

Product Integrity Laboratory

5151-47th Street, NE Calgary, Alberta T3J 3R2 Tel: (403) 568-6605 Fax: (403) 568-6970

Supplemental Certification Test Report CFR 47 FCC Part 15, Subpart C Section 15.247 Industry Canada RSS 210, Issue 6

OMNEX Controls LPD-24RC FCC ID # IA9-LPD-24RC Project Code CG-554

(Report CG-554-RA-1-2) Revision: 2

April 27, 2007

Prepared for: Labtest Inc

Author: Glen Moore

EMC Manager

Approved by: Nick Kobrosly

Lab Manager

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Omnex Controls Inc FCC ID # IA9-LPD-24C

Report Summary NTS Canada

Product Integrity Laboratory 5151-47th Street, N.E. Calgary Alberta T3J 3R2

Accreditation Numbers: FCC 101386

> IC 46405-3978 File # IC3978-2

Standards Council of Canada Accredited Laboratory No. 440

Applicant: **Omnex Controls**

Customer Representative: Kavinder Dhillon, LabTest Inc

EUT Description:

EUT Description	Manufacturer	Model	Revision	Serial Number
2.4 GHz Frequency Hopping device	Omnex Controls Omnex Controls	LPD-24RC in T2300 R2160	NA	1066485 1066487

Confidential Page 2 of 40

Test Summary

ndix	Test/Requirement	Deviations* from:		Pass / Fail	Applicable Rule		
Appendix	Description	Base Standard	Test Basis	NTS Procedure	rass / rall	Parts	
Α	Dwell time/Time of Occupancy	No	No	No	PASS	FCC Subpart C 15.247(a)	
В	20 dB Bandwidth	No	No	No	PASS	FCC Subpart C 15.247(a)	
С	Peak Output Power	No	No	No	PASS	FCC Subpart C 15.247(b)	
D	TX Conducted Spurious Emissions	No	No	No	PASS	FCC Subpart C 15.247(c)	
Е	TX Conducted Spurious Emissions Band edge	No	No	No	PASS	FCC Subpart C 15.247(c), 15.205	
F	TX Radiated Spurious Emissions Band edge	No	No	No	PASS	FCC Subpart C 15.247(c), 15.205, RSS 210	
G	Test Equipment List	No	No	No	PASS	NA	

Test Result:	The product presented for t	esting complied with test requirements as shown above.
Prepared By:	Glen Moore EMC Manager	_
Reviewed By:	Alex Mathews Compliance Specialist	_
Approved By:	Jennifer Hansen Quality Representative	_

Table	of Contents	
REPOR	T SUMMARY	2
	UMMARY	
	ER OF REVISIONS	
1.0	INTRODUCTION	
1.1	PURPOSE	6
2.0	EUT DESCRIPTION	6
2.1	CONFIGURATION	6
2.1.1	EUT POWER	
2.2	EUT Cables	
2.3	MODE OF OPERATION DURING TESTS	
3.0	SUPPORT EQUIPMENT	
3.1	CONFIGURATION	
3.2	TEST BED/PERIPHERAL CABLES	7
APPENI	DICES	8
	DIX A: TIME OF OCCUPANCY DWELL TIME	
APPENI	DIX B: 20 DB BANDWIDTH	11
	DIX C: PEAK POWER OUTPUT	
APPENI	DIX D: TX CONDUCTED SPURIOUS EMISSIONS	17
APPENI	DIX E: CONDUCTED SPURIOUS EMISSIONS BAND EDGE MEASUREMENTS	21
APPENI	DIX F: BAND EDGE RADIATED SPURIOUS EMISSIONS (RESTRICTED BAND CHECK USING MARKER	
	METHOD)	
	DIX G: MÉASUREMENT EQUIPMENT	
	DOCUMENT	

CG-554-RA-1-2 Model: LPD-24RC

Omnex Controls Inc FCC ID # IA9-LPD-24C

Register of revisions

Revision	Date	Description of Revisions
0	April 26, 2007	Draft release for Internal review
1	April 27, 2007	Release after internal review
2	April 27, 2007	Release after customer review

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to provide the supplemental test data as requested by Timco engineering (Re: Job 3434UT6) from the original filing to demonstrate compliance of the Omnex Controls LPD-24 C module.

