

TEST REPORT

For

Cooper Industries (Canada) Inc.

Bldg. 74 - 1833 Coast Meridian Road
Port Coquitlam, British Columbia
V3C 6G5, Canada

Date: April 01, 2013
Report No.: 11356-1E
Revision No.: 0
Project No.: 11356
Equipment: 900MHz Spread Spectrum Data Transceiver
Module
Model No.: XPD900

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

3133-20800 Westminster Hwy, Richmond, BC
V6V 2W3, Canada
Phone: 604-247-0444
Fax: 604-247-0442
www.labtestcert.com

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

TABLE OF CONTENTS

TEST REPORT	4
General product information:	6
Frequencies	6
List of ancillary and/or support equipment provided by the applicant	6
Description of Interface Cables for Testing	6
Software and Firmware	7
Worst-case configuration and mode of operation during testing	7
Modifications Required for Compliance	7
Test Equipment Verified for function	7
Measurement Uncertainty	8
Markings	8
Test Summary	9
Conducted Emission	10
Test Limits.....	10
Test Results	10
Radiated Emission: Unintentional-Receive Mode	11
Test Limits.....	11
Test Setup.....	11
Setup Block Diagram	12
Test Setup in Chamber	12
Test Result.....	13
Radiated Emission: Intentional-Transmit Mode, Spurs	16
Test Limits.....	16
Test Setup.....	17
Setup Block Diagram	18
Test Setup in Chamber	18
Test Result.....	18
Radiated Emissions: Intentional-Transmit Mode, Harmonics	28
Test Limits.....	28
Test Setup.....	29
Setup Block Diagram	30
Test Setup in Chamber	30
Test Result.....	31
Antenna-port Conducted Emissions.....	36
Test Limits.....	36
Test Setup.....	36
Setup Block Diagram	37
Test Results:	37
Occupied Bandwidth.....	41
Test Limits.....	41
Test Setup.....	41
Setup Block Diagram	42
Test Results:	42
Band-edge Compliance.....	45
Test Limits.....	45
Test Setup.....	45

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram	46
Test Results:	46
Conducted Output Power	48
Test Limits.....	48
Test Setup.....	48
Setup Block Diagram	49
Test Results:	49
Antenna Gain.....	52
Test Limits.....	52
Test Results:	52
Carrier Frequency Separation	53
Test Limits.....	53
Test Setup.....	53
Setup Block Diagram	54
Test Results:	54
Number of Hopping Frequencies	57
Test Limits.....	57
Test Setup.....	57
Setup Block Diagram	58
Test Results:	58
Time of Occupancy (Dwell Time)	61
Test Limits.....	61
Test Setup.....	61
Setup Block Diagram	62
Test Results:	62
Pseudorandom frequency-hopping sequence	66
Test Limits.....	66
Test Results	66
Equal Hopping Frequency Usage	67
Test Limits.....	67
Test Results	67
System Receiver Input Bandwidth	68
Test Limits.....	68
Test Results	68
RF Exposure (SAR).....	69
Test Limits.....	69
Calculations	70
Limits.....	71
Results	71
Conclusion	71
APPENDIX A: Test Equipment Used	72
APPENDIX B: EUT photos	73
APPENDIX C: Test setup photos	75
APPENDIX D: ISO 17025:2005 Accreditation Certificate	80

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

TEST REPORT	
FCC15.247:2010 / RSS-210, Issue 8	
Report reference No.....	11356-1E
Report Revision History:	✓ Rev. 0: April 01, 2013
Tested by (printed name and signature)	Jeremy Lee
Approved by (printed name and signature)	Kavinder Dhillon, Eng.L
Date of issue	April 01, 2013
<p>Note: By signing this report, both the Testing Technician and the Reviewer hereby declare to abide by the applicable LabTest policies:</p> <p>1.) Statement of Independence # 3014 (LabTest Employees), 2.) Independence, Impartiality, and Integrity #1039, clause 11 (Engineering Service Subcontractors), or 3.) Independence, Impartiality, and Integrity #1019, clause 3.5 (Testing Subcontractors).</p>	
Testing Laboratory Name	LabTest Certification Inc.
Address	3133 – 20800 Westminster Hwy, Richmond, B.C. V6V 2W3 Canada
FCC Site Registration No.....	373387
IC Site Registration No.	5970A-2
Test Location Name	LabTest Certification Inc.
Address	3133 – 20800 Westminster Hwy, Richmond, B.C. V6V 2W3 Canada
Applicant's Name	Cooper Industries (Canada) Inc.
Address	Bldg. 74 - 1833 Coast Meridian Road, Port Coquitlam, B.C. V3C 6G5, Canada
Manufacturer's Name	Same as Applicant
Address	Same as Applicant
Test specification	
Standards	FCC15.247:2010 / RSS-210, Issue 8, December 2010
Testing	
Date of receipt of test item	March 25, 2013
Date(s) of performance of test	March 25 & 26, 2013
Test item description	
Trademark	N/A
Model and/or type reference	XPD900 FCC ID: IA9XPD900, IC ID: 1338B-XPD900
Serial numbers	3B465746
Electrical Rating(s)	3.3 to 6.5VDC, Typically 5VDC

Prepared by: LabTest Certification Inc.
 Date Issued: April 01, 2013
 Project No: 11356

Client: Cooper Industries (Canada) Inc.
 Report No.: 11356-1E
 Revision No.: 0

Product descriptions	
Type of Emission	Frequency Hopping Spread Spectrum(FHSS)
No. of Hopping Channels	63 Channels
No. of Radio Channels	256 Channels
Modulation	2FSK
Data Rates	10.4 kbps
Dwell time per channel	< 144 ms
Max. time between two instances of use of the same channel	≤ 3.4 sec
Operating Frequency Range:	902.2 to 927.7 MHz
Application for	900MHz Frequency Hopped Spread Spectrum Data Transceiver Module
Equipment mobility	Yes, with Host system.
Nominal Voltages for	<input type="checkbox"/> stand-alone equipment <input checked="" type="checkbox"/> combined (or host) equipment <input type="checkbox"/> test jig
Supply Voltage	<input type="checkbox"/> AC <input type="checkbox"/> Amps <input type="checkbox"/> Hz <input type="checkbox"/> 5V <input type="checkbox"/> DC <input type="checkbox"/> Amps
If DC Power	<input type="checkbox"/> Internal Power Supply <input checked="" type="checkbox"/> Host system is supplied the DC power <input type="checkbox"/> Battery <ul style="list-style-type: none"> <input type="checkbox"/> Nickel Cadmium <input type="checkbox"/> Alkaline <input type="checkbox"/> Nickel-Metal Hydride <input type="checkbox"/> Lithium-Ion <input type="checkbox"/> Lead Acid (Vehicle regulated) <input type="checkbox"/> Other
Size of equipment(H X D X W, mm):	
Mass of equipment (g):	N/A
Operating Temperature Range	-40 °C to +70 °C
Test case verdicts	
Test case does not apply to the test object :	N/A
Test item does meet the requirement ..:	Pass
Test item does not meet the requirement ..:	Fail

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

General remarks

"This report is not valid as a CB Test Report unless appended by an approved CB Testing Laboratory and appended to a CB Test Certificate.

The test result presented in this report relate only to the object(s) tested.

This report shall not be reproduced, except in full, without the written approval of the Issuing testing laboratory.

"(see Enclosure #)" refers to additional information appended to the report.

"(see appended table)" refers to a table appended to the report.

Throughout this report a comma is used as the decimal separator.

Throughout this report a period is used as the decimal separator.

General product information:

The XPD900, a frequency hopped spread spectrum transceiver module designed to be compatible with US (FCC Part 15.247) and Canadian (RSS-210) regulations for license free use in the 900 MHz ISM band.

Frequencies

Module	Description	Frequencies
Integrated Transceiver(U1)	IF	243 MHz
VCTCXO(X1)	TCXO	13 MHz
Integrated Transceiver(U1)	CMOS Clock	6.5 MHz
Integrated Transceiver(U1)	SPI clock for data interface	10.4kHz

List of ancillary and/or support equipment provided by the applicant

Model No.	Description	Manufacturer	Approvals/Standards
Host Board	Supply DC power	Cooper	N/A
Debug Board	Set-up the device connected to PC	Cooper	N/A
NMO3E900B	Whip Antenna with NMOHF Mount	Larsen Antennas	N/A

Description of Interface Cables for Testing

Description	Cable Type	Cable length	Ferrite
RS-232, Debug board to PC	Unshielded data cable	6 ft	N/A
DC Power, Host board to Power supply	Unshielded twisted power cable	4 ft	N/A
Antenna, Output connector to Antenna	LMR 195 Coaxial Cable, 10.7dB/100ft Attenuation @ 900MHz	20 ft	N/A

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

ARRANGEMENT OF INTERFACE CABLES: All interface cables were positioned for worst-case maximum emissions within the manner assumed to be a typical operation condition (please reference photographs).

Software and Firmware

Description	Version
Hyper Terminal	5.1

Worst-case configuration and mode of operation during testing

The worst case was described at each test description.

Modifications Required for Compliance

None

Test Equipment Verified for function

Model #	Description	Checked Function	Results
E7405	Spectrum Analyzer	Frequency and Amplitude	Connected 50MHz and -20dBm Cal_Signal and checked OK.
310N	Pre-Amplifier, 30 to 1,000MHz	Gain at 30 and 1,000MHz	Gains are normal.
8449B	Pre-Amplifier, 1 to 26.5GHz	Gain at 1 to 10 GHz	Gains were normal.
AL-130	Anatenna, 9 kHz to 30MHz	Checked structure	Normal – no damage
JB1	Anatenna, 30 to 1000MHz	Checked structure	Normal – no damage
SAS-571	Anatenna, 1 to 18GHz	Checked structure	Normal – no damage
SAC-26G-3	RF Cable, up to 26.5GHz	Insertion Loss at 1 to 4GHz	Insertion Losses are normal
OC-LMR100A-4	RF Cable, SMA(m) to SMA(m)	Insertion Loss at 30 MHz to 10 GHz	Saved data
VAT-20+	Attenuator	Insertion Loss at 30 MHz to 10 GHz	Saved data

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty(dB)
Radiated Emission, 30 to 300MHz	4.94
Radiated Emission, 1 to 10GHz	5.05

Uncertainty figures are valid to a confidence level of 95%.

Markings

You should refer to the clause of FCC Part 2 Section 2.295 & 2.296 and FCC Part 15 Section 15.19 for information to be contained on the label as well as information about the label. Any other statements or labelling requirements may appear on a separate label at the option of the applicant/grantee. The label has to be including FCC IC/IC ID, Product Number and Manufacturer Info.

According to FCC Section 2.925(a),

(a) Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX-Grantee Code 123-Equipment Product Code"

According to FCC Section 15.19(a)(3),

This device shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Note: Some jurisdictions in Canada require Cautions and Warnings to also be in French. It is the responsibility of the Customer to provide bilingual marking, where applicable, in accordance with the requirements of the local regulatory authorities. It is the responsibility of the Customer to determine this requirement and have bilingual wording added to the "Markings".

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Test Summary

When configured and operated as specified in this report, the product was found to comply with the requirements as indicated below.

Test Type	Regulation	Measurement Method	Result
AC Power Line Conducted Emission	15.207(a) RSS-Gen	ANSI C63.4:2009 & ANSI C63.10:2009	N/A ¹⁾
Radiated Emissions- Unintentional radiators	15.109, Class B & RSS-210	ANSI C63.4:2009 & ANSI C63.10:2009, Clause 6.5	PASS
Radiated Emissions- Intentional radiators, Spurs	15.247, 15.205, 15.209 & RSS-210	DA 00-705	PASS
Radiated Emissions – Intentional radiators, Harmonics	15.247, 15.205, 15.209 & RSS-210	DA 00-705	PASS
Antenna-port Conducted Emissions	15.247(d) & RSS-210	DA 00-705	PASS
Antenna Gain	15.247(b)(4) & RSS-210	N/A	PASS
Occupancy Bandwidth	15.247(a)(1) & RSS-210	DA 00-705	PASS
Band Edge	15.247(d) & RSS-210	DA 00-705	PASS
Conducted Output Power	15.247(b)(1) & RSS-210	DA 00-705	PASS
FHSS			
Carrier Frequency Separation	15.247(a)(1) & RSS-210	DA 00-705	PASS
Number of hopping frequencies	15.247(a)(1) & RSS-210	DA 00-705	PASS
Time of occupancy(Dwell Time)	15.247(a)(1) & RSS-210	DA 00-705	PASS
Pseudorandom frequency-hopping sequence	15.247(a)(1) & RSS-210	DA 00-705	PASS
Equal hopping frequency usage	15.247(a)(1) & RSS-210	DA 00-705	PASS
System receiver input bandwidth	15.247(a)(1) & RSS-210	DA 00-705	PASS
RF Exposure	15.247(i) & RSS-102	DA 00-705	PASS

Note1): The EUT connected to host power system. This test was exempted as no connection to AC Power Line.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Conducted Emission

Test Date	April 01, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

FCC 15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

*Decreases with the logarithm of the frequency.

Test Results

The test was exempted because there is no public utility (AC) power line connection.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Radiated Emission: Unintentional-Receive Mode

Temperature	23.2 °C
Relative Humidity	30.0 to 32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272, 371, 408
Reference Equipment (ID) (Calibration not required)	187, 374
Tested By	Jeremy Lee

Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0284>

Test Limits

FCC 15.109 (a):

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/meter)
30–88	100
88–216	150
216–960	200
Above 960	500

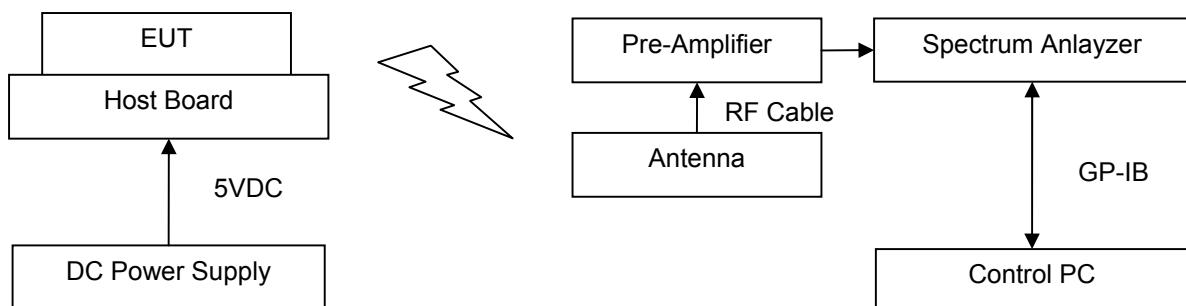
Test Setup

The test was performed in accordance with **FCC 15.109:2010, FCC 15.31:2010, FCC 15.33:2010, FCC 15.35:2010, and ANSI C63.4:2009, and ANSI C63.10:2009**.

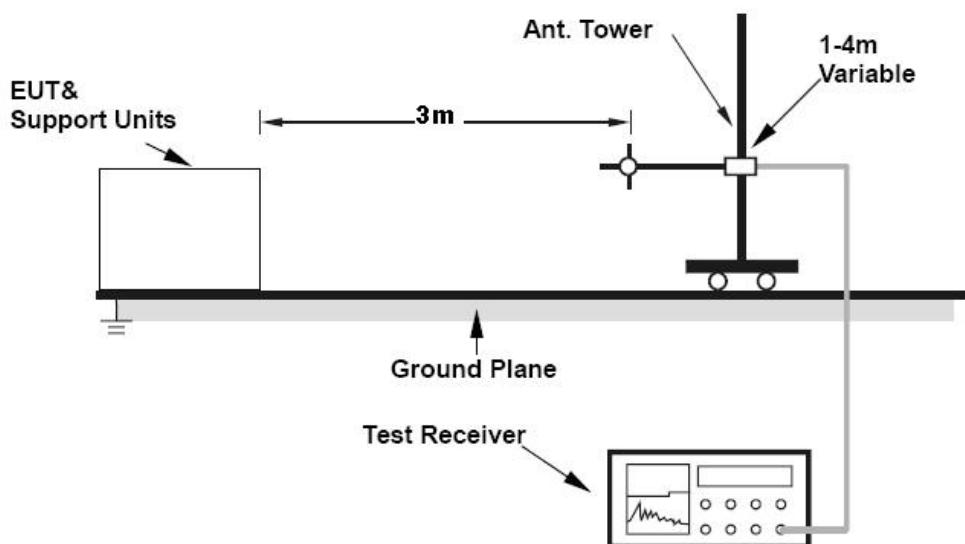
Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2009: “Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz” (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – the spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


Tests were performed to determine the emissions with Receive mode, Antenna was connected. The EUT was positioned emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- The EUT was set-up Receive mode.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 120 kHz
 - VBW \geq RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
 - QP Detecting; there was no strong signal to detect QP level.

Setup Block Diagram

Test Setup in Chamber

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)– Pre-Amplifier Gain(dB)

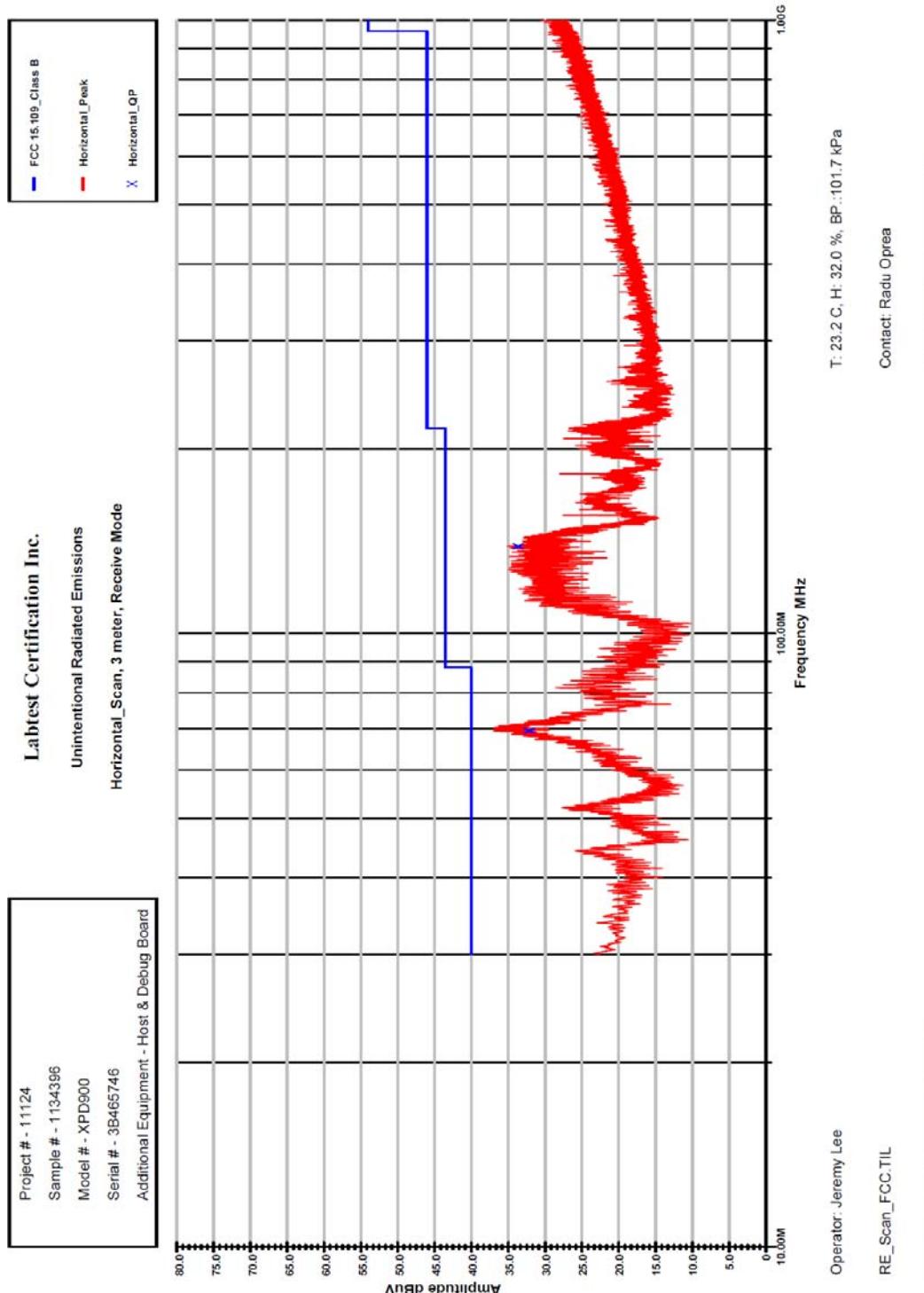
X Pass

Fail

N/A

- Table of Radiated Emissions of Receive Mode: 30 to1000MHz, Quasi-Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

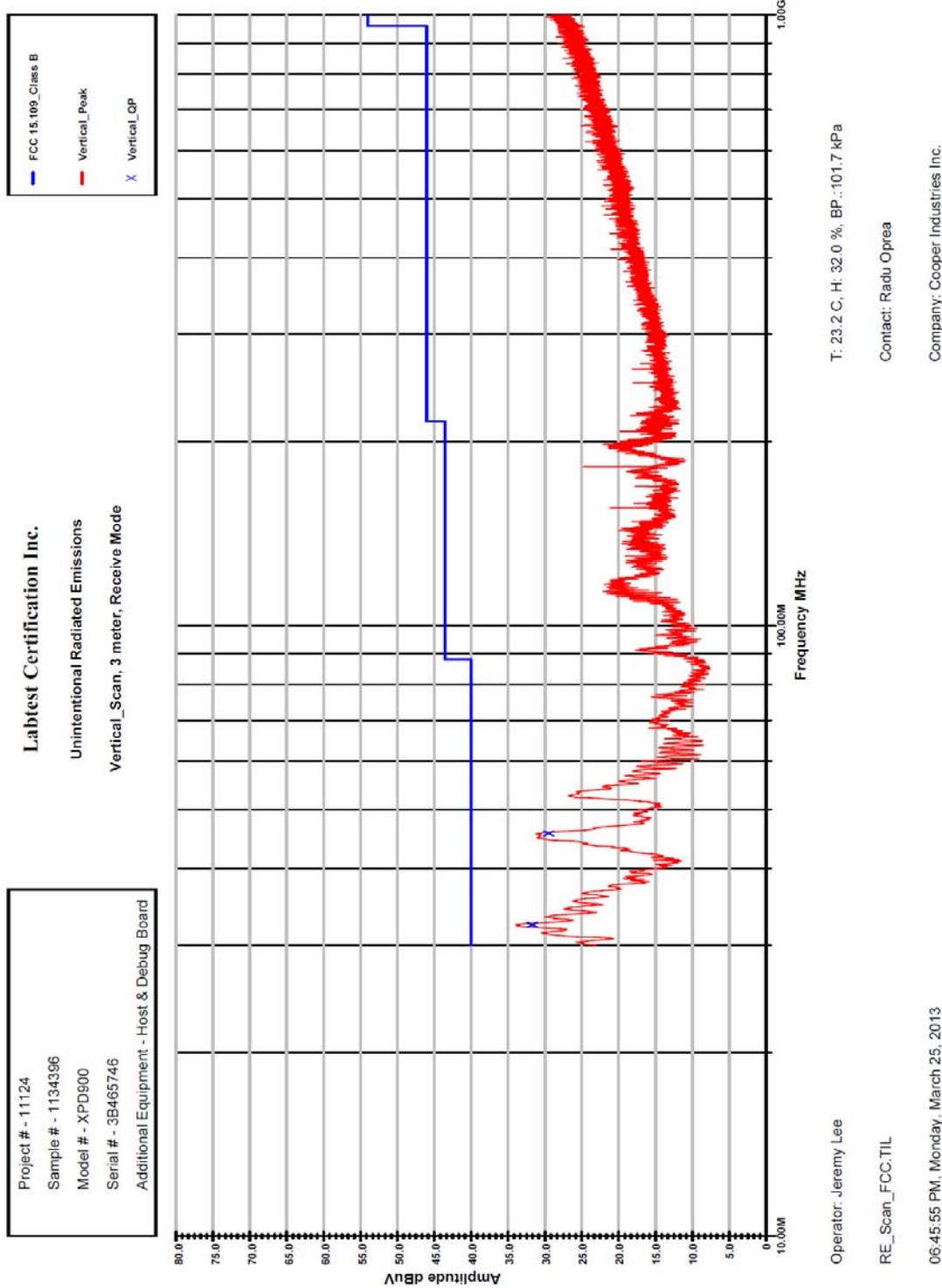
LabTest Certification Inc. Unintentional Radiated Emissions FCC15.109, Class B, 3 meters, Horizontal									
Frequency MHz	Measured dBuV	AntFactor dB/m	PathLoss dB	Emission dBuV/m	Limit dBuV/m	Margin dB	T/T Degree	Tower cm	POL
69.4207 MHz	55.17	8.17	-31.21	33.49	40.00	6.51	354.0	382.9	H
138.7086 MHz	50.77	13.53	-30.69	34.74	43.52	8.78	344.0	209.6	H
Project # : 11124, Sample #: 1134396 Temp.: 23.2 C, Hum.: 30.0 % Barometer Pres.:101.7 kPa									


