

Report No.: SZEM131200649703

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 31

FCC REPORT

Application No: SZEM1406003072RF **Applicant:** Creative Labs Inc.

Manufacturer: Creative Technology Ltd.

Product Name: Creative Sound Blaster ROAR SR20, Creative Sound

Blaster ROAR SR20A

Model No.(EUT): MF8170
Trade Mark: Creative
FCC ID: IBAMF8170

47 CFR Part 15, Subpart C (2013) (for Conducted

Standards: Emission, Conducted Peak Output Power and Radiated

Spurious Emission)

Date of Receipt: 2014-06-18

Date of Test: 2014-06-24 to 2014-06-26

Date of Issue: 2014-07-02

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM131200649703

Page: 2 of 31

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2009)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2009)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2009)	PASS

Remark:

This test report (Ref. No.: SZEM131200649703) is only valid with the original test report (Ref.

No.: SZEM131200649701).

Review this report and original report, the major change filed under this application is:

- 1. Add Product Name CREATIVE SOUND BLASTER ROAR SR20A.
- 2. CREATIVE SOUND BLASTER ROAR SR20A is a derivative model of CREATIVE SOUND BLASTER ROAR SR20 with changes in product features. No other electrical differences other than those stated below. Mechanical design and construction are identical for both models.

Report No.: SZEM131200649703

Page: 3 of 31

	BEFORE	AF ⁻	TER	
Model No	MF8170			
Product Name	1. SOUND BLASTER ROAR SR20		TER ROAR SR20 FER ROAR SR20A	
		REV A (0514116)		
MS2160B Main Board	REV A (021350)	Remove: C72(1UF), C77(1UF), C255(2200PF). Add L10 (125R), L12(125R), C116(10PF), C117(10PF), C118(10PF), C119(10PF), C121(10PF), C157(1UF), C326(10UF), C325(4.7UF), D22(BAV99), R295(1K), R253(1M), R292(1M), R294(15K), R293(47K), R296(470K), TR27(3904), Q11(PMV45N),Q12(PMV45N), Q13(PMV45N), Q14(PMV45N), Q15(SI2343CDS), Q16(NTR4003NT1G), D27(Zener10V), R297(1K), R298(1K).		
		Change: C120(47PF to 100 R165(100K to 470K), R187(4K7), R290(100K to 220K).	(10K to 4K7), R259(10K to	
		SOUND BLASTER ROAR SR20	SOUND BLASTER ROAR SR20A	
		D11(BAT54C) MOUNTED.	REMOVE D11(BAT54C).	
MS2160E Mp3 Key Board	REV A (021350)	SOUND BLASTER ROAR SR20 REV A (031404)	SOUND BLASTER ROAR SR20A REV A (041422) REMOVE R114(10K). ADD R1(2K2), C1(10NF), C2(100NF)	
Product Feature	With LOUD SOUNDS Without LINK SECURITY Without TERA BASS	SOUND BLASTER ROAR SR20 WITH LOUD SOUNDS, WITHOUT LINK SECURITY, WITHOUT TERA BASS.	SOUND BLASTER ROAR SR20A WITHOUT LOUD SOUNDS, WITH LINK SECURITY, WITH TERA BASS.	

Considering to the difference, pre-scan were performed on the sample in this report to find the

items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Emission, Conducted Peak Output Power and Radiated Spurious Emission were fully retested on Model MF8170 and shown the data in this report, other tests please refer to original report SZEM131200649701.

Report No.: SZEM131200649703

Page: 4 of 31

3 Contents

			Page
1	CC	OVER PAGE	1
2	TE	ST SUMMARY	2
3		ONTENTS	
4	GE	ENERAL INFORMATION	5
	4.1	CLIENT INFORMATION	5
	4.2	GENERAL DESCRIPTION OF EUT	
	4.3	TEST ENVIRONMENT	7
	4.4	DESCRIPTION OF SUPPORT UNITS	7
	4.5	TEST LOCATION	7
	4.6	TEST FACILITY	
	4.7	DEVIATION FROM STANDARDS	
	4.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	4.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	4.10	EQUIPMENT LIST	9
5	TE	ST RESULTS AND MEASUREMENT DATA	12
	5.1	Antenna Requirement	12
	5.2	CONDUCTED EMISSIONS	
	5.3	CONDUCTED PEAK OUTPUT POWER	
	5.4	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	24
	5.5	RADIATED SPURIOUS EMISSION	
	5.5	5.1 Radiated Emission below 1GHz	
	5.5	5.2 Transmitter Emission above 1GHz	30-31