2.0 EUT DESCRIPTION

2.1 CONFIGURATION

Description of EUT

Description of Et	Name	Model	Revision	Serial Number	
EUT	2.4 GHz Frequency Hopping				
Classification	Mobile				
Channels/Freq uency Range	2403.1MHz -2478.6 MHz				
Functional Description	2.4 GHz Frequency Hopping module				

2.1.1 EUT POWER

Voltage	12 VDC
Number of Feeds	NA

2.2 EUT CABLES

antity	Madal/Tyma	Rou	Routing Shielded / Receiption		Description	Cable
Quai	Model/Type	From	То	Unshielded	Description	Length (m)
NA	NA	NA	NA	NA	NA	NA

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

Omnex Controls Inc FCC ID # IA9-LPD-24C

2.3 Mode of Operation During tests

The EUT was tested while in a continuous transmit mode, continuously hopping on the tested channel with the exception of Dwell time test where the eut was set to hopping mode. The EUT was tuned to a low, middle, and high channel to perform power, occupied bandwidth, and spurious/harmonic tests. For all test cases pre-scans were completed in all modes to determine worst case levels.

3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

NA

3.2 TEST BED/PERIPHERAL CABLES

NA

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

Confidential

APPENDICES

APPENDIX A: TIME OF OCCUPANCY DWELL TIME

A.1. **Base Standard & Test Basis**

Base Standard	FCC PART 15.247 (A)	
Test Basis	As per FCC Publication DA-00-705	
Test Method	As per FCC Publication DA-00-705	

A.2. **Specifications**

15.247 iii) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

A.3. Measurement Uncertainty

Expanded Uncertainty (K=2)	
1.11/-1.22	

Deviations A.4.

Deviation	Time &	Description and	De			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

A.5. **Test Procedure**

RF conducted as per FCC Publication 558074

A.6. Test Results

The EUT is in compliance with the time of occupancy requirement. Maximum time of occupancy is 211.05 ms. See plots in section A.10.

A.7. **Operating Mode During Test**

The eut was in hopping mode for these tests

A.8. Calculation

The average time of occupancy is 23.45 ms \times 9 = 211.05 ms

A.9. **Tested By**

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Glen Moore Function: **EMC Manager**

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

A.10. Test Data

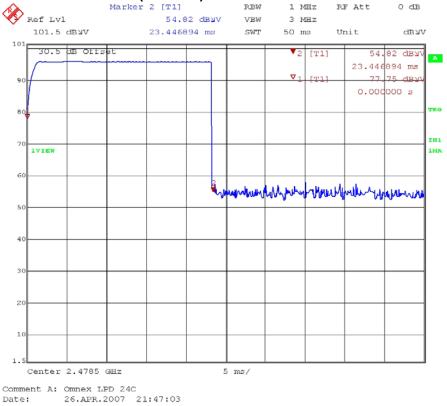
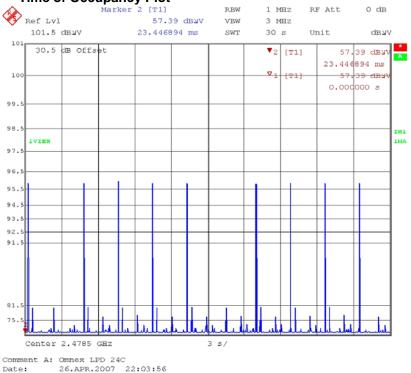



Figure 2 Time of Occupancy Plot

APPENDIX B: 20 DB BANDWIDTH

B.1. Base Standard & Test Basis

Base Standard	FCC PART 15.247 (A)	
Test Basis	As per FCC Publication DA-00-705	
Test Method	As per FCC Publication DA-00-705	

B.2. Specifications

15.247 2) For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum 20 dB bandwidth of the hopping channel is 1 MHz. Systems may utilize hopping channels whose 20 dB bandwidth is greater than 1 MHz provided the system use at least 15 non-overlapping channels.

B.3. Measurement Uncertainty

Expanded Uncertainty (K=2)	
1.11/-1.22	

B.4. Deviations

	Deviation Number	Doviation	Time &	Description and	De	viation Referen	ce	
		Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval	
	none							

B.5. Test Procedure

RF conducted as per FCC Publication DA 00-705

B.6. Test Results

The EUT is in compliance with the limits as specified above

Channel	20 dB Bandwidth (KHz)
2403.1 MHz	49.7
2441.7 MHz	46.5
2478.6 MHz	47.3

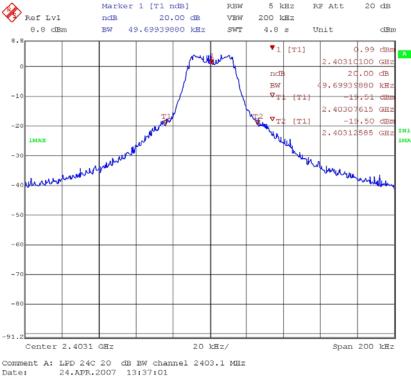
B.7. Operating Mode During Test

The EUT was tested while in a continuous transmit mode on each of the above channels with a worst case modulation. The EUT was tuned to channels low, middle, and high channel operating at maximum rated RF output power.