- Table of Radiated Emissions of Receive Mode: 30 to1000MHz, Quasi-Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

LabTest Certification Inc. Unintentional Radiated Emissions FCC15.109, Class B, 3 meters, Vertical									
Frequency MHz	Measured dBuV	AntFactor dB/m	PathLoss dB	Emission dBuV/m	Limit dBuV/m	Margin dB	T/T Degree	Tower cm	POL
32.3740 MHz	44.50	18.65	-31.46	32.92	40.00	7.08	331.3	100.0	V
45.6756 MHz	51.48	9.34	-31.37	30.75	40.00	9.25	357.0	101.2	V
Project # : 11124, Sample #: 1134396 Temp.: 23.2 C, Hum.: 30.0 % Barometer Pres.:101.7 kPa									

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Receive Mode: 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Graph of Radiated Emissions of Receive Mode: 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Radiated Emission: Intentional-Transmit Mode, Spurs

Temperature	22.7 to 23.3 °C
Relative Humidity	30.0 to 33.0 %
Barometric Pressure:	101.7 to 101.8 kPa
Test Date	March 25 & 26, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	227-3, 241, 266, 272, 273, 371, 408
Reference Equipment (ID) (Calibration not required)	187, 374
Tested By	Jeremy Lee

Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0284>

Test Limits

15.247(d)

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205(a)

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

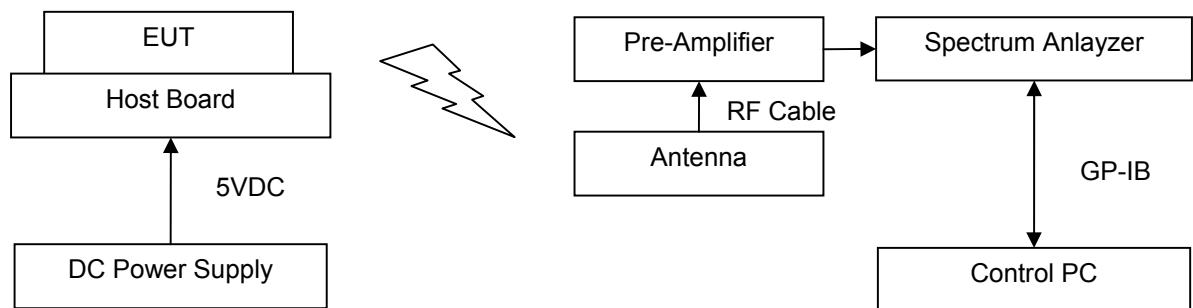
The test was performed in accordance with **FCC 15.247:2010, 15.209:2010, FCC 15.31:2010, FCC 15.33:2010, FCC 15.35:2010, and DA 00-705**.

Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2009: “Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz” (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

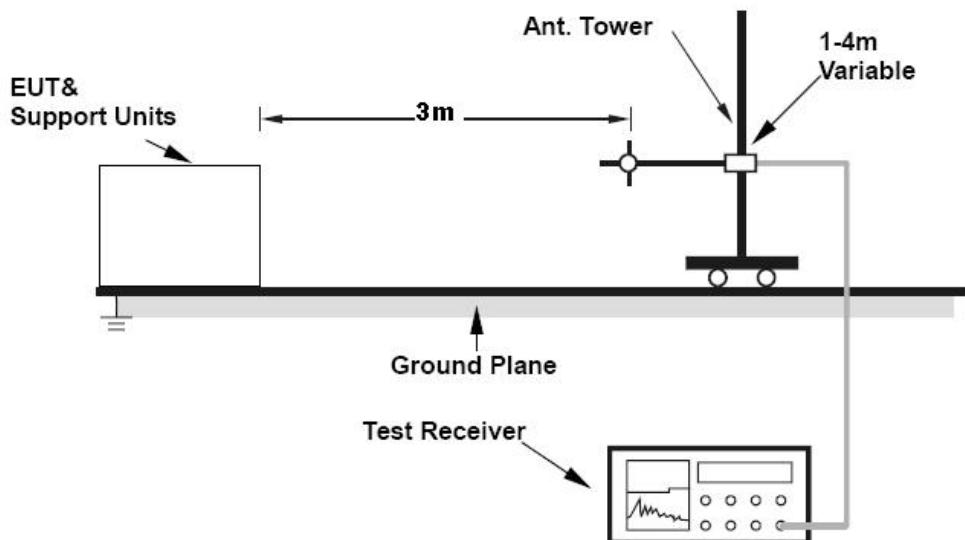
NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – the spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.

Tests were performed to determine the emissions with Transmit mode, Hopping mode. Antenna was connected to output port. The EUT was positioned emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.


- The EUT was set-up Transmit mode, Hopping.
- The transmitter was set-up as its maximum power with Antenna connected.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 9kHz, 120 kHz & 1MHz
 - VBW \geq RBW
 - Sweep = Auto

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356


Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Detector Function = Peak an QP, there was no strong signal in range to use the Averaging detector
- Trace = Single trace up to capturing the whole range of signal

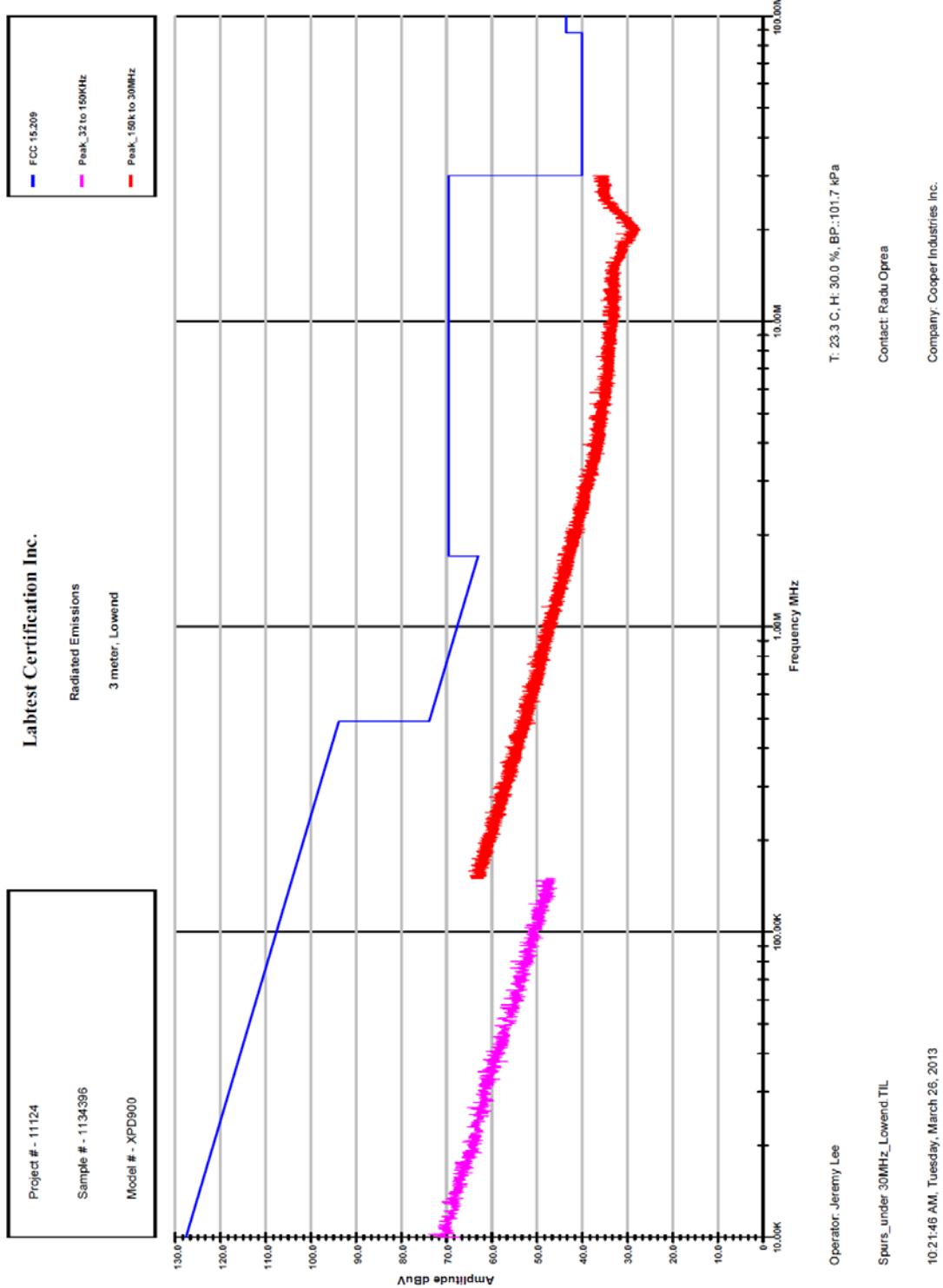
Setup Block Diagram

Test Setup in Chamber

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)– Pre-Amplifier Gain(dB)

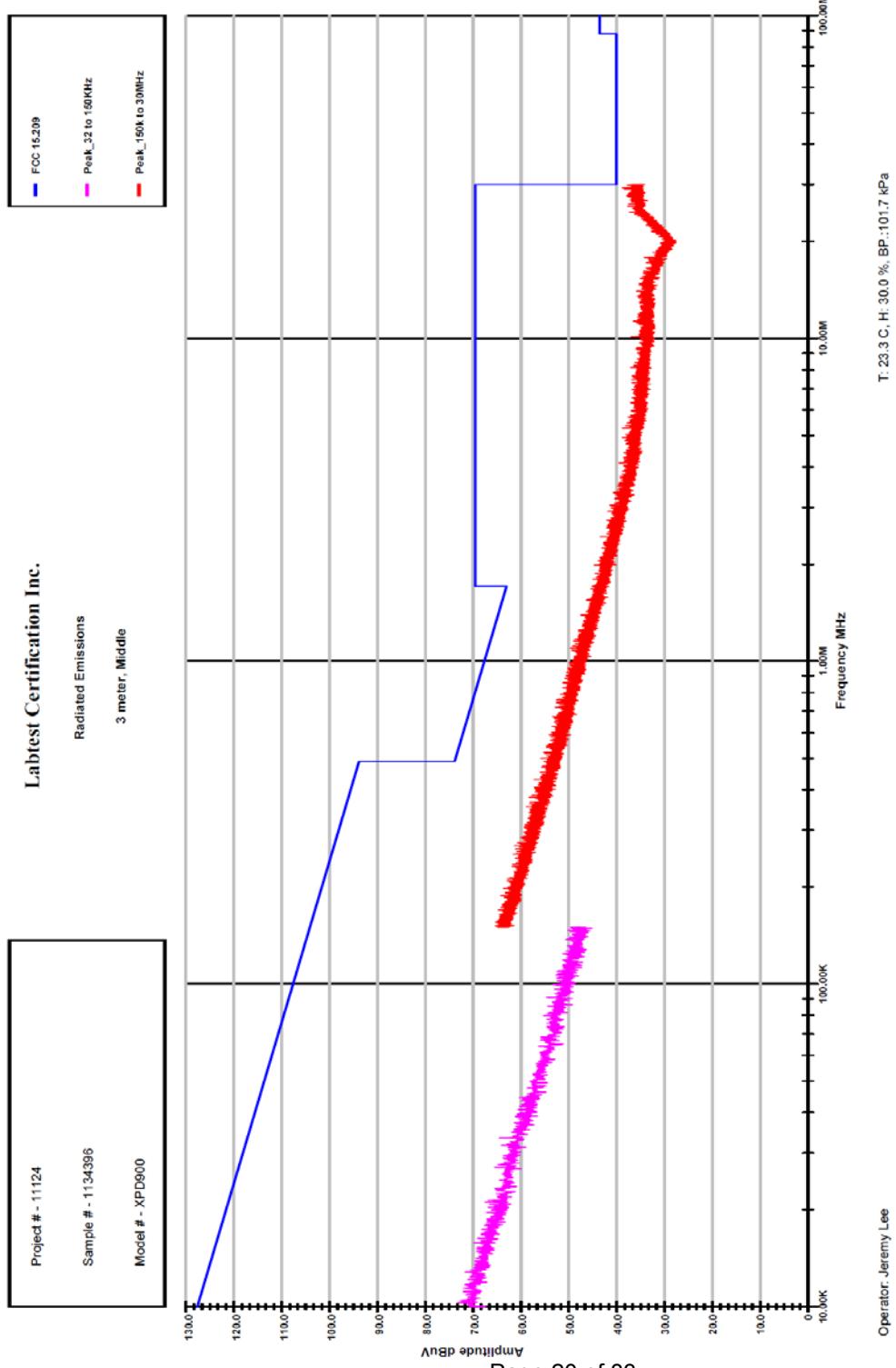
X Pass


Fail

N/A

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, low end, $F_c=902.2$ MHz; 10kHz to 30MHz, Peak Detecting, Antenna was used AL-160.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Graph of Radiated Emissions of Transmit Mode, Middle, Fc=914.9 MHz; 10kHz to 30MHz, Peak Detecting, Antenna was used AL-160.

Page 20 of 83

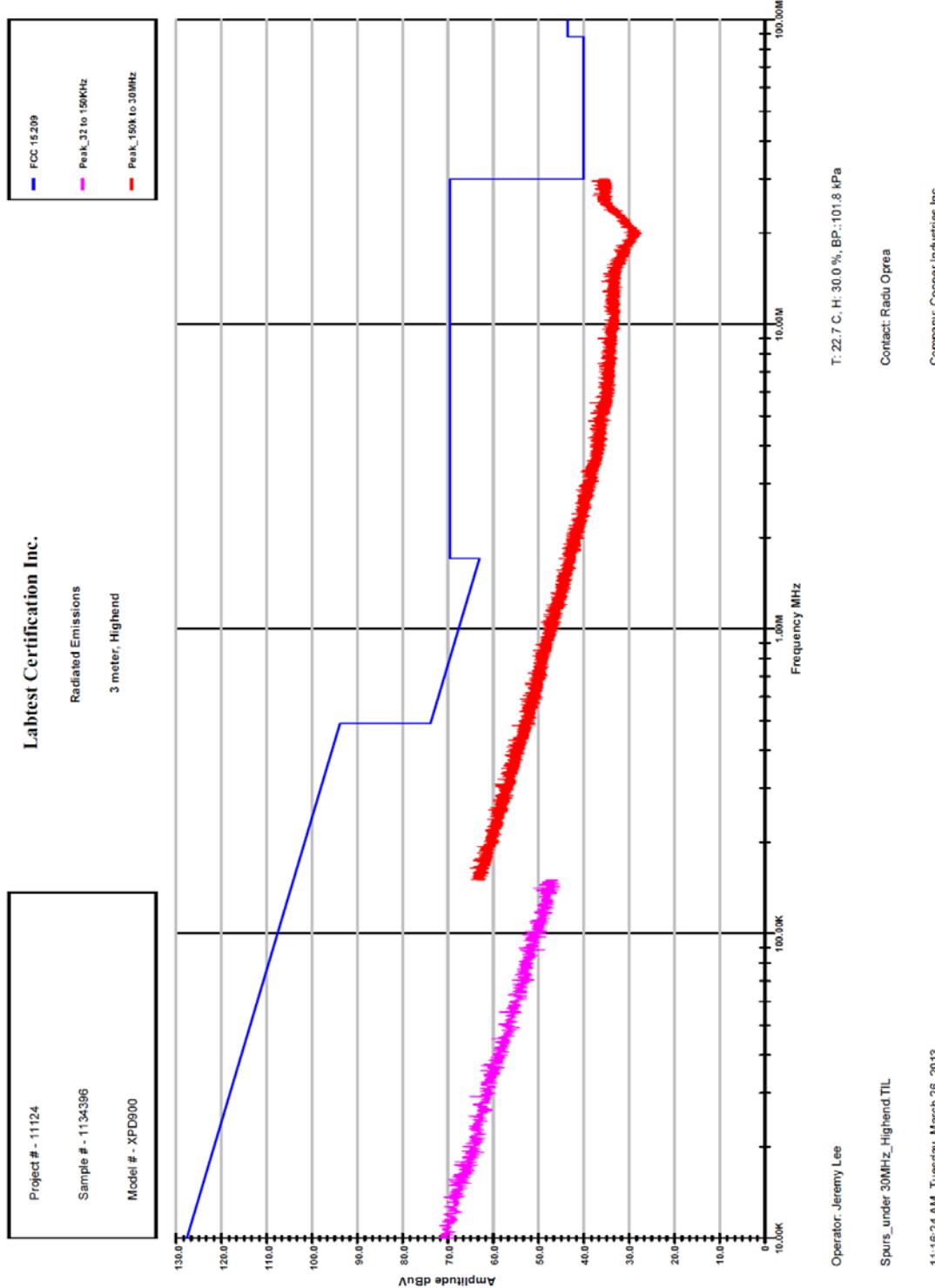
This document shall not be reproduced or utilized in any form or by any means, except in full, without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

T: 23.3 C, H: 30.0 %, BP: 101.7 kPa

Contact: Radu Oprea

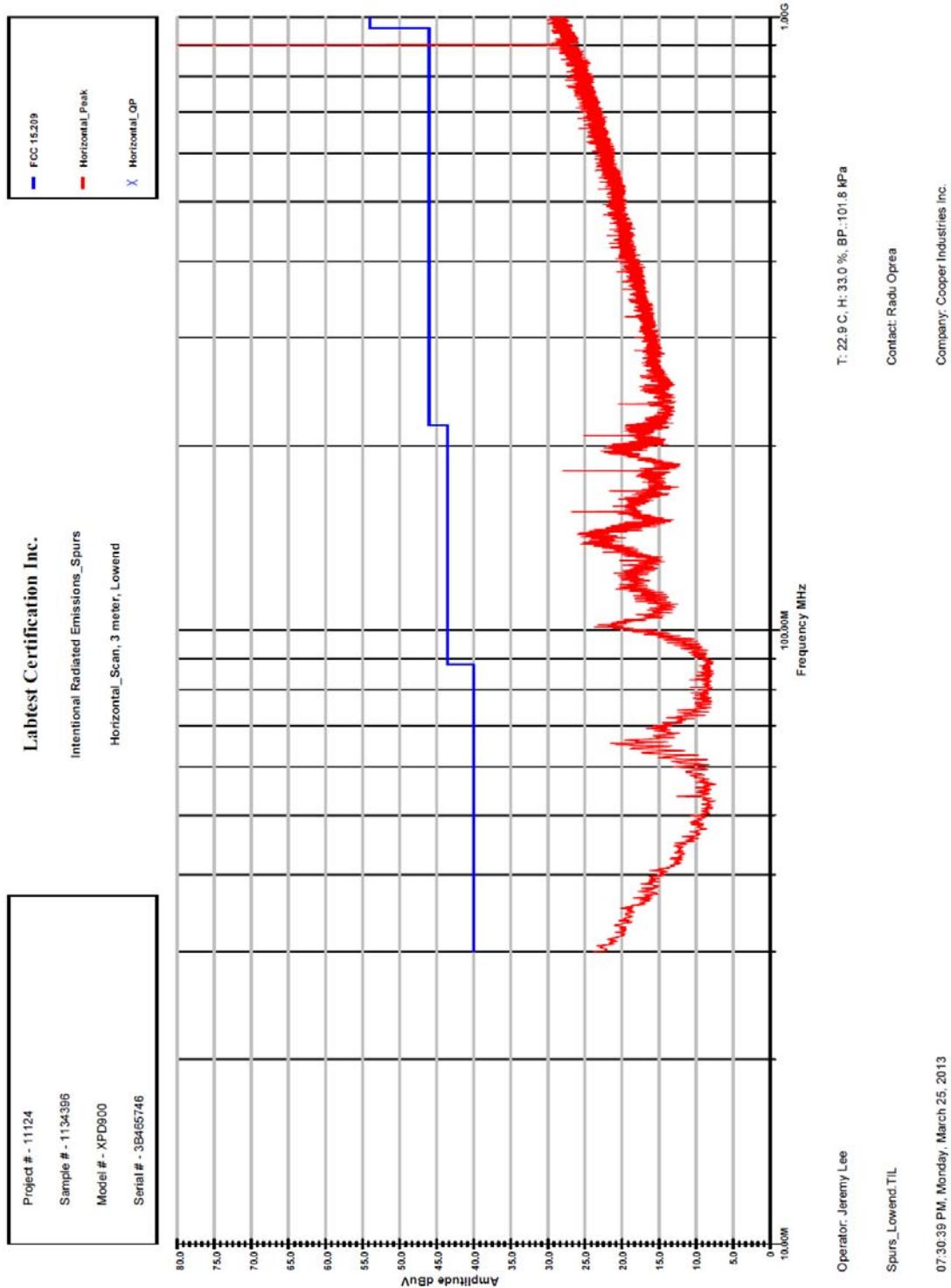
Company: Cooper Industries Inc.