Report No.: SZEM131200649703

Page: 5 of 31

4 General Information

4.1 Client Information

Applicant:	Creative Labs Inc.
Address of Applicant:	1901, McCarthy Boulevard, Milpitas, CA 95035, United States
Manufacturer:	Creative Technology Ltd.
Address of Manufacturer:	31, International Business Park, #03-01 Creative Resource, Singapore 609921

4.2 General Description of EUT

Creative Sound Blaster ROAR SR20, Creative Sound Blaster ROAR SR20A
MF8170
Creative
2402MHz~2480MHz
3.0
FHSS
79
Adaptive Frequency Hopping systems
Portable production
255,46 (manufacturer declare)
CSR Bluesuite (manufacturer declare)
Integral
0.55dBi
Model : GPE024W-150160-Z
Input: 100-240V~50/60Hz 0.75A
Output : 15V==1600mA 24W
7.56V Li-ion Battery
2950mAh 22.3Wh
Model No.:BJ-ACEXX-3KXKUX-01
AC120V~60Hz
183.5cm (DC port)
76cm

Report No.: SZEM131200649703

Page: 6 of 31

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Report No.: SZEM131200649703

Page: 7 of 31

4.3 Test Environment

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	52 % RH	
Atmospheric Pressure:	1020mbar	

4.4 Description of Support Units

The EUT has been tested independent unit.

4.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM131200649703

Page: 8 of 31

4.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 3m Semi-anechoic chamber, Full-anechoic Chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2197, G-416, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

None.

Report No.: SZEM131200649703

Page: 9 of 31

4.10 Equipment List

	Conducted Emission	n			
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2014-10-24
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2014-11-10
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2014-11-10
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2014-11-10
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16

Report No.: SZEM131200649703

Page: 10 of 31

	RE in Chamber				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10
2	EMI Test Receiver	Rohde & Schwarz	ESIB26	SEL0023	2015-05-16
3	EMI Test software	AUDIX	E3	SEL0050	N/A
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-10-24
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2014-10-24
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-10-24
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2014-10-24
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
13	Band filter	Amindeon	82346	SEL0094	2015-05-16
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2014-10-24
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2014-10-24
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04

Report No.: SZEM131200649703

Page: 11 of 31

	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2014-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2014-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2014-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16
8	Band filter	amideon	82346	SEL0094	2015-05-16
9	POWER METER	R&S	NRVS	SEL0144	2014-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2014-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM131200649703

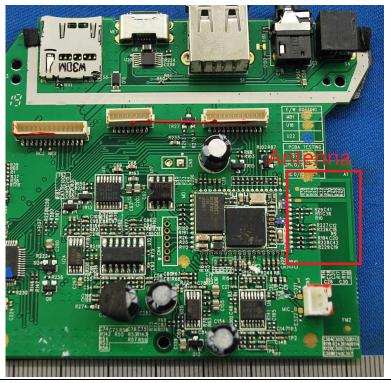
Page: 12 of 31

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

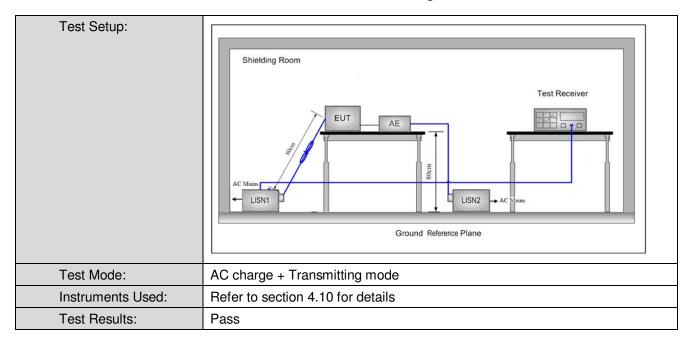
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 0.55dBi.