B.8. Sample Calculation

NA

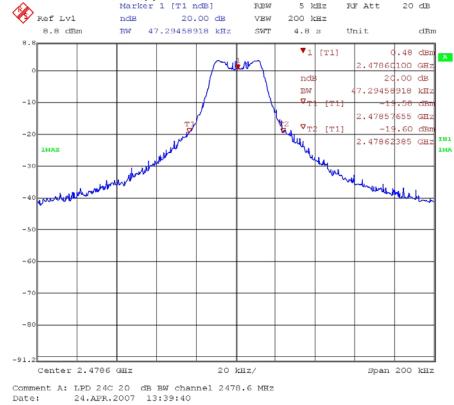
B.9. **Tested By**


This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Glen Moore Function: **EMC Manager**

B.10. **Test Data**

See plots on following pages



Comment A: LPD 24 C 20dB BW Channel 2441.7 MHz Date: 24.APR.2007 13:34:40

Figure 5 20 dB Bandwidth Upper Channel

APPENDIX C: PEAK POWER OUTPUT

C.1. Base Standard & Test Basis

Base Standard	ndard FCC 15.247	
Test Basis As per FCC Publication DA-00-705		
Test Method As per FCC Publication DA-00-705		

C.2. Specifications

For systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, the maximum peak output power is 1 watt (30 dBm), for all other systems – 0.125 W (21 dBm).

C.3. Measurement Uncertainty

Expanded Uncertainty (K=2)
1.11/-1.22

C.4. Deviations

Deviation	Time &	Time & Description and	Deviation Reference			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

C.5. Test Method

As per FCC Publication DA-00-705

C.6. Test Results

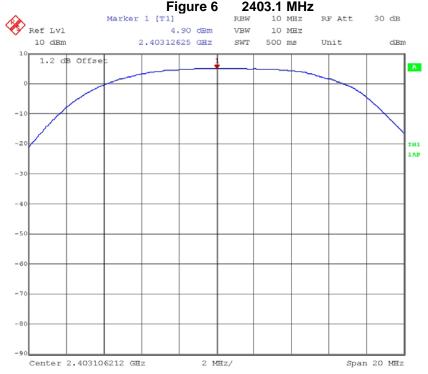
Compliant. The worst case peak output power was 4.9 dBm at 2403.1 MHz

EUT Transmit Channel	Measured Output Power (dBm)
2403.1 MHz	4.9
2441.7 MHz	4.3
2478.6 MHz	4.38

C.7. Sample Calculation

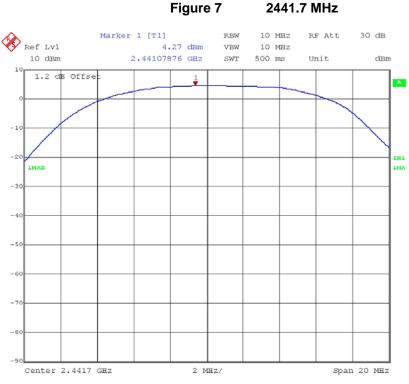
None.

C.8. Tested By


This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1;

Quality Manual.

Name: Glen Moore Function: EMC Manager


C.9. Test Data

See plots on following pages

Comment A: LPD 24 C Peak Fower output Channel 2403.1 MHz Date: 24.APR.2007 12:19:16

Comment A: LPD 24 C Peak Power output Channel 2441.7 MHz Date: 24.APR.2007 12:20:46

RBW 10 MHz RF Att 30 dB Ref Lvl 4.38 dBm VBW 10 MHz 10 dBm 2.47841964 GHz SWT 500 ms Unit 1.2 dB Offse A -20 IN1 1MA -61 Center 2.4786 GHz Span 20 MHz 2 MHz/

Figure 8

2478.6 MHz

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

24.APR.2007 12:21:55

Comment A: LPD 24 C Peak Power output Channel 2478.6 MHz

Date:

APPENDIX D: TX CONDUCTED SPURIOUS EMISSIONS

D.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I – FCC Part 15.247 – Radio Frequency Devices - Subpart C– intentional Radiators			
Standard	FCC Part 15.205 Restricted Bands of Operation			
Test Basis	RF conducted as per FCC Publication DA 00-705			
Test Method	RF conducted as per FCC Publication DA 00-705			

D.2. Specifications

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

D.3. Measurement Uncertainty

Expanded Uncertainty (K=2)
1.11/-1.22

D.4. Deviations

Deviation	Time &	Description and	De	eviation Referen	ce	
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

D.5. Test Results

Compliant, all peak emissions were more than 20 dB below the in band power. See plots below

D.6. Test Data & Photographs

See following pages.

D.7. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.

