

EMISSIONS TEST REPORT

Report Number: 100537026BOX-004
Project Number: G100537026

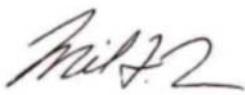
Report Issue Date: 11/17/2011

Product Designation: RLU7

Standards: **Industry Canada RSS-119 Issue 11 June 2011, "Land Mobile and Fixed Radio Transmitters and Receivers Operating in the Frequency Range 27.41-960 MHz"**

Industry Canada RSS-Gen Issue 3 December 2010 "General Requirements and Information for the Certification of Radio Apparatus"

FCC Part 90:2010, " Private Land Mobile Radio Services"


Tested by:
Intertek Testing Services NA, Inc.
70 Codman Hill Road
Boxborough, MA 01719

Client:
LoJack Corporation
40 Pequot Way
Canton, MA 02021

Report prepared by Reviewer

Nicholas Abbondante, Staff Engineer

Report reviewed by

Michael F. Murphy, Staff Engineer

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 3.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	--
4	Description of Equipment Under Test	--
5	System Setup and Method	--
6	Transmitter Output Power and Human RF Exposure (IC RSS-119 Sections 4.1, 5.4; FCC 2.1046, 90.20(e)(6))	Pass
7	Transmitter Emissions Mask (IC RSS-119 Sections 5.5, 5.8; IC RSS-Gen Section 4.9; FCC 90.210(d))	Pass
8	Transmitter Out-of-Band Unwanted Emissions, Radiated (IC RSS-119 Sections 4.2, 5.8; IC RSS-Gen Section 4.9; FCC 2.1053, 90.210(d))	Pass
9	Receiver Radiated Spurious Emissions (IC RSS-119 Section 5.11, IC RSS-Gen Sections 4.10, 6.0; FCC 2.1053, 90.210(d))	Pass
10	Revision History	--

Note that this report is a limited set of tests in support of an FCC permissive change filing and an Industry Canada 'family to previous model' certification.

3 Client Information

This EUT was tested at the request of:

Company: LoJack Corporation
40 Pequot Way
Canton, MA 02021

Contact: Vincent Ricci
Telephone: (781) 302-7148
Fax: Not provided
Email: vricci@lojack.com

4 Description of Equipment Under Test

Equipment Under Test			
Description	Manufacturer	Model Number	Serial Number
Vehicle Location Unit (Rx Mode)	LoJack Corporation	RLU7	C6EDE58
Vehicle Location Unit (Tx Mode)	LoJack Corporation	RLU7	15BF47D
Receive Date:	11/04/2011		
Received Condition:	Good		
Type:	Production		

Description of Equipment Under Test (provided by client)

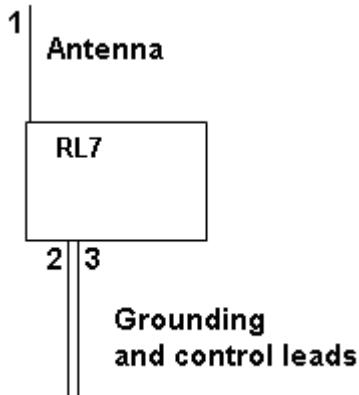
The equipment under test is a vehicle location unit. It uses an integral antenna, which consists of a wire of length detailed in the cables section of this report. Note that this report is a limited set of tests in support of an FCC permissive change filing and an Industry Canada 'family to previous model' certification.

Equipment Under Test Power Configuration			
Rated Voltage	Rated Current	Rated Frequency	Number of Phases
3.6 & 7.2 VDC	Not label on the device	N/A	N/A

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	The Vehicle Location Unit was powered from internal 3.6V & 7.2V Lithium battery pack and was programmed to transmit repetitively during testing except during receive mode testing.

5 System Setup and Method


Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination
1	Antenna	0.53	None	None	Antenna
2	DC Ground	0.17	None	None	None
3	Control	0.17	None	None	None

Support Equipment			
Description	Manufacturer	Model Number	Serial Number
None			

5.1 Method:

Configuration as required by RSS-Gen Issue 3 December 2010 and ANSI C63.4:2003.

5.2 EUT Block Diagram:

6 Transmitter Output Power and Human RF Exposure

6.1 Method

Tests are performed in accordance with IC RSS-119 Sections 4.1, 5.4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
~ANT2A	BROADBAND ANTENNA	Compliance Design	B100	1852	11/18/2010	11/18/2011
~CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	01/06/2011	01/06/2012
~HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	04/08/2011	04/08/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012

Software Utilized:

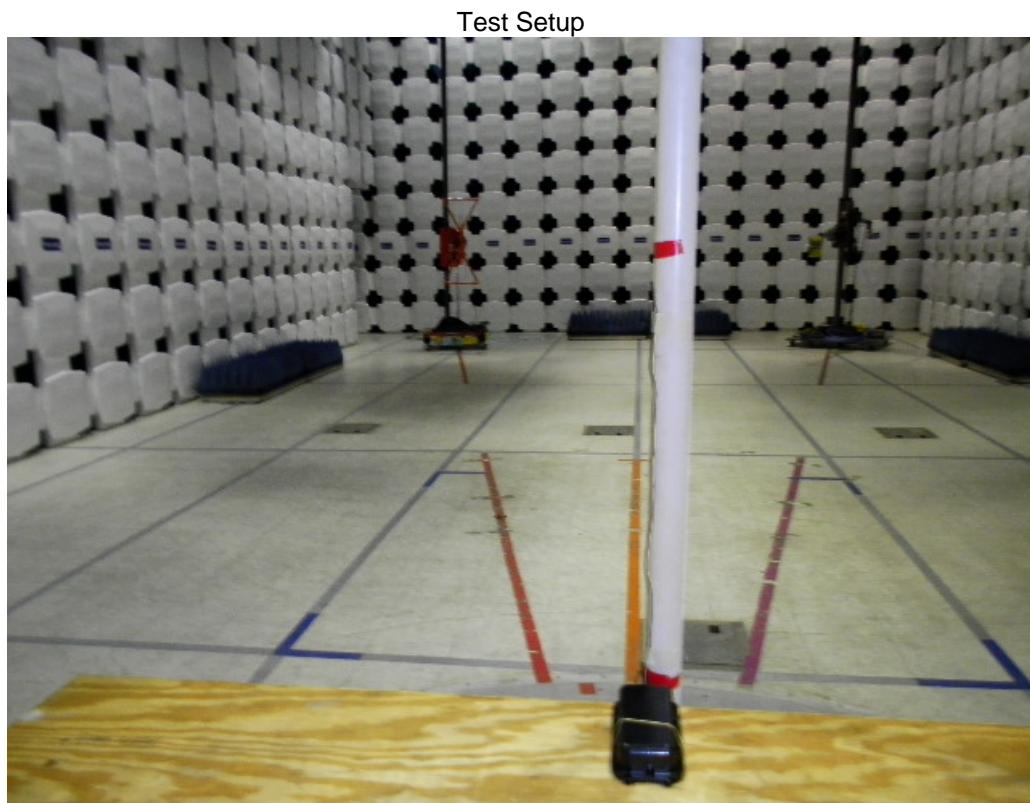
Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

6.3 Results:

RSS-119 Section 5.4: Transmitter output power shall be within ± 1.0 dB of the manufacturer's rated power. Section 5.4.1: Typical transmitter output powers are 110 watts for base and/or fixed stations (paging transmitters excepted), and 30 watts for mobile stations. Higher powers may be certified, but it should be noted that mobile stations are normally only licensed up to 30 watts. See the SRSP relevant to the operating frequency for equipment power limits.

