30.60 dBm	33.00 dBm	31.10 dBm	30.00 dBm	28.30 dBm	30.00 dBm	28.30 dBm
Duty Cycle	1:8	2:8	1:8	2:8	1:8	2:8	1:8	2:8
Transmitting Frequency Range(s)		- 848.8 Hz		- 914.8 Hz		0.2 - 8 MHz		0.2 - 8 MHz

Mode(s) of Operation	EDG	E 850	EDG	E 900	EDGI	E 1800	EDGE	E 1900
Modulation	8P	SK	8P	SK	8P	SK	8P	SK
Maximum Output Power Setting	27.50 dBm	25.60 dBm	27.50 dBm	25.60 dBm	26.50 dBm	24.70 dBm	26.50 dBm	24.70 dBm
Duty Cycle	1:8	2:8	1:8	2:8	1:8	2:8	1:8	2:8
Transmitting Frequency Range(s)		- 848.8 Hz		- 914.8 Hz	-	0.2 - 8 MHz		0.2 - 8 MHz

Note: Bolded entries indicate data mode of highest time-average power per band and data mode type.

3. Test Equipment Used

3.1 Dosimetric System

The Motorola Mobile Devices Business Product Safety & Compliance Laboratory utilizes a Dosimetric Assessment System (Dasy4TM v4.7) manufactured by Schmid & Partner Engineering AG (SPEAGTM), of Zurich Switzerland. All the SAR measurements are taken within a shielded enclosure. The overall 10 g RSS uncertainty of the measurement system is $\pm 10.8\%$ (K=1) with an expanded uncertainty of $\pm 21.6\%$ (K=2). The overall 1 g RSS uncertainty of the measurement system is $\pm 11.1\%$ (K=1) with an expanded uncertainty of $\pm 22.2\%$ (K=2). The measurement uncertainty budget is given in Appendix 6. Per IEEE 1528, this uncertainty budget is applicable to the SAR range of 0.4 W/kg to 10 W/kg.

The list of calibrated equipment used for the measurements is shown in the following table.

Description	Serial Number	Cal Due Date
DASY4™ DAE V1	378	Apr-13-2008
E-Field Probe ET3DV6R	1397	Apr-24-2008
S.A.M. Phantom used for 800/900 MHz	TP-1005	
S.A.M. Phantom used for 1800/1900/2450 MHz	TP-1139	
Dipole Validation Kit, DV900V2	91	May-01-2008
Dipole Validation Kit, DV1800V2	259TR	May-01-2008
Dipole Validation Kit, DV2450V2	740	May-01-2008

3.2 Additional Equipment

Description	Serial Number	Cal Due Date
Signal Generator HP8648C	3847A04843	Jul-10-2008
Power Meter E4419B	US39250622	Jun-07-2009
Power Sensor #1 – E9301A	US39211006	Jun-20-2008
Power Sensor #2 - E9301A	US39211007	Jun-11-2008
Network Analyzer HP8753ES	US39171846	Jul-19-2008
Dielectric Probe Kit HP85070C	US99360070	

4. Electrical parameters of the tissue simulating liquid

Prior to conducting SAR measurements, the relative permittivity, ϵ_r , and the conductivity, σ , of the tissue simulating liquids were measured with a HP85070 Dielectric Probe Kit These values, along with the temperature of the simulated tissue are shown in the table below. The recommended limits for permittivity and conductivity are also shown. A mass density of $\rho = 1$ $^g/_{cm^3}$ was entered into the system in all the cases. It can be seen that the measured parameters are within tolerance of the recommended limits specified in [1] and [5].

f Tissue			Dielectric Parameters			
(MHz)	type	Limits / Measured	ϵ_r	σ (S/m)	Temp (C)	
		Measured, Oct-11-2007	42.0	0.92	20.0	
	Head	Measured, Oct-12-2007	41.2	0.91	19.8	
		Measured, Oct-22-2007	40.3	0.90	19.6	
835		Measured, Oct-25-2007	41.2	0.90	19.0	
633		Recommended Limits	41.5 ±5%	0.90 ±5%	18-25	
		Measured, Oct-16-2007	53.1	0.98	19.6	
	Body	Measured, Oct-22-2007	53.4	0.98	20.0	
		Recommended Limits	55.2 ±5%	0.97 ±5%	18-25	
		Measured, Oct-11-2007	41.3	0.98	20.0	
	Head	Measured, Oct-21-2007	40.3	0.96	20.0	
900	900 Body	Recommended Limits	41.5 ±5%	0.97 ±5%	18-25	
		Measured, Oct-16-2007	52.4	1.05	19.6	
		Recommended Limits	55.0 ±5%	1.05 ±5%	18-25	
	Head	Measured, Oct-11-2007	40.5	1.33	19.7	
		Measured, Oct-16-2007	39.2	1.33	19.7	
1750	Heau	Measured, Oct-22-2007	39.6	1.36	19.5	
1/50		Recommended Limits	40.1 ±5%	1.37 ±5%	18-25	
	Body	Measured, Oct-18-2007	52.1	1.43	19.8	
	Bouy	Recommended Limits	53.4 ±5%	1.49 ±5%	18-25	
		Measured, Oct-13-2007	39.4	1.44	19.7	
	Head	Measured, Oct-14-2007	39.9	1.47	19.7	
	Heau	Measured, Oct-22-2007	39.2	1.47	19.6	
1880		Recommended Limits	40.0 ±5%	1.40 ±5%	18-25	
		Measured, Oct-17-2007	51.5	1.58	19.8	
	Body	Measured, Oct-19-2007	51.1	1.59	19.9	
	Ū	Recommended Limits	53.3 ±5%	1.52 ±5%	18-25	
		Measured, Oct-26-2007	37.9	1.89	20.9	
	Head	Measured, Oct-29-2007	36.8	1.88	20.9	
2450		Recommended Limits	39.2 ±10%	1.80 ±5%	18-25	
2730	Dod.	Measured, Oct-29-2007	55.9	1.89	20.5	
	Body	Recommended Limits	52.7 ±10%	1.95 ±5%	18-25	

The list of ingredients and the percent composition used for the tissue simulates are indicated in the table below.

Ingredient	835 MHz / 900 MHz Head	835 MHz / 900 MHz Body	1800 MHz / 1900 MHz Head	1800 MHz / 1900 MHz Body	2450 MHz Head	2450 MHz Body
Sugar	57	44.9				
DGBE			47	30.8		30
Diacetin					51	
Water	40.45	53.06	52.62	68.8	48.75	70
Salt	1.45	0.94	0.38	0.4	0.15	
HEC	1	1				
Bact.	0.1	0.1			0.1	

5. System Accuracy Verification

A system accuracy verification of the $DASY4^{TM}$ was performed using the measurement equipment listed in Section 3.1. The daily system accuracy verification occurs within the flat section of the SAM phantom.

A SAR measurement was performed to verify the measured SAR was within $\pm 10\%$ from the target SAR indicated Appendix 7. These frequencies are within $\pm 10\%$ of the compliance test mid-band frequency as required in [1] and [5]. The test was conducted on the same days as the measurement of the DUT. Recommended limits for permittivity and conductivity, specified in [5], are shown in the table below. The obtained results from the system accuracy verification are also displayed in the table below. SAR values are normalized to 1 W forward power delivered to the dipole. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values. The distributions of SAR compare well with those of the reference measurements (see Appendix 1). The tissue stimulant depth was verified to be 15.0 cm \pm 0.5 cm. Z-axis scans showing the SAR penetration are also included in Appendix 1.

f		SAR (W/kg),	Dielectric F	Parameters	Ambient	Tissue
(MHz)	Description	1 gram	ϵ_r	σ (S/m)	Temp (C)	Temp (C)
	Measured, Oct-11-2007	11.20	41.3	0.98	20.8	20.0
	Measured, Oct-12-2007	11.075	40.4	0.97	20.7	19.1
	Measured, Oct-16-2007	10.875	39.9	0.96	20.8	19.8
900	Measured, Oct-21-2007	10.90	40.3	0.96	20.8	20.8
	Measured, Oct-22-2007	11.00	39.6	0.96	21.0	19.6
	Measured, Oct-25-2007	10.975	40.4	0.97	20.7	19.0
	Recommended Limits	11.24	41.5 ±5%	0.97 ±5%	18-25	18-25
	Measured, Oct-11-2007	36.375	40.2	1.39	20.8	19.7
	Measured, Oct-13-2007	36.125	39.8	1.35	20.8	19.6
	Measured, Oct-14-2007	37.225	40.3	1.38	20.7	19.7
	Measured, Oct-16-2007	37.40	38.9	1.38	20.8	19.7
1800	Measured, Oct-17-2007	36.00	39.2	1.36	20.8	20.0
	Measured, Oct-18-2007	36.25	39.2	1.37	20.8	20.0
	Measured, Oct-19-2007	36.20	39.0	1.38	20.7	20.0
	Measured, Oct-22-2007	36.475	39.6	1.39	21.0	19.5
	Recommended Limits	37.5	40.0 ±5%	1.4 ±5%	18-25	18-25
_	Measured, Oct-26-2007	58.00	37.9	1.89	21.0	20.9
2450	Measured, Oct-29-2007	57.75	36.8	1.88	20.8	20.7
	Recommended Limits	58.0	39.2 ±10%	1.80 ±5%	18-25	18-25

The following probe conversion factors were used on the E-Field probe(s) used for the system accuracy verification measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		900	6.25	8 of 9
E-Field Probe ET3DV6R	1397	1810	5.17	8 of 9
		2450	4.56	8 of 9

6. Test Results

The test sample was operated using an actual transmission through a base station simulator. The base station simulator was setup to the proper channel, transmitter power level and transmit mode of operation. The phone was tested in the configurations stipulated in [1], [4] and [5]. The phone was positioned into these configurations using the device holder supplied with the DASY4TM SAR measurement system The measured dielectric constant of the material used for the device holder is less than 2.9 and the loss tangent is less than 0.02 (\pm 30%) at 850 MHz. The default settings for the "coarse" and "cube" scans were chosen and used for measurements. The grid spacing of the course scan was set to 15 cm as shown in the SAR plots included in Appendix 2 and 3. Please refer to the DASY4TM manual for additional information on SAR scanning procedures and algorithms used.

The Cellular Phone model covered by this report has the following battery options: Model SNN5807A – 920 mAH Battery Model SNN5805A – 740 mAH Battery

The battery with the highest capacity is the model SNN5807A. This battery was used to do most of the SAR testing. The phone was placed in the SAR measurement system with a fully charged battery. The configuration that resulted in the highest SAR values were tested using the other batteries listed above.

Per the "Preliminary Guidance for Reviewing Applications for Certifications of 3G Devices" released on May 9, 2006, 12.2 kbps RMC and 12.2 kbps AMR modes were considered. The conducted power measurements (per 3GPP TS 34.121) for each mode are shown in the table below.

