

MEASUREMENT AND TECHNICAL REPORT

OMNEX CONTROL SYSTEMS INC 74-1833 Coast Meridian Road Port Coquitlam, BC V3C 6G5 Canada

DATE: 10 April 2006

This Report Concerns:	Original Grant: >	X Class II Change:					
Equipment Type:	T-2300 Controlle	er with LP	D-24RC Tr	ransceiv	'er		
Deferred grant requested per 47 0.457(d)(1)(ii)?	CFR	Yes: Defer u	ntil:		No: X		
Company Name agrees to notify Commission by: of the intended date of announce date.		N/A duct so	that the gr	ant can	be issued on that		
Transition Rules Request per 15	.37? Yes:		No: X*				
(*) FCC Part 15, Paragraph(s) 15.2 (*) Canadian Specification(s) RSS- and F					.1(4), RSS-210 A8.4(2)		
Report Prepared b	y:	10040 N San Die	MERICA, IN Mesa Rim F ego, CA 92 858 678 14 858 546 0	Road 1121-291 400	12		

TABLE OF CONTENTS

			Pages
1.0	GENERAL INFORMATION	ON	3 - 5
	1.1 Product Description	n	3
	1.2 Related Submittal (Grant	3
	1.3 Tested System Det	tails	4
	1.4 Test Methodology		4
	1.5 Test Facility		5
2.0	SYSTEM TEST CONFIG	URATION	6
	2.1 Justification		6
	2.2 EUT Exercise Softv	ware	6
	2.3 Special Accessorie	es	6
	2.4 Equipment Modifica	ations	6
	2.5 Configuration of Te	est System	6
3.0		N EQUIPMENT/DATA EQUIPMENT/DATA CHANNELS EQUIPMENT/DATA EMISSIONS EQUIPMENT/DATA EQUIPMENT/DATA	7 - 16
4.0	ATTESTATION STATEM	MENT	17

1.0 GENERAL INFORMATION

1.1 Product Description

Gene belov		ment Description NOTE: This information will be input into your test report as shown
EUT	Description	2.4GHz Transceiver module
EUT	Name:	LPD-24RC
Mode	l No.:	LPD-24RC Serial No.:
Produ	ıct Options	: <u></u>
Confi	gurations to	o be tested: Modular Approvals for FCC/IC and CE Marking
Powe	r Require	ments
Regula	ations require	e testing to be performed at typical power ratings in the countries of intended use. (i.e., European 230 VAC 50 Hz or 400 VAC 50 Hz, single and three phase, respectively)
Voltaç	ge:	Battery Powered (If battery powered, make sure battery life is sufficient to complete testing.) (supplied)
# of P	hases:	<u></u>
Curre	nt (Amps/p	phase(max)): Current (Amps/phase(nominal)):
Other	:	
Other	r Special R	Requirements
		tion and/or Operating Environment
(ie.	Hospital, S	Small Business, Industrial/Factory, etc.)
Lig	ght Industri	al, used on cement trucks and other heavy equipment
1.2	Related S	Submittal Grant
	None	

1.3 Tested System Details

The FCC ID's for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test: To demonstrate compliance with the following tests.

Test Summary										
	Summary of Results									
Test Description	Paragraph Number	Low Channel	Mid Channel	High Channel	Pass/Fail					
	15.247(a)(1)(i)									
Bandwidth	RSS-210 A8.1(1)		30.1 kHz		Pass					
	15.247(a)(1)									
Channel Separation	RSS-210 A8.1(2)		1200 kHz		Pass					
	15.247(a)(1)(i)									
Time of Occupancy	RSS-210 A8.1(4)		168 msec		Pass					
	15.247(a)(1)(i)									
Number of Hopping Channels	RSS-210 A8.1(4)		63		Pass					
	15.247(c)/									
Radiated Spurious Emissions - Restricted Bands (1GHz to	15.209(a)	-3.72 dB @	-5.98 dB @	-0.22 dB @						
25GHz)	RSS-210 A8.5	7209.3 MHz	4883.4 MHz	7435.8 MHz	Pass					
Radiated Emissions (30 to	15.209(a)	No Detectable	No Detectable	No Detectable						
1000 MHz) `	RSS-210 A8.5	Emissions	Emissions	Emissions	Pass					
	15.247(b)	5.83 dBm	5.53 dBm	4.26 dBm						
RF Output Power	RSS-210 A8.4 (2)	(0.003828 W)	(0.003573 W)	(0.002667 W)	Pass					

Testing was performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8-M1983.