SRSP-500 6.3.1: Normally, the maximum power for base stations shall be 125 watts Effective Radiated Power (ERP) and 30 watts ERP for mobile stations.

90.20(e)(6)(iii) Mobile transmitters operating on this frequency with emissions authorized in a maximum bandwidth of 12.5 kHz are limited to 5.0 watts (37.0 dBm) power output.


The sample tested was found to comply.

Note that the device is a mobile device and the maximum output power measured was 30.52 dBm ERP (1.13 Watts ERP), or 32.66 dBm EIRP (1.845 Watts EIRP). Since it operates at 173.075 MHz with power not exceeding 2.5 Watts, it is exempt from RF exposure evaluation.

The EIRP is related to the RF exposure limit by the following relationship:

$$S = EIRP / (4\pi r^2)$$

Where S is the power density in mW/cm^2 , EIRP is the radiated isotropic power in milliWatts, and r is the Distance in centimeters. By using the limit of $1 \text{ mW/cm}^2 (10 \text{ W/m}^2)$ for S and 1845 mW EIRP, the distance at which the RF exposure limit is met is 12.1 cm.

6.4 Setup Photographs:

6.5 Test Data:

Intertek

Radiated Emissions, Substitution

Company: LoJack Corporation
 Model #: RL7
 Serial #: 15BF47D
 Engineer(s): Nicholas Abbondante
 Project #: G100537026 Date(s): 11/04/11 11/7/2011
 Standard: IC RSS-119 and FCC CFR47 Part 90
 Barometer: DAV003 Temp/Humidity/Pressure: 19, 19c 27, 23% 1010, 1007mb

Rx Antenna: 145106
 Rx Cable(s): 145-410
 Rx Preamp: None
 Tx Antenna: ANT2A
 Tx Cable(s): CBL030
 Tx Signal Generator: HEW62 Filter: None
 ERP or EIRP?: ERP

Test Distance (m): See notes Voltage/Frequency: Fresh Batteries Frequency Range: 30 MHz - 2 GHz
 Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	EUT Reading dB(uV)	Generator Reading dB(uV)	Transmit Cable Loss dB	Transmit Antenna dBi	Generator Level dBm	Net dBm	Limit dBm	Margin dB	Bandwidth
Note: MSK Modulation @ 10m with no preamp											
PK	V	173.075	110.21	55.85	0.25	-1.52	-20.00	30.45	37.00	-6.55	120/300 kHz
Note: FSK Modulation @ 10m with no preamp											
PK	V	173.075	110.28	55.85	0.25	-1.52	-20.00	30.52	37.00	-6.48	120/300 kHz

Test Personnel: Nicholas Abbondante
 Supervising Engineer: N/A
 Product Standard: IC RSS-119, FCC Part 90
 Input Voltage: 3.6 & 7.2 VDC (Battery Pack)

Pretest Verification w/ Ambient Signals or BB Source: Ambient

Test Date: 11/07/2011
 Test Levels: See Tables
 Ambient Temperature: 19 °C
 Relative Humidity: 23 %
 Atmospheric Pressure: 1007 mbars

Deviations, Additions, or Exclusions: None

7 Transmitter Emissions Mask

7.1 Method

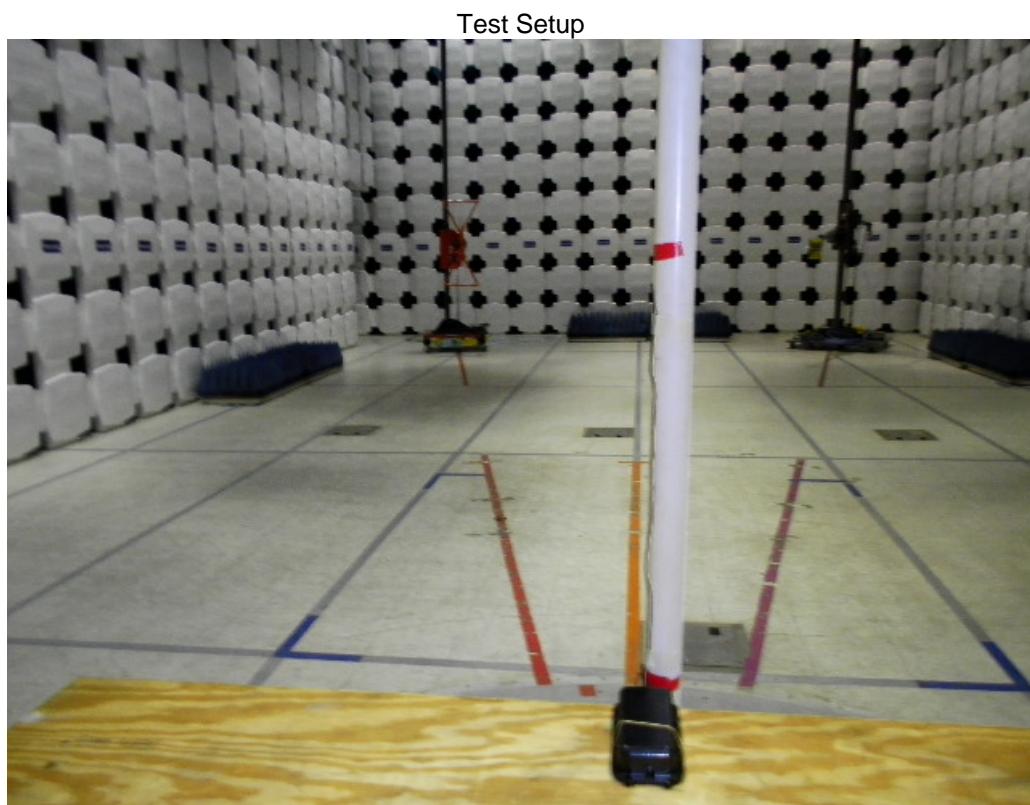
Tests are performed in accordance with IC RSS-119 Sections 5.5, 5.8; IC RSS-Gen Section 4.9.