Report No.: SZEM131200649703

Page: 13 of 31

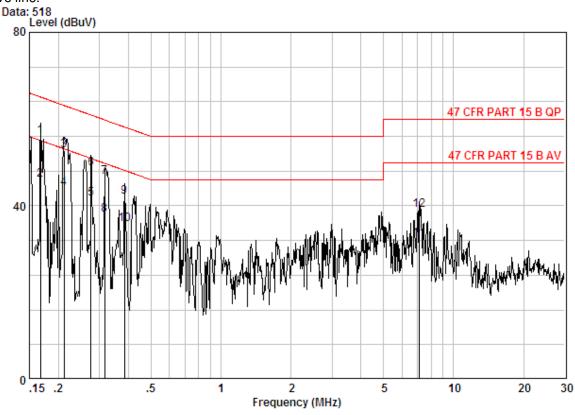

5.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207		
Test Method:	ANSI C63.10: 2009			
Test Frequency Range:	150kHz to 30MHz			
Limit:	Francisco (MIII-)	Limit (d	BuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithn	n of the frequency.		
Test Procedure:	The mains terminal disturb room.		s conducted in a shie	lded
	 The EUT was connected to Impedance Stabilization N impedance. The power call connected to a second LIS reference plane in the sammeasured. A multiple sock power cables to a single Lexceeded. The tabletop EUT was place ground reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground between the closest points the EUT and associated ed. In order to find the maximule equipment and all of the in ANSI C63.10: 2009 on contract. 	etwork) which provides oles of all other units of SN 2, which was bonder he way as the LISN 1 for et outlet strip was used ISN provided the rating ced upon a non-metallic and for floor-standing arround reference plane, th a vertical ground reference plane was bonded to the 1 was placed 0.8 m from the vertical ground reference und reference plane. The of the LISN 1 and the quipment was at least 0 am emission, the relative terface cables must be	is a 50Ω/50μH + 5Ω line is the EUT were do not the ground for the unit being do not the unit being do not the LISN was not do table 0.8m above the rangement, the EUT verence plane. The read reference plane. The horizontal ground form the boundary of the plane for LISNs has distance was EUT. All other units of the positions of	ne was ar ne ne

Report No.: SZEM131200649703

Page: 14 of 31

Report No.: SZEM131200649703


Page: 15 of 31

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

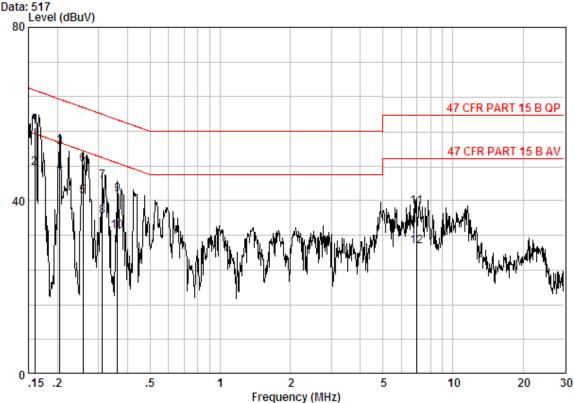
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE LINE

Job No. : 3072RF

Mode : AC charge + TX mode


		Cable	LISN	Read		Limit	Over	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1 @	0.16765	0.02	9.70	46.29	56.01	65.08	-9.07	QP
2	0.16765	0.02	9.70	36.26	45.98	55.08	-9.10	Average
3	0.21167	0.02	9.70	43.05	52.77	63.14	-10.37	QP
4	0.21167	0.02	9.70	34.32	44.04	53.14	-9.10	Average
5	0.27587	0.01	9.70	31.89	41.60	50.94	-9.33	Average
6	0.27587	0.01	9.70	38.85	48.56	60.94	-12.38	QP
7	0.31662	0.01	9.72	36.92	46.65	59.80	-13.14	QP
8	0.31662	0.01	9.72	28.21	37.94	49.80	-11.86	Average
9	0.38519	0.01	9.79	32.22	42.02	58.17	-16.15	QP
10	0.38519	0.01	9.79	25.91	35.71	48.17	-12.46	Average
11	7.137	0.01	9.90	22.41	32.32	50.00	-17.68	Average
12	7.137	0.01	9.90	29.08	38.99	60.00	-21.01	QP

Report No.: SZEM131200649703

Page: 16 of 31

Neutral line:

Site : Shielding Room

Condition : 47 CFR PART 15 B QP CE NEUTRAL

Job No. : 3072RF

Mode : AC charge + TX mode

			Cable	LISN	Read		Limit	Over	
		Freq	Loss	Factor	Level	Level	Line	Limit	Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.15985	0.02	9.70	47.27	56.99	65.47	-8.48	QP
2	@	0.15985	0.02	9.70	37.85	47.57	55.47	-7.90	Average
3		0.20505	0.02	9.70	42.65	52.36	63.40	-11.04	QP
4	@	0.20505	0.02	9.70	36.74	46.46	53.40	-6.95	Average
5		0.25751	0.02	9.70	31.31	41.03	51.51	-10.48	Average
6		0.25751	0.02	9.70	38.63	48.35	61.51	-13.16	QP
7		0.31163	0.01	9.71	34.64	44.36	59.93	-15.57	QP
8		0.31163	0.01	9.71	26.61	36.33	49.93	-13.60	Average
9		0.36146	0.01	9.76	31.66	41.43	58.69	-17.26	QP
10		0.36146	0.01	9.76	23.09	32.87	48.69	-15.83	Average
11		6.951	0.01	10.00	28.57	38.58	60.00	-21.42	QP
12		6.951	0.01	10.00	19.49	29.49	50.00	-20.51	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM131200649703

Page: 17 of 31

5.3 Conducted Peak Output Power

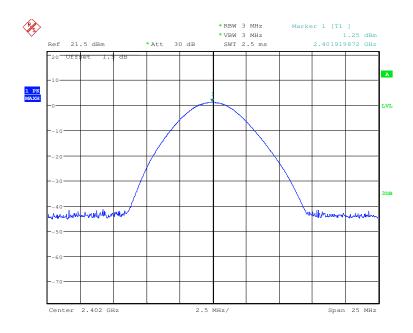
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)					
Test Method:	ANSI C63.10:2009					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.					
Limit:	20dBm					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type, 2-DH1 of data type is worse case of $\pi/4DQPSK$ modulation type, 3-DH1 of data type is worse case of 8DPSK modulation type.					
Instruments Used:	Refer to section 4.10 for details					
Test Results:	Pass					

Report No.: SZEM131200649703

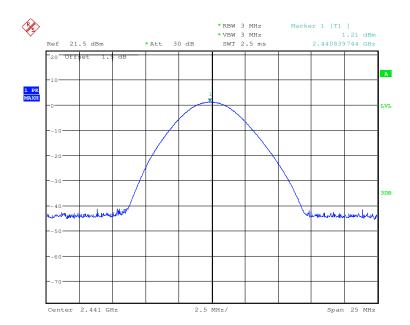
Page: 18 of 31

Measurement Data

Mcasarchicht Data	weasurement Data									
	GFSK mode									
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	1.25	20.00	Pass							
Middle	1.21	20.00	Pass							
Highest	0.68	20.00	Pass							
	π/4DQPSK mode									
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	0.93	20.00	Pass							
Middle	0.84	20.00	Pass							
Highest	0.02	20.00	Pass							
	8DPSK mod	de								
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result							
Lowest	1.09	20.00	Pass							
Middle	0.94	20.00	Pass							
Highest	0.20	20.00	Pass							

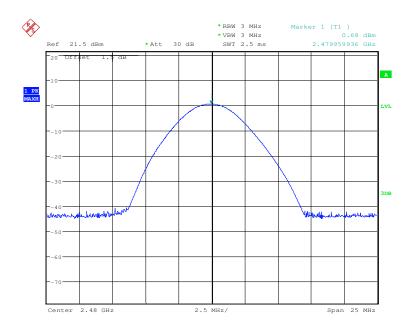


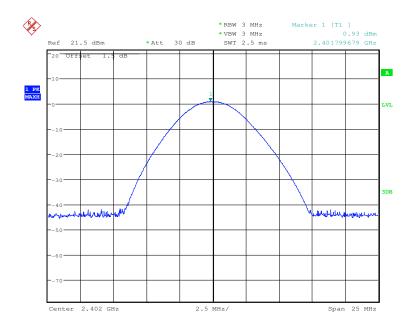
Report No.: SZEM131200649703


Page: 19 of 31

Test plot as follows:

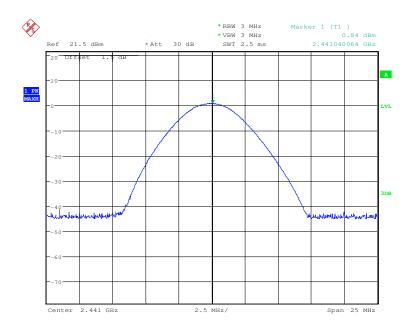
Test mode: GFSK Test channel: Lowest



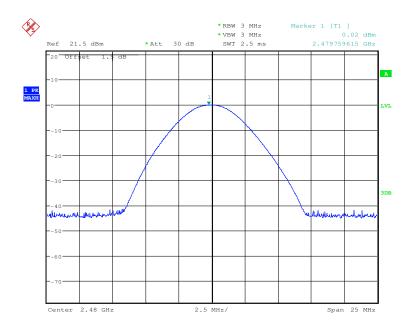

Report No.: SZEM131200649703

Page: 20 of 31

Test mode: GFSK Test channel: Highest

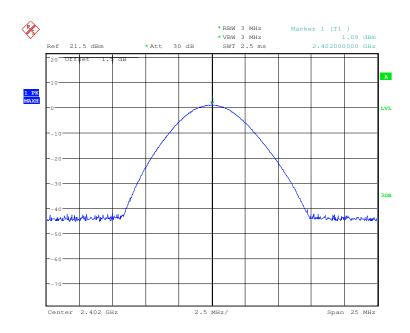


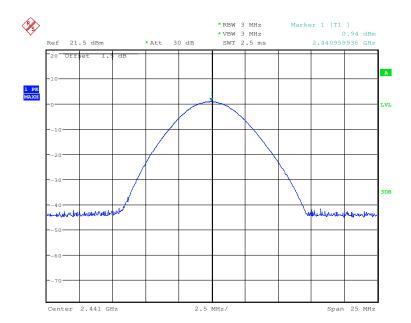



Report No.: SZEM131200649703

Page: 21 of 31

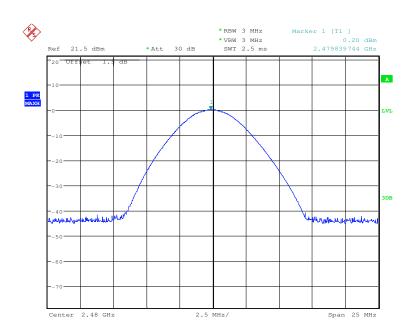
Test mode: π/4DQPSK Test channel: Middle




Report No.: SZEM131200649703

Page: 22 of 31

Test mode: 8DPSK Test channel: Lowest



Report No.: SZEM131200649703

Page: 23 of 31

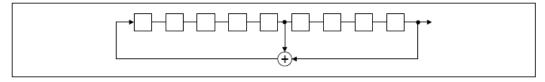
Test mode: 8DPSK Test channel: Highest

Report No.: SZEM131200649703

Page: 24 of 31

5.4 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

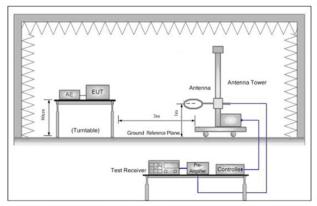
Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Report No.: SZEM131200649703

Page: 25 of 31

5.5 Radiated Spurious Emission


Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15.	205					
Test Method:	ANSI C63.10: 2009								
Test Site:	Measurement Distance	: 3m	n (Semi-Anech	oic Cham	ber)				
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark			
	0.009MHz-0.090MH	Z	Peak	10kHz	z 30kHz	Peak			
	0.009MHz-0.090MH	z	Average	10kHz	z 30kHz	Average			
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MH	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	10kHz	z 30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	z 30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kH	lz 300kHz	Quasi-peak				
	Above 1GHz		Peak	1MHz	3MHz	Peak			
	ABOVE TOTIZ		Peak	1MHz	10Hz	Average			
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measureme distance (m			
	0.009MHz-0.490MHz	2	400/F(kHz)	-	-	300			
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-	30			
	1.705MHz-30MHz		30	-	-	30			
	30MHz-88MHz		100	40.0	Quasi-peak	3			
	88MHz-216MHz		150	43.5	Quasi-peak	3			
	216MHz-960MHz		200	46.0	Quasi-peak	3			
	960MHz-1GHz		500	54.0	Quasi-peak	3			
	Above 1GHz		500	54.0	Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								