Spurs_Under 30MHz_Middle_T1L

09:30:26 AM, Tuesday, March 26, 2013

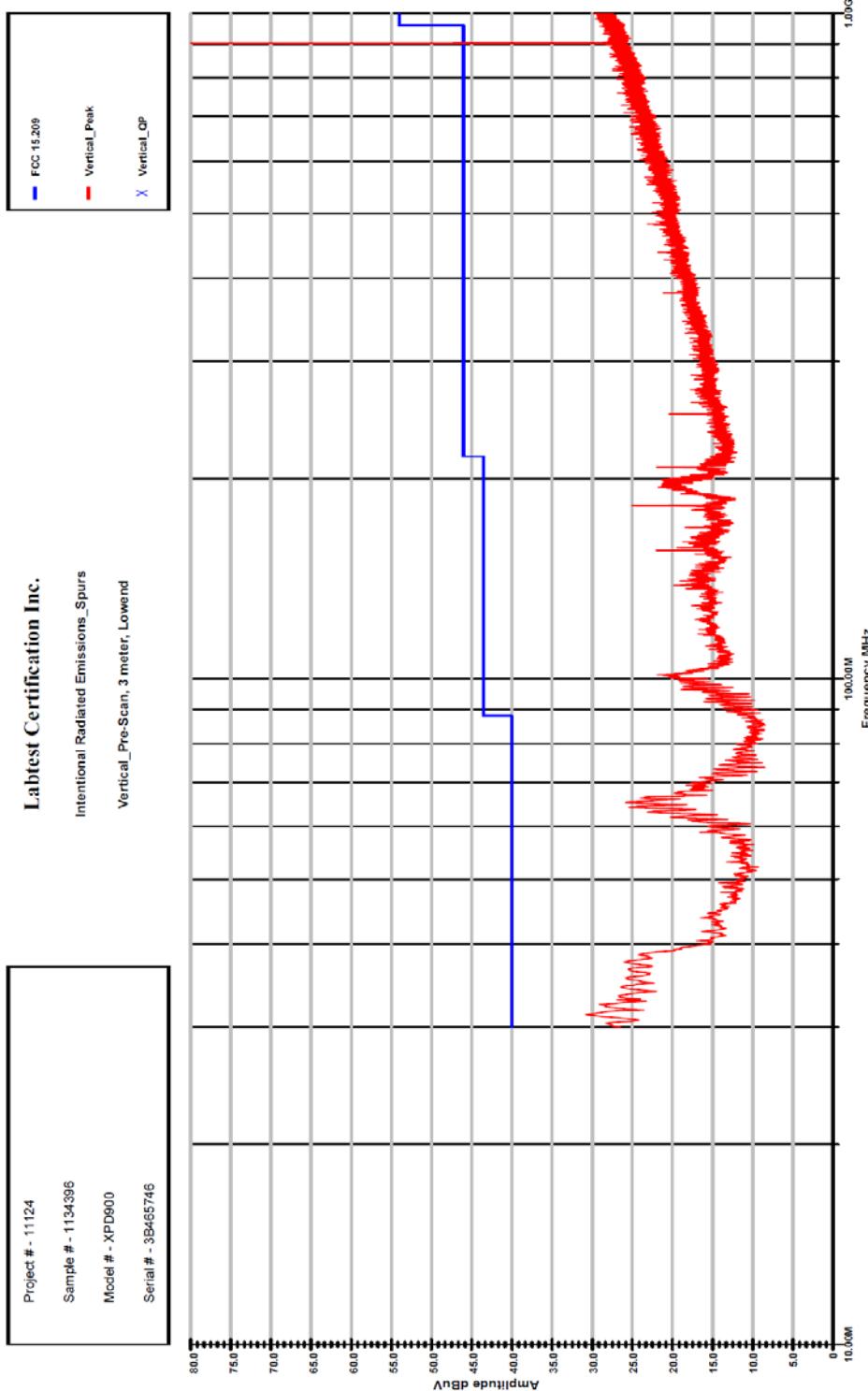
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, High end, Fc=927.7 MHz; 10kHz to 30MHz, Peak Detecting, Antenna was used AL-160.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, Low end, $F_c=902.2$ MHz; 30 to 1000 MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Graph of Radiated Emissions of Transmit Mode, Low end, Fc=902.2 MHz; 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

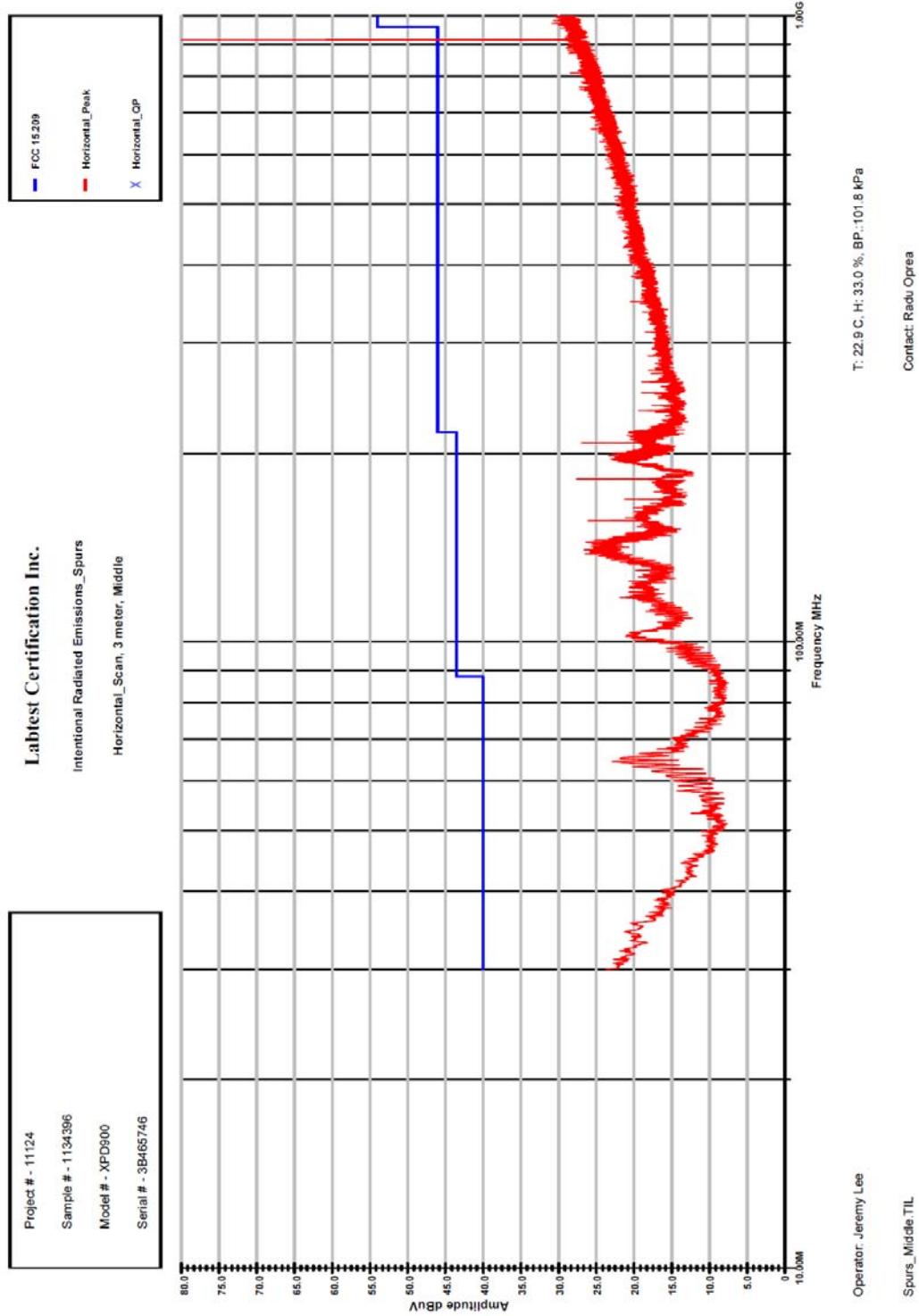
Page 23 of 83

This document shall not be reproduced or utilized in any form or by any means, except in full,
without the written approval of LabTest Certification Inc.

DCN: 1034, Rev 4

T: 22.9 C, H: 33.0 %, BP:101.8 kPa

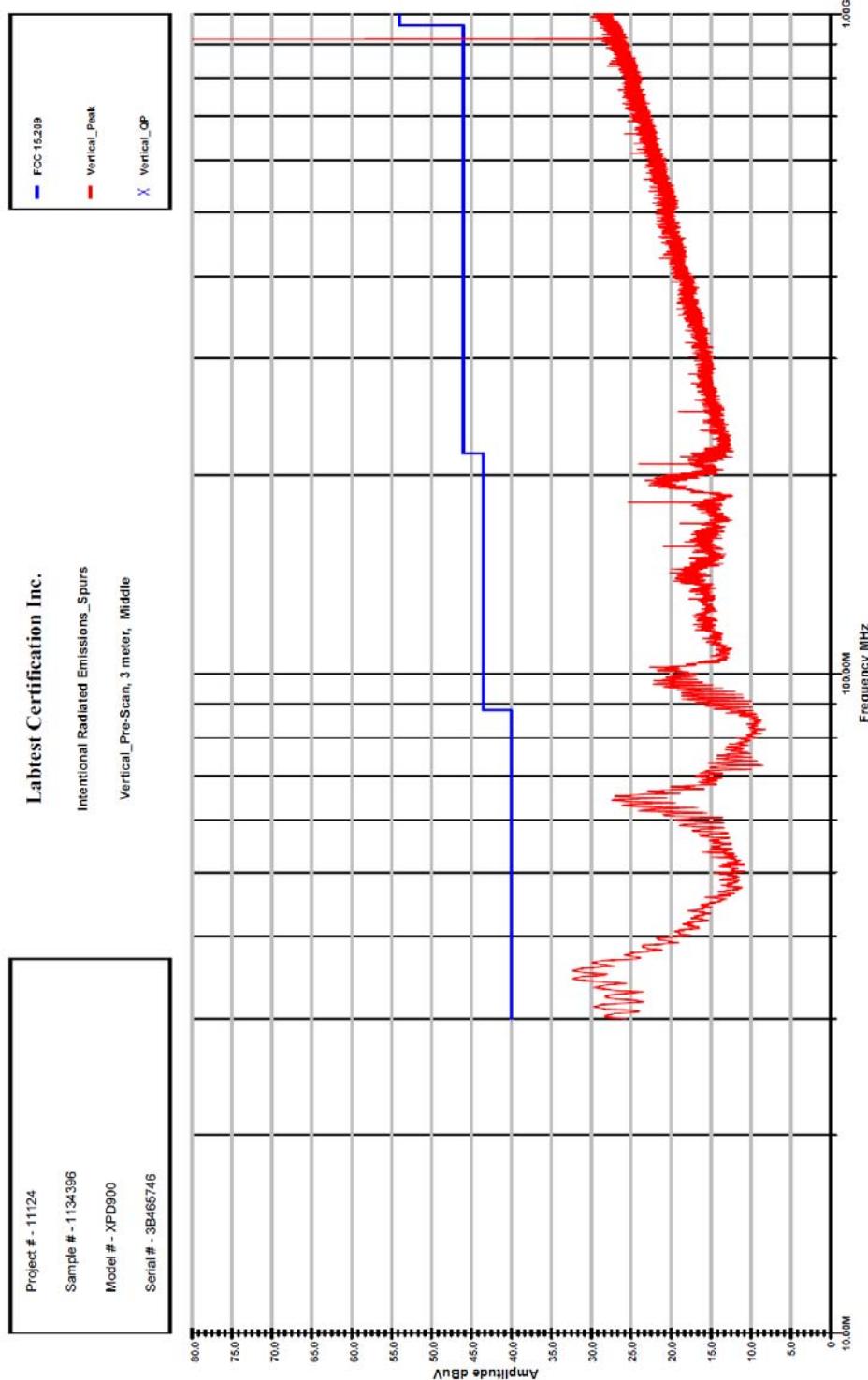
Contact: Radu Oprea


Company: Cooper Industries Inc.

07:11:47 PM, Monday, March 25, 2013

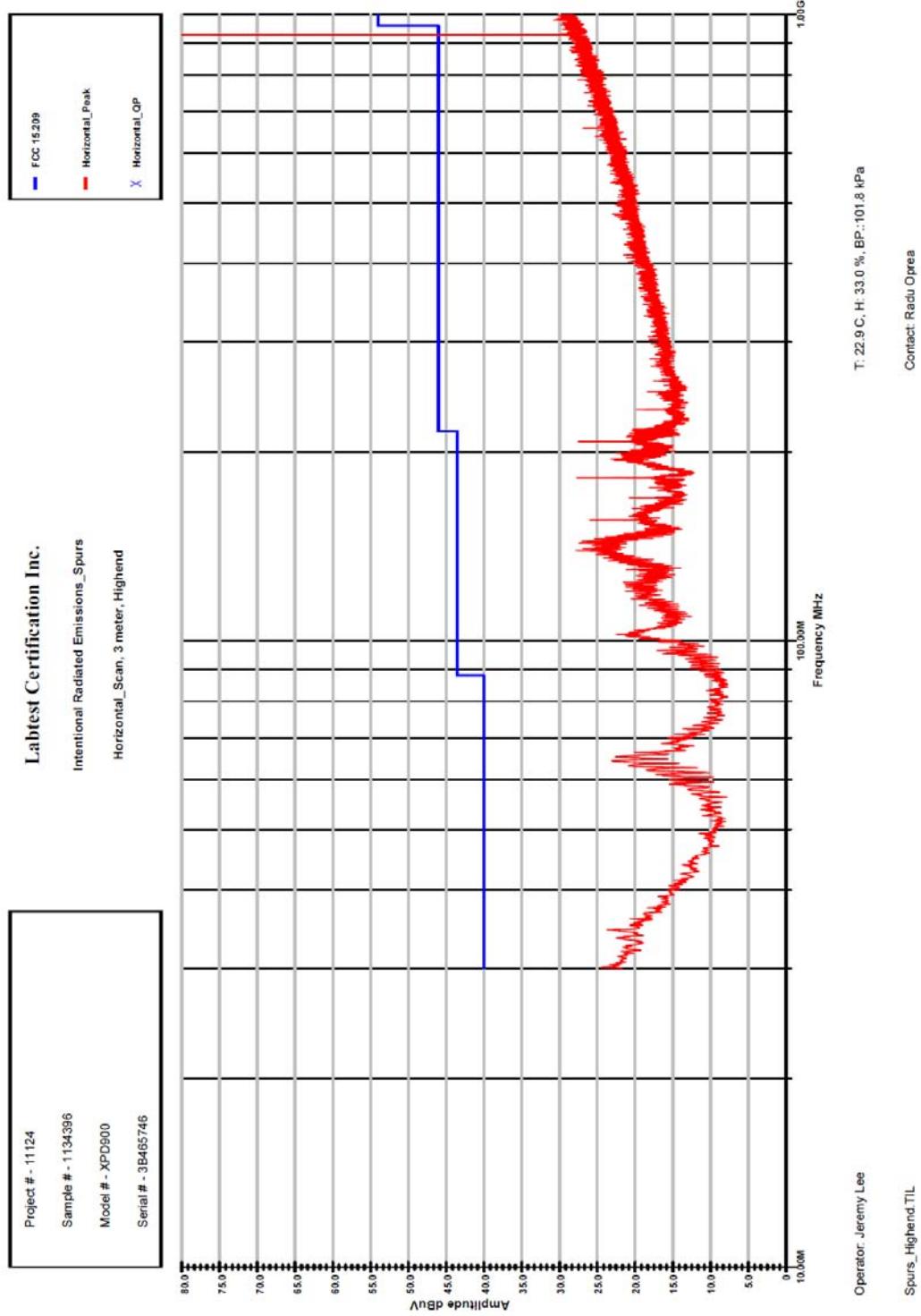
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, Middle, Fc=914.9 MHz; 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

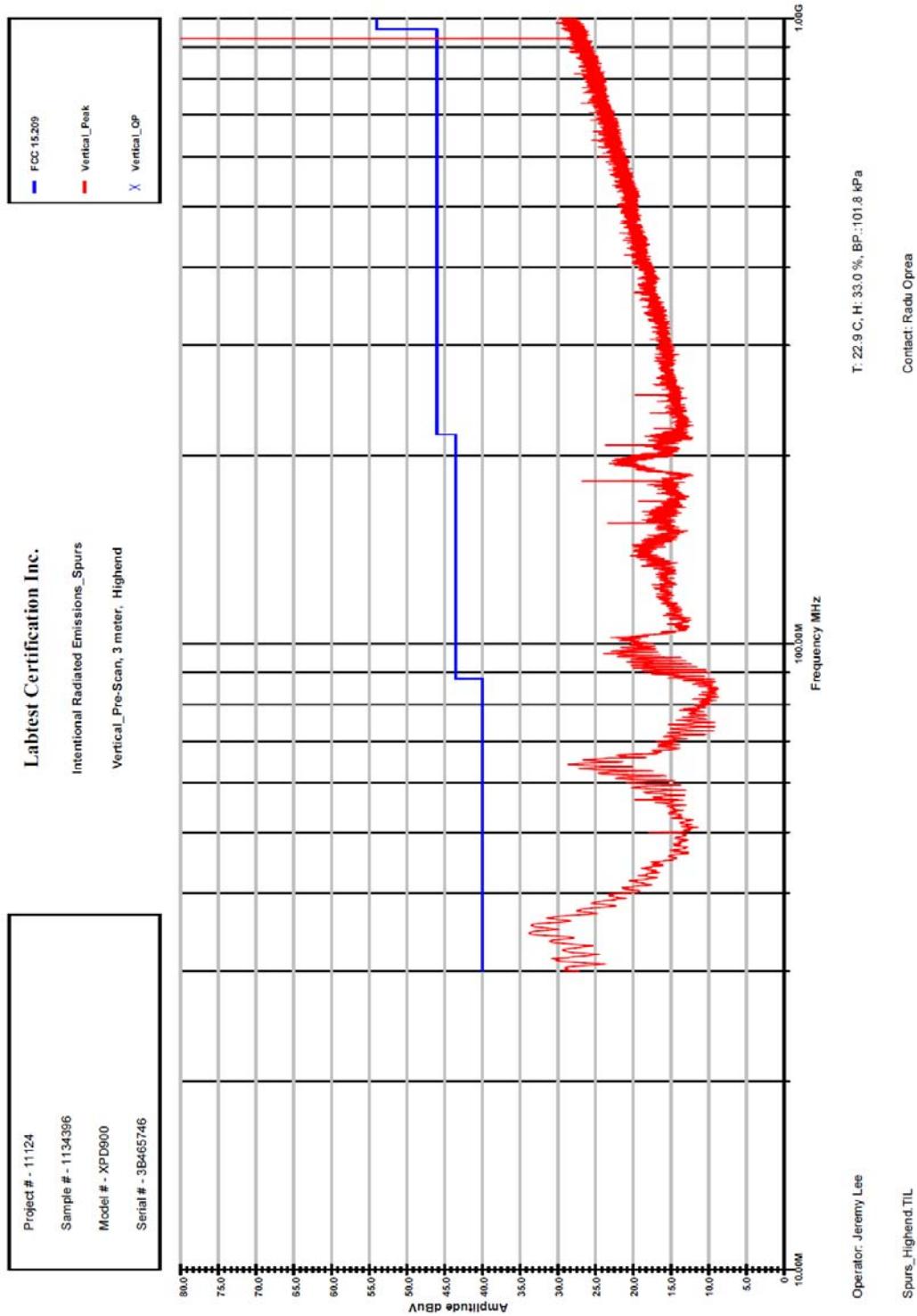
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, Middle, Fc=914.9 MHz; 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Graph of Radiated Emissions of Transmit Mode, High end, Fc=927.7 MHz; 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Horizontal.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Graph of Radiated Emissions of Transmit Mode, High end, Fc=927.7 MHz; 30 to1000MHz, Peak Detecting, Antenna was used JB1, the polarization of Antenna was Vertical.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Radiated Emissions: Intentional-Transmit Mode, Harmonics

Temperature	22.5 °C
Relative Humidity	30.0 %
Barometric Pressure:	101.8 kPa
Test Date	March 26, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	227-3, 266, 272, 273
Reference Equipment (ID) (Calibration not required)	137, 187, 374
Tested By	Jeremy Lee

Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0284>

Test Limits

15.247(d)

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205(a)

Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090–0.110	16.42–16.423	399.9–410	4.5–5.15
¹ 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725–4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291–8.294	149.9–150.05	2310–2390	15.35–16.2
8.362–8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625–8.38675	156.7–156.9	2690–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358	36.43–36.5
12.57675–12.57725	322–335.4	3600–4400	(²)
13.36–13.41.			

¹ Until February 1, 1999, this restricted band shall be 0.490–0.510 MHz.

² Above 38.6

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009–0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

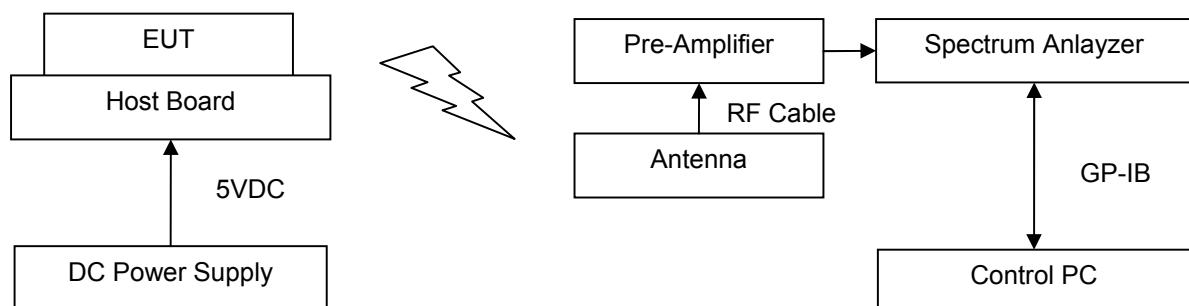
Test Setup

The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010, FCC 15.33:2010, FCC 15.35:2010, and DA 00-705**.

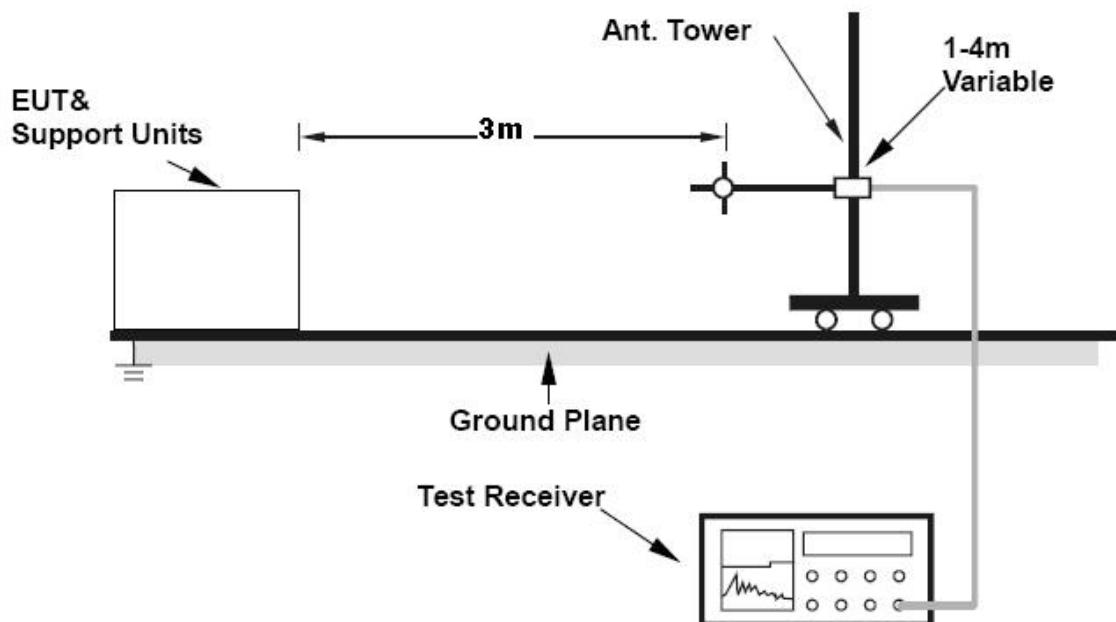
Test procedure is based on the FCC15.31(a)(3) – Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2003: “Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz” (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – spectrum analyzer, was software controlled. The antennas were Horn Antennas.