TEST SITE: 10m ALSE

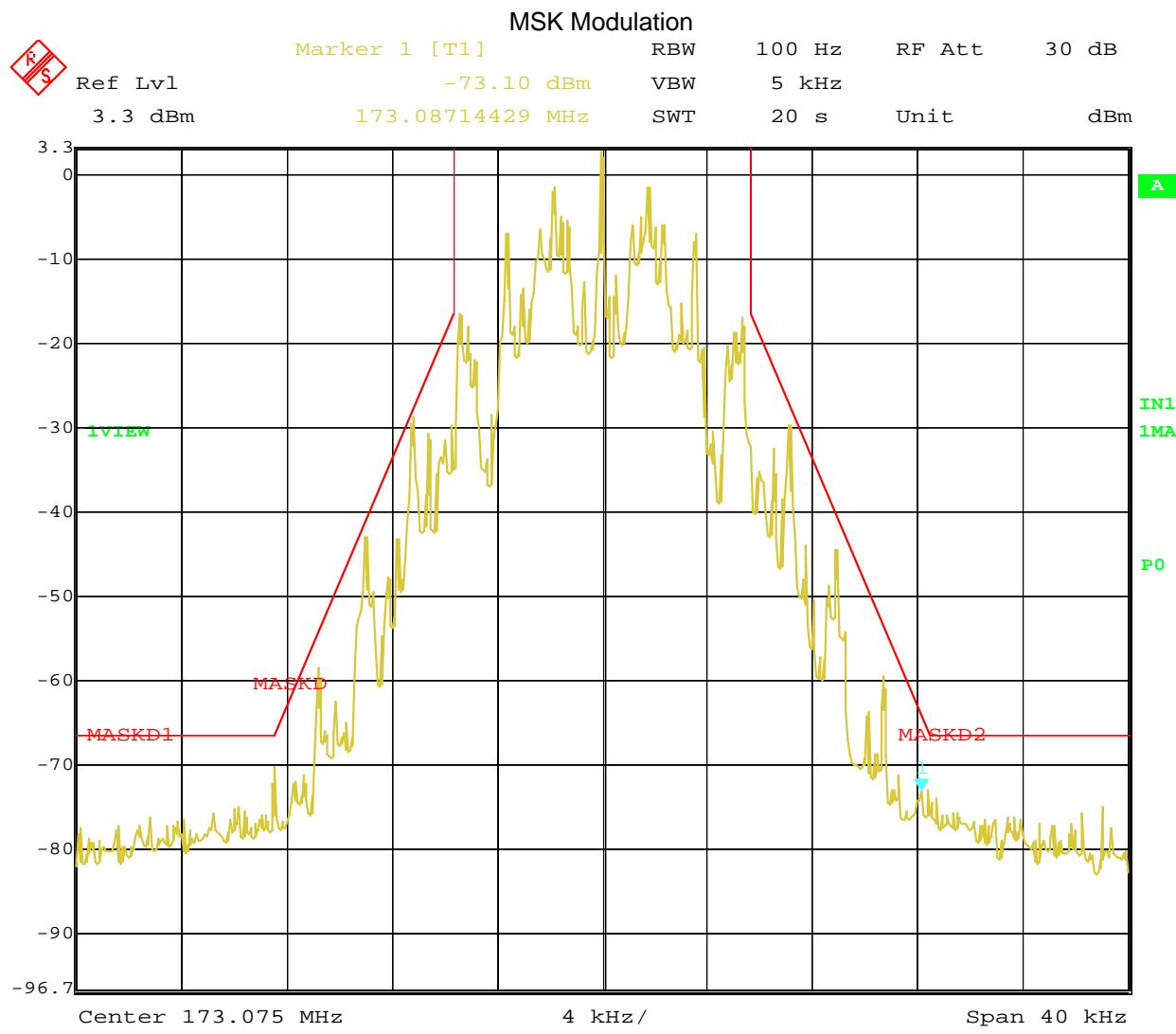
The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

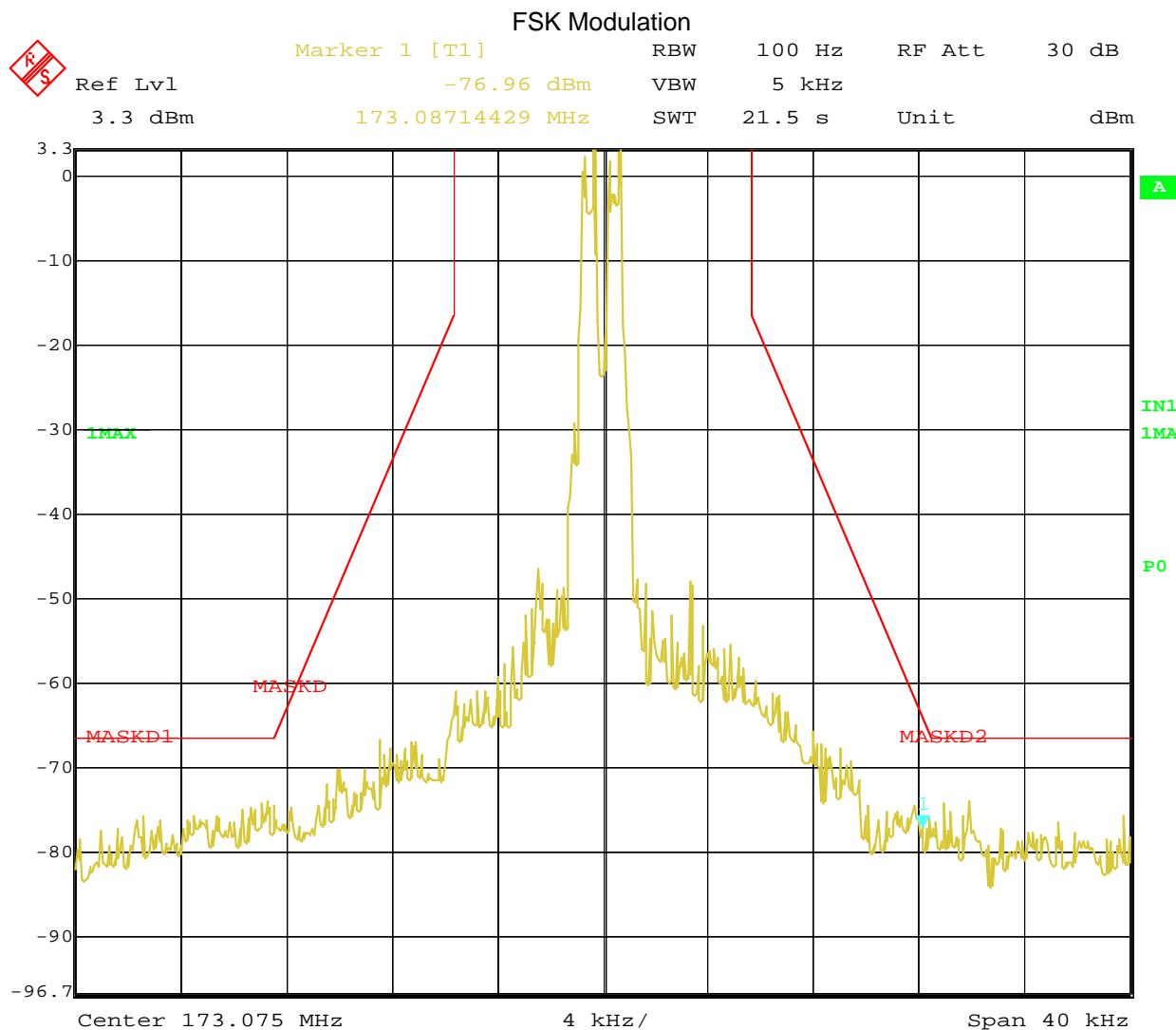
7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
-ANT2A	BROADBAND ANTENNA	Compliance Design	B100	1852	11/18/2010	11/18/2011
-CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	01/06/2011	01/06/2012
-HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	04/08/2011	04/08/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012


Software Utilized:

Name	Manufacturer	Version
None (Receiver Firmware)		


7.3 Results:


The transmitter waveform envelope must meet the applicable emissions masks as specified in IC RSS-119 Section 5.8. The mask is shown referenced to the full power of the emission when measured using the same radiated emissions test setup. The MaskD1 and D2 limit lines are shown as a worst case, and actually should be higher.

The sample tested was found to comply using a 3.0 kHz deviation setting.