Report No. SC600649-08A

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV AMERICA, INC 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 858 678 1400 Fax: 858 546 0364

The Test Site Data and performance comply with ANSI C63.4 and are registered with the FCC, 7435 Oakland Mills Road, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was initially tested for FCC emissions in the following configuration:

See Test Setup Photos Exhibit

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Equipment Modifications

None

2.5 Configuration of Test System

See Test Setup Photos Exhibit

Report No. SC600649-08A

3.0 BANDWIDTH EQUIPMENT/DATA
CHANNEL SEPARATION EQUIPMENT/DATA
TIME OF OCCUPANCY EQUIPMENT/DATA
NUMBER OF HOPPING CHANNELS EQUIPMENT/DATA
RADIATED SPURIOUS EMISSIONS EQUIPMENT/DATA
RADIATED EMISSIONS EQUIPMENT/DATA
RF OUTPUT POWER EQUIPMENT/DATA

Test Conditions: BANDWIDTH: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(1)

CHANNEL SEPARATION: FCC Part 15.247(a)(1) and RSS-210 A8.1(2) TIME OF OCCUPANCY: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(4)

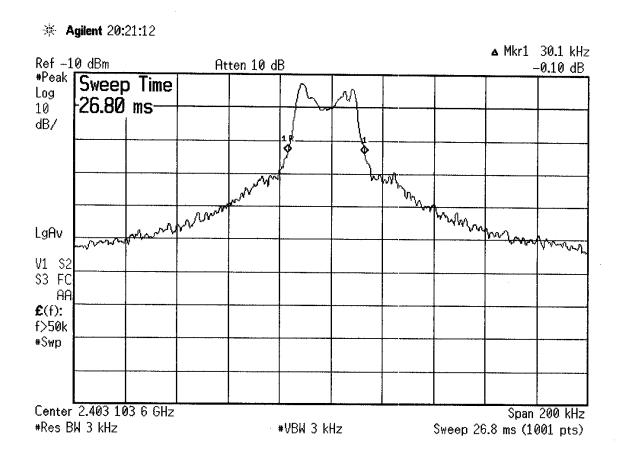
NUMBER OF HOPPING CHANNELS: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(4) RADIATED SPURIOUS EMISSIONS: FCC Part 15.209(a), 15.247(c), and RSS-210 A8.5

RADIATED EMISSIONS: FCC Part 15.209(a) and RSS-210 A8.5 RF OUTPUT POWER: FCC Part 15.247(b) and RSS-210 A8.4(2)

The following measurements were performed at the San Diego Testing Facility:

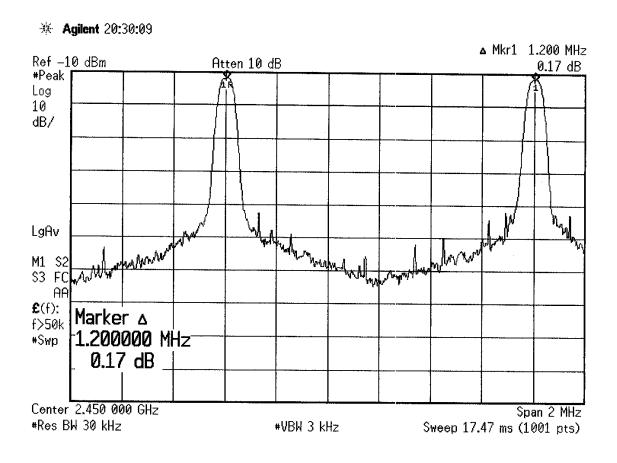
☐ - Test not applicable

■ - Roof (Small Open Area Test Site)