Conducted power (dBm) for WCDMA modes						
	Channel	RMC	AMR			
WCDMA	4132	23.97	23.96			
850	4180	23.97	23.95			
	4233	23.88	23.91			
WCDM	9262	23.94	24.00			
WCDMA 1900	9400	23.94	24.00			
1700	9538	23.82	23.83			

6.1 Head Adjacent Test Results

The SAR results shown in tables 1 through 13 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the simulated tissue after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The left head and right head SAR contour distributions are similar. Because of this similarity, the cheek/touch and 15° tilt test conditions with the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 2. All other test conditions measured lower SAR values than those included in Appendix 2.

The SAR measurements were performed using the SAM phantoms listed in section 3.1. Since the same phantoms and simulated tissue were used for the system accuracy verification and the device SAR measurements, the Z-axis scans included in Appendix 1 are applicable for verification of simulated tissue depth to be 15.0 cm \pm 0.5 cm.

The following probe conversion factors were used on the E-Field probe(s) used for head-adjacent measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
		900	6.25	8 of 9
E-Field Probe ET3DV6R	1397	1810	5.17	8 of 9
ET3DV6R		2450	4.56	8 of 9

	Left Head Cheek Position, Slider Extended											
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	32.50										
850 MHz	Channel 190	32.42	19.3	-0.012	0.302	0.30	0.388	0.39				
000 11112	Channel 251	32.43										
GSM	Channel 512	29.87										
1900 MHz	Channel 661	29.90	19.8	0.040	0.169	0.17	0.284	0.28				
1500 1/112	Channel 810	29.90										
WCDMA	Channel 4123	23.96										
850 MHz	Channel 4180	23.95	19.1	-0.045	0.208	0.21	0.277	0.28				
000 1/112	Channel 4233	23.91										
WCDMA	Channel 9262	24.00										
1900 MHz	Channel 9400	24.00	19.7	-0.059	0.393	0.40	0.657	0.67				
1500 MILE	Channel 9538	23.83										
Bluetooth 2450 MHz	N/A	6.5	20.9	-3.46	0.0000946	0.00	0.000535	0.00				

Table 1: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Left Head Cheek Position, Slider Retracted											
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SAR value					
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	32.50										
850 MHz	Channel 190	32.42	19.3	-0.025	0.235	0.24	0.305	0.31				
000 1,1112	Channel 251	32.43										
GSM	Channel 512	29.87										
1900 MHz	Channel 661	29.90	19.8	-0.030	0.195	0.20	0.315	0.32				
1500 MIII	Channel 810	29.90										
WCDMA	Channel 4123	23.96										
850 MHz	Channel 4180	23.95	19.1	-0.048	0.226	0.23	0.295	0.30				
050 11112	Channel 4233	23.91										
WCDMA	Channel 9262	24.00	19.7	-0.049	0.411	0.42	0.660	0.67				
1900 MHz	Channel 9400	24.00	19.7	-0.086	0.487	0.50	0.790	0.81				
1700 141112	Channel 9538	23.83	19.7	-0.193	0.540	0.56	0.895	0.94				
Bluetooth 2450 MHz	N/A	6.5	20.9	-0.939	0.00033	0.00	0.00134	0.00				

Table 2: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Right I	Head Cho	eek Position, Slid	er Extended		
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	R value
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.039	0.316	0.32	0.405	0.41
000 1/112	Channel 251	32.43						
GSM	Channel 512	29.87						
1900 MHz	Channel 661	29.90	19.9	0.188	0.0928	0.09	0.141	0.14
1900 1/112	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	19.1	-0.150	0.32	0.33	0.408	0.42
000 1/112	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
1900 MHz	Channel 9400	24.00	19.8	-0.093	0.186	0.19	0.279	0.29
1500 MILE	Channel 9538	23.83						
Bluetooth 2450 MHz	N/A	6.5	20.9	-0.627	0.0000853	0.00	0.000694	0.00

Table 3: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Right Head Cheek Position, Slider Retracted											
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SAR value					
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	32.50										
850 MHz	Channel 190	32.42	19.3	-0.082	0.231	0.24	0.297	0.30				
0001.1112	Channel 251	32.43										
GSM	Channel 512	29.87										
1900 MHz	Channel 661	29.90	19.6	0.089	0.118	0.12	0.176	0.18				
1500 MILE	Channel 810	29.90										
WCDMA	Channel 4123	23.96										
850 MHz	Channel 4180	23.95	19.1	-0.038	0.214	0.22	0.273	0.28				
OCO IVIIIZ	Channel 4233	23.91										
WCDMA	Channel 9262	24.00										
1900 MHz	Channel 9400	24.00	19.8	0.019	0.330	0.33	0.494	0.49				
1700 MILE	Channel 9538	23.83										
Bluetooth 2450 MHz	N/A	6.5	20.9	-0.735	0.0000561	0.00	0.000205	0.00				

Table 4: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

		Noted Head	Cheek 1	Position	with Battery SNI	N5805A, Slider E	xtended	
f		Conducted Output	Temp	Drift (dB)	10 g SA	R value	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.085	0.331	0.34	0.424	0.43
Right Cheek	Channel 251	32.43						
GSM	Channel 512	29.87						
1900 MHz	Channel 661	29.90	19.7	0.026	0.203	0.20	0.327	0.33
Left Cheek	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	19.6	0.320	0.341	0.34	0.437	0.44
Right Cheek	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
WCDMA	Channel 9400	24.00	20.0	-0.081	0.373	0.38	0.629	0.64
Left Cheek	Channel 9538	23.83						

Table 5: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

	Noted Head Cheek Position with Battery SNN5805A, Slider Retracted											
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	R value				
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	32.50										
850 MHz	Channel 190	32.42	19.3	-0.034	0.240	0.24	0.313	0.32				
Left Cheek	Channel 251	32.43										
GSM	Channel 512	29.87										
1900 MHz	Channel 661	29.90	19.7	0.023	0.173	0.17	0.289	0.29				
Left Cheek	Channel 810	29.90										
WCDMA	Channel 4123	23.96										
850 MHz	Channel 4180	23.95	20.0	0.012	0.216	0.22	0.276	0.28				
Left Cheek	Channel 4233	23.91										
WCDMA	Channel 9262	24.00										
1900 MHz	Channel 9400	24.00										
Left Cheek	Channel 9538	23.83	19.6	-0.108	0.46	0.47	0.771	0.79				

Table 6: SAR measurement results at the highest possible output power, measured in a head cheek position against the ICNIRP and ANSI SAR Limit.

			Left Ho	ead 15° 7	Γilt Position, Slid	er Extended		
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.072	0.188	0.19	0.251	0.26
OCO IVIIIZ	Channel 251	32.43						
GSM	Channel 512	29.87						
1900 MHz	Channel 661	29.90	19.8	0.003	0.085	0.09	0.132	0.13
19001/1112	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	19.1	-0.041	0.219	0.22	0.290	0.29
0001/1112	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
1900 MHz	Channel 9400	24.00	19.7	-0.021	0.196	0.20	0.304	0.31
2500 14112	Channel 9538	23.83						
Bluetooth 2450 MHz	N/A	6.5	20.9	0.665	0.000409	0.00	0.00155	0.00

Table 7: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Left He	ead 15° T	Tilt Position, Slid	er Retracted			
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SA	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
GSM	Channel 128	32.50							
850 MHz	Channel 190	32.42	19.3	0.010	0.172	0.17	0.23	0.23	
GE U IVIII	Channel 251	32.43							
GSM	Channel 512	29.87							
1900 MHz	Channel 661	29.90	19.8	-0.003	0.102	0.10	0.159	0.16	
1700 141112	Channel 810	29.90							
WCDMA	Channel 4123	23.96							
850 MHz	Channel 4180	23.95	19.1	0.030	0.180	0.18	0.237	0.24	
050 WIIIZ	Channel 4233	23.91							
WCDMA	Channel 9262	24.00							
1900 MHz	Channel 9400	24.00	19.8	-0.027	0.222	0.22	0.343	0.35	
1700 WIIIZ	Channel 9538	23.83							
Bluetooth 2450 MHz	N/A	6.5	20.9	0.466	0.000611	0.00	0.002	0.00	

Table 8: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Right H	lead 15°	Tilt Position, Slic	ler Extended		
f		Conducted Output	Temp Drift		10 g SA	R value	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.027	0.200	0.20	0.268	0.27
OCO IVIIIZ	Channel 251	32.43						
GSM	Channel 512	29.87						
1900 MHz	Channel 661	29.90	19.9	-0.004	0.0912	0.09	0.147	0.15
19001/1112	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	19.1	-0.051	0.209	0.21	0.278	0.28
0001/1112	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
1900 MHz	Channel 9400	24.00	19.8	0.058	0.210	0.21	0.339	0.34
1500 14112	Channel 9538	23.83						
Bluetooth 2450 MHz	N/A	6.5	20.8	-0.558	0.000296	0.00	0.00104	0.00

Table 9: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

			Right H	ead 15°	Tilt Position, Slic	ler Retracted		
f		Conducted Output	Temp	Drift	10 g SA	R value	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.025	0.167	0.17	0.222	0.22
000 IMIL	Channel 251	32.43						
GSM	Channel 512	29.87						
1900 MHz	Channel 661	29.90	19.6	-0.013	0.0997	0.10	0.159	0.16
1900 MIIIZ	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	19.1	-0.027	0.172	0.17	0.229	0.23
050 WHIZ	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
1900 MHz	Channel 9400	24.00	19.8	-0.028	0.238	0.24	0.387	0.39
1700 WIIIZ	Channel 9538	23.83						
Bluetooth 2450 MHz	N/A	6.5	20.9	0.013	0.0000494	0.00	0.000296	0.00

Table 10: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

		Noted Head	15° Tilt	Position	with Battery SN	N5805A, Slider E	Extended	
f		Conducted Output	Temp	Drift (dB)	10 g SA	R value	1 g SAR value	
(MHz)	Description	Power (dBm)	(C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)
GSM	Channel 128	32.50						
850 MHz	Channel 190	32.42	19.3	-0.137	0.208	0.21	0.278	0.29
Right Tilt	Channel 251	32.43						
GSM	Channel 512	29.87						
1800 MHz	Channel 661	29.90	19.6	-0.095	0.096	0.10	0.156	0.16
Right Tilt	Channel 810	29.90						
WCDMA	Channel 4123	23.96						
850 MHz	Channel 4180	23.95	20.0	0.006	0.201	0.20	0.266	0.27
Left Tilt	Channel 4233	23.91						
WCDMA	Channel 9262	24.00						
1900 MHz	Channel 9400	24.00	20.0	-0.056	0.200	0.20	0.312	0.32
Right Tilt	Channel 9538	23.83						

Table 11: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Noted Head 15° Tilt Position with Battery SNN5805A, Slider Retracted												
f		Conducted Output	Тетр	_	10 g SA	R value	1 g SAR value						
(MHz)	Description	Power (dBm)	(C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)					
GSM	Channel 128	32.50											
850 MHz	Channel 190	32.42	19.3	-0.078	0.186	0.19	0.247	0.25					
Left Tilt	Channel 251	32.43											
GSM	Channel 512	29.87											
1900 MHz	Channel 661	29.90	19.7	0.035	0.105	0.11	0.172	0.17					
Right Tilt	Channel 810	29.90											
WCDMA	Channel 4123	23.96											
850 MHz	Channel 4180	23.95	20.0	-0.097	0.168	0.17	0.223	0.23					
Left Tilt	Channel 4233	23.91											
WCDMA	Channel 9262	24.00											
1900 MHz	Channel 9400	24.00	20.0	-0.046	0.239	0.24	0.378	0.38					
Right Tilt	Channel 9538	23.83											

Table 12: SAR measurement results at the highest possible output power, measured in a head 15° Tilt position against the ICNIRP and ANSI SAR Limit.