Name: Glen Moore Function: EMC Manager

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

Figure 9 Conducted Spurious 30 MHz- 3 GHz Channel 2403.1 MHz

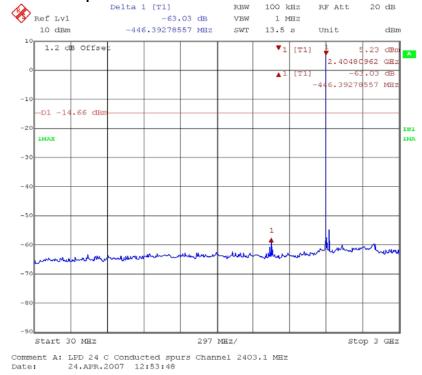
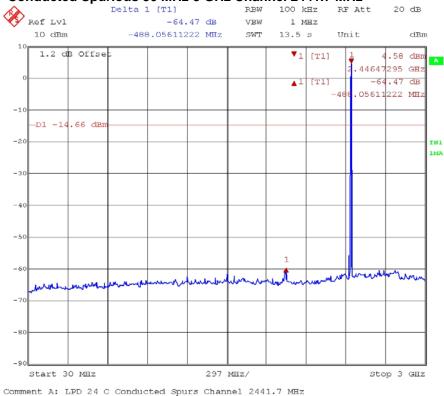



Figure 10 Conducted Spurious 30 MHz-3 GHz Channel 2441.7 MHz

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

24.APR.2007 13:17:31

Figure 11 Conducted Spurious 2GHz-3 GHz Channel 2478.6 MHz

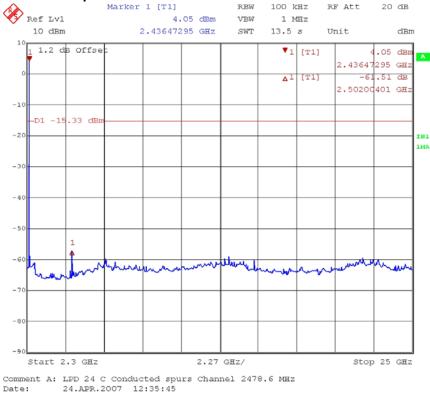
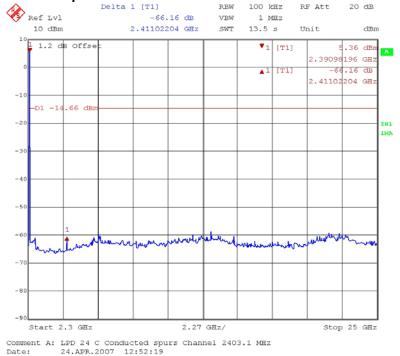
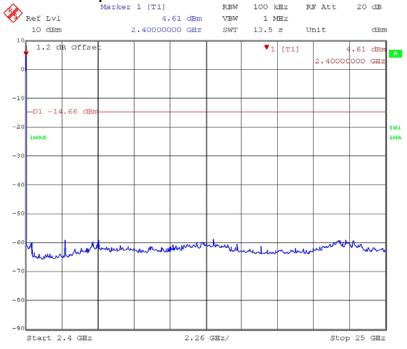


Figure 12 Conducted Spurious 2 GHz-25 GHz Channel 2403.1 MHz

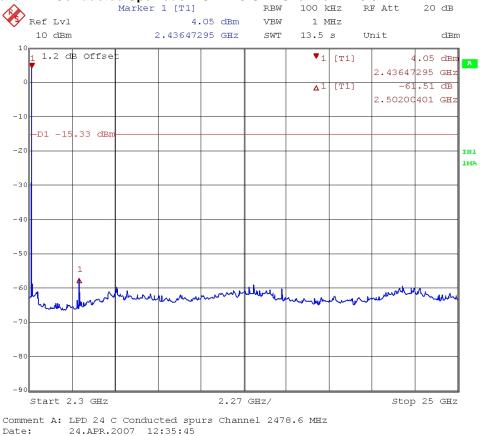


Figure 13 Conducted Spurious 2 GHz-25 GHz Channel 2441.7 MHz

Comment A: LPD 24 C Conducted Spurs Channel 2441.7 MHz Date: 24.APR.2007 13:19:22

Figure 14 Conducted Spurious 2 GHz-25 GHz Channel 2478.6 MHz

APPENDIX E: CONDUCTED SPURIOUS EMISSIONS BAND EDGE **MEASUREMENTS**

E.1. **Base Standard & Test Basis**

Base Standard	CFR Title 47 – Telecommunications, Chapter I – FCC Part 15.247 – Radio Frequency Devices - Subpart C– intentional Radiators.
Test Basis RF conducted as per FCC Publication DA 00-705	
Test Method	RF conducted as per FCC Publication DA 00-705

E.2. Limits

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

E.3. Measurement Uncertainty

Expanded Uncertainty (K=2)
+1.11/-1.22

E.4. **Test Results**

Compliant. All out of band spurious emissions are more than 20 dB below the in band power of the fundamental. See plots below

E.5. **Deviations from Normal Operating Mode During Test**

None.