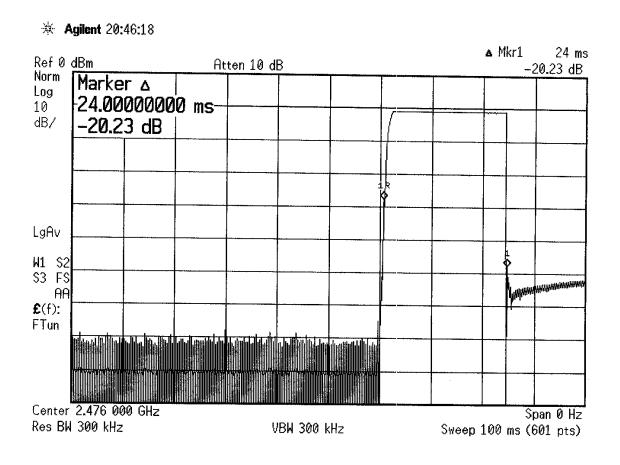

Test Equipment Used:

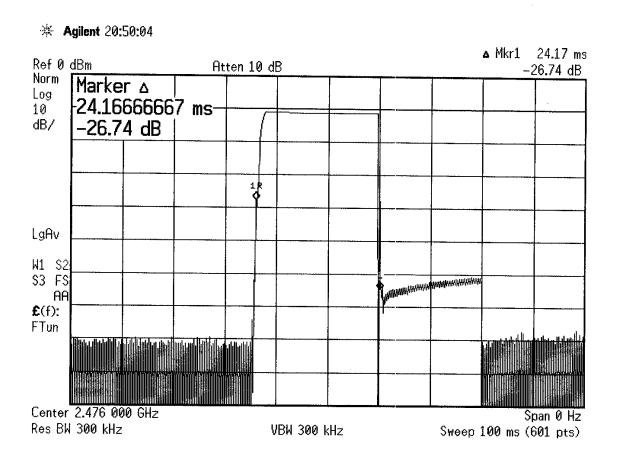
Model No.	Prop. No.	Description	Manufacturer	Serial No.	Date Cal'ed
E4446A	6823	Spectrum Analyzer	Agilent	US44300486	04/06
3115	6475	Double Ridged Waveguide Antenna	EMCO	9908-5927	06/06
AA-190-10.00.0	731	30' Coaxial Cable	United Microwave		Verified
AA-190-06.00.0	657	3' Coaxial Cable	United Microwave		Verified
AMF-5D-010180-35- 10P	719	Preamplifier	Miteq	549460	Verified

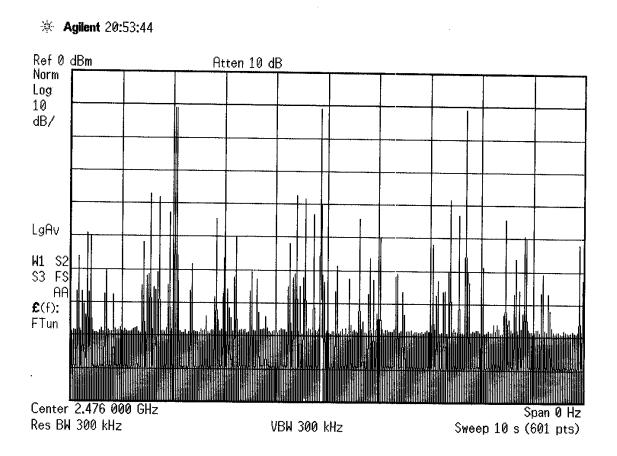
Remarks: One year calibration cycle for all test equipment and sites.