	Highest Extra	apolated SAR	Values (inclu	ding Bluetoot	h summation)		
0		į	10 g SAR valu	2		1 g SAR value	•
f (MHz)	Description	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)
GSM 850 MHz	Right Head Cheek with Battery SNN5805A	0.34	0.00	0.34	0.43	0.00	0.43
GSM 1900 MHz	Left Head Cheek with Battery SNN5805A	0.20	0.00	0.20	0.33	0.00	0.33
WCDMA 850 MHz	Right Head Cheek with Battery SNN5805A	0.34	0.00	0.34	0.44	0.00	0.44
WCDMA 1900 MHz	Left Head Cheek with Battery SNN5807A	0.56	0.00	0.56	0.94	0.00	0.94

Table 13: SAR measurement results at the highest possible output power, calculated for the head position against the ICNIRP and ANSI SAR Limit.

6.2 Body Worn Test Results

The SAR results shown in tables 14 through 20 are maximum SAR values averaged over 1 gram of phantom tissue, to demonstrate compliance to [3] and also over 10 grams of phantom tissue, to demonstrate compliance to the [6]. Also shown are the measured conducted output power levels, the temperature of the test facility during the test, the temperature of the tissue simulate after the test, the measured drift and the extrapolated SAR. The exact method of extrapolation is New SAR = Old SAR * 10^(-drift/10). The SAR reported at the end of the measurement process by the DASY4TM measurement system can be scaled up by the measured drift to determine the SAR at the beginning of the measurement process. This is the most conservative SAR because it corresponds to the average output power at the beginning of the SAR test. This extrapolation has been done because when the DUT is operating properly it may exhibit a slump in radiated power and SAR over time. This is verified by measuring the SAR drift after the test. Note that 800 MHz digital mode SAR measurements were performed in accordance with [4].

The test conditions that produced the highest SAR values in each band are indicated as bold numbers in the following tables and are included in Appendix 4. All other test conditions measured lower SAR values than those included in Appendix 4.

A "flat" phantom was for the body-worn tests. This "flat" phantom is made out of 1" thick natural High Density Polyethylene with a thickness at the bottom equal to 2.0 mm. It measures $52.7 \text{ cm}(\log) \times 26.7 \text{ cm}(\text{wide}) \times 21.2 \text{ cm}(\text{tall})$. The measured dielectric constant of the material used is less than 2.3 and the loss tangent is less than 0.0046 all the way up to 2.184 GHz.

The tissue stimulant depth was verified to be $15.0~\rm cm \pm 0.5~\rm cm$. The same device holder described in section 6 was used for positioning the phone. The functional accessories were divided into two categories, the ones with metal components and the ones with non-metal components. For non-metallic component accessories', testing was performed on the accessory that displayed the closest proximity to the flat phantom. Each metallic component accessory, if any, was checked for uniqueness of metal component so that each is tested with the device. If multiple accessories shared an identical metal component, only the accessory that dictates the closest spacing to the body was tested. In addition to accessory testing, the cellular phone was tested with the front and back of the phone facing the phantom. For voice mode and data mode operation, the phone was placed at a distance of 25 mm from the phantom. The cellular phone was tested with a headset connected to the device for all body-worn SAR measurements.

There is one Body-Worn Accessories available for this phone: A Plastic Holster and Belt Clip: SYN2314A

The plastic holster causes closer proximity and does differ in metal components, and was used for the SAR measurements where noted.

The following probe conversion factors were used on the E-Field probe(s) used for the body worn measurements:

Description	Serial Number	f (MHz)	Conversion Factor	Cal Cert pg #
E-Field Probe ET3DV6R		900	6.04	8 of 9
	1397	1810	4.83	8 of 9
		2450	4.18	8 of 9

	Body-Worn; Front of Phone 25 mm from Phantom												
f		Conducted Output	Тетр	Drift	10 g SA	R value	1 g SAR value						
(MHz)	Description	Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)					
GSM	Channel 128	32.50											
850 MHz	Channel 190	32.42	19.1	-0.076	0.0929	0.09	0.123	0.13					
050 11112	Channel 251	32.43											
GSM	Channel 512	29.87											
1900 MHz	Channel 661	29.90	19.9	-0.003	0.0286	0.03	0.0437	0.04					
1500 1/112	Channel 810	29.90											
WCDMA	Channel 4123	23.96											
850 MHz	Channel 4180	23.95	20.0	-0.064	0.114	0.12	0.151	0.15					
000 1/112	Channel 4233	23.91											
WCDMA	Channel 9262	24.00											
1900 MHz	Channel 9400	24.00	19.6	-0.087	0.0776	0.08	0.117	0.12					
1500 MILE	Channel 9538	23.83											
Bluetooth 2450 MHz	N/A	6.5	20.8	1.42	0.000799	0.00	0.000143	0.00					

Table 14: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn; Back of Phone 25 mm from Phantom											
f		Conducted Output	Temp	Drift (dB)	10 g SA	R value	1 g SAR value					
(MHz)	Description	Power (dBm)	(C)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	32.50										
850 MHz	Channel 190	32.42	19.7	-0.044	0.14	0.14	0.186	0.19				
050 MHZ	Channel 251	32.43										
GSM	Channel 512	29.87										
1900 MHz	Channel 661	29.90	19.8	-0.074	0.124	0.13	0.205	0.21				
1900 MILE	Channel 810	29.90										
WCDMA	Channel 4123	23.96										
850 MHz	Channel 4180	23.95	20.0	-0.053	0.211	0.21	0.283	0.29				
050 MHZ	Channel 4233	23.91										
WCDMA	Channel 9262	24.00										
1900 MHz	Channel 9400	24.00	19.9	-0.118	0.296	0.30	0.487	0.50				
1700 141112	Channel 9538	23.83										
Bluetooth 2450 MHz	N/A	6.5	20.5	-1.60	0.00022	0.00	0.00125	0.00				

Table 15: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Body-Worn with GPRS Class 10 Mode; Back of Phone 25 mm from Phantom											
f (MHz)	Description	Conducted Output Temp		Drift	10 g SA	R value	1 g SAR value					
		Power (dBm)	(C) (dB)		Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)				
GSM	Channel 128	30.67										
850 MHz	Channel 190	30.60	19.7	-0.031	0.245	0.25	0.321	0.32				
030 MIIZ	Channel 251	30.61										
GSM	Channel 512	28.35										
1900 MHz	Channel 661	28.30	19.8	-0.047	0.251	0.25	0.415	0.42				
1900 MIIIZ	Channel 810	28.27										

Table 16: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

Body-Worn with EDGE Class 10 Mode; Back of Phone 25 mm from Phantom											
f (MHz)	Description	Conducted Output Ter	Temp	Drift	10 g SA	R value	1 g SAR value				
		Power (dBm)	(C)	(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)			
CCM	Channel 128	25.58									
GSM 850 MHz	Channel 190	25.57	19.1	-0.046	0.0743	0.08	0.0994	0.10			
030 MIIZ	Channel 251	25.62									
CCM	Channel 512	24.75									
GSM 1900 MHz	Channel 661	24.67	19.8	-0.056	0.076	0.08	0.126	0.13			
1900 WIIIZ	Channel 810	24.78									

Table 17: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

		Body-Wo	rn; High	est-SAR	Configuration w	ith Battery SNN:	5805A		
f		Conducted Output	Temp (C)	Drift (dB)	10 g SA	R value	1 g SAR value		
(MHz)	Description	Power (dBm)			Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
GSM	Channel 128	32.50							
850 MHz	Channel 190	32.42	19.1	-0.107	0.363	0.37	0.489	0.50	
050 MIIZ	Channel 251	32.43							
GSM	Channel 512	29.87							
1900 MHz	Channel 661	29.90	19.8	-0.045	0.254	0.26	0.42	0.42	
1500 MIIIZ	Channel 810	29.90							
WCDMA	Channel 4123	23.96							
850 MHz	Channel 4180	23.95	20.0	-0.049	0.213	0.22	0.285	0.29	
050 MIIZ	Channel 4233	23.91							
WCDMA	Channel 9262	24.00							
1900 MHz	Channel 9400	24.00	19.6	-0.205	0.281	0.29	0.461	0.48	
1700 MIIIZ	Channel 9538	23.83							

Table 18: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

			Body-V	Worn wit	th Plastic Holster	SYN2314A			
f		Conducted Output	Temp I	Drift	10 g SA	R value	1 g SAR value		
(MHz)	Description	Power (dBm)		(dB)	Measured (W/kg)	Extrapolated (W/kg)	Measured (W/kg)	Extrapolated (W/kg)	
GSM	Channel 128	32.50							
850 MHz	Channel 190	32.42	19.8	-0.080	0.391	0.40	0.53	0.54	
030 MHZ	Channel 251	32.43							
GSM	Channel 512	29.87							
1900 MHz	Channel 661	29.90	19.8	-0.049	0.187	0.19	0.324	0.33	
1900 1/112	Channel 810	29.90							
WCDMA	Channel 4123	23.96							
850 MHz	Channel 4180	23.95	20.0	0.039	0.449	0.45	0.607	0.61	
OCO IVIIIZ	Channel 4233	23.91							
WCDMA	Channel 9262	24.00							
1900 MHz	Channel 9400	24.00	20.0	-0.139	0.368	0.38	0.621	0.64	
1700 141112	Channel 9538	23.83							
Bluetooth 2450 MHz	N/A	6.5	20.5	-0.937	0.000263	0.00	0.00108	0.00	

Table 19: SAR measurement results at the highest possible output power, measured in a body-worn position against the ICNIRP and ANSI SAR Limit.

	Highest of Ext	rapolated SA	R Values (incl	uding Bluetoo	oth summation	n)	
0		į	10 g SAR valu	2		1 g SAR value	
f (MHz)	Description	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)	Original Measurement (W/kg)	Bluetooth Measurement (W/kg)	Summation (W/kg)
GSM 850 MHz	Body Worn with Holster SYN2314A	0.40	0.00	0.40	0.54	0.00	0.54
GSM 1900 MHz	Body Worn, GPRS Class 10, with Battery SNN5805A	0.26	0.00	0.26	0.42	0.00	0.42
WCDMA 850 MHz	Body Worn with Holster SYN2314A	0.45	0.00	0.45	0.61	0.00	0.61
WCDMA 1900 MHz	Body Worn with Holster SYN2314A	0.38	0.00	0.38	0.64	0.00	0.64

Table 20: SAR measurement results at the highest possible output power, calculated for the body position against the ICNIRP and ANSI SAR Limit.