7.4 Setup Photograph:

7.5 Test Data:

Date: 7.NOV.2011 21:47:43

Test Personnel: Nicholas Abbondante
 Supervising Engineer: N/A
 Product Standard: IC RSS-119, FCC Part 90
 Input Voltage: 3.6 & 7.2 VDC (Battery Pack)

Pretest Verification w/ Ambient Signals or BB Source: Ambient

Test Date: 11/07/2011
 Test Levels:
 Ambient Temperature: 19 °C
 Relative Humidity: 23 %
 Atmospheric Pressure: 1007 mbars

Deviations, Additions, or Exclusions: None

8 Transmitter Unwanted Out-of-Band Emissions, Radiated

8.1 Method

Tests are performed in accordance with IC RSS-119 Sections 4.2, 5.8; IC RSS-Gen Section 4.9.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

$$RA = 52.0 \text{ dB}\mu\text{V}$$

$$AF = 7.4 \text{ dB}/\text{m}$$

$$CF = 1.6 \text{ dB}$$

$$AG = 29.0 \text{ dB}$$

$$FS = 32 \text{ dB}\mu\text{V}/\text{m}$$

To convert from $\text{dB}\mu\text{V}$ to μV or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where UF} = \text{Net Reading in } \mu\text{V}$$

$$NF = \text{Net Reading in } \text{dB}\mu\text{V}$$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

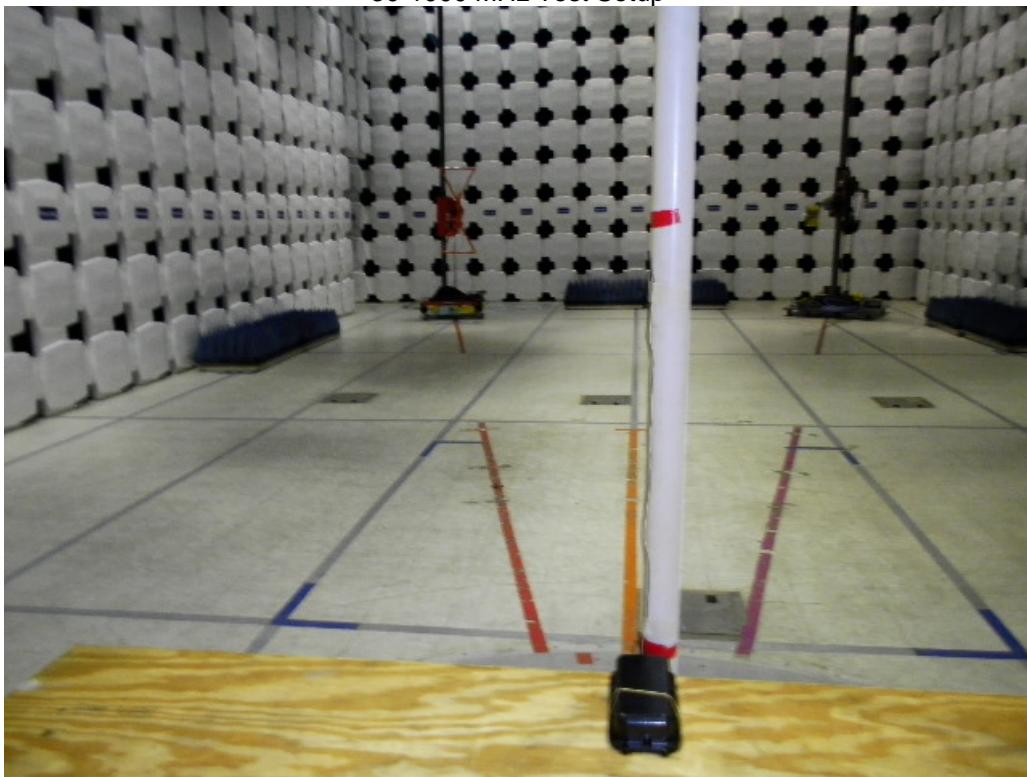
$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/\text{m}$$

8.2 Test Equipment Used:

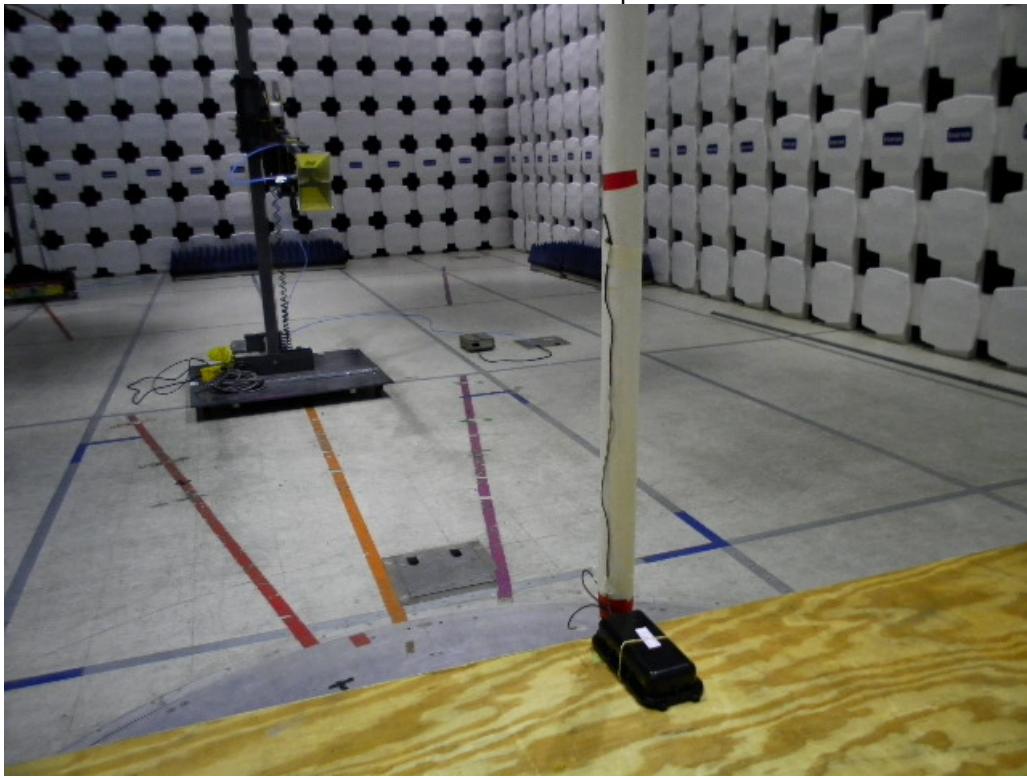
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
Test equipment used at 10 meters						
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
-ANT2A	BROADBAND ANTENNA	Compliance Design	B100	1852	11/18/2010	11/18/2011
-ANT2B	BROADBAND ANTENNA	Compliance Design	B200	1850	11/18/2010	11/18/2011
-ANT2C	BROADBAND ANTENNA	Compliance Design	B300	00674	11/18/2010	11/18/2011
-CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	01/06/2011	01/06/2012
-HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	04/08/2011	04/08/2012
PRE7'	PREAMPLIFIER	Hewlett Packard	8447D	2944A08718	07/01/2011	07/01/2012
Test equipment used at 3 meters						
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
-REA003	1GHz High Pass Filter	Reactel, Inc	7HS-1G/10G-S11	06-1	12/06/2010	12/06/2011
-HEW62	Synthesized Sweep Generator	Hewlett Packard	83620A	3213A01244	04/08/2011	04/08/2012
-HORN2	HORN ANTENNA	EMCO	3115	9602-4675	10/24/2011	10/24/2012
-CBL030	High Frequency Cable 40GHz	Megaphase	TM40 K1K1 80	CBL030	01/06/2011	01/06/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/28/2010	12/28/2011
HORN3'	HORN ANTENNA	EMCO	3115	9610-4980	03/28/2011	03/28/2012

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010


8.3 Results:

Transmitter unwanted out-of-band emissions must meet the limits of IC RSS-119 Section 5.8 and CFR47 Part 90.210. Emissions must be attenuated below the carrier power by at least $50 + 10 \log(P)$ dB (-20 dBm) or 70 dB, whichever is the lesser attenuation.