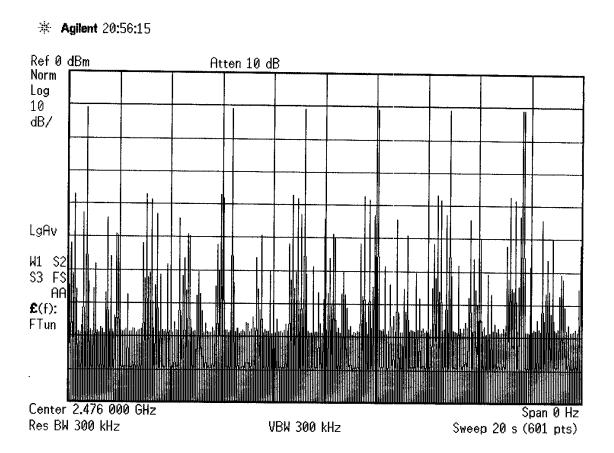


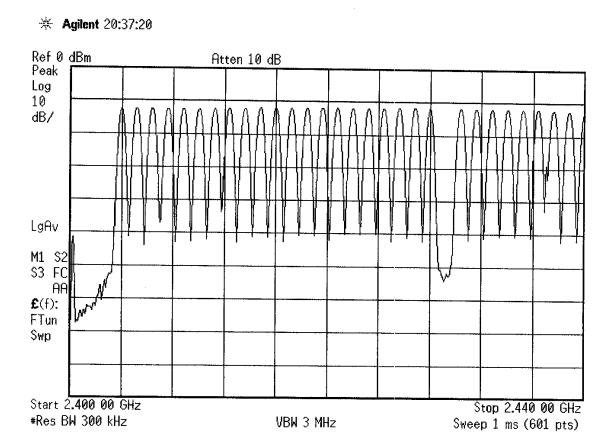
BANDWIDTH: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(1)

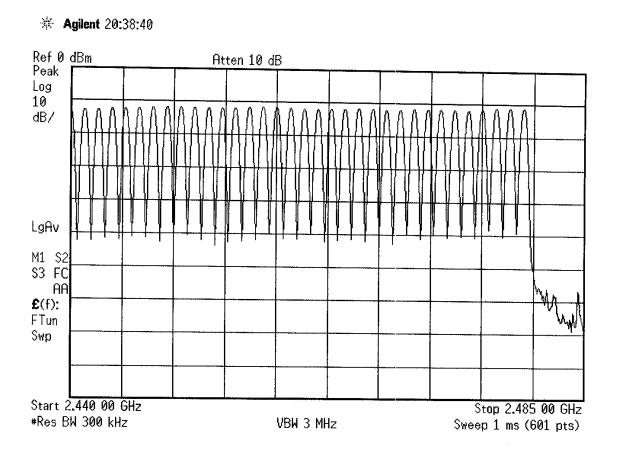



CHANNEL SEPARATION: FCC Part 15.247(a)(1) and RSS-210 A8.1(2)









NUMBER OF HOPPING CHANNELS: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(4)

NUMBER OF HOPPING CHANNELS: FCC Part 15.247(a)(1)(i) and RSS-210 A8.1(4)

RADIATED SPURIOUS EMISSIONS: FCC Part 15.209(a), 15.247(c), and RSS-210 A8.5

REPORT No: SC600649

TESTER: WILLIAM DEY

SPEC: FCC Part 15 para 15.209(a) , 15, 247(c)

CUSTOMER: OMNEX ControlT2300

TEST DIST:

3 Meters

EŲT:

T2300

TEST SITE:

Roof

EUT MODE: Single Frequencies, Low, Medium, High

BICONICAL:

491

DATE:

March 30, 2006

LOG:

243

NOTES:

Above 1GHz: RBW & VBW 1 MHz for Pk; RBW 1MHz and VBW 10Hz for AVG below 1GHz: RBW & VBW 100 kHz for Pk; RBW 100kHz and VBW 10Hz for AVG