References

- [1] CENELEC, en62209-1:2006 "Human Exposure to Radio Frequency Fields From Hand Held and Body Mounted Wireless Communication Devices Human Models, Instrumentation, and Procedures"
- [2] CENELEC, en50360:2001 "Product standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz 3 GHz)".
- [3] ANSI / IEEE, C95.1 1999 Edition "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz"
- [4] FCC OET Bulletin 65 Supplement C 01-01
- [5] IEEE 1528 2003 Edition "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques"
- [6] ICNIRP Guidelines "Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz)"

Appendix 1

SAR distribution comparison for the system accuracy verification

Appendix 2

SAR distribution plots for Phantom Head Adjacent Use

Date/Time: 10/11/2007 11:24:04 PM

Test Laboratory: Motorola - GSM 850 Cheek, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

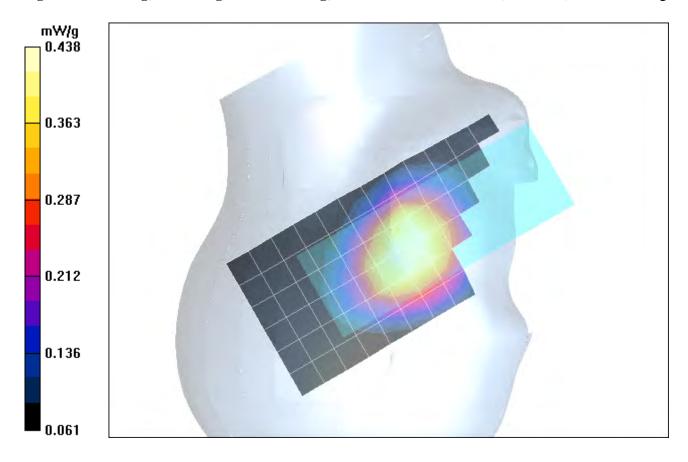
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.446 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.6 V/m; Power Drift = -0.085 dB; Peak SAR (extrapolated) = 0.503 W/kg

SAR(1 g) = 0.424 mW/g; SAR(10 g) = 0.331 mW/g; Maximum value of SAR (measured) = 0.438 mW/g

Date/Time: 10/12/2007 12:19:03 AM

Test Laboratory: Motorola - GSM 850 Cheek, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

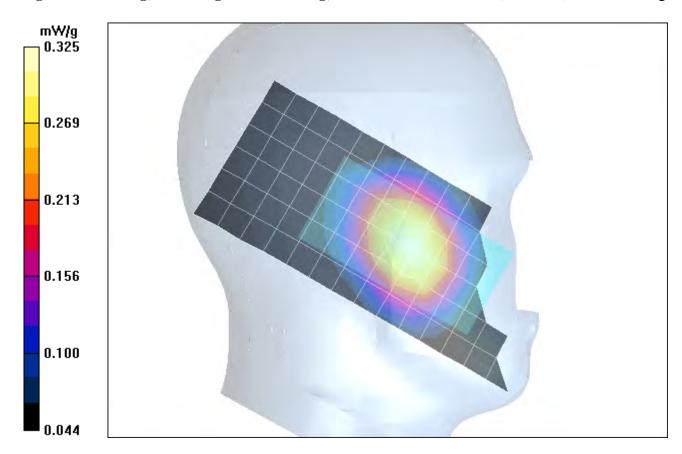
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.329 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.1 V/m; Power Drift = -0.034 dB; Peak SAR (extrapolated) = 0.379 W/kg

SAR(1 g) = 0.313 mW/g; SAR(10 g) = 0.240 mW/g; Maximum value of SAR (measured) = 0.325 mW/g

Date/Time: 10/14/2007 6:46:20 PM

Test Laboratory: Motorola - GSM 1900 Cheek, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

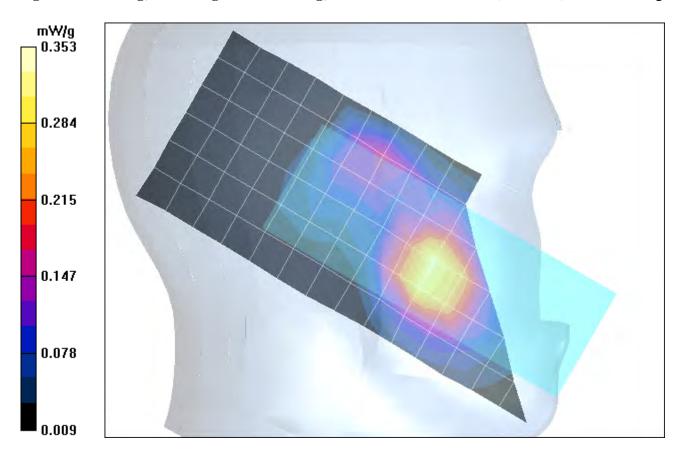
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.318 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = 0.026 dB; Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.327 mW/g; SAR(10 g) = 0.203 mW/g; Maximum value of SAR (measured) = 0.353 mW/g

Date/Time: 10/13/2007 9:43:01 PM

Test Laboratory: Motorola - GSM 1900 Cheek, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

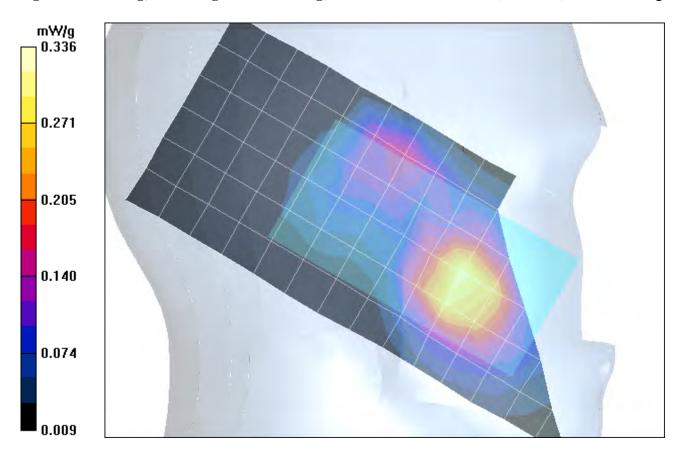
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ mho/m; $\varepsilon_r = 39.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.305 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.0 V/m; Power Drift = -0.030 dB; Peak SAR (extrapolated) = 0.452 W/kg

SAR(1 g) = 0.315 mW/g; SAR(10 g) = 0.195 mW/g; Maximum value of SAR (measured) = 0.336 mW/g

Date/Time: 10/25/2007 9:30:02 AM

Test Laboratory: Motorola - WCDMA 850 Cheek, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All bits Up; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Channel Number: 4180; Duty Cycle: 1:1

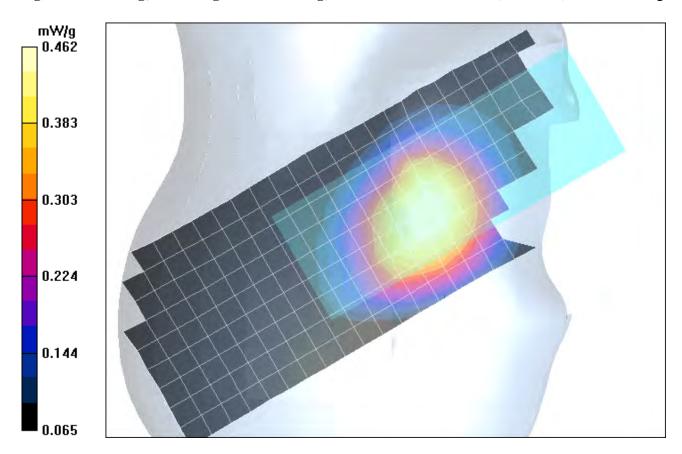
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Sugar SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal Extended (10mm) (10x25x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.473 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.1 V/m; Power Drift = 0.320 dB; Peak SAR (extrapolated) = 0.536 W/kg

SAR(1 g) = 0.437 mW/g; SAR(10 g) = 0.341 mW/g; Maximum value of SAR (measured) = 0.462 mW/g

Date/Time: 10/12/2007 7:38:51 PM

Test Laboratory: Motorola - WCDMA 850 Cheek, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Channel Number: 4180; Duty Cycle: 1:1

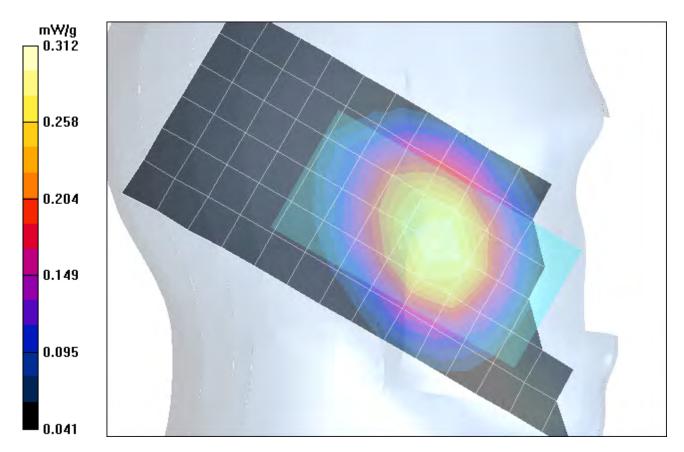
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.296 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.7 V/m; Power Drift = -0.048 dB; Peak SAR (extrapolated) = 0.368 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.226 mW/g; Maximum value of SAR (measured) = 0.312 mW/g

Date/Time: 10/14/2007 7:55:19 PM

Test Laboratory: Motorola - WCDMA 1900 Cheek, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: WCDMA 1900; Frequency: 1880 MHz; Channel Number: 9400; Duty Cycle: 1:1

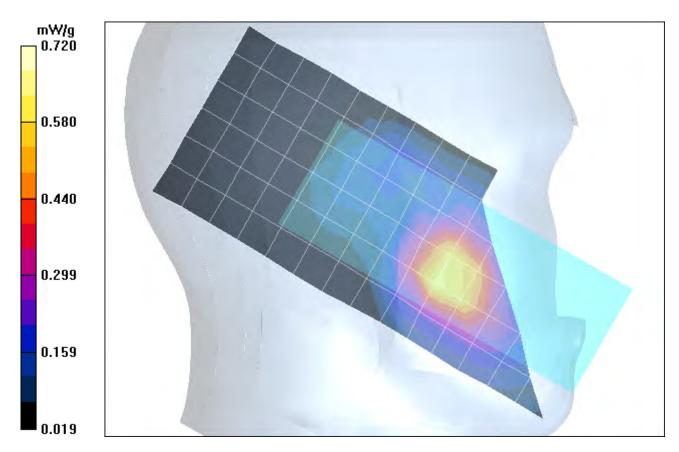
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.602 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.3 V/m; Power Drift = -0.059 dB; Peak SAR (extrapolated) = 0.988 W/kg

SAR(1 g) = 0.657 mW/g; SAR(10 g) = 0.393 mW/g; Maximum value of SAR (measured) = 0.720 mW/g

Date/Time: 10/14/2007 9:29:11 PM

Test Laboratory: Motorola - WCDMA 1900 Cheek, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Cheek

Communication System: WCDMA 1900; Frequency: 1907.5 MHz; Channel Number: 9538; Duty Cycle: 1:1