The tests were performed to determine the “worst-case” orientation of the EUT. With the EUT positioned in the “worst case” orientation, emissions from the unit were maximized, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- The EUT was measured in three different transmitting frequencies, low-end, middle, and high-end.
- The transmitter was set-up as its maximum power and terminated via 30dB attenuator.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 1MHz
 - VBW \geq RBW
 - Sweep = Auto
 - Detector Function = Averaging and Peak
 - Trace = Single trace up to capturing the whole range of signal


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

Test Setup in Chamber

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)– Pre-Amplifier Gain(dB)

Frequency (GHz)	Radiated Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector (AVG/PK)	Pol(H/V)	Results
Low End, Fc: 902.2 MHz						
2706.6	43.31	53.98	10.67	AVG	V	Pass
3608.8	40.15		13.83	AVG	H	Pass
4511.0	50.05		3.93	AVG	V	Pass
5413.2	49.56		4.42	AVG	V	Pass
8119.8	46.70		7.28	AVG	V	Pass
9022.0	47.88		6.10	AVG	V	Pass
Middle, Fc: 914.9 MHz						
2744.7	42.04	53.98	11.94	AVG	V	Pass
3659.6	40.75		13.23	AVG	H	Pass
4574.5	52.15		1.83	AVG	V	Pass
7319.2	52.80		1.18	AVG	V	
8234.1	45.24		8.74	AVG	H	
9149.0	48.17		5.81	AVG	V	Pass
High End, Fc: 927.7MHz						
2783.1	37.93	53.98	16.05	AVG	V	Pass
3710.8	37.68		16.30	AVG	H	Pass
4638.5	53.18		0.80	AVG	V	Pass
7421.6	51.73		2.25	AVG	V	Pass
8349.3	46.04		7.94	AVG	V	Pass

X Pass

Fail

N/A

Prepared by: LabTest Certification Inc.
 Date Issued: April 01, 2013
 Project No: 11356

Client: Cooper Industries (Canada) Inc.
 Report No.: 11356-1E
 Revision No.: 0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=902.2MHz: 1 to 10GHz, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Peak Detector_Low End_Horizontal									
Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7066000 GHz	48.23	29.14	-29.67	47.69	73.98	26.29	330.3	101.0	H
3.6088000 GHz	46.32	30.05	-31.07	45.30	73.98	28.68	330.3	101.0	H
4.5110000 GHz	44.36	31.88	-28.05	48.19	73.98	25.79	330.3	101.0	H
5.4132000 GHz	44.43	33.57	-25.77	52.23	73.98	21.75	330.3	101.0	H
8.1198000 GHz	42.15	37.22	-21.08	58.30	73.98	15.68	330.3	101.0	H
9.0220000 GHz	41.55	37.70	-19.38	59.87	73.98	14.11	330.3	101.0	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Peak Detector_Low End_Vertical									
Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7066000 GHz	49.01	29.08	-29.67	48.41	73.98	25.57	92.3	138.7	V
3.6088000 GHz	43.85	30.06	-31.07	42.84	73.98	31.14	92.3	138.7	V
4.5110000 GHz	49.26	32.01	-28.05	53.22	73.98	20.76	92.3	138.7	V
5.4132000 GHz	46.29	33.71	-25.77	54.23	73.98	19.75	92.3	138.7	V
8.1198000 GHz	41.66	37.25	-21.08	57.83	73.98	16.15	92.3	138.7	V
9.0220000 GHz	41.73	37.74	-19.38	60.09	73.98	13.89	92.3	138.7	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

- Table of Radiated Harmonic Emissions of Middle, Fc=914.9MHz: 1 to 10GHz, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Peak Detector_Middle_Horizontal									
Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7447000 GHz	45.81	29.01	-29.56	45.26	73.98	28.72	332.3	100.9	H
3.6596000 GHz	47.57	30.01	-31.02	46.56	73.98	27.42	332.3	100.9	H
4.5745000 GHz	43.71	31.99	-27.80	47.90	73.98	26.08	332.3	100.9	H
7.3192000 GHz	43.42	37.45	-21.83	59.04	73.98	14.94	332.3	100.9	H
8.2341000 GHz	41.25	37.24	-20.86	57.63	73.98	16.35	332.3	100.9	H
9.1490000 GHz	42.18	38.07	-19.09	61.16	73.98	12.82	332.3	100.9	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

Prepared by: LabTest Certification Inc.
 Date Issued: April 01, 2013
 Project No: 11356

Client: Cooper Industries (Canada) Inc.
 Report No.: 11356-1E
 Revision No.: 0

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meters, Peak Detector_Middle_Vertical

Operator: Jeremy Lee

01:28:07 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7447000 GHz	47.61	28.97	-29.56	47.02	73.98	26.96	112.3	138.6	V
3.6596000 GHz	43.77	30.08	-31.02	42.83	73.98	31.15	112.3	138.6	V
4.5745000 GHz	50.30	32.13	-27.80	54.63	73.98	19.35	112.3	138.6	V
7.3192000 GHz	46.64	37.49	-21.83	62.30	73.98	11.68	112.3	138.6	V
8.2341000 GHz	41.18	37.35	-20.86	57.67	73.98	16.31	112.3	138.6	V
9.1490000 GHz	41.83	37.98	-19.09	60.72	73.98	13.26	112.3	138.6	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

- Table of Radiated Harmonic Emissions of HighEnd, Fc=927.7MHz: 1 to 10GHz, Peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meters, Peak Detector_High End_Horizontal

Operator: Jeremy Lee

01:37:23 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7831000 GHz	43.72	28.98	-29.44	43.26	73.98	30.72	332.3	101.0	H
3.7108000 GHz	45.84	30.14	-30.91	45.07	73.98	28.91	332.3	101.0	H
4.6385000 GHz	42.76	32.25	-27.54	47.47	73.98	26.51	332.3	101.0	H
7.4216000 GHz	43.73	37.20	-21.75	59.18	73.98	14.80	332.3	101.0	H
8.3493000 GHz	41.18	37.42	-20.65	57.95	73.98	16.03	332.3	101.0	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meters, Peak Detector_High End_Vertical

Operator: Jeremy Lee

01:37:23 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured_PK	AntFactor	PathLoss	Emission_PK	Limit_PK	Margin_PK	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7831000 GHz	45.38	28.86	-29.44	44.79	73.98	29.19	108.0	141.1	V
3.7108000 GHz	43.11	30.18	-30.91	42.38	73.98	31.60	108.0	141.1	V
4.6385000 GHz	51.03	32.37	-27.54	55.85	73.98	18.13	108.0	141.1	V
7.4216000 GHz	45.72	37.23	-21.75	61.20	73.98	12.78	108.0	141.1	V
8.3493000 GHz	40.82	37.55	-20.65	57.72	73.98	16.26	108.0	141.1	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

Prepared by: LabTest Certification Inc.
 Date Issued: April 01, 2013
 Project No: 11356

Client: Cooper Industries (Canada) Inc.
 Report No.: 11356-1E
 Revision No.: 0

- Table of Radiated Harmonic Emissions of LowEnd, Fc=902.2MHz: 1 to 10GHz, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meter, Averaging Detector_Low_End_Horizontal									
Frequency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7066000 GHz	43.28	29.14	-29.67	42.74	53.98	11.24	330.3	101.0	H
3.6088000 GHz	41.17	30.05	-31.07	40.15	53.98	13.83	330.3	101.0	H
4.5110000 GHz	35.90	31.88	-28.05	39.73	53.98	14.25	330.3	101.0	H
5.4132000 GHz	37.81	33.57	-25.77	45.61	53.98	8.37	330.3	101.0	H
8.1198000 GHz	29.74	37.22	-21.08	45.89	53.98	8.09	330.3	101.0	H
9.0220000 GHz	29.44	37.70	-19.38	47.76	53.98	6.22	330.3	101.0	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meters, Averaging Detector_Low_End_Vertical									
Frequency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7066000 GHz	43.91	29.08	-29.67	43.31	53.98	10.67	92.3	138.7	V
3.6088000 GHz	33.91	30.06	-31.07	32.90	53.98	21.08	92.3	138.7	V
4.5110000 GHz	46.09	32.01	-28.05	50.05	53.98	3.93	92.3	138.7	V
5.4132000 GHz	41.62	33.71	-25.77	49.56	53.98	4.42	92.3	138.7	V
8.1198000 GHz	30.53	37.25	-21.08	46.70	53.98	7.28	92.3	138.7	V
9.0220000 GHz	29.52	37.74	-19.38	47.88	53.98	6.10	92.3	138.7	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

- Table of Radiated Harmonic Emissions of Middle, Fc=914.9MHz: 1 to 10GHz, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Emission-Harmonics FCC15.247, 205 & 209, 3 meter, Averaging Detector_Middle_Horizontal									
Frequency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7447000 GHz	37.33	29.01	-29.56	36.78	53.98	17.20	332.3	100.9	H
3.6596000 GHz	41.76	30.01	-31.02	40.75	53.98	13.23	332.3	100.9	H
4.5745000 GHz	33.67	31.99	-27.80	37.86	53.98	16.12	332.3	100.9	H
7.3192000 GHz	34.57	37.45	-21.83	50.19	53.98	3.79	332.3	100.9	H
8.2341000 GHz	28.86	37.24	-20.86	45.24	53.98	8.74	332.3	100.9	H
9.1490000 GHz	28.82	38.07	-19.09	47.80	53.98	6.18	332.3	100.9	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

Prepared by: LabTest Certification Inc.
 Date Issued: April 01, 2013
 Project No: 11356

Client: Cooper Industries (Canada) Inc.
 Report No.: 11356-1E
 Revision No.: 0

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meters, Averaging Detector_Middle_Vertical

Operator: Jeremy Lee

01:28:07 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7447000 GHz	42.63	28.97	-29.56	42.04	53.98	11.94	112.3	138.6	V
3.6596000 GHz	32.70	30.08	-31.02	31.76	53.98	22.22	112.3	138.6	V
4.5745000 GHz	47.82	32.13	-27.80	52.15	53.98	1.83	112.3	138.6	V
7.3192000 GHz	37.14	37.49	-21.83	52.80	53.98	1.18	112.3	138.6	V
8.2341000 GHz	28.70	37.35	-20.86	45.19	53.98	8.79	112.3	138.6	V
9.1490000 GHz	29.28	37.98	-19.09	48.17	53.98	5.81	112.3	138.6	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

- Table of Radiated Harmonic Emissions of HighEnd, Fc=927.7MHz: 1 to 10GHz, Average Detecting, Antenna was used SAS-571.

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meter, Averaging Detector_High End_Horizontal

Operator: Jeremy Lee

01:37:23 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured_AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7831000 GHz	32.80	28.98	-29.44	32.34	53.98	21.64	332.3	101.0	H
3.7108000 GHz	38.45	30.14	-30.91	37.68	53.98	16.30	332.3	101.0	H
4.6385000 GHz	31.65	32.25	-27.54	36.36	53.98	17.62	332.3	101.0	H
7.4216000 GHz	33.67	37.20	-21.75	49.12	53.98	4.86	332.3	101.0	H
8.3493000 GHz	28.61	37.42	-20.65	45.38	53.98	8.60	332.3	101.0	H

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

LabTest Certification Inc.
 Intentional Radiated Emission-Harmonics
 FCC15.247, 205 & 209, 3 meters, Averaging Detector_High End_Vertical

Operator: Jeremy Lee

01:37:23 PM, Tuesday, March 26, 2013

Model #: XPD900
 Contact: Radu Oprea
 Company: Cooper Industries Inc.

Frequency	Measured+AVG	AntFactor	PathLoss	Emission_AVG	Limit_AVG	Margin_AVG	T/T	Tower	POL
Hz	dBuV	dB/m	dB	dBuV/m	dBuV/m	dB	Degree	cm	
2.7831000 GHz	38.52	28.86	-29.44	37.93	53.98	16.05	108.0	141.1	V
3.7108000 GHz	33.70	30.18	-30.91	32.97	53.98	21.01	108.0	141.1	V
4.6385000 GHz	48.36	32.37	-27.54	53.18	53.98	0.80	108.0	141.1	V
7.4216000 GHz	36.25	37.23	-21.75	51.73	53.98	2.25	108.0	141.1	V
8.3493000 GHz	29.14	37.55	-20.65	46.04	53.98	7.94	108.0	141.1	V

Project #: 11124, Sample #: 1134396
 Temp.: 22.5 C, Hum.: 30.0 %
 Barometer Pres.: 101.8 kPa

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Antenna-port Conducted Emissions

Temperature	22.7 to 23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

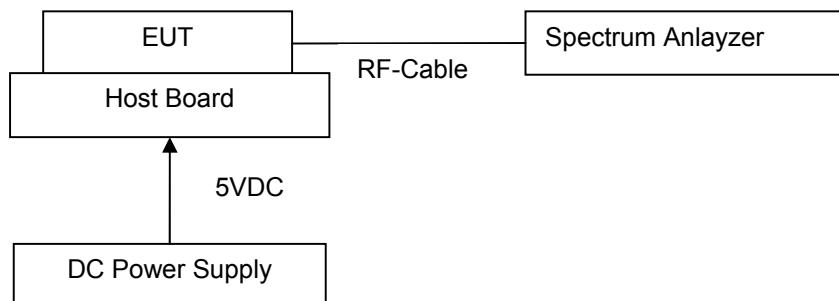
Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup


The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- The EUT was set-up in three different transmitting modes, low-end, middle, and high-end.
- The transmitter was set to output its maximum power.
- The following measurements were made with
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100kHz up to 1GHz, 1MHz over 1GHz.
 - VBW \geq RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
 - Allowed the trace to stabilize.
- Set the marker on the peak of any spurious emission recorded.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

Test Results:

Difference(dB) = Measured Carrier Level(dBm) – Measured Spurious Level(dBm)

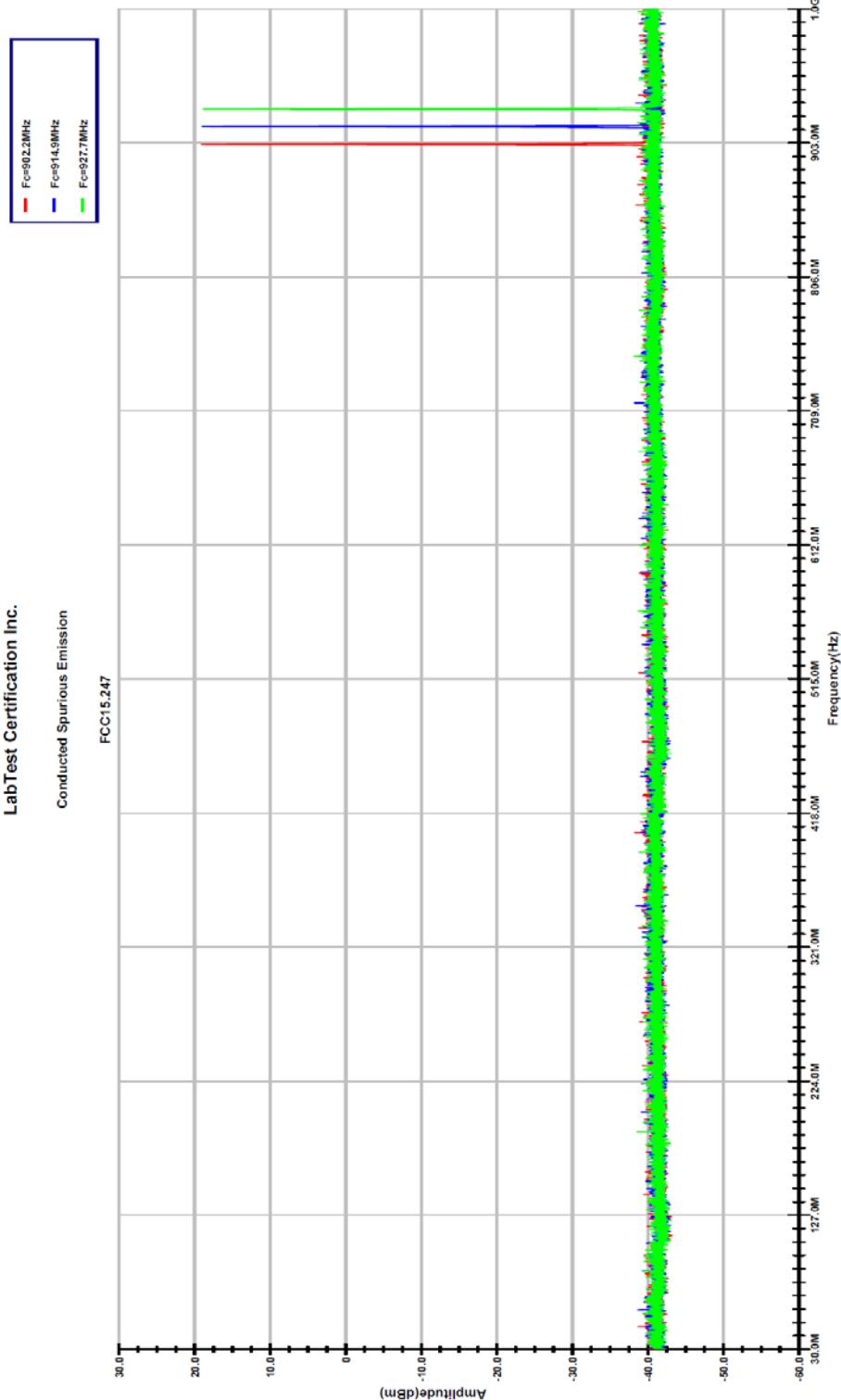
Description	Frequency (MHz)	Measured (dBm)	Difference (dB)	Limit (dB)	Pass/Fail
Carrier_Low End	902.2	+19.03	-	-	-
Spurious	519.462	-38.86	57.89	> 20	Pass
2 nd Harmonic	1804.4	-35.12	54.15	> 20	Pass
3 rd Harmonic	2706.6	-37.14	56.17	> 20	Pass
4 th Harmonic	3608.8	Under Noise Floor	Over 40	> 20	Pass
5 th Harmonic	4511.0			> 20	Pass
6 th Harmonic	5413.2			> 20	Pass
7 th Harmonic	6315.4			> 20	Pass
8 th Harmonic	7217.6			> 20	Pass
9 th Harmonic	8119.8			> 20	Pass
10 th Harmonic	9022.0			> 20	Pass
Carrier_Middle	914.9	+18.93	-	-	-
Spurious	351.167	-38.45	57.38	> 20	Pass
2 nd Harmonic	1829.8	-36.71	55.64	> 20	Pass
3 rd Harmonic	2744.7	-37.89	56.32	> 20	Pass
4 th Harmonic	3659.6	Under Noise Floor	Over 40	> 20	Pass
5 th Harmonic	4574.5			> 20	Pass
6 th Harmonic	5489.4			> 20	Pass

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

7 th Harmonic	6404.3			> 20	Pass
8 th Harmonic	7319.2			> 20	Pass
9 th Harmonic	8324.1			> 20	Pass
10 th Harmonic	9149.0			> 20	Pass
Carrier_High End	927.7	+18.76	-	-	-
Spurious	194.415	-39.46	58.22	> 20	Pass
2 nd Harmonic	1855.4	-35.44	54.20	> 20	Pass
3 rd Harmonic	2783.1	-38.49	57.25	> 20	Pass
4 th Harmonic	3710.8	Under Noise Floor	Over 40	> 20	Pass
5 th Harmonic	4638.5			> 20	Pass
6 th Harmonic	5566.2			> 20	Pass
7 th Harmonic	6493.9			> 20	Pass
8 th Harmonic	7421.6			> 20	Pass
9 th Harmonic	8349.3			> 20	Pass
10 th Harmonic	9277.0			> 20	Pass

X Pass


Fail

N/A

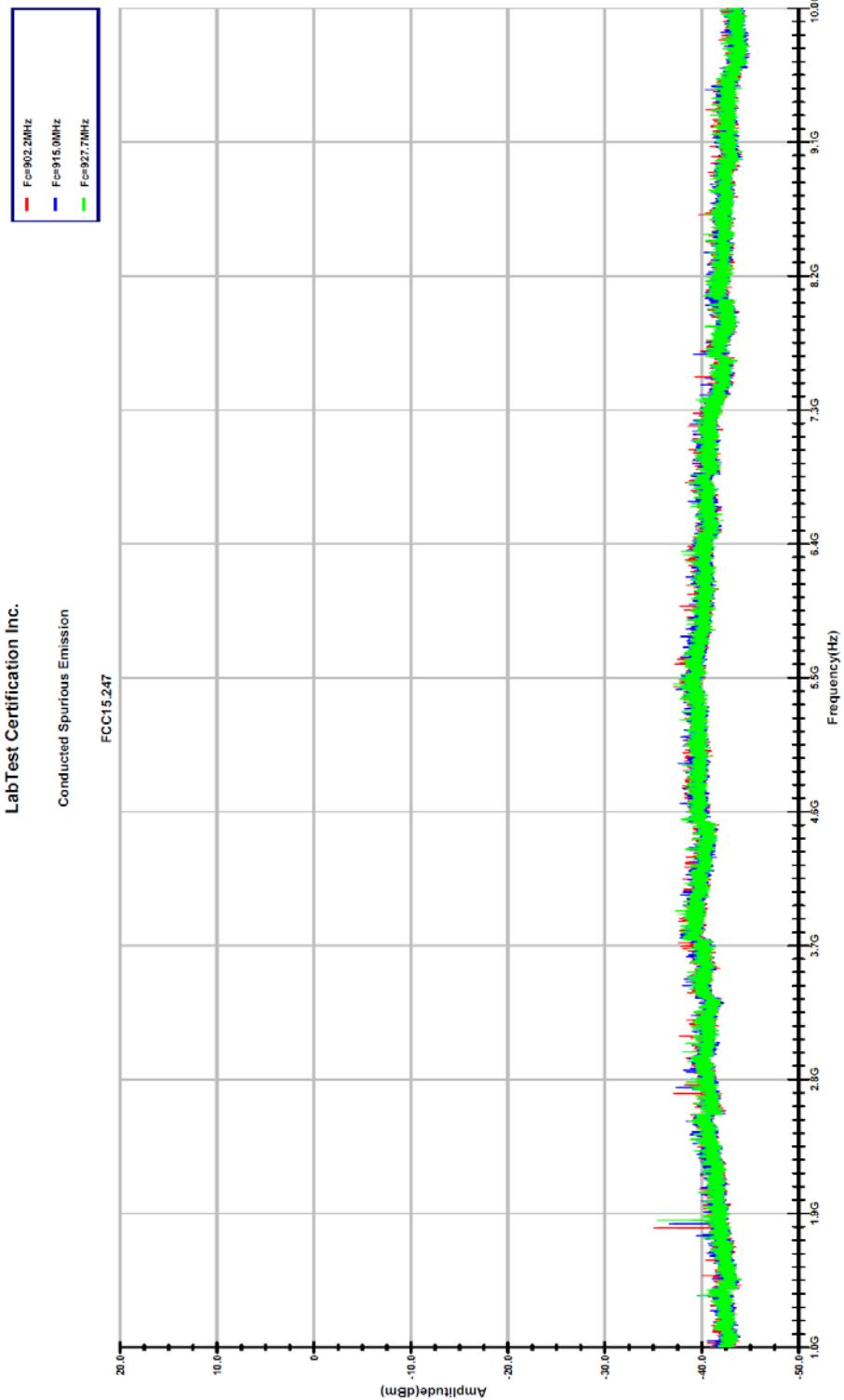
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Antenna-port Conducted Emissions; 30MHz to 1.0 GHz.