CF = Antenna Factor + Cable Loss - Preamplifier Gain + Preselector Loss

FREQ (MHz)	· · · · · · · · · · · · · · · · · · ·			·									v.beta1	ıa	
4806.2 50.6 37.4 59.9 48.4 -0.169 59.73 48.2 74 54 -14.3 -5.77 96 1.8 265,1.9 7209.3 46.7 41.8 46.2 34.2 8.47674 55.18 50.3 74 54 -18.8 -3.72 183 1.7 321,1.3 9612.4 39.6 29.7 38.9 29.5 9.99224 49.59 39.7 74 54 -24.4 -14.3		(dBuv)	pk	(dE	Buv)	CF (dB/m)	(dBu	V/m)	(dBu	V/m)	(dB)	RGIN pk v	EUT Rotation	Antenna Height	Notes
7209.3 46.7 41.8 46.2 34.2 8.47674 55.18 50.3 74 54 -18.8 -3.72 183 1.7 321,1.3 9612.4 39.6 29.7 38.9 29.5 9.99224 49.59 39.7 74 54 -24.4 -14.3 -17 321,1.3 321,1			104	106.6	106.4	-5.52946	101.1	101	74	54	27.07	46.9	91	1.9	\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-
9612.4 39.6 29.7 38.9 29.5 9.99224 49.59 39.7 74 54 -24.4 -14.3 2441.7 104.1 103.9 106.2 106.1 -5.39822 100.8 101 74 54 26.8 46.7 102 1.6 4883.4 55.3 39.5 63.1 47.8 0.217 63.32 48 74 54 -10.7 -5.98 180 3.2 98.1.2 7325.1 53.2 38.3 46.5 32.1 8.68518 61.89 47 74 54 -12.1 -7.01 178 2.1 174,1.3 2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1					48.4	-0.169	59.73	48.2	74	54	-14.3	-5.77	96	1.8	265,1.9
2441.7 104.1 103.9 106.2 106.1 -5.39822 100.8 101 74 54 26.8 46.7 102 1.6 4883.4 55.3 39.5 63.1 47.8 0.217 63.32 48 74 54 -10.7 -5.98 180 3.2 98,1.2 7325.1 53.2 38.3 46.5 32.1 8.68518 61.89 47 74 54 -12.1 -7.01 178 2.1 174,1.3 2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1			41.8		34.2	8.47674	55.18	50.3	74	54	-18.8	-3.72	183	1.7	321,1.3
4883.4 55.3 39.5 63.1 47.8 0.217 63.32 48 74 54 -10.7 -5.98 180 3.2 98,1.2 7325.1 53.2 38.3 46.5 32.1 8.68518 61.89 47 74 54 -12.1 -7.01 178 2.1 174,1.3 2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1	9612.4	39.6	29.7	38.9	29.5	9.99224	49.59	39.7	74	54	-24.4	-14.3			
4883.4 55.3 39.5 63.1 47.8 0.217 63.32 48 74 54 -10.7 -5.98 180 3.2 98,1.2 7325.1 53.2 38.3 46.5 32.1 8.68518 61.89 47 74 54 -12.1 -7.01 178 2.1 174,1.3 2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1															
7325.1 53.2 38.3 46.5 32.1 8.68518 61.89 47 74 54 -12.1 -7.01 178 2.1 174,1.3 2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1				106.2	106.1	-5.39822	100.8	101	74	54	26.8	46.7	102	1.6	
2478.6 104.8 104.7 103.6 103.5 -5.27276 99.53 99.4 74 54 25.53 45.4 180 1.6 4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1								48		54	-10.7	-5.98	180	3.2	98,1.2
4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1	7325.1	53.2	38.3	46.5	32.1	8.68518	61.89	47	74	54	-12.1	-7.01	178	2.1	174,1.3
4957.2 48.6 43.7 56 45.6 0.586 56.59 46.2 74 54 -17.4 -7.81 157 1.4 7435.8 48.4 44.9 45.1 38.5 8.88444 57.28 53.8 74 54 -16.7 -0.22 149 1															
7435.8									74	54	25.53	45.4	180	1.6	
									74	54	-17.4	-7.81	157	1.4	
	7435.8	48.4	44.9	45.1	38.5	8.88444	57.28	53.8	74	54	-16.7	-0.22	149	1	
						ļ.,, <u>, ,</u>									
										-					
															•
						-									
			<u></u>												
		<u> </u>											L		
		ļ													

4.0 ATTESTATION STATEMENT

GENERAL REMARKS:

SUMMARY:

All tests were performed per: CFR 47, Part(s) 15.209(a), 15.247(a), 15.247(b), and 15.247(c)

Canadian Specification(s) RSS-210 A8.1(1), RSS-210 A8.1(2), RSS-210 A8.1(4),

RSS-210 A8.4(2) and RSS-210 A8.5

■ - Performed

The Equipment Under Test

■ - Fulfills the requirements of: CFR 47, Part(s) CFR 47, Part(s) 15.209(a), 15.247(a), 15.247(b), and 15.247(c)

Canadian Specification(s) RSS-210 A8.1(1), RSS-210 A8.1(2), RSS-210 A8.1(4),

RSS-210 A8.4(2) and RSS-210 A8.5

Testing Start Date: 14 February 2006

Testing End Date: 15 February 2006

- TÜV AMERICA, INC. -

Reviewing Engineer:

David Gray

(EMC Engineer In Charge)

Test Engineer:

William Dey

(EMC Technicain)

Page 17 of 17