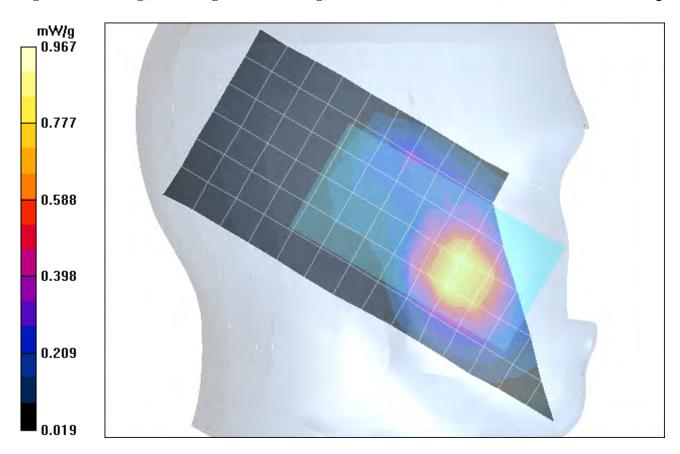
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.860 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.2 V/m; Power Drift = -0.193 dB; Peak SAR (extrapolated) = 1.33 W/kg

SAR(1 g) = 0.895 mW/g; SAR(10 g) = 0.540 mW/g; Maximum value of SAR (measured) = 0.967 mW/g

Date/Time: 10/26/2007 2:11:43 PM

Test Laboratory: Motorola - Bluetooth Cheek, Slider Extended

Serial: LCS04E0002; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: None; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION: Cheek

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

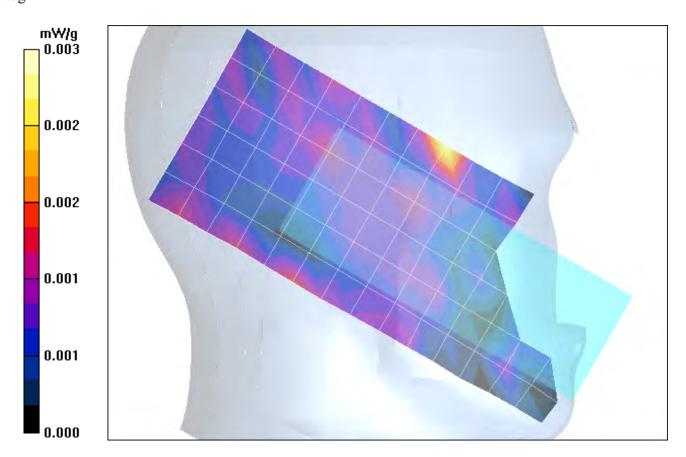
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.56, 4.56, 4.56); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.003 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.938 V/m; Power Drift = -3.46 dB; Peak SAR (extrapolated) = 0.007 W/kg

SAR(1 g) = 0.000535 mW/g; SAR(10 g) = 9.47e-005 mW/g; Maximum value of SAR (measured) = 0.008 mW/g

Date/Time: 10/26/2007 4:55:18 PM

Test Laboratory: Motorola - Bluetooth Cheek, Slider Retracted

Serial: LCS04E0002; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: None; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION: Cheek

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

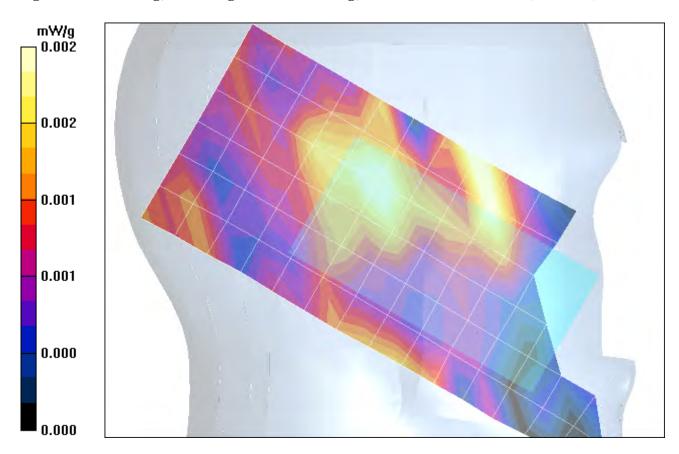
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.56, 4.56, 4.56); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.002 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.02 V/m; Power Drift = -0.939 dB; Peak SAR (extrapolated) = 0.013 W/kg

SAR(1 g) = 0.00134 mW/g; SAR(10 g) = 0.00033 mW/g; Maximum value of SAR (measured) = 0.006 mW/g

Date/Time: 10/11/2007 11:41:21 PM

Test Laboratory: Motorola - GSM 850 Tilt, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

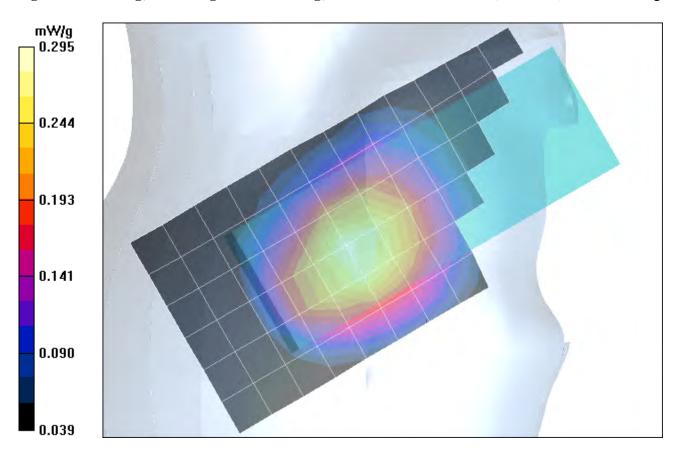
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.287 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = -0.137 dB; Peak SAR (extrapolated) = 0.345 W/kg

SAR(1 g) = 0.278 mW/g; SAR(10 g) = 0.208 mW/g; Maximum value of SAR (measured) = 0.295 mW/g

Date/Time: 10/12/2007 12:40:22 AM

Test Laboratory: Motorola - GSM 850 Tilt, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 5; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

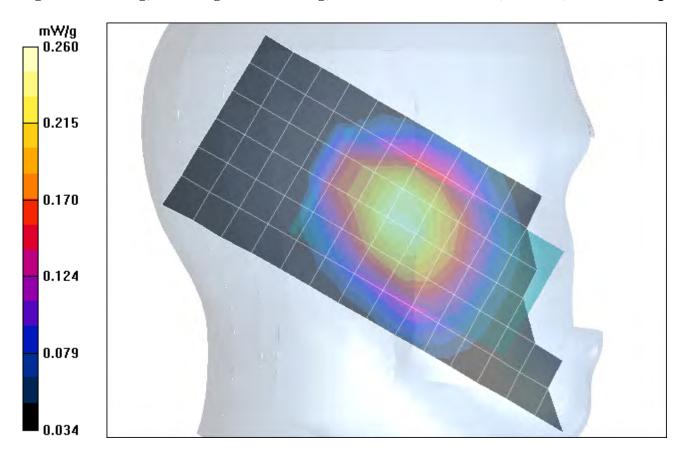
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.92$ mho/m; $\varepsilon_r = 42$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.250 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = -0.078 dB; Peak SAR (extrapolated) = 0.303 W/kg

SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.186 mW/g; Maximum value of SAR (measured) = 0.260 mW/g

Date/Time: 10/14/2007 6:05:14 PM

Test Laboratory: Motorola - GSM 1900 Tilt, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Tilted

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

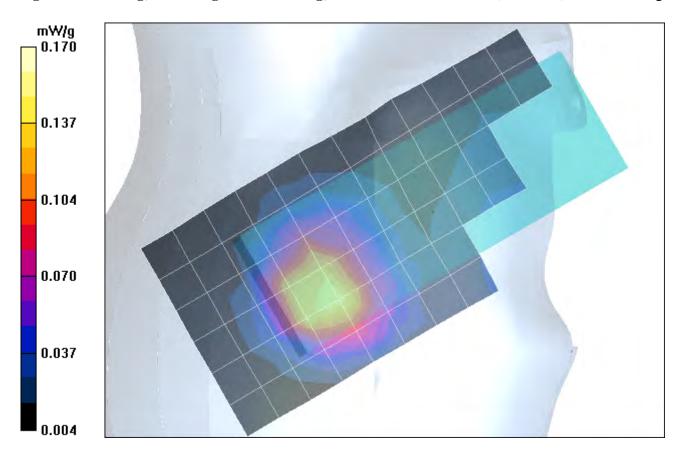
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.148 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.2 V/m; Power Drift = -0.095 dB; Peak SAR (extrapolated) = 0.225 W/kg

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.096 mW/g; Maximum value of SAR (measured) = 0.170 mW/g

Date/Time: 10/14/2007 6:23:55 PM

Test Laboratory: Motorola - GSM 1900 Tilt, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Accessory Model #: None Battery Model #: SNN5805A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: GSM 1900; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:8

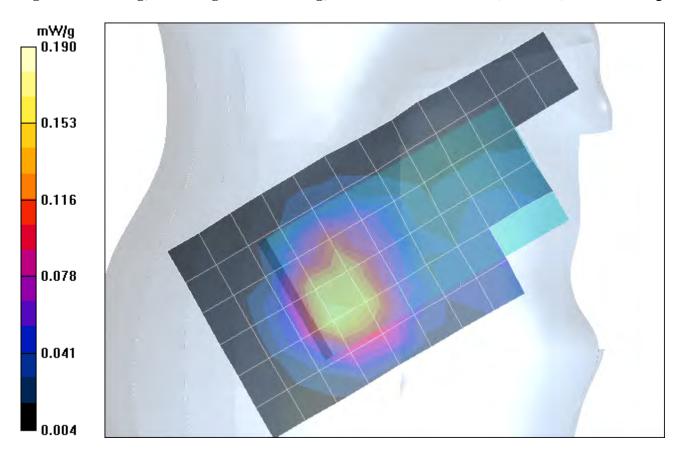
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 39.9$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.164 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = 0.035 dB; Peak SAR (extrapolated) = 0.255 W/kg

SAR(1 g) = 0.172 mW/g; SAR(10 g) = 0.105 mW/g; Maximum value of SAR (measured) = 0.190 mW/g

Date/Time: 10/12/2007 6:44:28 PM

Test Laboratory: Motorola - WCDMA 850 Tilt, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Channel Number: 4180; Duty Cycle: 1:1

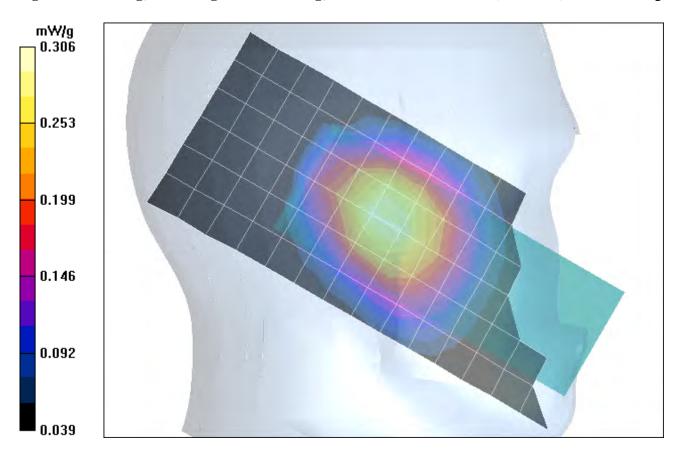
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.292 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.1 V/m; Power Drift = -0.041 dB; Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.290 mW/g; SAR(10 g) = 0.219 mW/g; Maximum value of SAR (measured) = 0.306 mW/g