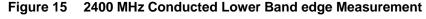
E.6. Sample Calculation

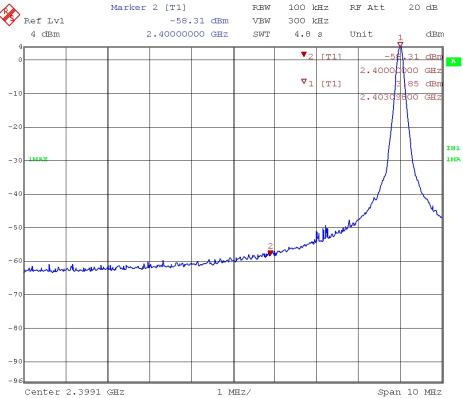
NA.

E.7. **Test Data**

See plots on following pages.

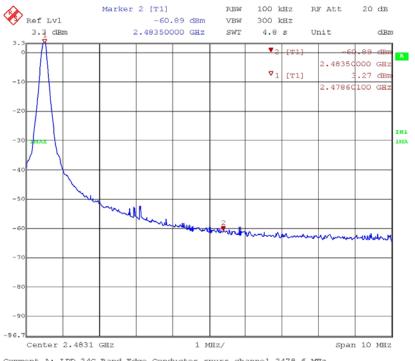
Tested By


This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1; Quality Manual.


Name: Glen Moore Function: **EMC Manager**

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970



Comment A: LPD 24C Band Edge Conductes spurs channel 2403.1 MEz Date: 24.APR.2007 13:46:58

Figure 16 2483.5 MHz Conducted Hi Band edge Measurement

Comment A: LPD 24C Band Edge Conductes spurs channel 2478.6 MHz Date: 24.APR.2007 13:43:45

APPENDIX F: BAND EDGE RADIATED SPURIOUS EMISSIONS (RESTRICTED BAND CHECK USING MARKER DELTA METHOD)

F.1. Base Standard & Test Basis

Base Standard	CFR Title 47 – Telecommunications, Chapter I - FCC Part 15.209 – Radio Frequency Devices
Test Basis	ANSI C63.4-2003 Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
Test Method	RF conducted as per FCC Publication DA 00-705

Specifications

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.5202	25 240-285	3345.8-3358	36.43-36.5
12.57675-12.5772 13.36-13.41	25 322-335.4	3600-4400	(\2\)

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

^{\1\} Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

^{\2\} Above 38.6

F.2. Measurement Uncertainty

Radiated Emissions	Measurement Uncertainty	Expanded Uncertainty (K=2)	
30 MHz – 1 GHz	+2.32/-2.36	+4.65/-4.72	
1 - 20 GHz	+3.48/-3.51	+6.96/-7.02	

F.3. Deviations

Deviation	Time &	Description and	Deviation Reference			
Number	Date	Justification of Deviation	Base Standard	Test Basis	NTS Procedure	Approval
none						

F.4. Test Results

The EUT is in compliance with FCC CFR47 Part 15.247/15.205/15.209 Radiated emission limits. The worst case band edge emission was 41.25 dB $_{\mu}$ V/m @ 3 meters, a pass margin of 12.8 dB.

F.5. Deviations from Normal Operating Mode During Test

None.

F.6. Sample Calculation

Peak field strength = Corrected Fundamental Rcvd Pk Field strength - Mkr Delta Level Average field strength = Corrected Fundamental Rcvd Av Field strength - Mkr Delta Level

F.7. Tested By

This testing was conducted in accordance with the ISO 17025:1999 scope of accreditation, table 1;

Quality Manual.

Name: Glen Moore

Function: EMC/Wireless Manager

F.8. Test Data Summary

Antenna Polarity	Signal type	Emission frequency	Detect or (PK,	Corrected Rcvd Level	Marker Delta Level (dB)	Corrected Field	Limit (dBuV/	Margin (dB)
		(MHz)	AV)	(dBuV/M)	(at highest	Stregnth	M)	
					emission	(dBuV/m @		
					freq – see	3 M)		
					plots)			
Н	Fundamental	2403.1	PK	98.92	45.5	53.42	74	20.6
Н	Fundamental	2403.1	AV	98.75	57.5	41.25	54	12.8
Н	Fundamental	2478.7	PK	97.31	43.88	53.43	74	20.57
Н	Fundamental	2478.7	AV	97.0	57.5	39.5	54	14.5
V	Fundamental	2403.1	PK	95.80	42.15	53.65	74	20.35
V	Fundamental	2403.1	AV	95.44	54.31	41.13	54	12.9
V	Fundamental	2478.7	PK	96.15	42.3	53.85	74	20.2
V	Fundamental	2478.7	AV	95.99	55.75	40.24	54	13.8