The sample tested was found to comply.

8.4 Setup Photographs:

30-1000 MHz Test Setup

1-2 GHz Test Setup

8.5 Test Data:

Intertek

Radiated Emissions, Substitution

Company: LoJack Corporation
 Model #: RL7
 Serial #: 15BF47D
 Engineer(s): Nicholas Abbondante
 Project #: G100537026 Date(s): 11/04/11 11/7/2011
 Standard: IC RSS-119 and FCC CFR47 Part 90
 Barometer: DAV003 Temp/Humidity/Pressure: 19, 19c 27, 23% 1010, 1007mb

Rx Antenna: 145106 HORN3
 Rx Cable(s): 145-410 145-416
 Rx Preamp: 145014 Receiver: 145128
 Tx Antenna: ANT2 HORN2
 Tx Cable(s): CBL030
 Tx Signal Generator: HEW62 Filter: REA003
 ERP or EIRP?: ERP

Test Distance (m): See notes Voltage/Frequency: Fresh Batteries Frequency Range: 30 MHz - 2 GHz
 Net = Generator Level (0.00 dBm) + (EUT reading - Generator reading) - Cable Loss + Antenna Gain (dBi or dBd)

Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor RB = Restricted Band; Bandwidth denoted as RBW/VBW

Detector Type	Ant. Pol. (V/H)	Frequency MHz	EUT Reading dB(uV)	Generator Reading dB(uV)	Transmit Cable Loss dB	Transmit Antenna dBi	Generator Level dBm	Net dBm	Limit dBm	Margin dB	Bandwidth
Note: MSK Modulation @ 10m with no preamp											
PK	V	346.150	26.63	50.57	0.35	-1.62	-20.00	-48.06	-20.00	-28.06	120/300 kHz
PK	V	519.225	26.84	48.68	0.43	1.87	-20.00	-42.55	-20.00	-22.55	120/300 kHz
PK	V	692.300	27.02	48.33	0.46	2.33	-20.00	-41.59	-20.00	-21.59	120/300 kHz
PK	V	865.375	29.05	45.09	0.48	-0.08	-20.00	-38.75	-20.00	-18.75	120/300 kHz
Note: MSK Modulation @ 3m with preamp and filter REA003											
PK	V	1038.450	61.30	89.46	0.85	5.94	-20.00	-45.22	-20.00	-25.22	1/3 MHz
PK	V	1211.525	56.08	87.87	1.00	6.22	-20.00	-48.72	-20.00	-28.72	1/3 MHz
PK	V	1384.600	57.52	88.05	0.96	7.11	-20.00	-46.53	-20.00	-26.53	1/3 MHz
PK	V	1557.675	55.63	88.95	0.97	8.00	-20.00	-48.44	-20.00	-28.44	1/3 MHz
PK	V	1730.750	53.61	86.44	0.78	7.84	-20.00	-47.92	-20.00	-27.92	1/3 MHz
Note: FSK Modulation @ 10m with no preamp											
PK	V	346.150	26.07	50.57	0.35	-1.62	-20.00	-48.62	-20.00	-28.62	120/300 kHz
PK	V	519.225	26.24	48.68	0.43	1.87	-20.00	-43.15	-20.00	-23.15	120/300 kHz
PK	V	692.300	27.40	48.33	0.46	2.33	-20.00	-41.21	-20.00	-21.21	120/300 kHz
PK	V	865.375	28.24	45.09	0.48	-0.08	-20.00	-39.56	-20.00	-19.56	120/300 kHz
Note: FSK Modulation @ 3m with preamp and filter REA003											
PK	V	1038.450	46.36	89.46	0.85	5.94	-20.00	-60.16	-20.00	-40.16	1/3 MHz
PK	V	1211.525	43.04	87.87	1.00	6.22	-20.00	-61.76	-20.00	-41.76	1/3 MHz
PK	V	1384.600	45.38	88.05	0.96	7.11	-20.00	-58.67	-20.00	-38.67	1/3 MHz
PK	V	1557.675	44.13	88.95	0.97	8.00	-20.00	-59.94	-20.00	-39.94	1/3 MHz
PK	V	1730.750	42.85	86.44	0.78	7.84	-20.00	-58.68	-20.00	-38.68	1/3 MHz

Test Personnel: Nicholas Abbondante
 Supervising Engineer: N/A
 Product Standard: IC RSS-119, FCC Part 90
 Input Voltage: 3.6 & 7.2 VDC (Battery Pack)

Test Date: 11/04/2011, 11/07/2011
 Test Levels: See Tables
 Ambient Temperature: 19, 19 °C
 Relative Humidity: 27, 23 %
 Atmospheric Pressure: 1010, 1007 mbars

Pretest Verification w/ Ambient Signals or BB Source: Ambient

Deviations, Additions, or Exclusions: None

9 Receiver Radiated Spurious Emissions

9.1 Method

Tests are performed in accordance with IC RSS-119 Section 5.11, IC RSS-Gen Sections 4.10, 6.0.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A wooden table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) $< U_{CISPR}$ (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CF - AG$$

Where

FS = Field Strength in $\text{dB}\mu\text{V}/\text{m}$

RA = Receiver Amplitude (including preamplifier) in $\text{dB}\mu\text{V}$

CF = Cable Attenuation Factor in dB

AF = Antenna Factor in dB

AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 $\text{dB}\mu\text{V}$ is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 $\text{dB}\mu\text{V}/\text{m}$. This value in $\text{dB}\mu\text{V}/\text{m}$ was converted to its corresponding level in $\mu\text{V}/\text{m}$.

RA = 52.0 $\text{dB}\mu\text{V}$

AF = 7.4 dB/m

CF = 1.6 dB

AG = 29.0 dB

FS = 32 $\text{dB}\mu\text{V}/\text{m}$

To convert from $\text{dB}\mu\text{V}$ to μV or mV the following was used:

$$UF = 10^{(NF/20)} \text{ where } UF = \text{Net Reading in } \mu\text{V}$$

NF = Net Reading in $\text{dB}\mu\text{V}$

Example:

$$FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0$$

$$UF = 10^{(32 \text{ dB}\mu\text{V}/20)} = 39.8 \mu\text{V}/\text{m}$$

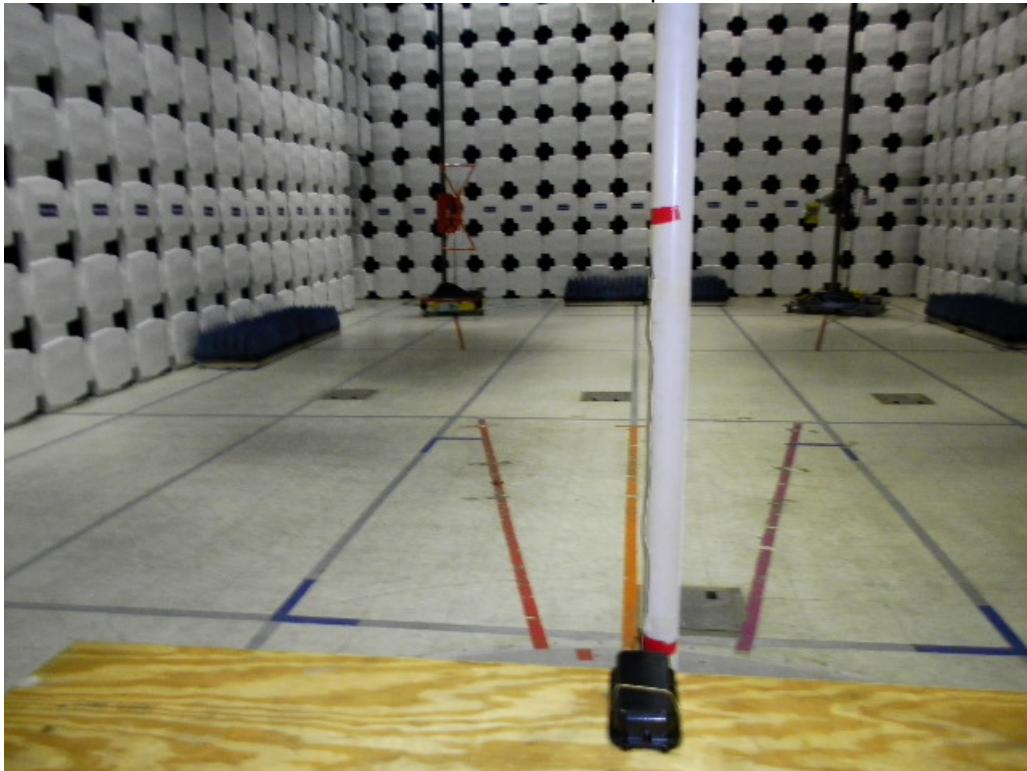
9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
Test equipment used at 10 meters						
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	08/15/2011	08/15/2012
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	09/04/2011	09/04/2012
PRE7'	PREAMPLIFIER	Hewlett Packard	8447D	2944A08718	07/01/2011	07/01/2012
Test equipment used at 3 meters						
DAV003'	Weather Station	Davis Instruments	7400	PE80529A39A	08/02/2011	08/02/2012
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	09/04/2011	09/04/2012
145128'	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	08/23/2011	08/23/2012
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/28/2010	12/28/2011
HORN3'	HORN ANTENNA	EMCO	3115	9610-4980	03/28/2011	03/28/2012

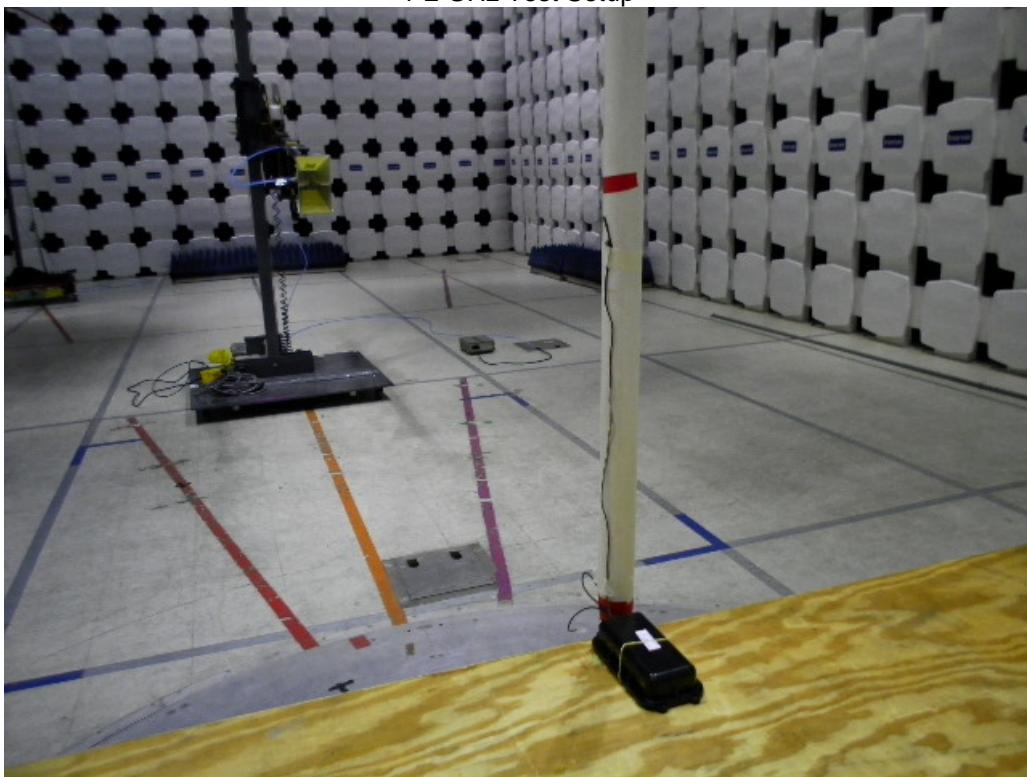
Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3

9.3 Results:


Receiver radiated emissions must not exceed the limits in IC RSS-Gen Table 2.

Frequency (MHz)	Field Strength (microvolts/m at 3 meters)
30-88	100
88-216	150
216-960	200
Above 960	500


The sample tested was found to comply.

9.4 Setup Photographs:

30-1000 MHz Test Setup

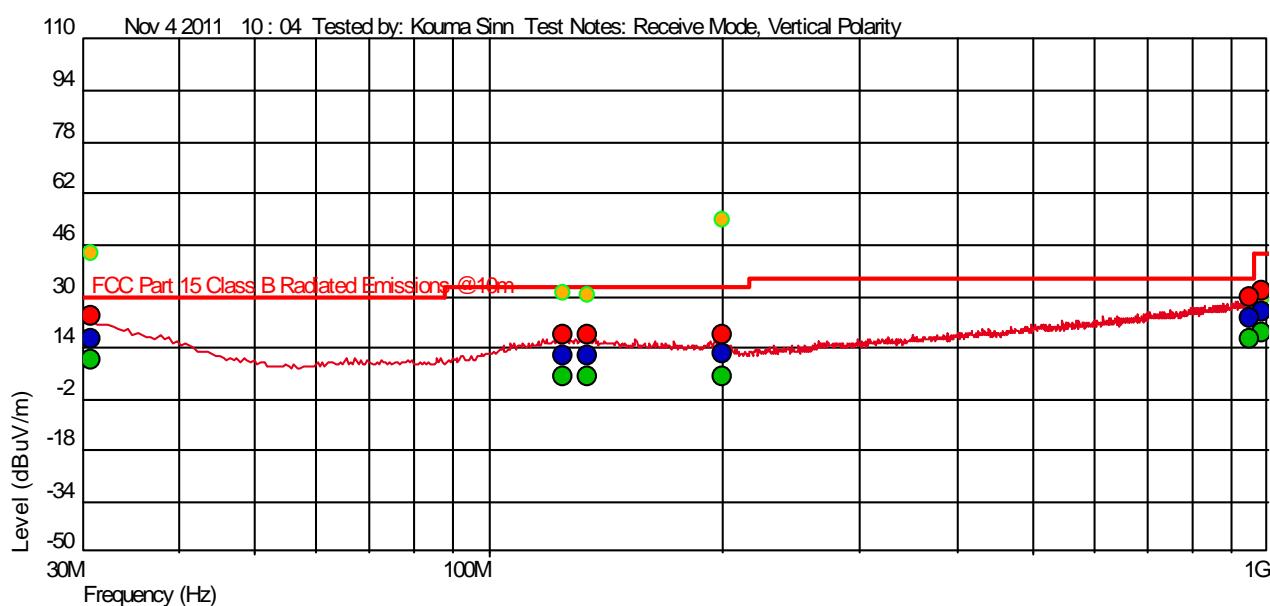
1-2 GHz Test Setup

9.5 Test Data:

Radiated Emissions 30-1000MHz Vertical Polarity @ 10m

Test Information

Test Details Serial # C6EDE58


Test Notes: Receive Mode, Vertical Polarity

Temperature: 20C

Humidity: 29%, 1006mbar

Tested by: Kouma Sinn

Test Started: Nov 4 2011 10 : 04

"PORTRAIT"