Report No.: SZEM131200649703

Page: 26 of 31

Test Setup:

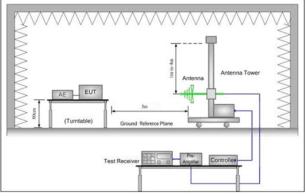


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

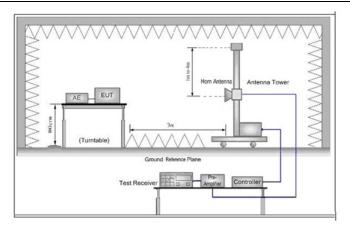


Figure 3. Above 1 GHz

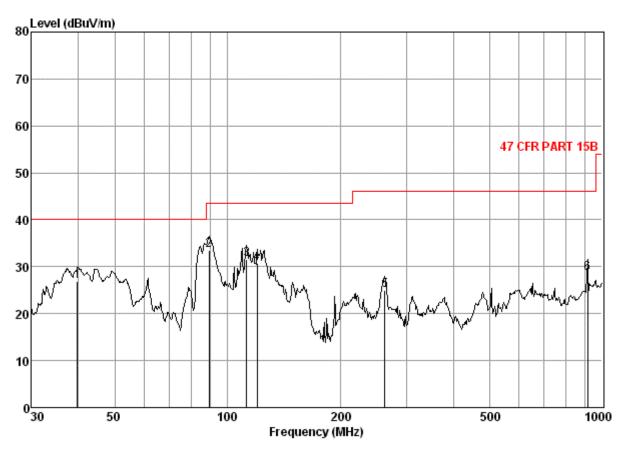
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB

Report No.: SZEM131200649703

Page: 27 of 31

	margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2441MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type. Transmitting mode, AC Charge +Transmitting mode				
Final Test Mode:	Through Pre-scan, find the DH1 of data type is the worse case of GFSK modulation type. Pretest the EUT at Transmitting mode and AC Charge +Transmitting mode, found the AC Charge +Transmitting mode which it is worse case.Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 4.10 for details				
Test Results:	Pass				



Report No.: SZEM131200649703

Page: 28 of 31

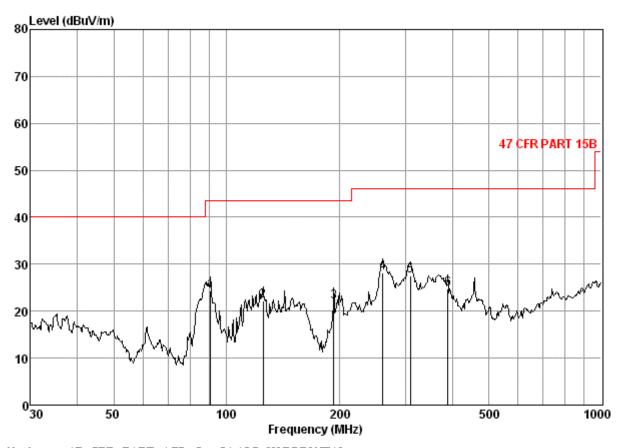
5.5.1 Radiated Emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	AC Charge +Transmitting mode	Vertical

Condition: 47 CFR PART 15B 3m 3142C VERTICAL

Job No. : 3072RF

Mode : AC charge+TX


ouc			ntenna	Preamp Factor			Limit Line	Over Limit
	MHz	dB	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5	39. 71 89. 28 112. 52 119. 86 262. 90 912. 86	0.60 1.10 1.23 1.25 1.74 3.61		27. 32 27. 22 27. 11 27. 07 26. 50 26. 71	42. 40 53. 59 49. 88 48. 90 40. 57 31. 11	31.55 30.78	43.50 43.50 43.50 46.00	-11.95 -12.72