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

Span 10 MHz

Figure 17 Low Channel Peak Fundamental Measurement - Horizontal Polarity Marker 2 [T1] RBW 1 MHZ RF Att 0 dB Ref Lvl 98.92 dBWV VBW 3 MHz 101.5 dBWV 2.40310000 GHz 420 ms SWT Unit dbyv 30.5 dB Offset 98.92 dBW 2.40310000 GH 2.40810000 GH: IN1 1MAX 1MA

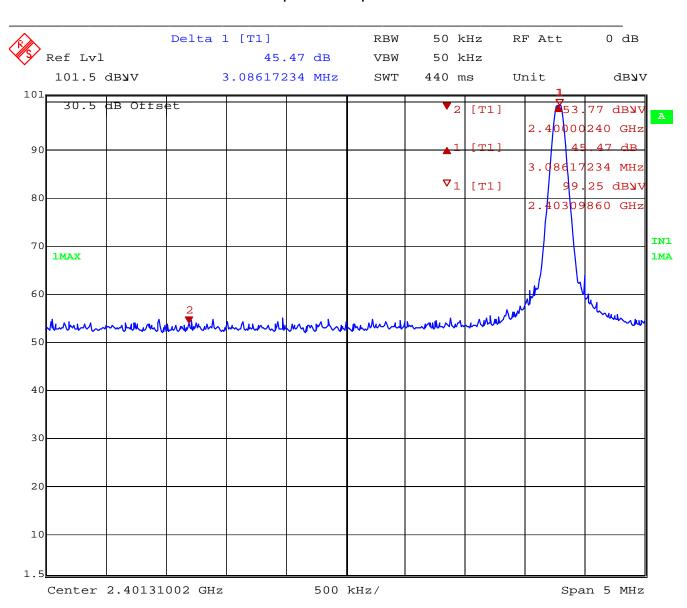
Figure 18 Low channel Average Fundamental Measurement - Horizontal Polarity