Date/Time: 10/12/2007 8:01:34 PM

Test Laboratory: Motorola - WCDMA 850 Tilt, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Rotated

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Channel Number: 4180; Duty Cycle: 1:1

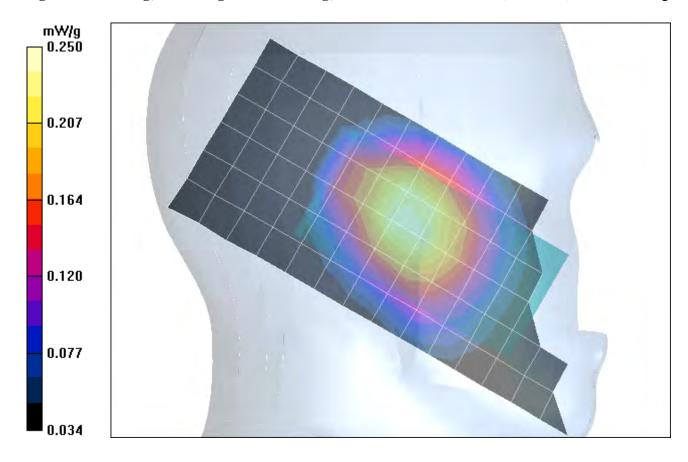
Medium: Low Freq Head

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ mho/m; $\varepsilon_r = 41.2$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.25, 6.25, 6.25); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sugar SAM; Type: SAM; Serial: TP-1005;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.241 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.030 dB; Peak SAR (extrapolated) = 0.287 W/kg

SAR(1 g) = 0.237 mW/g; SAR(10 g) = 0.180 mW/g; Maximum value of SAR (measured) = 0.250 mW/g

Date/Time: 10/14/2007 10:49:58 PM

Test Laboratory: Motorola - WCDMA 1900 Tilt, Slider Extended

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Tilted

Communication System: WCDMA 1900; Frequency: 1880 MHz; Channel Number: 9400; Duty Cycle: 1:1

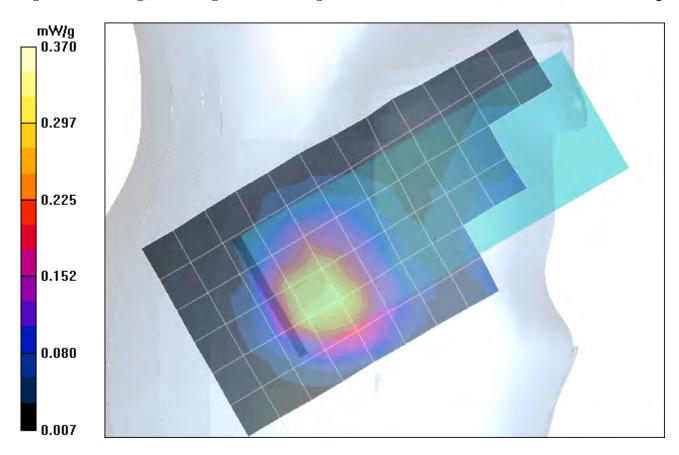
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.320 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.4 V/m; Power Drift = 0.058 dB; Peak SAR (extrapolated) = 0.485 W/kg

SAR(1 g) = 0.339 mW/g; SAR(10 g) = 0.210 mW/g; Maximum value of SAR (measured) = 0.370 mW/g

Date/Time: 10/14/2007 11:27:57 PM

Test Laboratory: Motorola - WCDMA 1900 Tilt, Slider Retracted

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Tilted

Communication System: WCDMA 1900; Frequency: 1880 MHz; Channel Number: 9400; Duty Cycle: 1:1

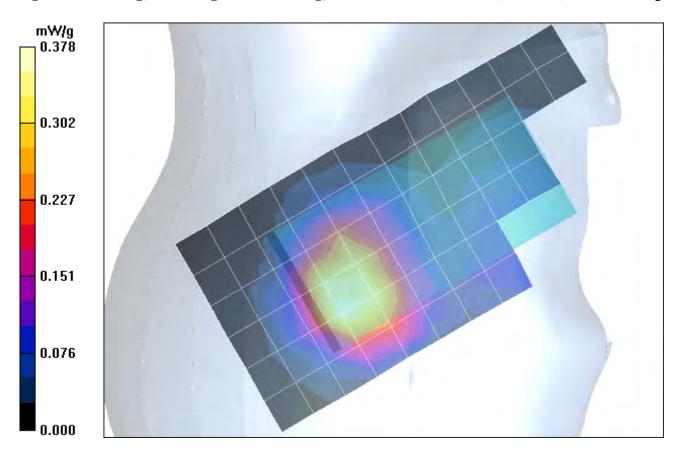
Medium: Regular Glycol Head

Medium parameters used: f = 1880 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 39.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(5.17, 5.17, 5.17); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Glycol SAM; Type: SAM; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Right Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.378 mW/g

Right Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.5 V/m; Power Drift = -0.028 dB; Peak SAR (extrapolated) = 0.565 W/kg

SAR(1 g) = 0.387 mW/g; SAR(10 g) = 0.238 mW/g; Maximum value of SAR (measured) = 0.426 mW/g

Date/Time: 10/29/2007 2:42:55 PM

Test Laboratory: Motorola - Bluetooth Tilt, Slider Extended

Serial: LCS04E0002; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: None; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION (cheek or rotated): Tilted

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

Medium: 2450 Glycol Head

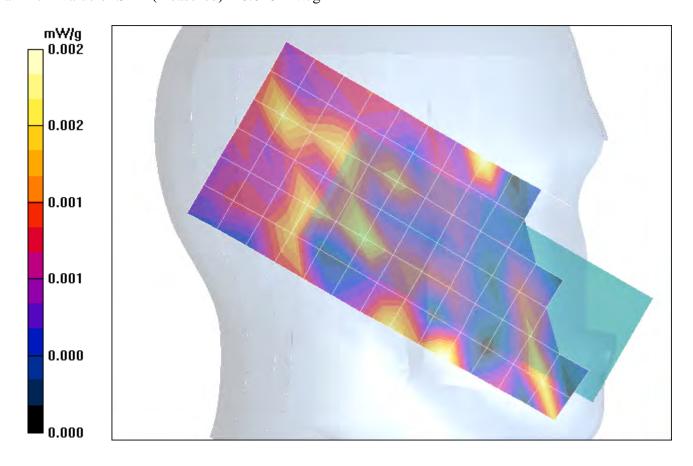
Medium parameters used: f = 2450 MHz; $\sigma = 1.88$ mho/m; $\varepsilon_r = 36.8$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.56, 4.56, 4.56); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template to Shift Cube/Area Scan - Normal (15mm) (7x17x1):

Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.002 mW/g


Left Head Template to Shift Cube/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.692 V/m; Power Drift = 0.665 dB; Peak SAR (extrapolated) = 0.018 W/kg

SAR(1 g) = 0.00155 mW/g; SAR(10 g) = 0.000409 mW/g;

Maximum value of SAR (measured) = 0.018 mW/g

Date/Time: 10/26/2007 5:21:14 PM

Test Laboratory: Motorola - Bluetooth Tilt, Slider Retracted

Serial: LCS04E0002; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: None; Antenna Position: Internal; Accessory Model #: None

Battery Model #: SNN5807A; DEVICE POSITION: Rotated

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

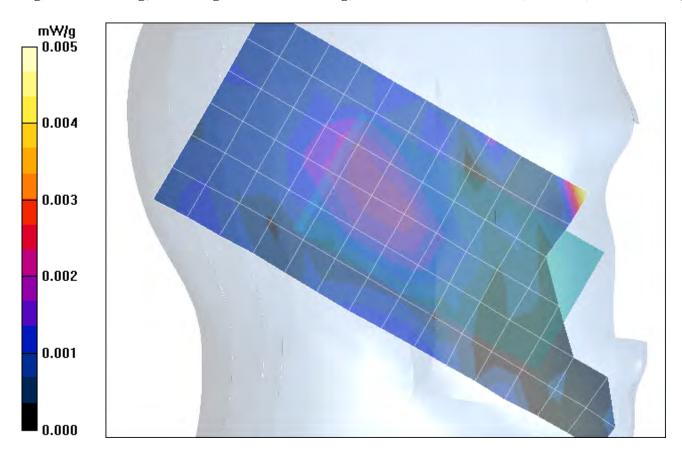
Medium: 2450 Glycol Head

Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 37.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.56, 4.56, 4.56); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R#1 Glycol SAM (extended range), Rev.1 (25-Mar-05); Type: SAM v4.0; Serial: TP-1139;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Left Head Template/Area Scan - Normal (15mm) (7x17x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.005 mW/g

Left Head Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.10 V/m; Power Drift = 0.466 dB; Peak SAR (extrapolated) = 0.010 W/kg

SAR(1 g) = 0.002 mW/g; SAR(10 g) = 0.000611 mW/g; Maximum value of SAR (measured) = 0.008 mW/g

Appendix 3

SAR distribution plots for Body Worn Configuration

Date/Time: 10/16/2007 8:36:38 AM

Test Laboratory: Motorola - GSM 850 Body

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 05; Antenna Position: Internal; Battery Model #: SNN5807A

Device Position: Body Worn with Holster SYN2314A

Communication System: GSM 850; Frequency: 836.6 MHz; Channel Number: 190; Duty Cycle: 1:8

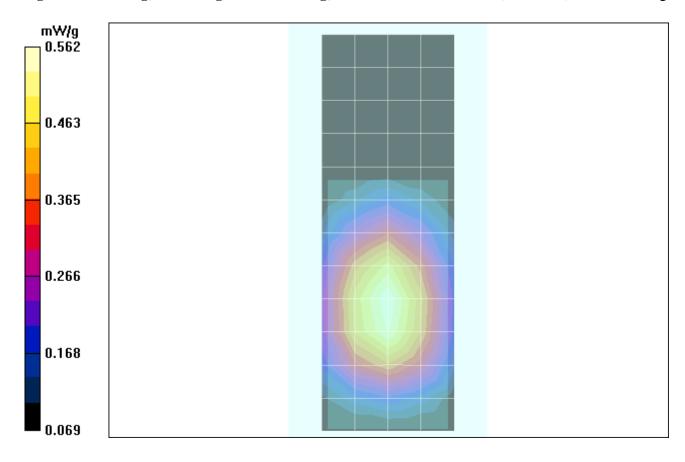
Medium: Low Freq Body

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m 3

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.04, 6.04, 6.04); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.560 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.7 V/m; Power Drift = -0.080 dB; Peak SAR (extrapolated) = 0.652 W/kg

SAR(1 g) = 0.530 mW/g; SAR(10 g) = 0.391 mW/g; Maximum value of SAR (measured) = 0.562 mW/g