ModelNumber: XPD900

Project#: 111124 Sample#: 113496
Temp.: 22.7 C, Hum.: 32.0 %
B.P.: 101.7 kPa


Operator: Jeremy LEE

04:38:16 PM, Monday, March 25, 2013

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Antenna-port Conducted Emissions: 1.0 to 10 GHz.

Model Number: XPD900

Project# 11124, Sample# 1134396

Temp.: 23.0 C, Hum.: 32.0 %

B.P.: 101.7 kPa

Operator: Jeremy LEE

04:49:17 PM, Monday, March 25, 2013

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Occupied Bandwidth

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

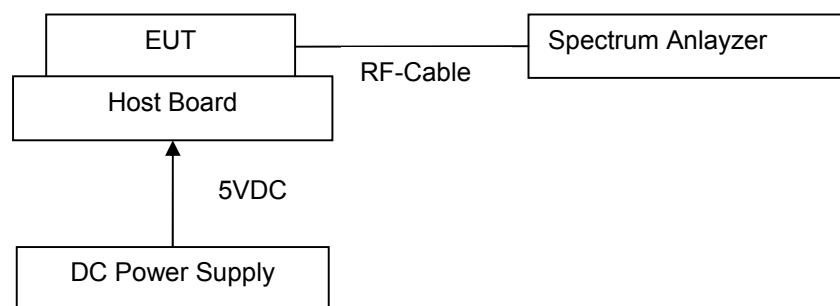
15.247(a)(1)

(i) The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

Test Setup

The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the unlicensed wireless device at either the fundamental frequency or the first-order modulation products in all typical modes of operation, including the un-modulated carrier, even if atypical. Once the reference level is established, the equipment is conditioned with typical modulating signals to produce the worst-case (i.e., the widest) bandwidth. Unless otherwise specified for an unlicensed wireless device, measure the bandwidth at the –20 dB levels with respect to the reference level.
- To measure the modulated signal properly, a resolution bandwidth that is small compared with the bandwidth required by the procuring or regulatory agency shall be used on the measuring instrument.
 - 1) The span range for the SA display shall be between two times and five times the OBW.
 - 2) The nominal IF filter bandwidth (3 dB RBW) should be approximately 1 % to 5 % of the OBW, unless otherwise specified, depending on the applicable requirement.
 - 3) The dynamic range of the SA at the selected RBW shall be more than 10 dB below the target “dB down” (attenuation) requirement, i.e., if the requirement calls for measuring the –20 dB OBW, the SA noise floor at the selected RBW shall be at least 30 dB below the largest measured value on the display
- Supply the EUT with nominal ac voltage, or install a new or fully charged battery in the EUT. Turn the EUT on, and set it to a frequency within its operating range and within regulatory requirements. Set a reference level on the measuring instrument at any level that will allow measuring the specified bandwidth (e.g., –20 dB below the un-modulated carrier).
- Supply the EUT with modulation. Devices modulated from internal sources shall be tested with typical modulation applied. If a device is equipped with input connectors for external modulation, typical modulating signals shall be applied at the maximum-rated input level for the device. Observe and record with plotted graphs or photographs the worst-case (i.e., widest) occupied bandwidth produced by these different modulation sources.
- Set a reference level on the measuring instrument equal to the highest amplitude signal observed from the unlicensed wireless device at either the fundamental frequency or the first-order


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

modulation products in all typical modes of operation, including the un-modulated carrier, even if atypical.

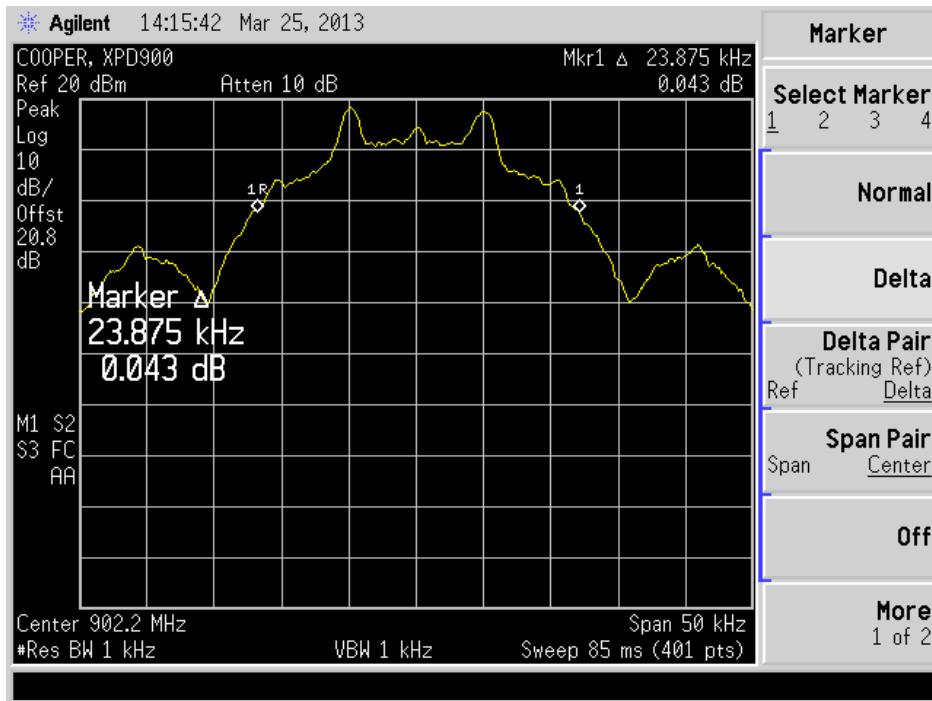
- Measure the frequencies of the modulated signal from the EUT, where it is the specified number of decibels below the reference level. The result is the occupied bandwidth.

Setup Block Diagram

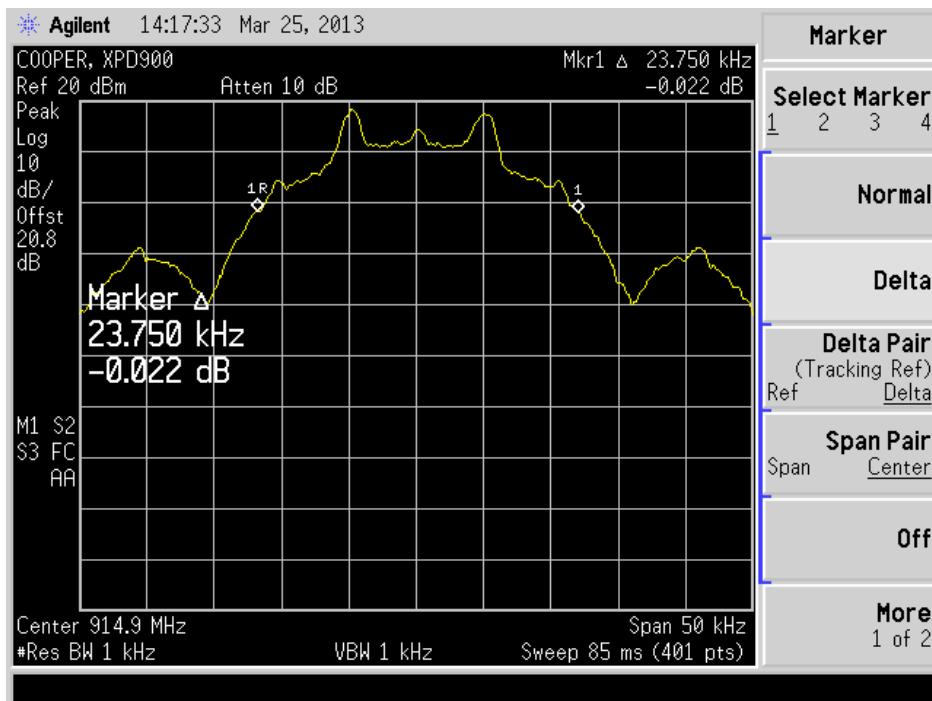
Test Results:

Carrier Frequency(MHz)	20dB BW(kHz)	Limit(kHz)	Pass/Fail
902.2	23.875	≤ 500	Pass
914.9	23.75	≤ 500	Pass
927.7	24.5	≤ 500	Pass

X Pass

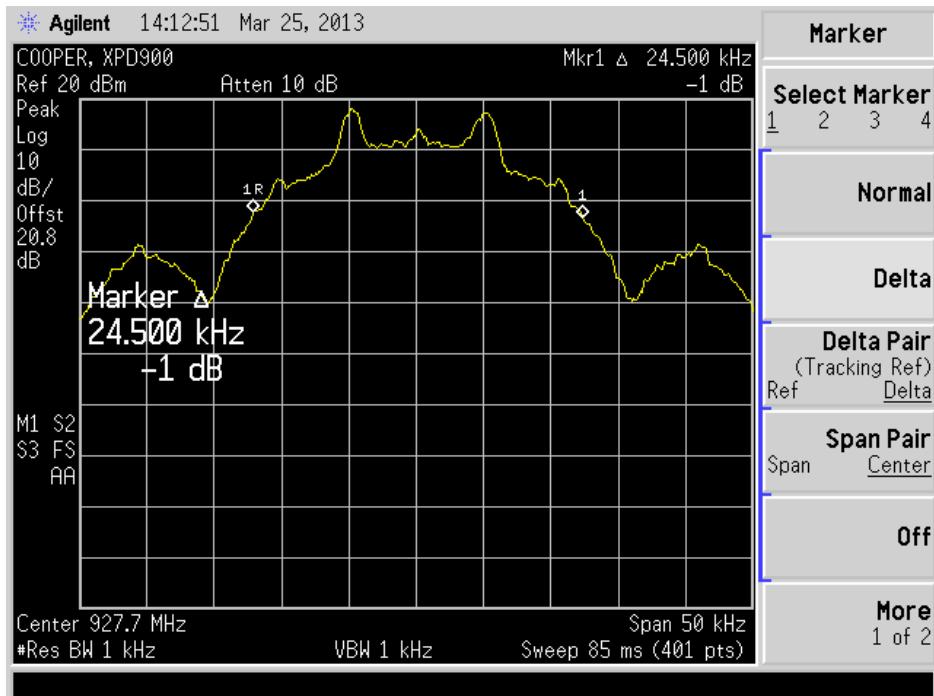

Fail

N/A


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Occupied Bandwidth of Low End; Centre frequency is 902.2 MHz


- Occupied Bandwidth of middle; Centre frequency is 914.9 MHz

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Occupied Bandwidth of High End; Centre frequency is 927.7 MHz

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Band-edge Compliance

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0284>

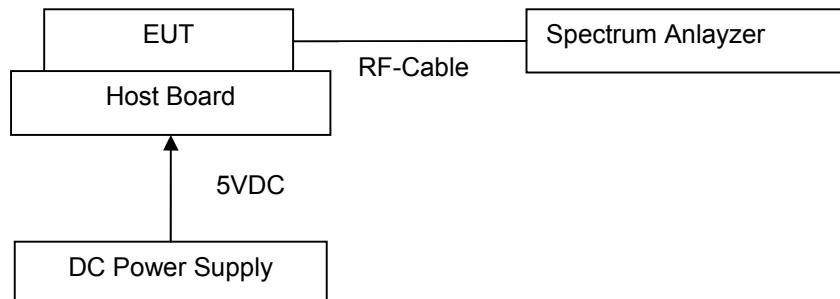
Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup

The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.


This procedure is applicable for determining compliance at authorized band edges, but not at restricted band edges.

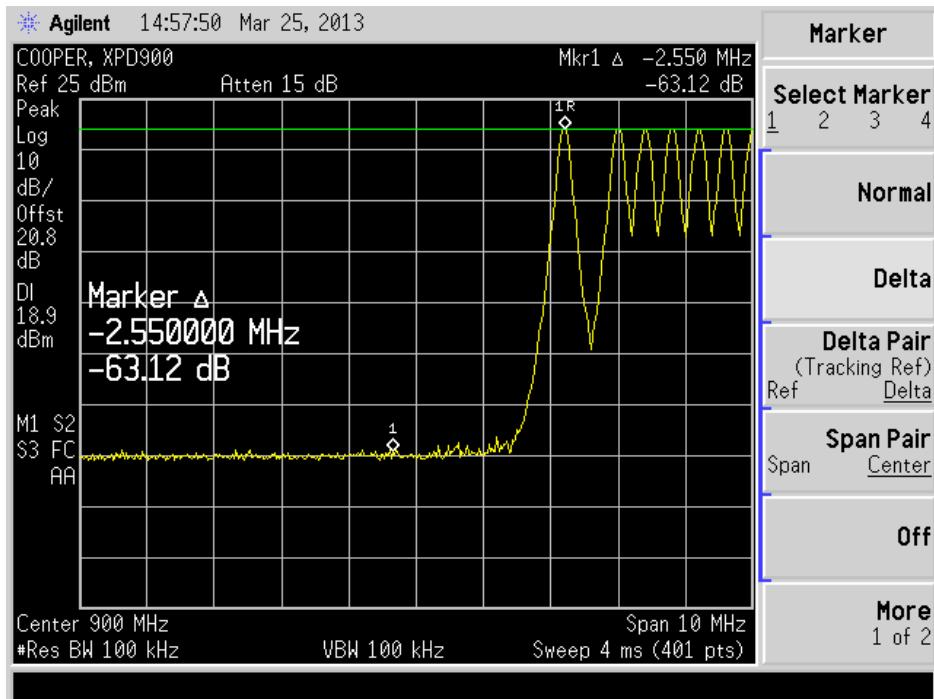
- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The transmitter was transmitting at its maximum data rate and maximum power.
- The following measurements were made with
 - Span = wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - RBW \geq 1% of spectrum analyzer display span
 - VBW \geq RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Max Hold
 - Allowed the trace to stabilize.
- Set the marker on the emission at the bandedge, or on the highest modulation product outside of band, if this level is greater than that at the band edge.
- Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Now, using the same instrumentation settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

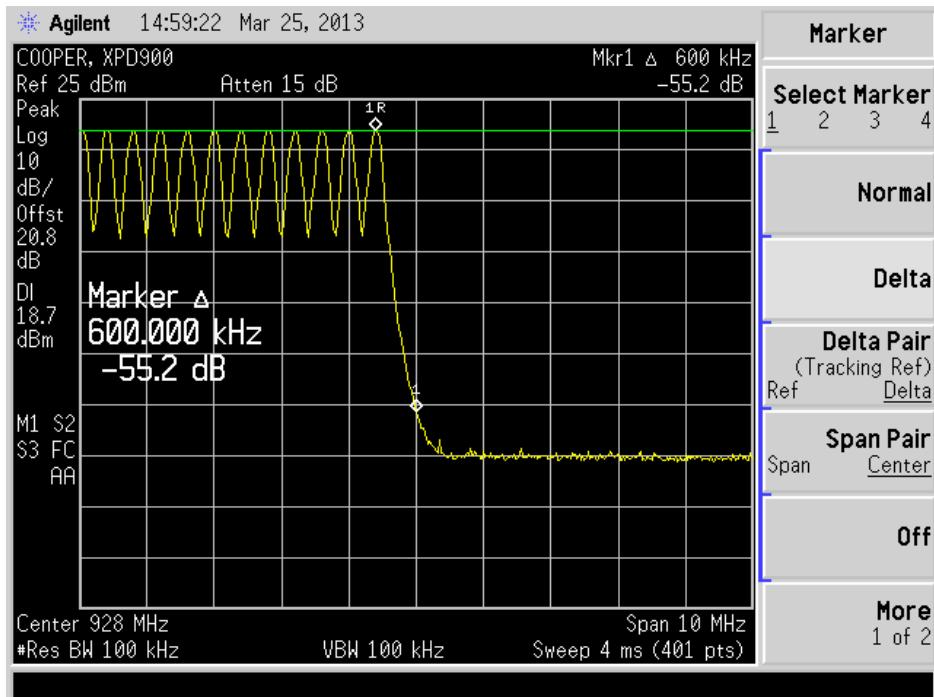
Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

Test Results:


X Pass Fail N/A

Channel Frequency(MHz)	Hopping Mode	Band-edge(dB)	Limit(dB)	Pass/Fail
Low end	No	63.12	≥ 20	Pass
High end	No	55.2	≥ 20	Pass


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Band-edge compliance at low-end, no hopping; Centre Frequency is 902.2 MHz

- Band-edge compliance at High-end, no hopping; Centre Frequency is 927.7 MHz

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Conducted Output Power

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

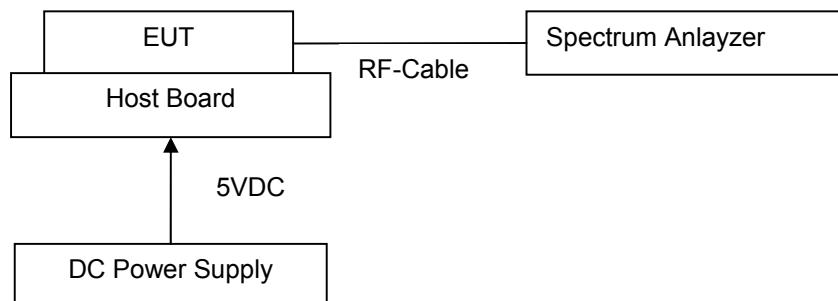
Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

15.247(b)

The maximum peak conducted output power of the intentional radiator shall not exceed the following:
(1) For frequency hopping systems operating in the 902–928 MHz band: 1 watt for systems employing at least 50 hopping channels;

Test Setup


The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The EUT was measured at three different transmitting frequencies, low-end, middle, and high-end.
- The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Span = approximately five times the 20 dB BW, centered on a hopping channel
 - RBW > 20dB BW of the emission being measured
 - VBW \geq RBW
 - Sweep = auto
 - Detector Function = peak
 - Trace = max hold
- Allowed the trace to stabilize.
- Use the marker-to-peak function to set the marker to the peak of the emission.
- The indicated level is the peak conducted output power (with the addition of the cable loss).

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

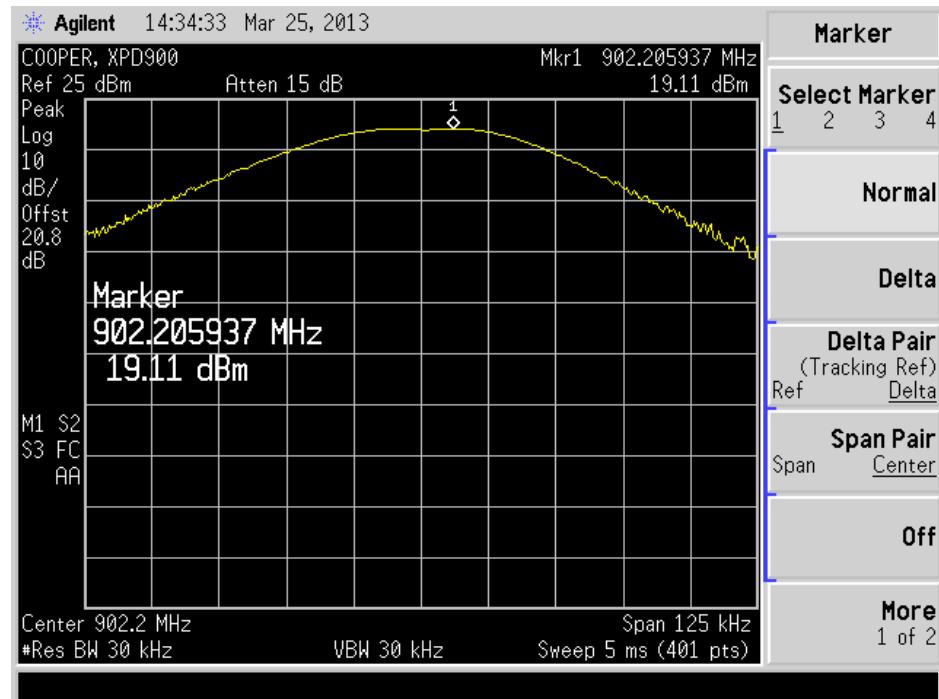
Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

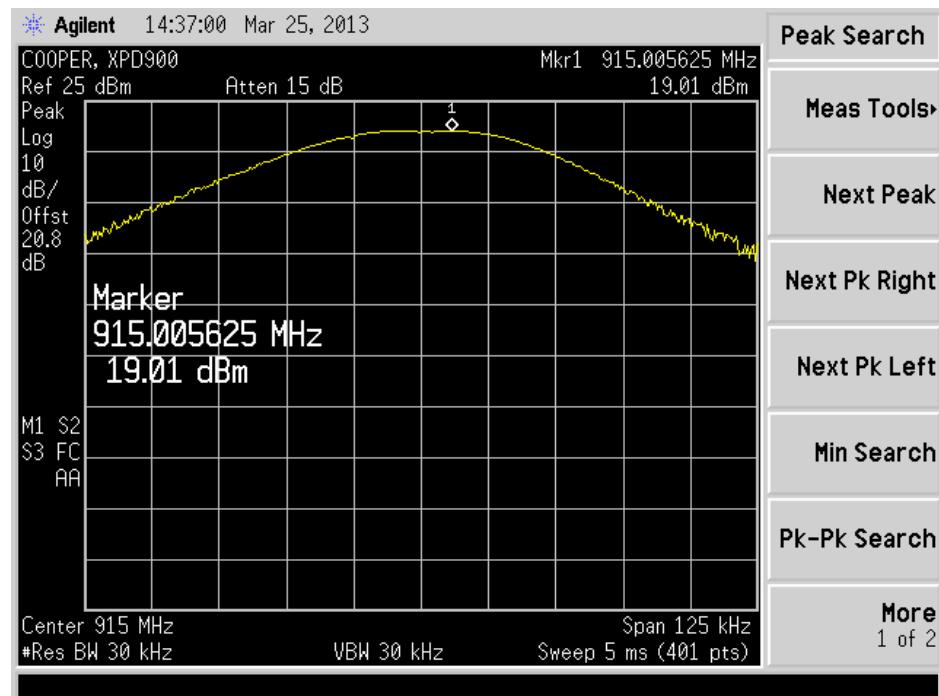
Test Results:

Channel Frequency(MHz)	Peak Power(dBm)	Limit(W/dBm)	Pass/Fail
902.2	19.11	≤ 1 / + 30	Pass
915.0	19.01	≤ 1 / + 30	Pass
927.4	18.88	≤ 1 / + 30	Pass