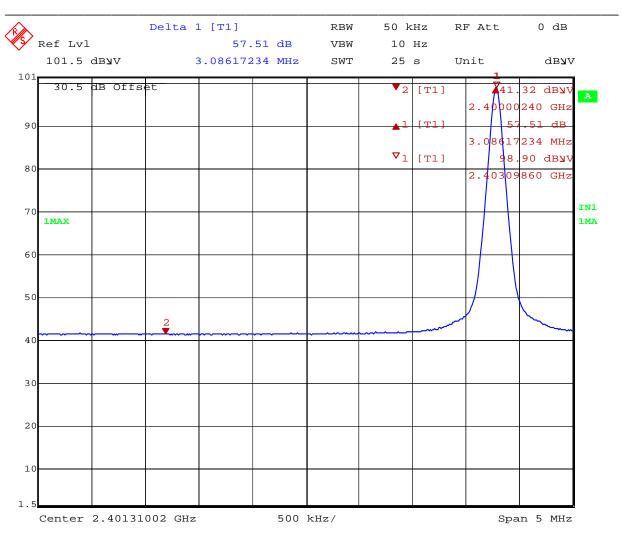
1 MHz/

Center 2.40311002 GHz

26.APR.2007 18:51:48

Comment A: Omnex LPD 24C


Figure 19 Lower Band edge Peak Marker-Delta Measurement - Horizontal Polarity

Comment A: Omnex LPD 24C

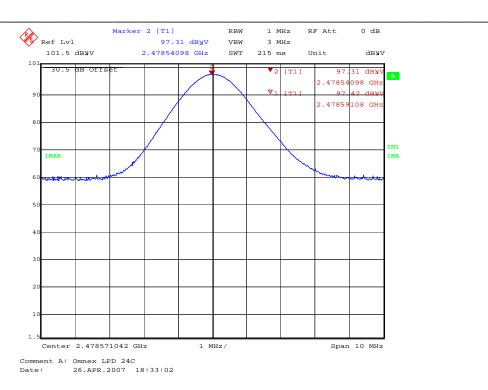
Date: 26.APR.2007 18:57:09

Figure 20 Lower Band edge Average Marker Delta Measurement - Horizontal Polarity

Comment A: Omnex LPD 24C

Date: 26.APR.2007 18:58:26

Figure 21 High Channel Peak Fundamental Measurement - Horizontal Polarity



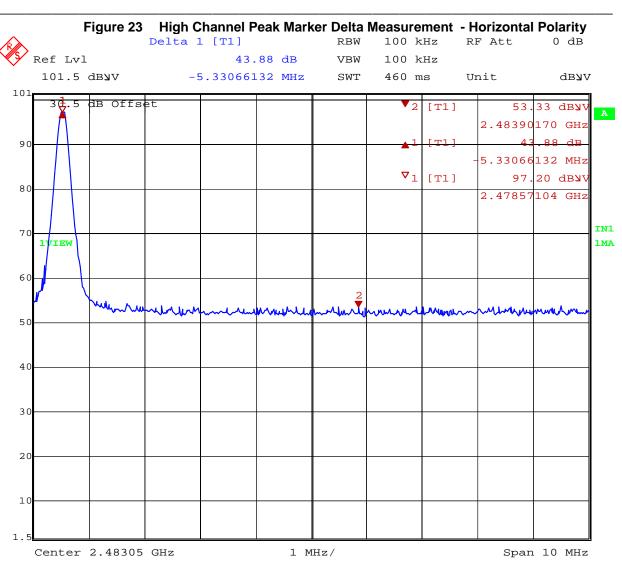
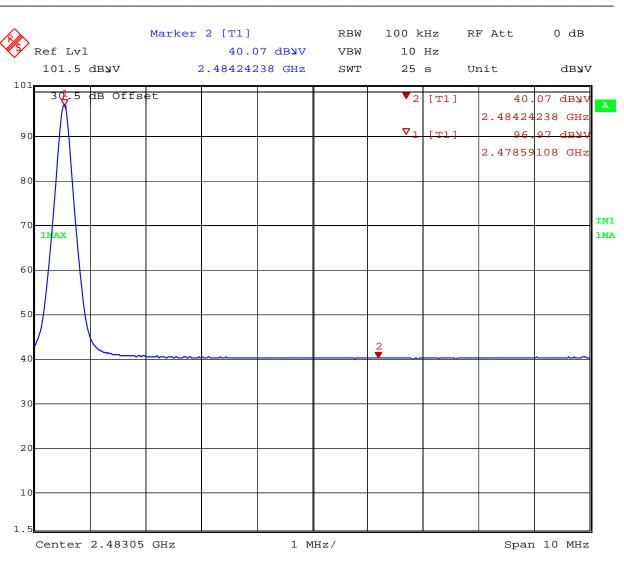


Figure 22 High Channel Average Fundamental Measurement - Horizontal Polarity



Comment A: Omnex LPD 24C

Date: 26.APR.2007 18:17:52

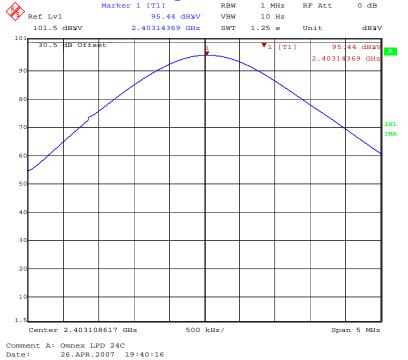
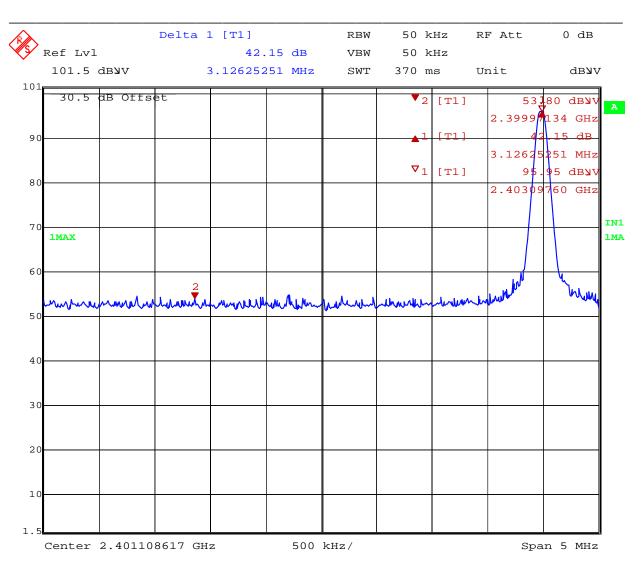
Figure 24 High Channel Average Marker Measurement - Horizontal Polarity