- Measured Peak Value

- Measured Quasi Peak Value

- Measured Average Value

- Maximum Value of Mast and Turntable

Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)

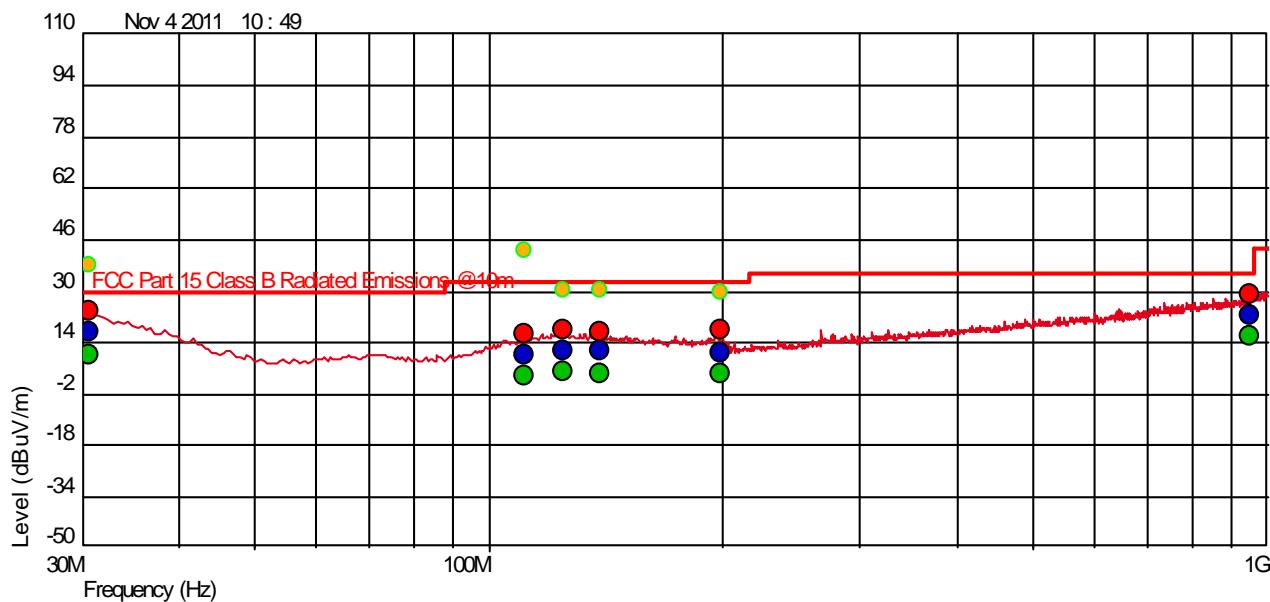
Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Vert ()	Angle (deg)	Mast Height (m)	RBW (Hz)
30.832 M	16.66	20.134	-25.525	29.54	-12.88		52	3.91	120k
124.907 M	11.52	13.991	-25.183	33.04	-21.52		4	3.76	120k
133.760 M	11.49	13.748	-25.074	33.04	-21.55		254	3.22	120k
200.020 M	11.81	13.094	-24.410	33.04	-21.23		249	2.22	120k
948.268 M	23.23	23.200	-22.361	35.54	-12.31		155	3.64	120k
986.037 M	24.87	23.600	-21.755	43.54	-18.67		237	3.03	120k

Radiated Emissions 30-1000MHz Horizontal Polarity @ 10m

Test Information

Test Details Serial # C6EDE58


Test Notes: Receive Mode, Horizontal Polarity

Temperature: 20C

Humidity: 29%, 1006mbar

Tested by: Kouma Sinn

Test Started: Nov 4 2011 10 : 49

"PORTRAIT"

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

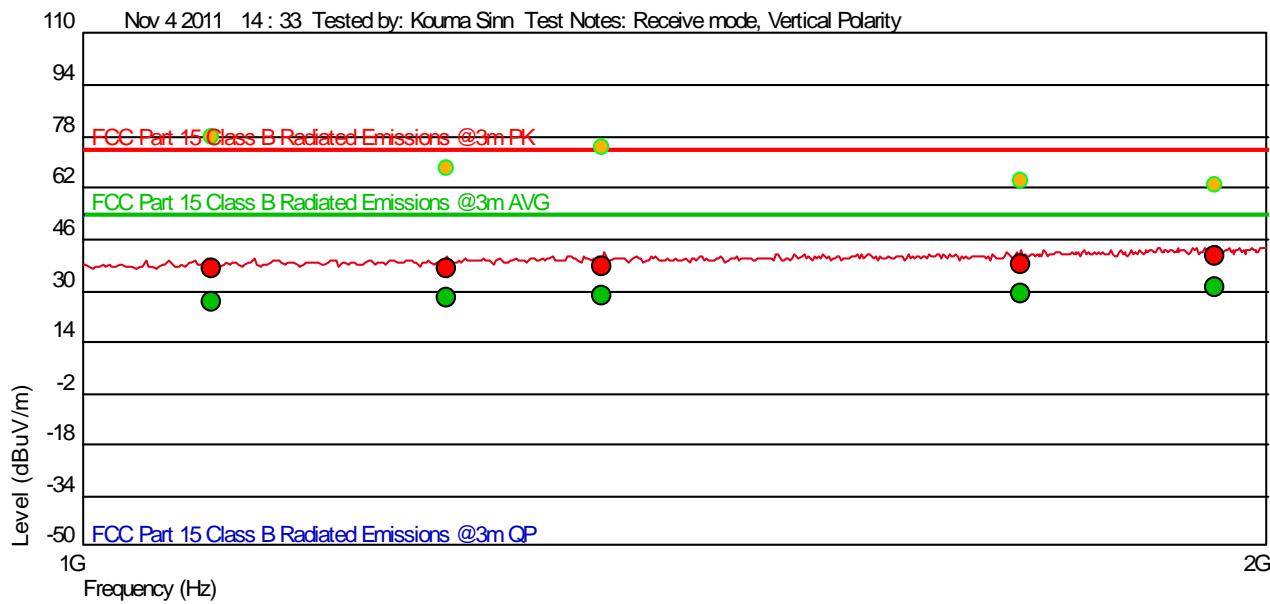
Level (dBuV/m) = AF + CL + PA + Raw

AF = Antenna Factor

CL = Cable Losses

PA = Pre-Amplifier

Raw = Raw Instrument Reading (Not listed on Spot Tables)