X Pass

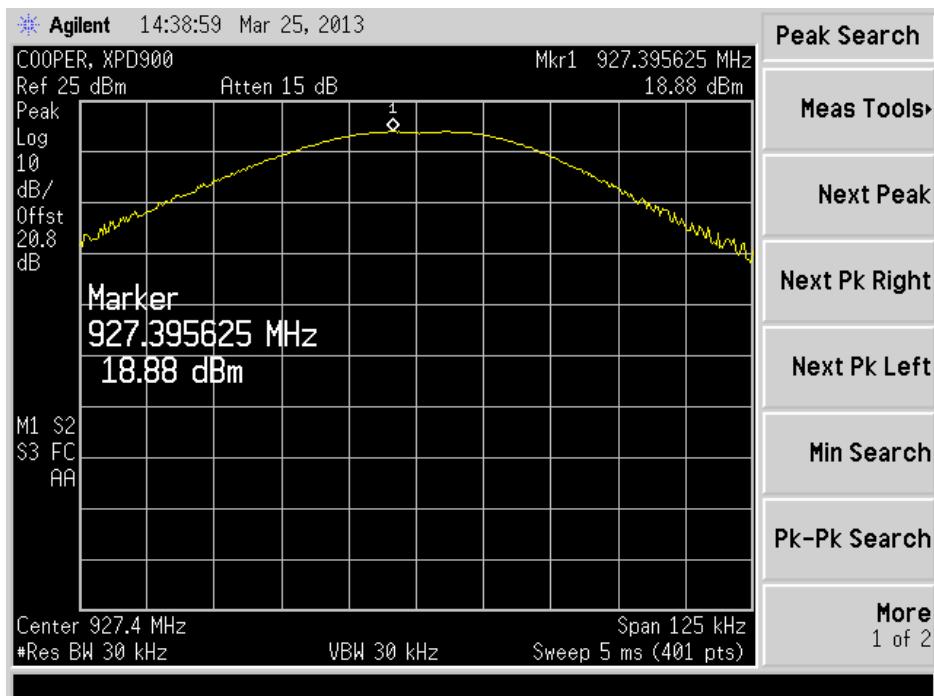

Fail

N/A


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Conducted maximum power; Centre Frequency is 9022 MHz


- Conducted maximum power; Centre Frequency is 915.0 MHz

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Conducted maximum power; Centre Frequency is 927.4 MHz

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Antenna Gain

Test Date	January 14, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

15.247(b)

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Results:

Antenna description	Peak Antenna Gain(dBi)	Limit(dBi)	Pass/Fail
Whip Antenna with NMOHF Mount	5.4 dBi without Cable	≤ 6	Pass

X Pass

Fail

N/A

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Carrier Frequency Separation

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

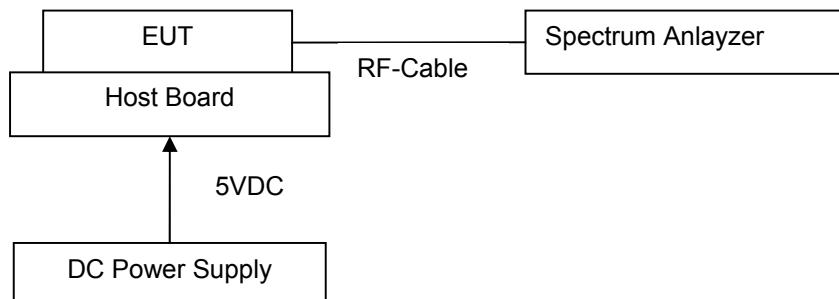
Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

15.247(a)(1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Test Setup


The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The EUT's hopping function was enabled.
- The transmitter was transmitting at its maximum data rate and power.
- The following measurements were made with
 - Span = wide enough to capture the peaks of two adjacent channels.
 - RBW \geq 1% of each span
 - VBW \geq RBW
 - Sweep = auto
 - Detector Function = peak
 - Trace = max hold
 - Allowed the trace to stabilize.
- Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

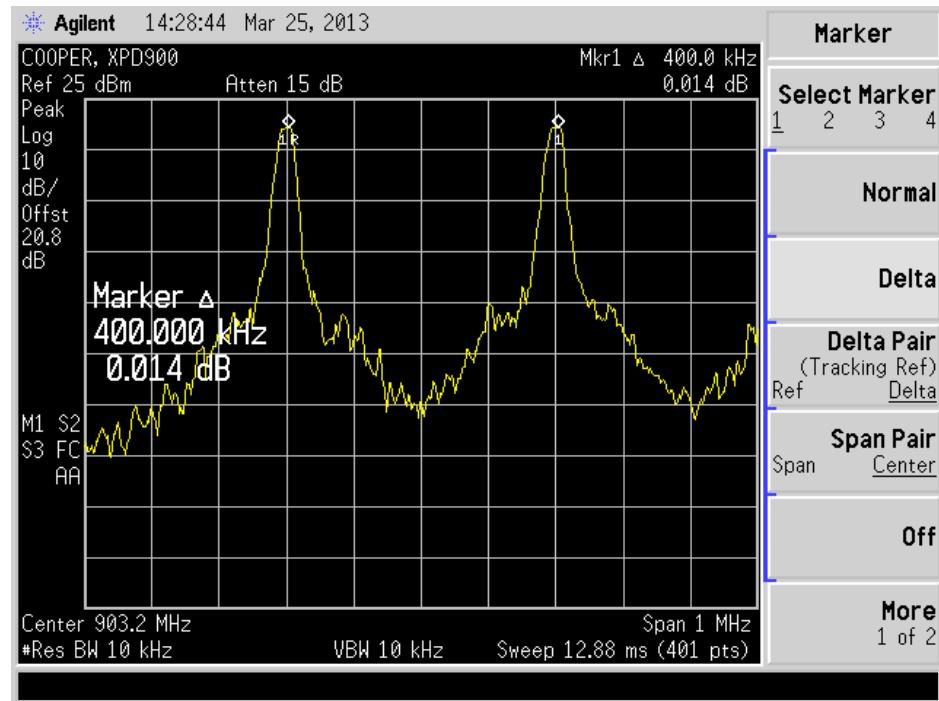
Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

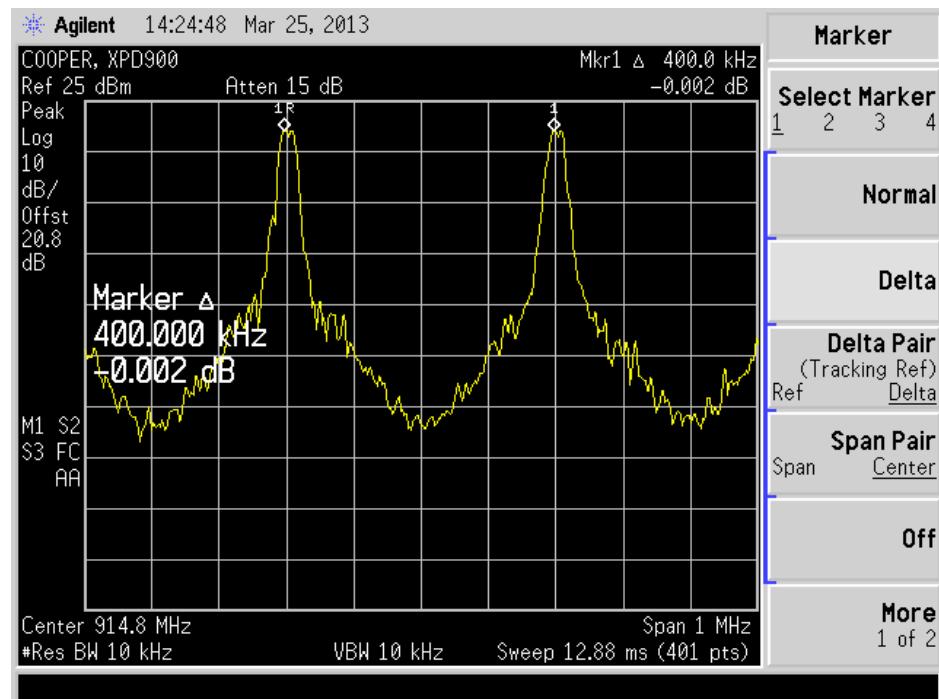
Test Results:

Centre Frequency(MHz)	Carrier Frequency Separation (kHz)	Limit(kHz)	Pass/Fail
903.2	400	> 24.5	Pass
914.8	400	> 24.5	Pass
927.2	400	> 24.5	Pass

X Pass

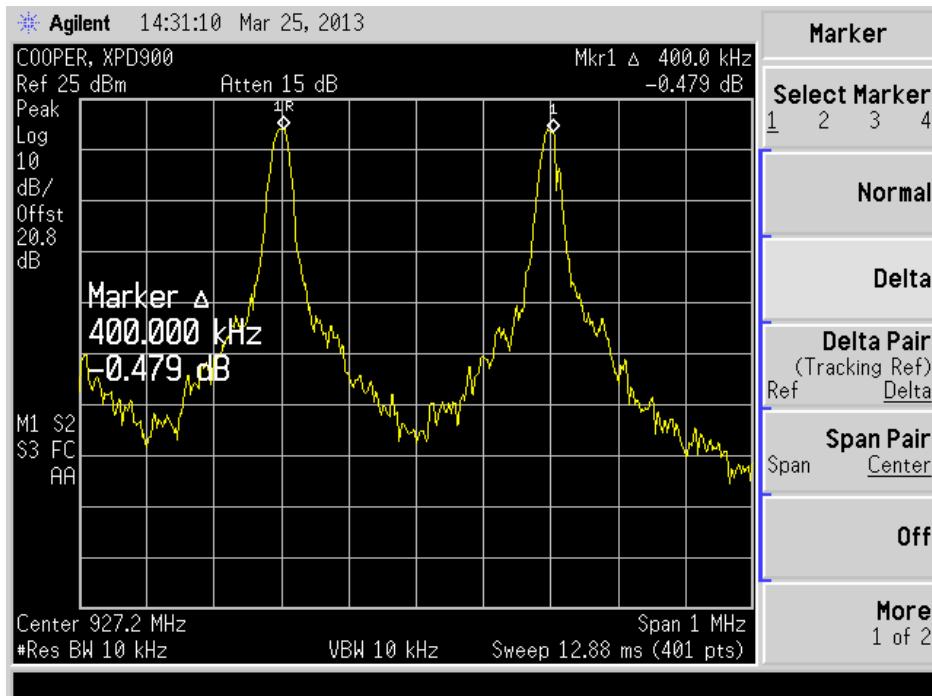

Fail

N/A


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Carrier Frequency Separation of Low End; Centre Frequency is 903.2 MHz.


- Carrier Frequency Separation of middle; Centre Frequency is 914.8 MHz.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Carrier Frequency Separation of High End; Centre Frequency is 927.2 MHz.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Number of Hopping Frequencies

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

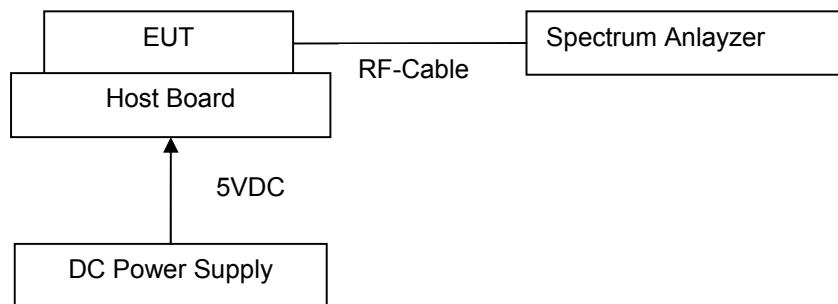
Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

15.247(a)(1)

(i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies

Test Setup


The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via 20dB attenuator.
- The EUT had its hopping function enabled.
- The transmitter was transmitting at its maximum data rate and maximum power.
- The following measurements were made with
 - Span = the frequency band of operation.
 - RBW \geq 1% of the span
 - VBW \geq RBW
 - Sweep = auto
 - Detector Function = peak
 - Trace = max hold
 - Allowed the trace to stabilize.
- Count to the peak detected signals.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

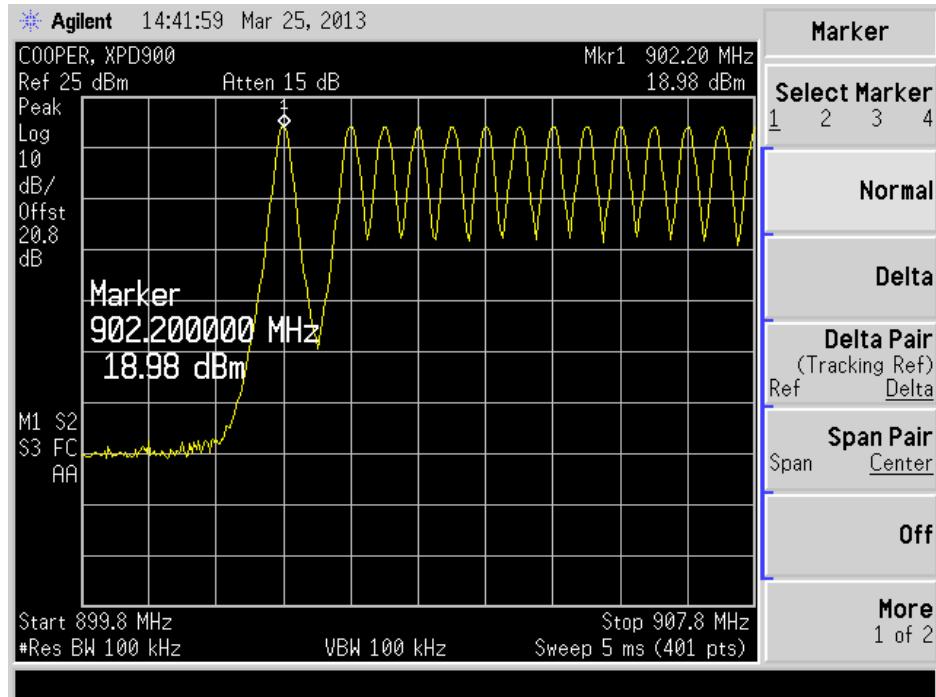
Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Setup Block Diagram

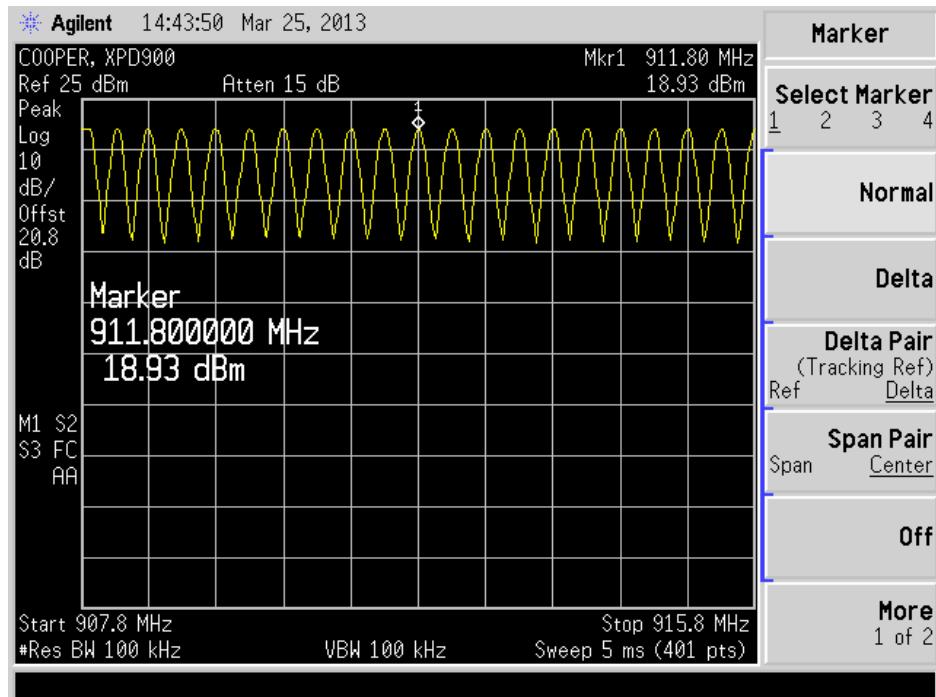
Test Results:

Frequency range (MHz)	Channel Number	Limit	Pass/Fail
902 to 928	63	≥ 50	Pass

X Pass

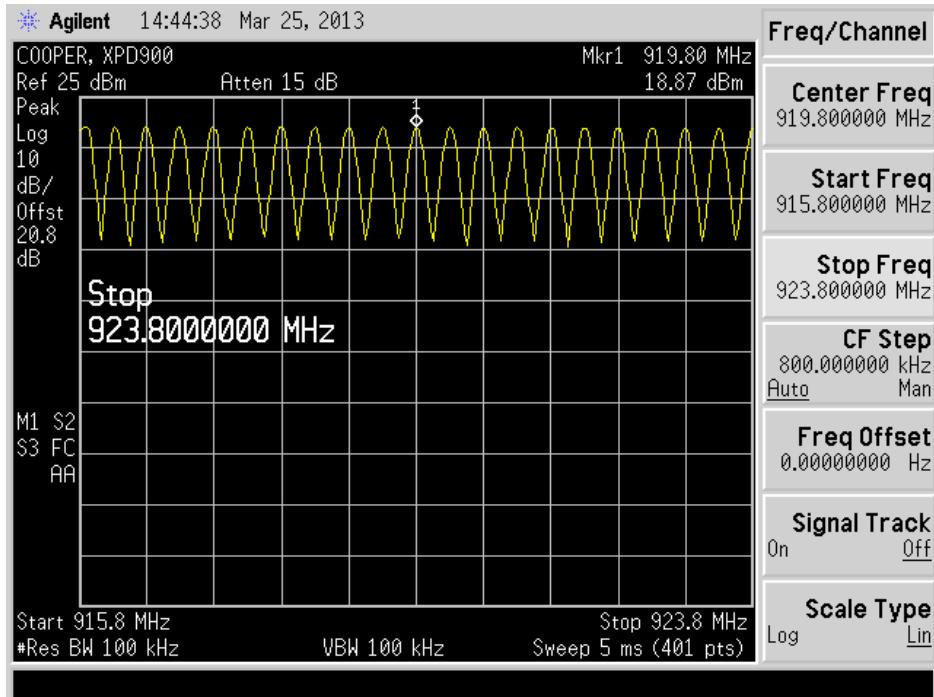

Fail

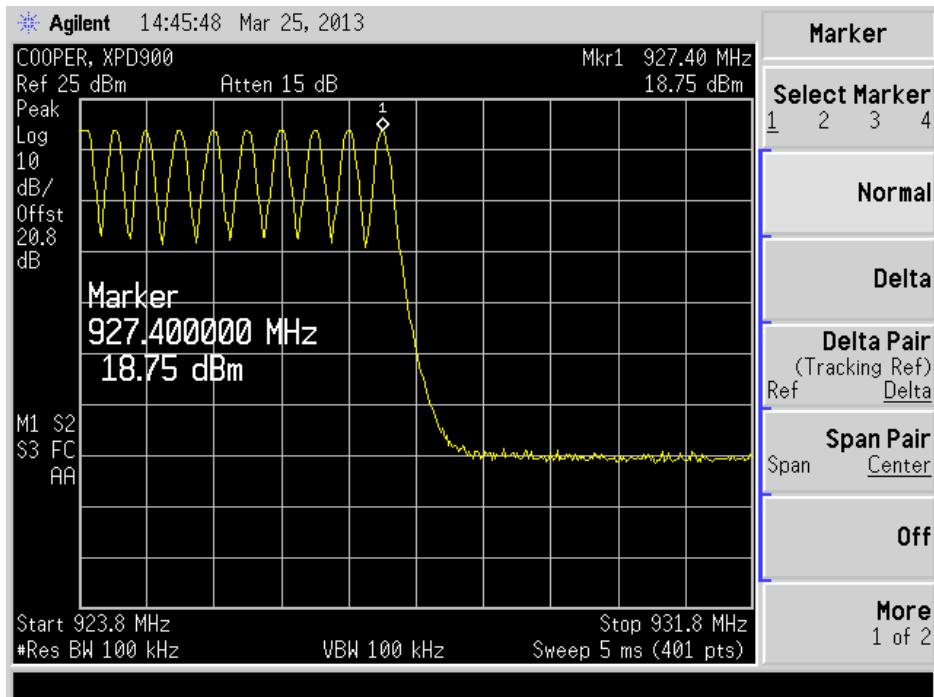
N/A


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Number of Channels, plot#1, 13 channels


- Number of Channels, plot#2, 20 channels


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Number of Channels, plot#3, 20 channels

- Number of Channels, plot#4, 10 channels

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Time of Occupancy (Dwell Time)

Temperature	23.0 °C
Relative Humidity	32.0 %
Barometric Pressure:	101.7 kPa
Test Date	March 25, 2013
Sample Number	1134396
Calibrated Test Equipment (ID)	266, 272
Reference Equipment (ID) (Calibration not required)	187, N1, N2
Tested By	Jeremy Lee

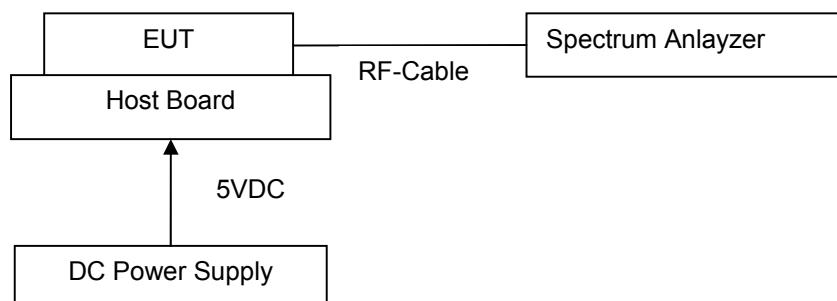
Use the barometric pressure reported at: <http://www.theweathernetwork.com/weather/cabc0248>

Test Limits

15.247(a)(1)

(i) For frequency hopping systems operating in the 902–928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period;

Test Setup


The test was performed in accordance with **FCC 15.247:2010, FCC 15.31:2010 and DA 00-705**.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer via attenuator.
- The EUT had its hopping function enabled.
- The transmitter was transmitting at its maximum data rate and maximum power.
- The following measurements were made with
 - Span = zero span, centered on a hopping channel.
 - RBW = 1MHz
 - VBW \geq RBW
 - Sweep = as necessary to capture the entire dwell time per hopping channel
 - Detector Function = peak
 - Trace = max hold
- Use the marker function to determine the dwell time.
- Repeat this test for each different mode of operation (data rate, modulation format, etc.)
- The Dwell Time is the delta reading in time between two markers multiplied by the number of times they appear in 25.2 sec (25.2 sec is 0.4s times 63 channels).