Date/Time: 10/19/2007 7:16:16 PM

Test Laboratory: Motorola - GSM 1900 Body

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: 0; Antenna Position: Internal; Battery Model #: SNN5805A

Device Position: Body Worn, Back of Phone 25mm From Flat Phantom

Communication System: GPRS 1900 Cl 10; Frequency: 1880 MHz; Channel Number: 661; Duty Cycle: 1:4

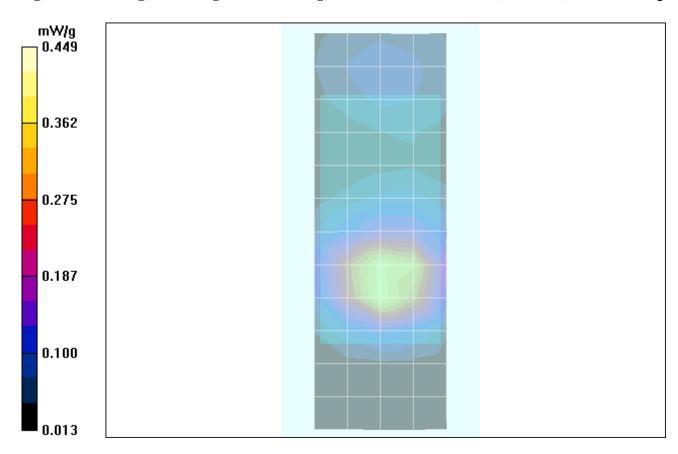
Medium: Regular Glycol Body

Medium parameters used: f = 1880 MHz; $\sigma = 1.59$ mho/m; $\varepsilon_r = 51.1$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.83, 4.83, 4.83); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.385 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.7 V/m; Power Drift = -0.045 dB; Peak SAR (extrapolated) = 0.670 W/kg

SAR(1 g) = 0.420 mW/g; SAR(10 g) = 0.254 mW/g; Maximum value of SAR (measured) = 0.449 mW/g

Date/Time: 10/22/2007 10:50:00 PM

Test Laboratory: Motorola - WCDMA 850 Body

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All up Bits; Antenna Position: Internal; Battery Model #:SNN5807A

Device Position: Body Worn with Holster SYN2314A

Communication System: 3G-WCDMA 850; Frequency: 836 MHz; Channel Number: 4180; Duty Cycle: 1:1

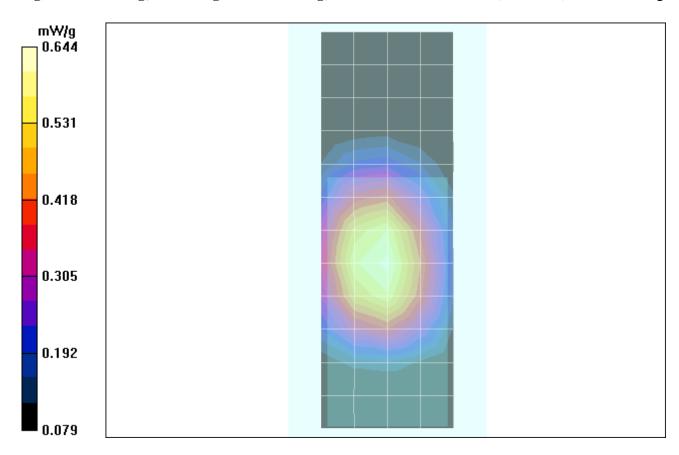
Medium: Low Freq Body

Medium parameters used: f = 835 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 53.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(6.04, 6.04, 6.04); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.1, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.620 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.6 V/m; Power Drift = 0.039 dB; Peak SAR (extrapolated) = 0.737 W/kg

SAR(1 g) = 0.607 mW/g; SAR(10 g) = 0.449 mW/g; Maximum value of SAR (measured) = 0.644 mW/g

Date/Time: 10/17/2007 1:09:48 PM

Test Laboratory: Motorola - WCDMA 1900 Body

Serial: LCS04E0001; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: All Up Bits; Antenna Position: Internal; Battery Model #: SNN5807A

Device Position: Body Worn with Holster SYN2314A

Communication System: WCDMA 1900; Frequency: 1880 MHz; Channel Number: 9400; Duty Cycle: 1:1

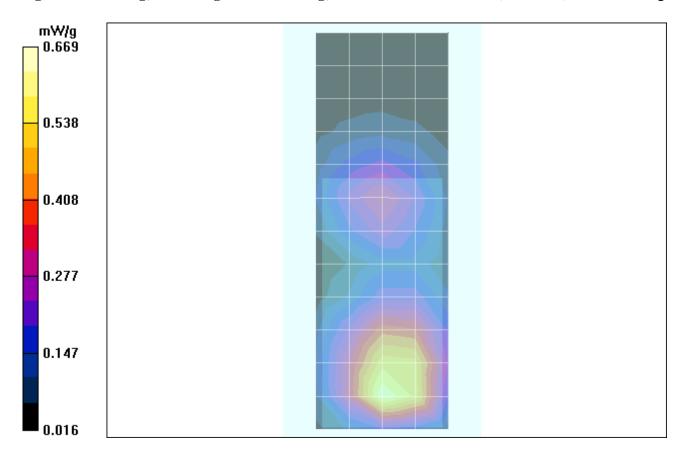
Medium: Regular Glycol Body

Medium parameters used: f = 1880 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 51.5$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.83, 4.83, 4.83); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template/Area Scan - Normal Body (15mm) (13x7x1):


Measurement grid: dx=15mm, dy=15mm; Maximum value of SAR (measured) = 0.623 mW/g

Amy Twin Phone Template/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = -0.139 dB; Peak SAR (extrapolated) = 1.02 W/kg

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.368 mW/g; Maximum value of SAR (measured) = 0.669 mW/g

Date/Time: 10/29/2007 8:04:12 PM

Test Laboratory: Motorola - Bluetooth Body Worn

Serial: LCS04E0002; FCC ID: IHDP56HA1

Procedure Notes: Pwr Step: None; Antenna Position: Internal; Battery Model #: SNN5807A

Device Position: Body Worn, Back of Phone 25 mm from Phantom

Communication System: Bluetooth; Frequency: 2441 MHz; Channel Number: 39; Duty Cycle: 1:1

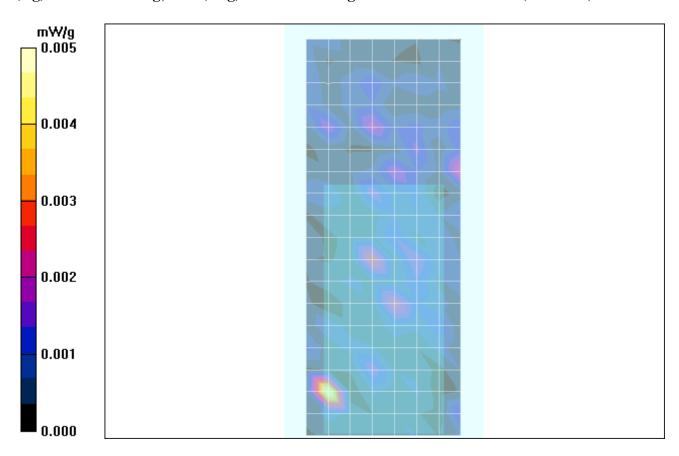
Medium: 2450 Glycol Body

Medium parameters used: f = 2450 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 55.9$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: ET3DV6R SN1397; ConvF(4.18, 4.18, 4.18); Calibrated: 4/24/2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn378; Calibrated: 4/13/2007
- Phantom: R1: Sect.2, Amy Twin; Type: Amy Twin Flat; Serial: n/a;
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Amy Twin Phone Template to Shift Cube/Area Scan - Normal Body (10mm) (19x10x1):


Measurement grid: dx=10mm, dy=10mm; Maximum value of SAR (measured) = 0.005 mW/g

Amy Twin Phone Template to Shift Cube/5x5x7 Zoom Scan (<=3GHz) (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.702 V/m; Power Drift = -1.60 dB; Peak SAR (extrapolated) = 0.017 W/kg

SAR(1 g) = 0.00125 mW/g; SAR(10 g) = 0.00022 mW/g Maximum value of SAR (measured) = 0.015 mW/g

Appendix 4

Probe Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Issued: April 24, 2007

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

Client

Motorola Flensburg

Certificate No: ET3-1397_Apr07

Object	ET3DV6R - SN:	1397	
Calibration procedure(s)	QA CAL-01.v5		
	Calibration proc	edure for dosimetric E-field probes	
Calibration date:	April 24, 2007		
Condition of the calibrated item	In Tolerance		
		tional standards, which realize the physical units of	
The measurements and the unce	ertainties with confidence	probability are given on the following pages and are	e part of the certificate.
	-td :- thld lbt		d burnidiby a 700/
All calibrations have been condu	cted in the closed laborate	ory facility: environment temperature (22 ± 3)°C and	a numidity < 70%.
		ory facility: environment temperature (22 ± 3) C and	a numidity < 70%.
		ory facility: environment temperature (22 ± 3) C and	a numidity < 70%.
Calibration Equipment used (M&			Scheduled Calibration
Calibration Equipment used (M&	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	
Calibration Equipment used (M& Primary Standards Power meter E4419B	TE critical for calibration)		Scheduled Calibration
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08 Mar-08
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592)	Scheduled Calibration Mar-08 Mar-08 Mar-08
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670)	Scheduled Calibration Mar-08 Mar-08 Aug-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08 Jun-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08 Jun-07
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07 Signature
Calibration Equipment used (M& Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 29-Mar-07 (METAS, No. 217-00670) 10-Aug-06 (METAS, No. 217-00592) 29-Mar-07 (METAS, No. 217-00671) 10-Aug-06 (METAS, No. 217-00593) 4-Jan-07 (SPEAG, No. ES3-3013_Jan07) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Mar-08 Mar-08 Mar-08 Aug-07 Mar-08 Aug-07 Jan-08 Jun-07 Scheduled Check In house check: Nov-07 In house check: Oct-07

Certificate No: ET3-1397_Apr07

Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid sensitivity in free space

NORMx,y,z ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1397_Apr07

April 24, 2007

Probe ET3DV6R

SN:1397

Manufactured:

October 24, 1999

Last calibrated:

May 3, 2006

Recalibrated:

April 24, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6R SN:1397

Sensitivity	in	Free	SpaceA
Sensitivity	111	1166	Space

Diode Compression^B

NormX	1.79 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	97 mV
NormZ	1.94 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	95 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.5	4.9
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

TSL

1810 MHz

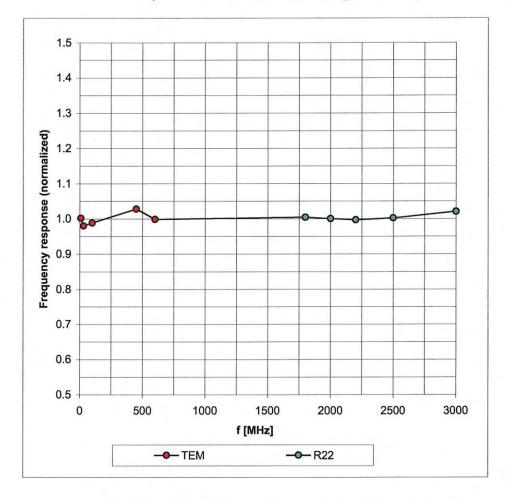
Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	13.5	9.1
SAR _{be} [%]	With Correction Algorithm	8.0	0.1