Measured: Quasi-Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Hor (-)	Angle (deg)	Mast Height (m)	RBW (Hz)
30.729 M	17.15	20.617	-25.521	29.54	-12.39	--	77	3.76	120k
111.116 M	10.26	12.923	-25.371	33.04	-22.78	--	292	3.60	120k
124.384 M	11.56	14.038	-25.190	33.04	-21.48	--	33	3.39	120k
139.299 M	11.14	13.440	-25.009	33.04	-21.90	--	99	3.58	120k
198.023 M	11.10	12.502	-24.427	33.04	-21.94	--	297	3.84	120k
951.362 M	22.79	22.727	-22.327	35.54	-12.75	--	165	2.45	120k

Radiated Emissions 1-2GHz Vertical Polarity @ 3m

Test Information

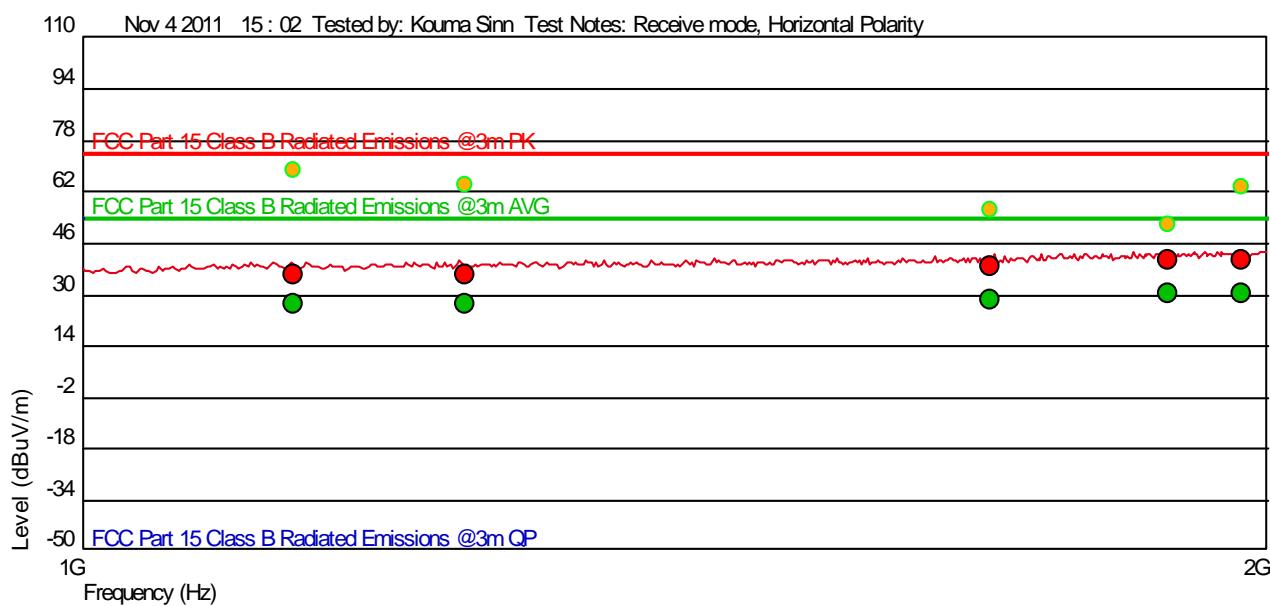
Test Details Serial # C6EDE58
 Test Notes: Receive mode, Vertical Polarity
 Temperature: 21C
 Humidity: 30%, 1006mbar
 Tested by: Kouma Sinn
 Test Started: Nov 4 2011 14 : 33

"PORTRAIT"

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- Level (dBuV/m) = AF + CL + PA + Raw
- AF = Antenna Factor
- CL = Cable Losses
- PA = Pre-Amplifier
- Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Vert (l)	Angle (deg)	Mast Height (m)	RBW (Hz)
1.078 G	36.94	24.584	-29.963	74.00	-37.06	l	157	1.49	1M
1.237 G	36.78	25.637	-29.403	74.00	-37.22	l	168	1.05	1M
1.356 G	37.74	25.937	-29.032	74.00	-36.26	l	277	1.06	1M
1.73 G	38.33	26.432	-28.510	74.00	-35.67	l	221	1.50	1M
1.941 G	40.45	27.669	-28.423	74.00	-33.55	l	196	1.51	1M


Measured: Average

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Vert (l)	Angle (deg)	Mast Height (m)	RBW (Hz)
1.078 G	26.67	24.584	-29.963	54.00	-27.33	l	157	1.49	1M
1.237 G	27.45	25.637	-29.403	54.00	-26.55	l	168	1.05	1M
1.356 G	28.24	25.937	-29.032	54.00	-25.76	l	277	1.06	1M
1.732 G	29.13	26.432	-28.510	54.00	-24.87	l	221	1.50	1M
1.941 G	30.71	27.669	-28.423	54.00	-23.29	l	196	1.51	1M

Radiated Emissions 1-2GHz Horizontal Polarity @ 3m

Test Information

Test Details: Serial # C6EDE58
 Test Notes: Receive mode, Horizontal Polarity
 Temperature: 21C
 Humidity: 29%, 1006mbar
 Tested by: Kouma Sinn
 Test Started: Nov 4 2011 15 : 02

"PORTRAIT"

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- Level (dBuV/m) = AF + CL + PA + Raw
- AF = Antenna Factor
- CL = Cable Losses
- PA = Pre-Amplifier
- Raw = Raw Instrument Reading (Not listed on Spot Tables)

Measured: Peak

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Hor (-)	Angle (deg)	Mast Height (m)	RBW (Hz)
1.132 G	36.31	25.235	-29.767	74.00	-37.69	--	177	2.42	1M
1.251 G	36.46	25.760	-29.359	74.00	-37.54	--	168	1.57	1M
1.701 G	39.09	26.139	-28.524	74.00	-34.91	--	52	2.09	1M
1.887 G	40.92	27.469	-28.445	74.00	-33.08	--	297	1.59	1M
1.970 G	40.45	27.654	-28.412	74.00	-33.55	--	53	1.69	1M

Measured: Average

Frequency (Hz)	Level (dBuV/m)	Ant. Fact. (dB)	Other Fact. (dB)	Limit (dBuV/m)	Margin (dB)	Hor (-)	Angle (deg)	Mast Height (m)	RBW (Hz)
1.132 G	27.17	25.235	-29.767	54.00	-26.83	--	177	2.42	1M
1.251 G	27.09	25.760	-29.359	54.00	-26.91	--	168	1.57	1M
1.701 G	28.44	26.139	-28.524	54.00	-25.56	--	52	2.09	1M
1.887 G	30.24	27.469	-28.445	54.00	-23.76	--	297	1.59	1M
1.970 G	30.58	27.654	-28.412	54.00	-23.42	--	53	1.69	1M

Test Personnel: Kouma Sinn *KPS*
Supervising Engineer: N/A
Product Standard: IC RSS-119, FCC Part 90
Input Voltage: 3.6 & 7.2 VDC (Battery Pack)
Pretest Verification w/ Ambient Signals or BB Source: Ambient Signals

Test Date: 11/04/2011
Test Levels: See section 9.3
Ambient Temperature: 20 °C
Relative Humidity: 29 %
Atmospheric Pressure: 1006 mbars

Deviations, Additions, or Exclusions: None

10 Revision History

Revision Level	Date	Report Number	Notes
0	11/17/2011	100537026BOX-004	Original Issue
1	01/12/2012	100537026BOX-004	Updated client address