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

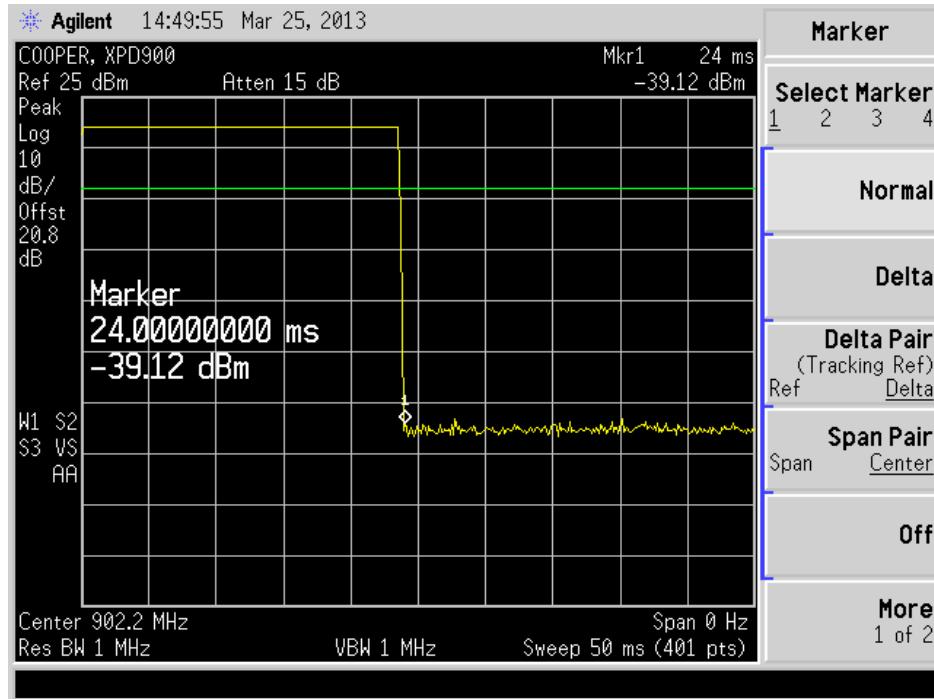
Setup Block Diagram

Test Results:

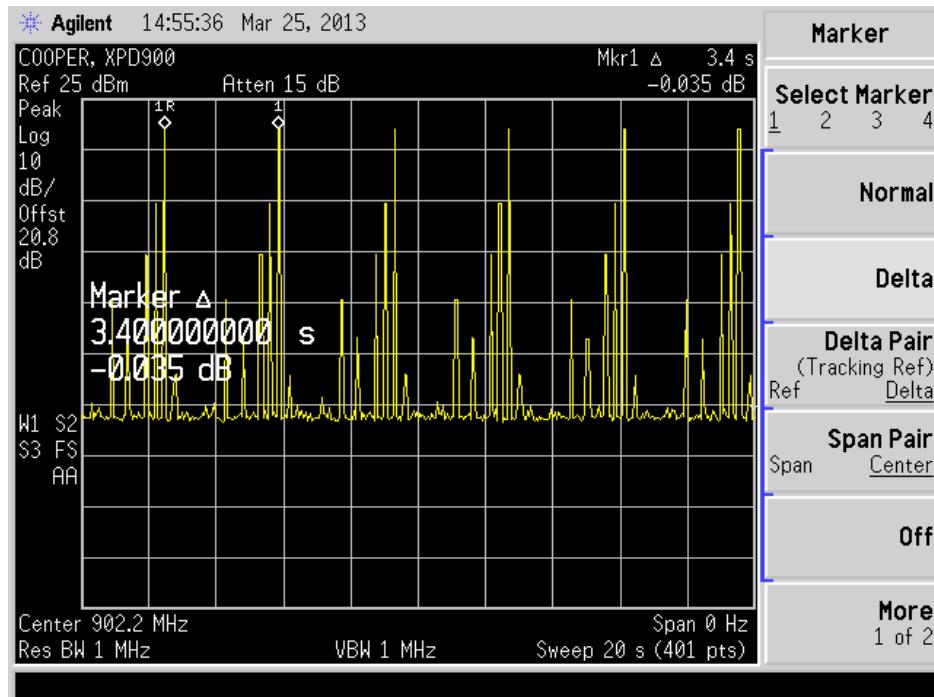
Channel Frequency(MHz)	Dwell Time (ms)	Limit(ms)	Pass/Fail
902.2	144 ¹⁾	< 400	Pass
915.0	144 ¹⁾	< 400	Pass
927.4	144 ¹⁾	< 400	Pass

Note 1) In 20.0 second of monitoring time, it is able to detect maximum 6 times of hopping. The dwell time was detected by 6 times 24ms, on time of one single hopping channel.

X Pass

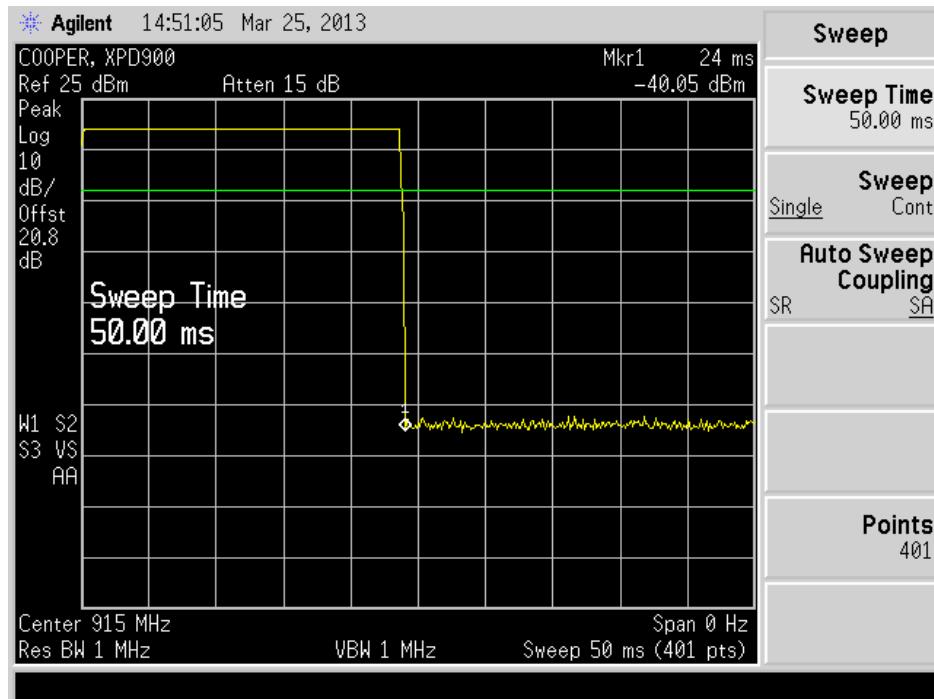

Fail

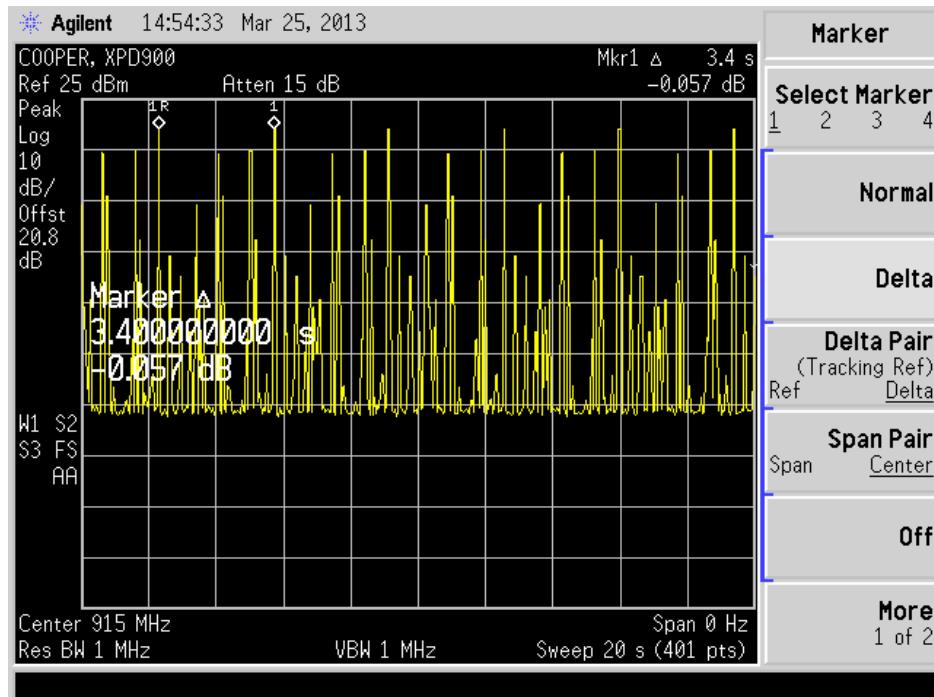
N/A


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

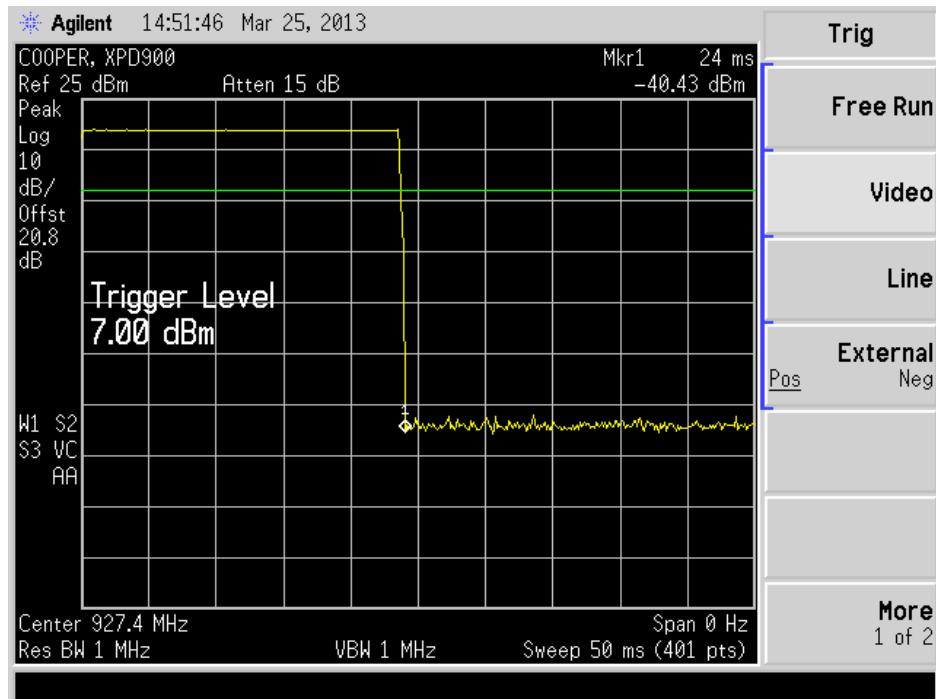
- Dwell time of low end; Centre Frequency is 902.2 MHz.

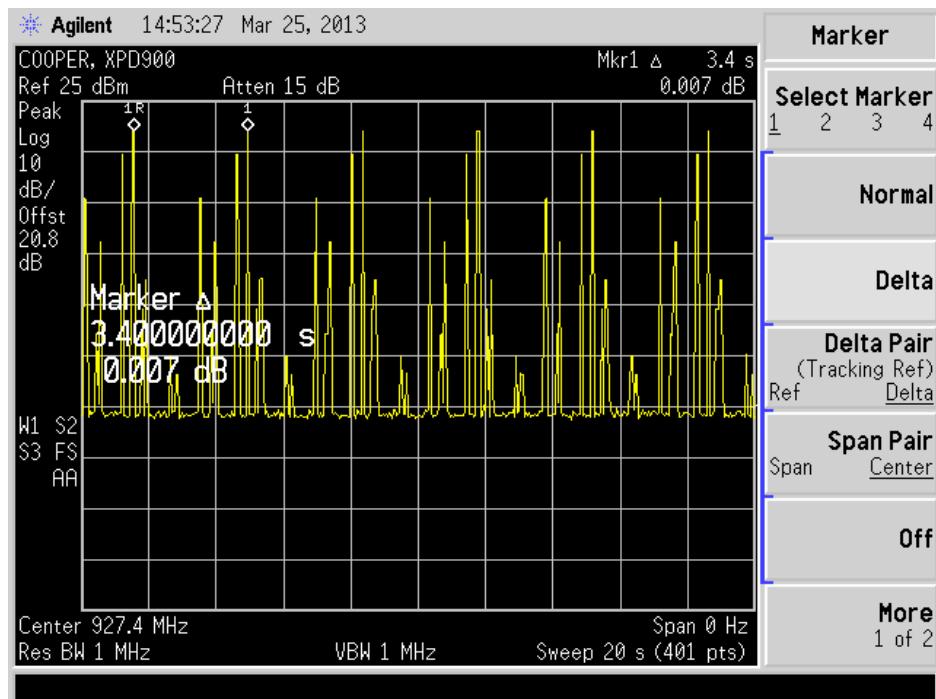

- Channel appearance of low end in 20.0 seconds; Centre Frequency is 902.2 MHz.


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Dwell time of middle; Centre Frequency is 915.0 MHz.


- Channel appearance of middle in 20.0 seconds; Centre Frequency is 915.0 MHz.


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Dwell time of high end; Centre Frequency is 927.4 MHz.

- Channel appearance of High end in 20 seconds; Centre Frequency is 927.4 MHz.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Pseudorandom frequency-hopping sequence

Test Date	April 01, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

FCC15.247(a)(1)

The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

Test Results

The XPD900 is a frequency hopping spread spectrum (FHSS) transceiver module designed to be compatible with FCC Part 15.247 (US) and RSS-210 (Canada) regulations for license free operation in the 900MHz frequency band. The major elements include a frequency agile, RF transmitter and receiver, a chip radio for baseband processing and a microcontroller that commands the chip radio and manages the protocol. Packets of telemetry and control data are transmitted to, and received from, a mating XPD900 transceiver module.

At each frequency hop one packet is sent by the master unit and one packet is expected to be received. A slave unit performs the mirror operation, at each hop it receives one packet and it may transmit another packet if it has data to be transmitted. The chip radio generates the baseband waveforms and detects the data from the received baseband samples. The microcontroller generates a pseudo random frequency hop sequence of length 63 based on a memorized table. The band is utilized in equally spaced 100 kHz channels.

X Pass

Fail

N/A

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Equal Hopping Frequency Usage

Test Date	April 01, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

FCC15.247(a)(1)

Each frequency must be used equally on the average by each transmitter.

Test Results

The XPD900 transceiver module operates on 63 channels with central frequencies between 902.2 and 927.7MHz. These 256 channels, spaced at 100 kHz, are divided into 4 groups consisting of 64 frequencies and each radio is configured to hop in one of these 4 groups. In order to link, radios must be configured to operate in the same group.

Out of 64 frequencies, 63 frequencies are used equally in a pseudo random sequence. The hop sequence is a sequence of 63 numbers randomly generated with a proprietary algorithm. The unique ID number of the transmitter is used as a seed to the random number generator. The random number generator creates a list of 63 channels from the 63 available channels. This list of 63 channels is used to lookup in the frequency table to determine the next frequency.

X Pass **Fail** **N/A**

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

System Receiver Input Bandwidth

Test Date	April 01, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

FCC15.247(a)(1)

The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Results

In receive mode, the signal presented at the antenna connector is filtered through the low pass filters (LPF1). The signal then passes through a switch (RF_SW1), is filtered through a 900MHz band-pass filter (BPF1) and amplified by a low noise amplifier (LNA1). The output of the LNA1 is filtered by the image reject filter (BFP2) and then sent to the down converting mixer (MIX1) where the signal is frequency translated to 243MHz. The LO is generated by an integrated synthesizer and VCO (SYNTH1) which is referenced by a 13 MHz VCTCXO1. The down converted signal is filtered for spurious by (BPF3) and then fed to the ADF7021 (integrated transceiver) for demodulation and baseband processing. The data is then transferred from the ADF7021 to the microcontroller so it can be passed outside the module via a serial interface.

X Pass **Fail** **N/A**

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

RF Exposure (SAR)

Test Date	April 01, 2013
Sample Number	1134396
Tested By	Jeremy Lee

Test Limits

FCC15.247(i)

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

FCC1.1310

The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of § 2.1093 of this chapter. Further information on evaluating compliance with these limits can be found in the FCC's OST/OET Bulletin Number 65, "Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation."

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm ²)	Averaging time (minutes)
(A) Limits for Occupational/Controlled Exposures				
0.3–3.0	614	1.63	*(100)	6
3.0–30	1842/f	4.89/f	*(900/f ²)	6
30–300	61.4	0.163	1.0	6
300–1500	f/300	6
1500–100,000	5	6
(B) Limits for General Population/Uncontrolled Exposure				
0.3–1.34	614	1.63	*(100)	30
1.34–30	824/f	2.19/f	*(180/f ²)	30
30–300	27.5	0.073	0.2	30
300–1500	f/1500	30
1500–100,000	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Included are calculations that determine the minimum distance from the transmitter antenna that will ensure an exposure limit at or below the guidelines given in Table 1 of Section 1.1310 for the general population. The formula for these calculations are taken from OET Bulletin 65, edition 97-01, August 1997; "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields".

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Calculations

Per Table 1 of Section 1.1310, the limit for General Population/Uncontrolled Exposure at 2400 to 2483.5MHz is 1 mW/cm^2 .

Per OET Bulletin 65, Edition 97-01, the formula for calculating power density is: $S=P*G/4\pi d^2$ with:

Given

$$E=\sqrt{(30*P*G)/d}$$

and

$$S=E^2/3770$$

where

E=Field Strength in Volts/meter

P=Power in Watts

G=Numeric antenna gain

D=Distance in meters

S=Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

$$d=\sqrt{((30*P*G)/(3770*S))}$$

Changing to units of Power to mW and Distance to cm, using:

$$P(\text{mW})=P(\text{W})/1000 \text{ and}$$

$$D(\text{cm})=100*d(\text{m})$$

yields

$$d=100*\sqrt{30*(P/1000)*G/(3770*S)}$$

$$d=0.282*\sqrt{(P*G/S)}$$

where

d=distance in cm

P=Power in mW

G=Numeric antenna gain

S=Power Density in mW/cm²

Substituting the logarithmic form of power and gain using:

$$P(\text{mW})=10^{(P(\text{dBm})/10)} \text{ and}$$

$$G(\text{numeric})=10^{(G(\text{dBi})/10)}$$

yields

$$d=0.282*10^{((P+G)/20)}/\sqrt{S} \quad \text{Equation(1)}$$

where

d=MPE distance in cm

P=Power in dBm

G=Antenna Gain in dBi

S=Power Density Limit in mW/cm²

Equation (1) and the measured peak power is used to calculate the MPE distance.

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

Limits

From §1.1310 Table 1 (B), $S = f/1500 \text{ mW/cm}^2$

Results

No non-compliance noted:

Channel Frequency(MHz)	Power Density Limit (mW/cm ²)	Output Power (dBm)	Gain of Antenna (dBi)	MPE distance (cm)
902.2	0.601	19.11	5.4	6.12
914.9	0.610	19.01	5.4	6.00
927.7	0.618	18.88	5.4	5.87

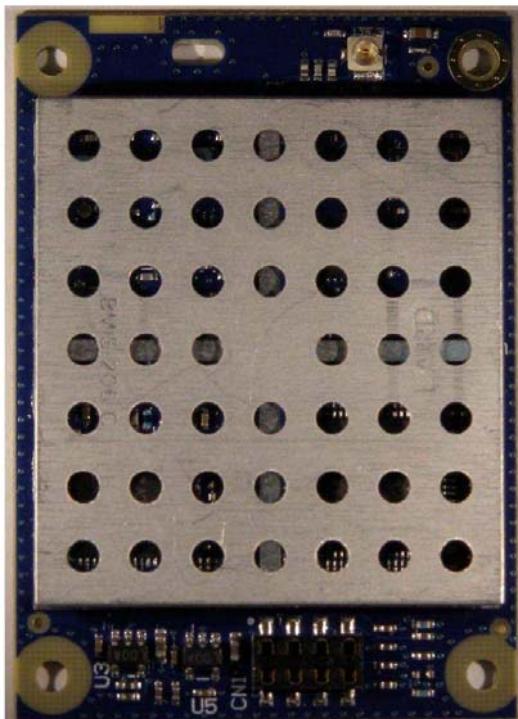
Conclusion

For mobile or fixed location transmitters, the minimum separation distance is 20cm, even if calculations indicate that the MPE distance would be less. Therefore, the minimum safe distance has to be inserted in the EUT's User Manual.