Report No.: SZEM131200649703

Page: 29 of 31

Test mode: AC Charge +Transmitting mode Horizontal

Condition: 47 CFR PART 15B 3m 3142C HORIZONTAL

: 3072RF

Job No, Mode

oae	Freq		ntenna	Preamp Factor	Read Level		Limit Line	Over Limit
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 3 4 5	90.54 125.01 193.09 261.06 308.91 389.35	1.11 1.26 1.39 1.73 1.93 2.17	6. 01 7. 90 6. 97 9. 00 9. 88 11. 77	27. 21 27. 04 26. 73 26. 50 26. 46 27. 07	44. 41 40. 03 40. 40 43. 83 42. 25 37. 95	24. 32 22. 15 22. 03 28. 06 27. 60 24. 82	43.50 43.50 46.00 46.00	-19.18 -21.35 -21.47 -17.94 -18.40 -21.18

Report No.: SZEM131200649703

Page: 30 of 31

5.5.2 Transmitter Emission above 1GHz

Worse case	mode:	GFSK(DH1)	Test	channel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1655.354	4.04	29.33	39.42	48.24	42.19	74	-31.81	Vertical
3662.775	5.98	33.41	40.79	46.13	44.73	74	-29.27	Vertical
4804.000	7.44	34.70	41.63	47.46	47.97	74	-26.03	Vertical
7206.000	8.72	35.88	39.87	44.83	49.56	74	-24.44	Vertical
9608.000	9.68	37.30	37.80	41.36	50.54	74	-23.46	Vertical
11963.890	11.26	38.87	38.26	39.41	51.28	74	-22.72	Vertical
1659.574	4.04	29.33	39.42	47.72	41.67	74	-32.33	Horizontal
3738.129	6.11	33.49	40.84	46.80	45.56	74	-28.44	Horizontal
4804.000	7.44	34.70	41.63	46.15	46.66	74	-27.34	Horizontal
7206.000	8.72	35.88	39.87	44.64	49.37	74	-24.63	Horizontal
9608.000	9.68	37.30	37.80	41.21	50.39	74	-23.61	Horizontal
12334.980	11.42	39.24	38.42	38.73	50.97	74	-23.03	Horizontal

Worse case	mode:	GFSK(DH1)) Tes	t channel:	Middle	Rem	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1659.574	4.04	29.33	39.42	49.21	43.16	74	-30.84	Vertical
3143.979	5.27	33.34	40.41	46.72	44.92	74	-29.08	Vertical
4880.000	7.48	34.59	41.68	47.67	48.06	74	-25.94	Vertical
7320.000	8.87	35.93	39.77	43.31	48.34	74	-25.66	Vertical
9760.000	9.74	37.46	37.66	40.87	50.41	74	-23.59	Vertical
12334.980	11.42	39.24	38.42	38.37	50.61	74	-23.39	Vertical
1655.354	4.04	29.33	39.42	48.14	42.09	74	-31.91	Horizontal
3700.260	6.05	33.45	40.81	47.81	46.50	74	-27.50	Horizontal
4880.000	7.48	34.59	41.68	48.88	49.27	74	-24.73	Horizontal
7320.000	8.87	35.93	39.77	44.28	49.31	74	-24.69	Horizontal
9760.000	9.74	37.46	37.66	40.39	49.93	74	-24.07	Horizontal
11254.860	10.75	38.45	37.97	39.57	50.80	74	-23.20	Horizontal

Report No.: SZEM131200649703

Page: 31 of 31

Worse case	mode:	GFSK(DH1) Tes	t channel:	Highest	Rer	nark:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
1655.354	4.04	29.33	39.42	50.35	44.30	74	-29.70	Vertical
3662.775	5.98	33.41	40.79	47.16	45.76	74	-28.24	Vertical
4960.000	7.53	34.46	41.74	47.20	47.45	74	-26.55	Vertical
7440.000	9.01	35.98	39.67	43.87	49.19	74	-24.81	Vertical
9920.000	9.81	37.63	37.53	40.37	50.28	74	-23.72	Vertical
11140.850	10.67	38.47	37.92	39.74	50.96	74	-23.04	Vertical
1655.354	4.04	29.33	39.42	48.27	42.22	74	-31.78	Horizontal
3738.129	6.11	33.49	40.84	46.47	45.23	74	-28.77	Horizontal
4960.000	7.53	34.46	41.74	47.16	47.41	74	-26.59	Horizontal
7440.000	9.01	35.98	39.67	44.69	50.01	74	-23.99	Horizontal
9920.000	9.81	37.63	37.53	40.92	50.83	74	-23.17	Horizontal
11963.890	11.26	38.87	38.26	39.33	51.20	74	-22.80	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.