Sensor Offset

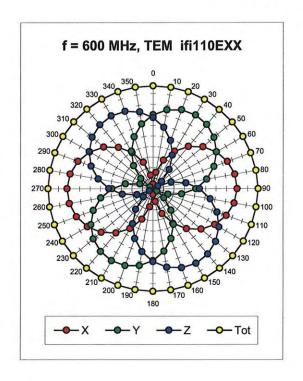
Probe Tip to Sensor Center

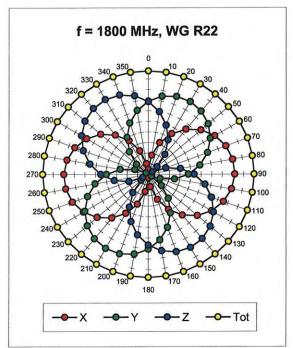
2.7 mm

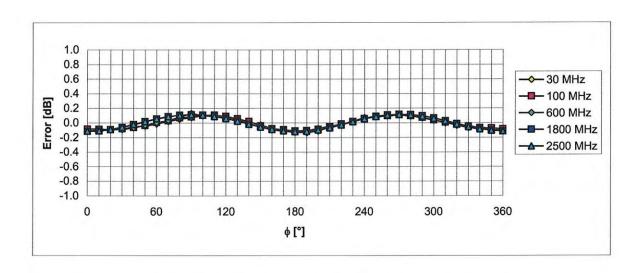

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

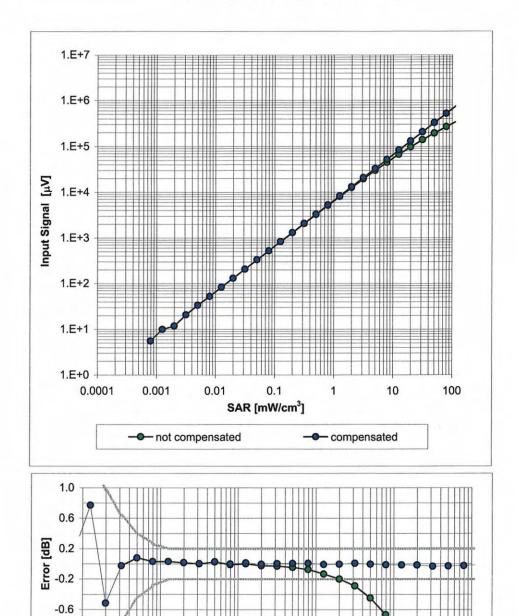

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

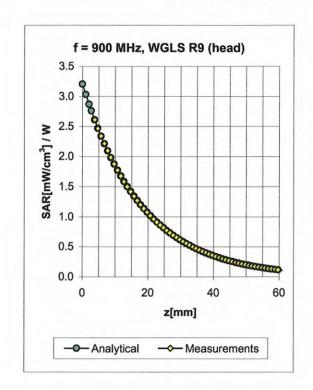
Dynamic Range f(SAR_{head})

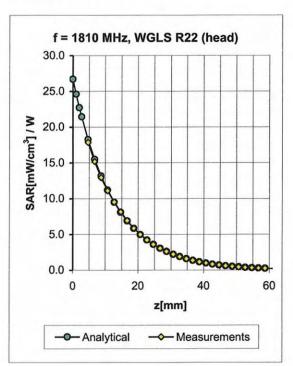
(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

10

100

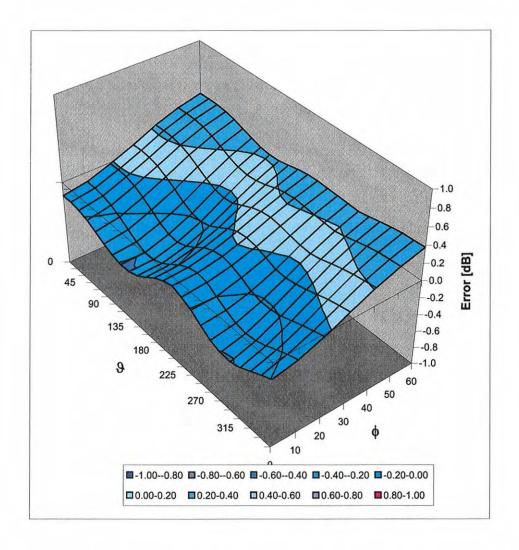

-1.0 - 0.001


0.01

0.1

SAR [mW/cm³]

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.32	2.72	6.25 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.51	2.65	5.17 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.57	2.49	4.95 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.73	1.94	4.56 ± 11.8% (k=2)
262				W-010	60 131		
900	± 50 / ± 100	Body	$55.0 \pm 5\%$	1.05 ± 5%	0.34	2.80	6.04 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3 \pm 5\%$	1.52 ± 5%	0.61	2.48	4.83 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.73	2.28	4.63 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.65	2.17	4.18 ± 11.8% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Appendix 5

Measurement Uncertainty Budget

				e =			h= cxf	i= cxg	
а	b	С	d	f(d,k)	f	g	/e	/e	k
	IEEE	Tol.	Prob		Ci	C _i	1 g	10 g	
	1528	(± %)	Dist		(1 g)	(10 g)	u _i	u _i	
Uncertainty Component	section			Div.			(±%)	(±%)	Vi
Measurement System									
Probe Calibration	E.2.1	5.9	N	1.00	1	1	5.9	5.9	∞
Axial Isotropy	E.2.2	4.7	R	1.73	0.707	0.707	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	R	1.73	0.707	0.707	3.9	3.9	∞
Boundary Effect	E.2.3	1.0	R	1.73	1	1	0.6	0.6	8
Linearity	E.2.4	4.7	R	1.73	1	1	2.7	2.7	8
System Detection Limits	E.2.5	1.0	R	1.73	1	1	0.6	0.6	8
Readout Electronics	E.2.6	0.3	N	1.00	1	1	0.3	0.3	∞
Response Time	E.2.7	1.1	R	1.73	1	1	0.6	0.6	∞
Integration Time	E.2.8	1.1	R	1.73	1	1	0.6	0.6	∞
RF Ambient Conditions - Noise	E.6.1	3.0	R	1.73	1	1	1.7	1.7	∞
RF Ambient Conditions -									
Reflections	E.6.1	0.0	R	1.73	1	1	0.0	0.0	∞
Probe Positioner Mech.			_	4 =0					
Tolerance	E.6.2	0.4	R	1.73	1	1	0.2	0.2	∞
Probe Positioning w.r.t Phantom	E.6.3	1.4	R	1.73	1	1	0.8	0.8	∞
Max. SAR Evaluation (ext.,	E.0.3	1.4	N	1.73	1	ı	0.6	0.0	ω
int., avg.)	E.5	3.4	R	1.73	1	1	2.0	2.0	∞
Test sample Related		3. .		0	-		,		
Test Sample Positioning	E.4.2	3.2	N	1.00	1	1	3.2	3.2	29
Device Holder Uncertainty	E.4.1	4.0	N	1.00	1	1	4.0	4.0	8
SAR drift	6.6.2	5.0	R	1.73	1	1	2.9	2.9	∞
Phantom and Tissue									
Parameters									
Phantom Uncertainty	E.3.1	4.0	R	1.73	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity									
(measurement)	E.3.3	3.3	N	1.00	0.64	0.43	2.1	1.4	∞
Liquid Permittivity (target)	E.3.2	5.0	R	1.73	0.6	0.49	1.7	1.4	∞
Liquid Permittivity	F 6 6	4.0		4.00	0.0	0.40		0.0	
(measurement)	E.3.3	1.9	N	1.00	0.6	0.49	1.1	0.9	∞
Combined Standard Uncertainty			RSS				11.1	10.8	411
Expanded Uncertainty			1133				11.1	10.0	711
(95% CONFIDENCE LEVEL)			k=2				22.2	21.6	
(33/0 CONTIDENCE LEVEL)			N-2				LL.L	21.0	

Appendix 7

Dipole Characterization Certificate

Certification of System Performance Check TargetsBased on WI-0396

-Historical Data-

	900MHz	
IEEE/IEC Target:	10.8	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	10-May-06 to 18-April-07	
# of tests performed:	1,562	
Grand Average:	11.24	(W/kg)
% Delta (Average - IEEE1528 Target)	4.1%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 55, 69, 77, 78, 79, 80, 91, 92, 93, 94, 95, 96, 97, 1d034, 1d035	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
900MHz	11.24	41.5 ± 5%	0.97 ± 5%

-Approvals-		
Submitted by:	Marge Kaunas	Date: 24-Apr-07
Signed:	Manga Kanna	
Comments:	Spreadsheet detailing referenced historical measureme	nts is available upon request.
Approved by:	Mark Douglas	Date: 1-May-07
<u>Signed:</u>	Mark Douglas	
Comments:		

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	1800MHz	
IEEE1528 Target:	38.1	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	10-May-06 to 18-April-07	
# of tests performed:	1314	
Grand Average:	37.5	(W/kg)
% Delta (Average - IEEE1528 Target)	-1.6%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 246tr, 250tr, 251tr, 259tr, 263tr, 271tr, 272tr, 276tr, 277tr, 279tr, 280tr, 281tr, 283tr, 284tr, 2d128, 2d129	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
1800MHz	37.5	40.0 ± 5%	1.40 ± 5%

Approvals-			
Submitted by:	Marge Kaunas	Date: 24-	-Apr-07
Signed:	Manja Kauras		
Comments:	Spreadsheet detailing referenced historical measurem	ents is available upon request.	
Approved by:	Mark Douglas	Date: 1-N	May-07
<u>Signed:</u>	Mark Monglas		
Comments:			

Certification of System Performance Check Targets Based on WI-0396

-Historical Data-

	2450MHz	
IEEE1528 Target:	52.4	(W/kg)
Measurement Uncertainty (k=1):	9.0%	
Measurement Period:	10-May-06 to 18-April-07	
# of tests performed:	32	
Grand Average:	58.0	(W/kg)
% Delta (Average - IEEE1528 Target)	10.6%	
Is % Delta <= Expanded Measurement Uncertainty (k=2)?	Yes	-
Accept/Reject <u>Average</u> as new system performance check target?	ACCEPT	
	Applies to Dipole SN's: 740, 766, 767, 788, 789	

-New System Performance Check Targets- per WI-0396

(based on analysis of historical data)

Frequency	SAR Target (W/kg)	Permittivity	Conductivity (S/m)
2450MHz	58.0	39.2 ± 5%	1.80 ± 5%

-Approvals-				
-Approvais-	Submitted by:	Marge Kaunas	Date:	24-Apr-07
	Signed:	Manga Kanna		
	Comments:	Spreadsheet detailing referenced historical measuremen	nts is available upon req	uest.
	Approved by:	Mark Douglas	Date:	1-May-07
	Signed:	Mark Monglas		
	Comments:			