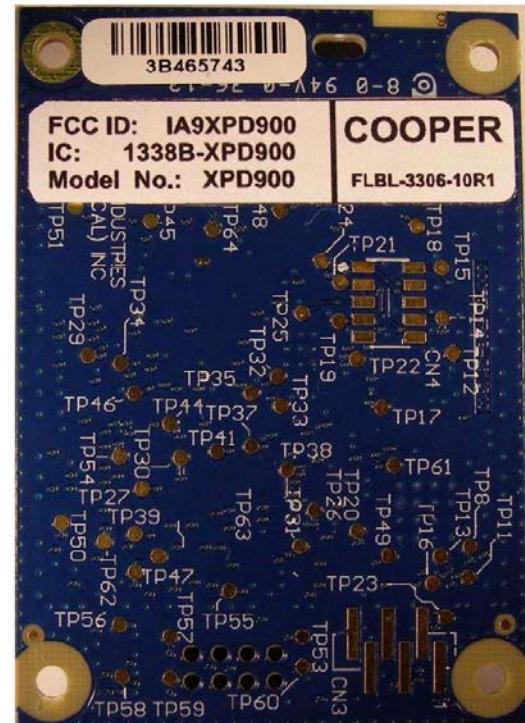
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

APPENDIX A: Test Equipment Used

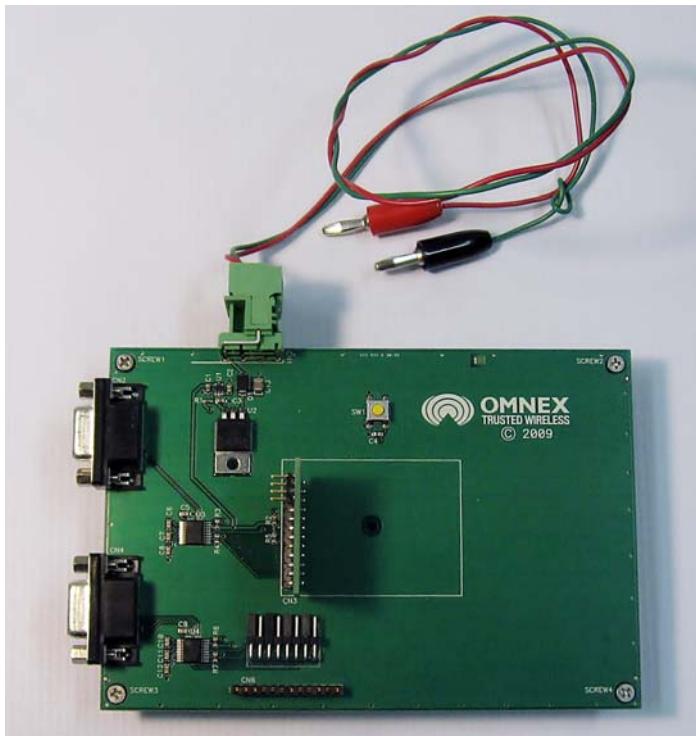

ID No.	Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date	Calibration Certificate No:	Calibration Laboratory
187	DC Power Supply	BK Precision	1670A	N961316871	N/A	N/A	N/A	N/A
227-3	Horn Antenna	A.H. Systems	SAS-571	936	12-Jul-2012	12-Jul-2014	2012062215	Liberty Labs
241	Active Loop Antenna	AL-130	Com-Power	17075	01-Nov-2011	01-Nov-2013	071075A	Com-Power
266	Humidity/ Temperature Logger	Onset HOBO	U14-001	2436907	02-Jan-2013	02-Jan-2014	345135	Wescan
272	EMC Analyzer	Agilent	E7405A	US41110263	11-May-2012	11-May-2013	1-4321111743-1	Agilent
273	RF Preamplifier	Agilent	8449B	3008A02264	28-Mar-2012	28-Mar-2013	2008120104207	Micro Precision
371	EMC Broadband Antenna	Sunol	JB1	A022012	07-Mar-2012	07-Mar-2014	2012022808	Liberty Labs
374	EMC Shielded Enclosure	USC	USC-26	111811	N/A	N/A	N/A	N/A
408	Pre-Amplifier	Sonioma Instruments Co.	310N	185710	20-Mar-2013	20-Mar-2014	6029	ATE
N1	20dB Attenuator	Mini-circuits	VAT-20+	N/A	N/A	N/A	N/A	N/A
N2	Coaxial RF Cable	Belden	OC-LMR100A-4	N/A	N/A	N/A	N/A	N/A
N3	Coaxial RF Cable	A.H. Systems	SAC-26G-3	N/A	N/A	N/A	N/A	N/A

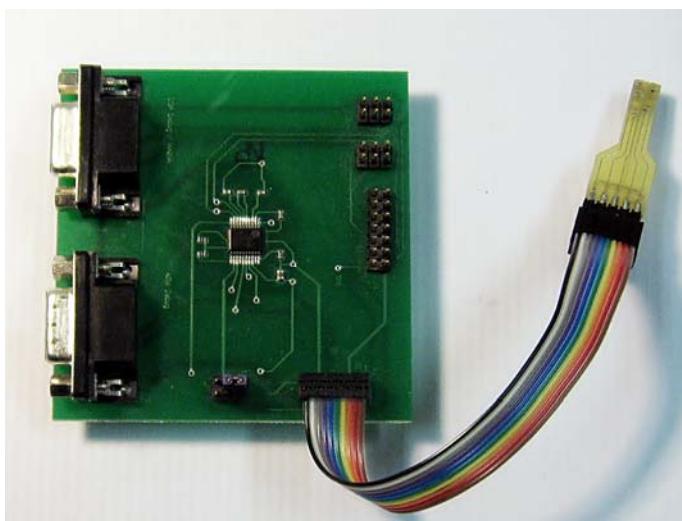
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356


Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

APPENDIX B: EUT photos

- EUT: Top View

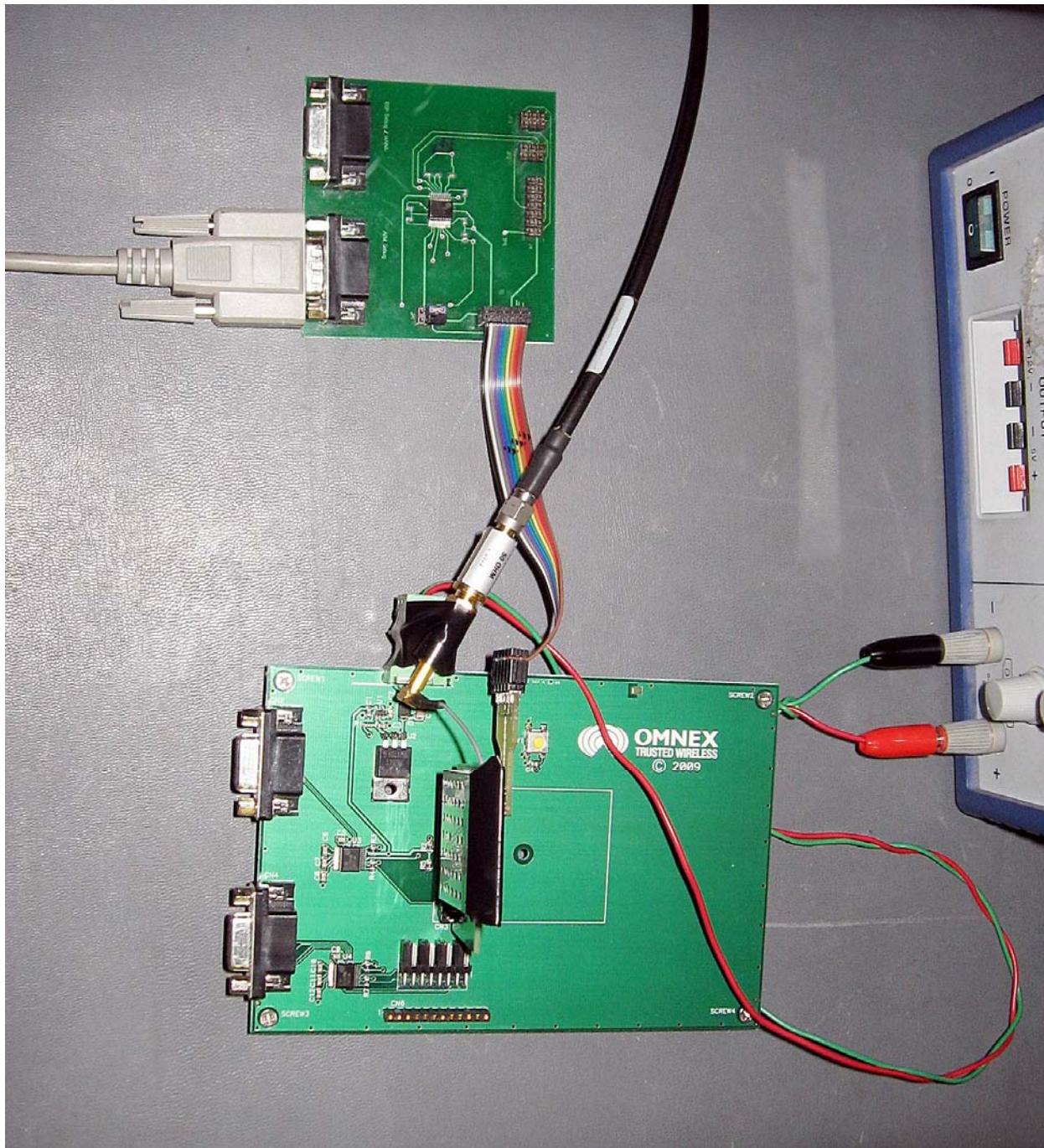

- EUT: Bottom View


Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- EUT: Top View of Host Board

- EUT: Top View of Debug Board



Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

APPENDIX C: Test setup photos

- Test Setup with Host and Debug Board

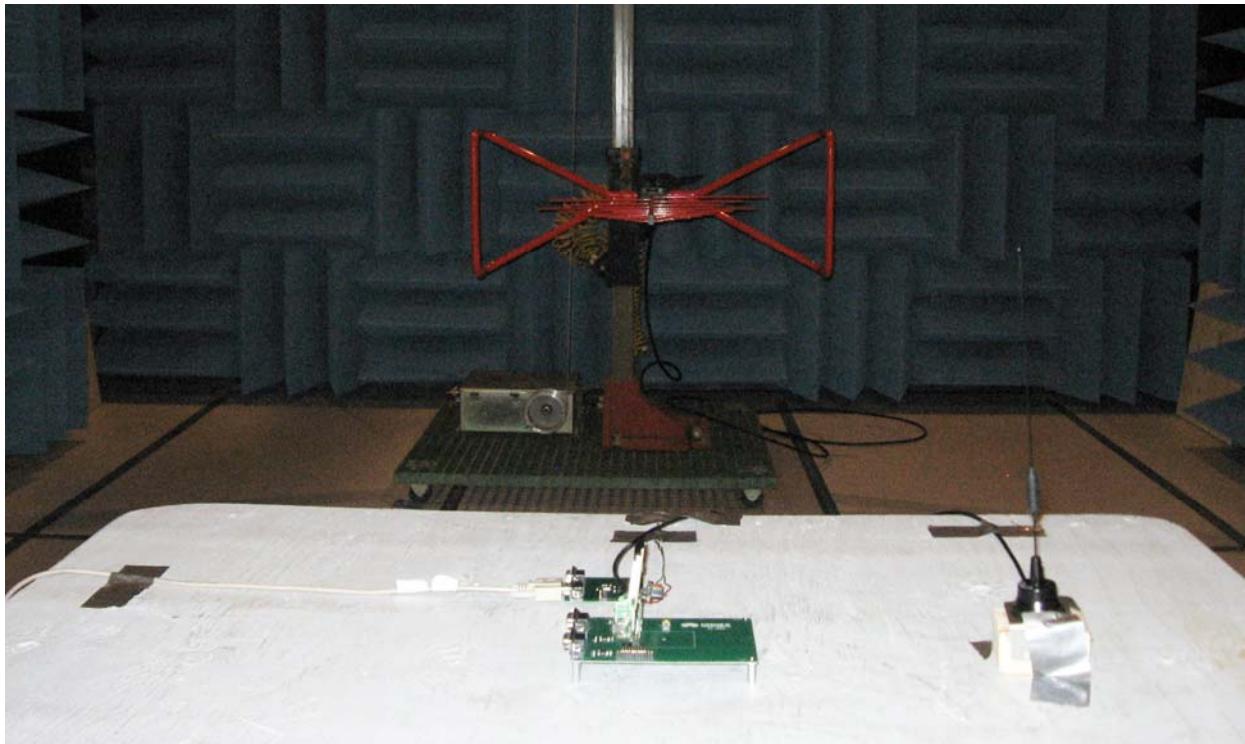
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Test configuration for Conducted measurement

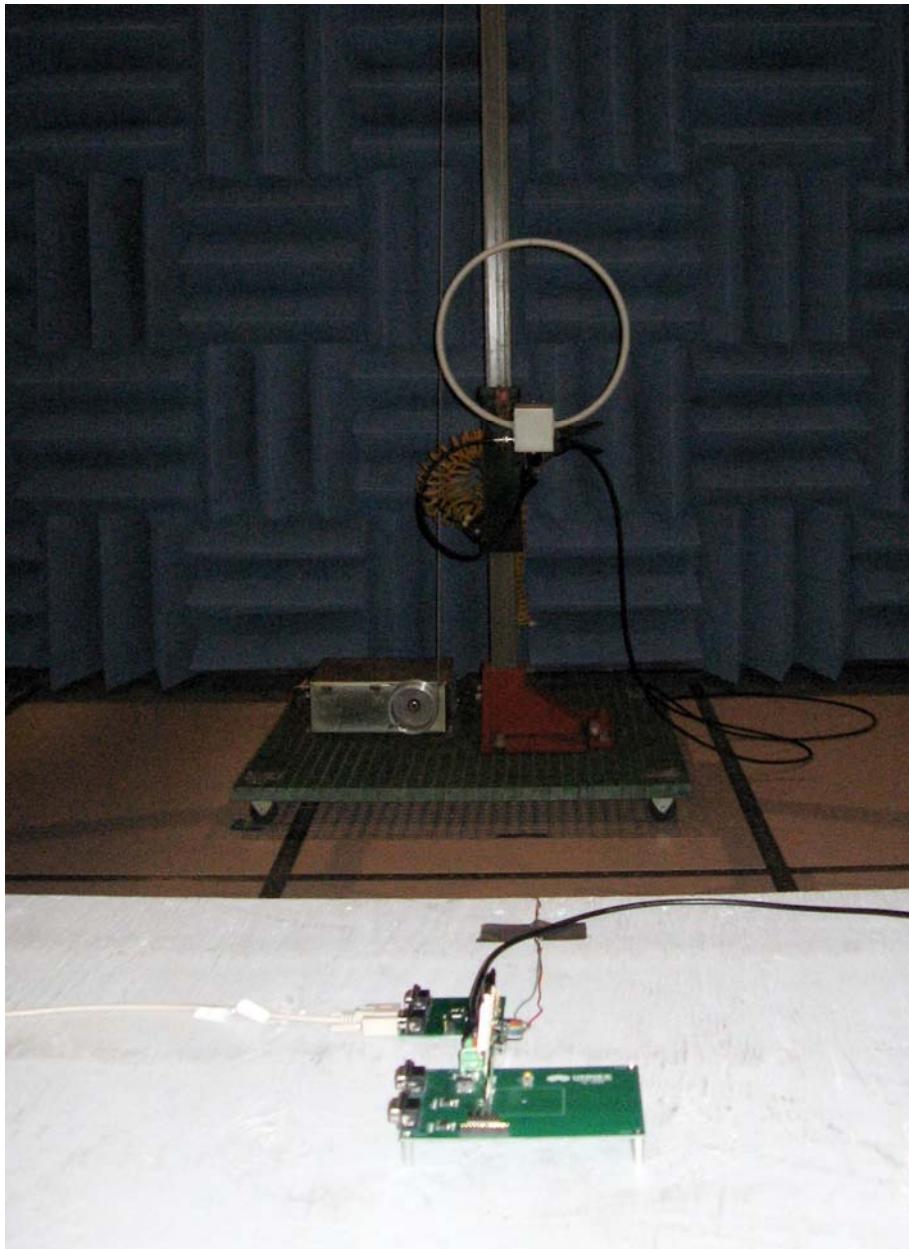
Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Test configuration for Radiated measurement, over 1 GHz for Harmonics

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0


- Test configuration for Radiated measurement, 30 MHz to 1 GHz for Spurious and Receive Mode

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

- Test configuration for Radiated measurement, under 30MHz for Intentional Emissions

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

APPENDIX D: ISO 17025:2005 Accreditation Certificate

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

International Accreditation Service

SCOPE OF ACCREDITATION

LabTest Certification, Inc. TL-367
(Revised May 9, 2012)

LabTest Certification, Inc.
3133-20800 Westminster Hwy.
Richmond, British Columbia V6V 2W3
Canada

Kavinder Dhillon
QMS Manager
(604) 247-0444

FIELDS OF TESTING	ACCREDITED TEST METHODS
Gas and Plumbing	ANSI Standards Z21.1, Z21.15, Z21.19/1.6, Z21.50, Z21.57, Z21.58, Z21.97 and Z21.89/CGA1.18; CSA Standards B45 Series, B125, B140.0, B140.1, B140.3, B140.4, B140.8 and B140.9.3; CGA 1.16; AS 4551/Ag101, AS 4553/AG 103, AS 4563 and AS 2658; EN Standards 30-1-1, 30-1-2, 30-1-3, 30-1-4, 30-2-1 and 30-2-2
Electrical, EMC and Electro-mechanical	AS 4268.1, 4268.2; AS/NZS 1044, 1053, 2064, 3548, 3652, 4051, 4251.1, 4251.2, 62040.2; 60335.1; AS/NZS 60598.1, AS/NZS 60950.1, AS/NZS 60745.1, AS/NZS 60730.1; CISPR 11 / EN55011; CISPR 14 / EN55014; CISPR 15 / EN55015; CISPR 22 / EN55022; CISPR 24 / EN55024, EN 12895, 301 489, 300 386, 50083-2, 50090-2-2, 50091-2, 50121-1, 50121-2, 50121-3-1, 50121-3-2, 50121-4, 50121-5, 50130-4, 50263, 50270, 50293, 50295, 50370-1, 50370-2, 50428, 50470-1, 55012, 55013, 55103-1, 55103-1, 55103-2, 55103-2, 60204-31, 60439-1, 60669-2-1, 60669-2-2, 60669-2-3, 60730-1, 60730-2-11, 60730-2-13, 60730-2-14, 60730-2-18, 60730-2-5, 60730-2-6, 60730-2-7, 60730-2-8, 60730-2-9, 60870-2-1, 60945, 61204-3, 61326, 61347-1 Part 1, 61543, 61547, 61547, 6172001, 618, 619, 620 and 62040-2; FCC Part 15, 18; GB 13837 (CISPR 13); GB 4943, 9254, 7000.1, 7000.10, 7000.11, 7000.12, 2313, 8898, 15143, 14045, 17743, 13836 and 13837; GB/T 9383; GB/T 17618; GB 17625.1, 2; GB/T 17626.2 and 17626.4 and 17626.5

May 5, 2011
Commencement Date

C.P. Ramani
C. P. Ramani, P.E.
President

Print Date: 05/23/2012

Page 2 of 4

This accreditation certificate supersedes any IAS accreditation certificate bearing an earlier date. The certificate becomes invalid upon suspension, cancellation or revocation of accreditation.
See the IAS Accreditation Listings on the web at www.iasonline.org for current accreditation information, or contact IAS directly at (562) 364-8201.

11-04680

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

International Accreditation Service

SCOPE OF ACCREDITATION

LabTest Certification, Inc. TL-367
(Revised May 9, 2012)

FIELDS OF TESTING	ACCREDITED TEST METHODS
Electrical, EMC and Electro-mechanical (cont)	GB/T 17626.6, 17626.8, 17626.11; GB 4343.1 (CISPR 14.1), 4343.2 (CISPR 14.2), GB 4824; HKTA 1001, 1005, 1007 and 1022; ICES-001, 003; JIS T 0601-1-2; IEC/EN/AS/KN: 60601-1-2; IEC/EN/AS/KN: 60601-1-2; IEC/EN/AS/KN: 61000-3-2, 61000-3-3, 61000-4-2, 61000-4-3, 61000-4-4, 61000-4-5, 61000-4-6, 61000-4-8, 61000-4-9, 61000-4-11, 61000-4-12, 61000-4-13, 61000-6-1, 61000-6-2, 61000-6-3 and 61000-6-4; IEC/EN/AS/KN: 61326; RSS-130, 136, 138, 182, 187, 210, 213, 215, 243 and 310; MIL-STD-461E; MIL-STD-462D; KN60601-1-2; KN301 489; KN22, 24; YD 1032; YD/T 965, 968, 993, 1103; CSA Standards C22.2 No. 0, .1, .17, .4, 6, 8, 9, 10, 12, 14, 15, 18, 24, 36, 37, 40, 43, 53, 61, 66-1-06, 63, 64, 66.1, 66.2, 66.3, 68, 71.1, 71.2, 72, 73, 81, 85, 89, 94, 99, 100, 101, 104, 107.1, 107.2, 108, 109, 110, 112, 113, 114, 117, 122, 125, 139, 141, 147, 148, 149, 156, 157, 158, 164, 166, 167, 168, 169, 173, 177, 184, 187, 191, 195, 205, 207, 213, 217, 218.1, 218.2, 223, 224, 225, 231, 234, 236, 243, 247, 250 and 60065; CSA Standards E60079-0, -1 (except Explosión Proof Test), -6, -11, -15, E60335-1, -2, E60730-1, -2, E60745-1, -2, E61010-1, -2, E742, Z240 RV Series 08; IEC/EN Standards 60335-1, -2, 60730-1, -2, 60745-1, -2, 61010-1, -2, 60601-1, -2, 60065, 60079-0, -6, -11, -15 and 60950-1, -2; IEC/EN 60529; 60945, 60598-1, -2, 61347-1; UL Standards 48, 50, 73, 197, 499, 507, 508, 508A, 676, 745-1, 751, 763, 778, 858, 867, 875, 924, 935, 982, 987, 998, 1004, 1012, 1026, 1261, 1310, 1431, 1472, 5085-2_1; 5085-3; 1563, 1564, 1585, 1598, 1647, 1795, 1993, 1995, UL/CSA 5085-1_1

May 5, 2011
Commencement Date

C.P. Ramani
C. P. Ramani, P.E.
President

Print Date: 05/23/2012

Page 3 of 4

This accreditation certificate supersedes any IAS accreditation certificate bearing an earlier date. The certificate becomes invalid upon suspension, cancellation or revocation of accreditation.
See the IAS Accreditation Listings on the web at www.iasonline.org for current accreditation information, or contact IAS directly at (562) 364-8201.

11-04680

Prepared by: LabTest Certification Inc.
Date Issued: April 01, 2013
Project No: 11356

Client: Cooper Industries (Canada) Inc.
Report No.: 11356-1E
Revision No.: 0

International Accreditation Service

SCOPE OF ACCREDITATION

LabTest Certification, Inc. TL-367
(Revised May 9, 2012)

FIELDS OF TESTING	ACCREDITED TEST METHODS
Electrical, EMC and Electro-mechanical (cont)	6500, 8750, 2388; 60079-0, 60079-1, 60079-6, 60079-11, 60079-15, 60335-1, 60335-2, 60601-1, 60601-2, 60730-1, 60730-2, 60745-1, 60745-2, 60950-1, 61010-1 and 61010-2; ISO EN Standards 60601-1-2 Part 1-2, 61000-3-2 (Equipment input current less than or equal to 16 Amps/Phase) and 61000-4-3; ANSI Standards C63.4 and C63.7 (only to 26.5GHz)
Environmental and Energy	IEC/EN Standards 60068-2-1, 2-2, 2-6, 2-30, 2-27, 2-14, 2-64, 60092-101, 60695-2-2; MIL-STD-810; Method 500.4, 501.4, 502.4, 503.4, 506.4, 507.4, 510.4, 512.4 and 514.5; RTCA-DO-160E: Section 4, 5, 6, 7.2, 8, 10, 12, 16, 17 and 25; CSA Standard P4; CAN/CSA Standards C-300 and C-814; Qualification Criteria for Bottled Water Cooler Version 1.1 - May 2004; Qualification Criteria for Compact Fluorescent Lamps Version 3.0 - October 2003; Qualification Criteria for Decorative Light Strings Version 1.3 - March 9, 2007; Qualification Criteria for Residential Light Fixtures Version 4.0; Qualification Criteria for Home Audio and DVD Equipment; ISO Standards 9806-1, 9806-2 and 9806-3; SRCC 100-08, SRCC TM-1, SRCC-150; CSA Standards F378 and F379, EN Standards 12975-1 and 12975-2
Maritime	ABYC Standards A-3, A-7, A-26, A-27, A-28, A-30, A-31, E-2, E-11, H-2, P-14, P-17, P-18, P-21, P-22, P-24 and P-27; EN Standards 28846, 28848, 28849, 29775, 60092-507; EN ISO 10133, 12216, 13297, 13929, 14895, 15083, 8847, 8849, 10239, 10240, 10592; 1995/A1, 11105, 11192 and 9097:1994/A1; IACS E1 – E21; 21005; DNV 2.4, BV: Rules for Classification of Steel Ships – Part C, Chapter 3, Section 6.2 Type Approval; ABS Part 4, Chapter 9, Section 7, Lloyds Type Approval Systems – Test Specification Number 1; GL VI-Part 7 Section 3 – Section – B Test Requirements, Chapter 2
Appliances	CSA Standard B 140.0-3

May 5, 2011
Commencement Date

C.P. Ramani
C. P. Ramani, P.E.
President

Print Date: 05/23/2012

Page 4 of 4

This accreditation certificate supersedes any IAS accreditation certificate bearing an earlier date. The certificate becomes invalid upon suspension, cancellation or revocation of accreditation. See the IAS Accreditation Listings on the web at www.iasonline.org for current accreditation information, or contact IAS directly at (562) 364-8201.

11-04680

END OF REPORT