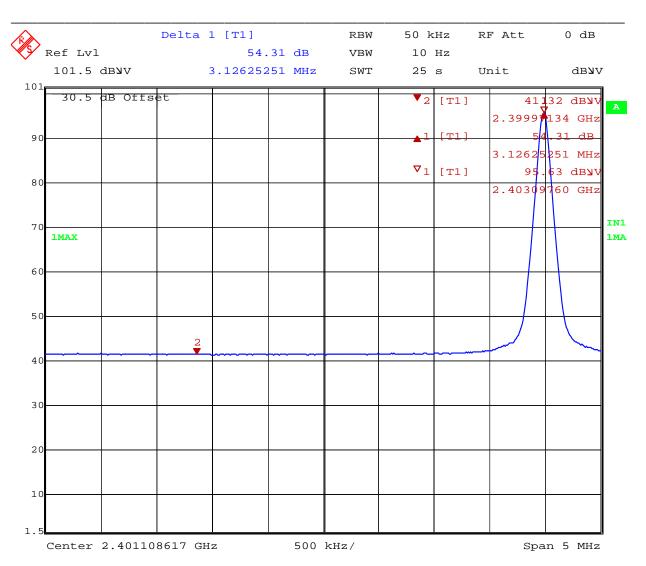
Comment A: Omnex LPD 24C
Date: 26.APR.2007 18:24:58

Figure 25 Low Channel Peak Fundamental Measurement - Vertical Polarity



Figure 26 Low Channel Average Fundamental Measurement - Vertical Polarity


Figure 27 Low Channel Peak Mkr Delta Measurement - Vertical Polarity

Comment A: Omnex LPD 24C

Date: 26.APR.2007 19:42:40

Figure 28 Low Channel Average Mkr Delta Measurement - Vertical Polarity

Comment A: Omnex LPD 24C

Date: 26.APR.2007 19:43:50

Figure 29 High Channel Peak Fundamental Measurement - Vertical Polarity

Figure 30 High Channel Average Fundamental Measurement - Vertical Polarity

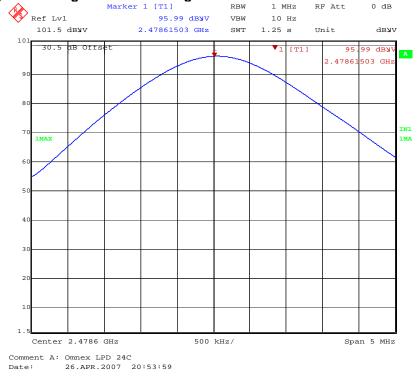
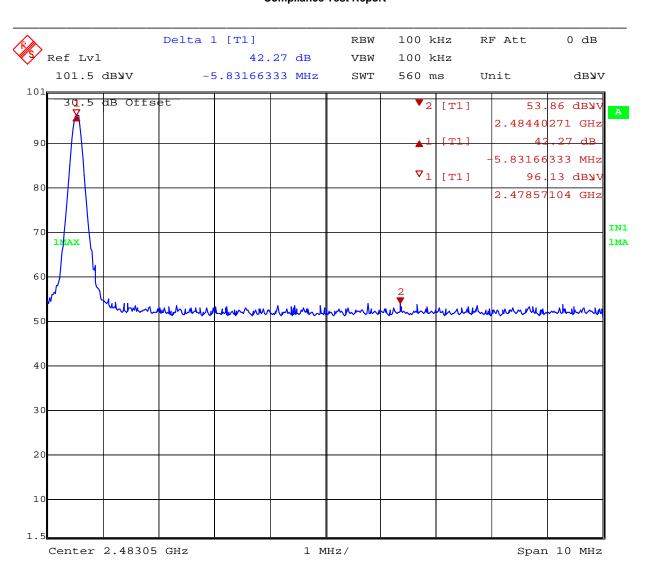
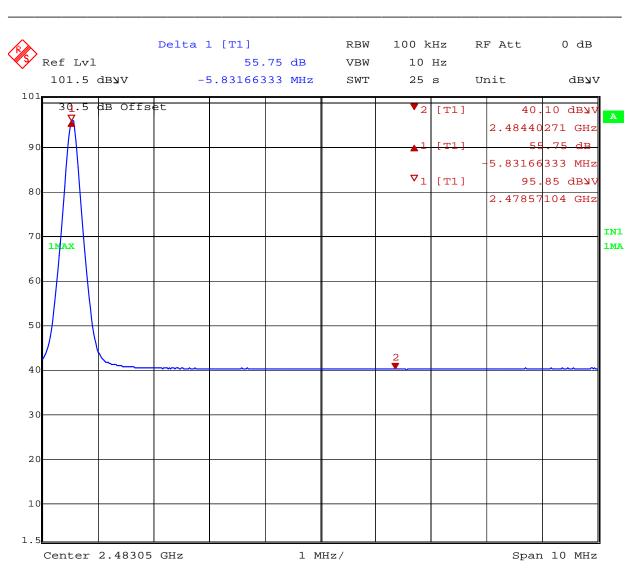



Figure 31 High Channel Peak Mkr Delta Measurement - Vertical Polarity



Comment A: Omnex LPD 24C

Date: 26.APR.2007 21:00:21

Figure 32 High Channel Average Mkr Delta Measurement - Vertical Polarity

Comment A: Omnex LPD 24C

Date: 26.APR.2007 21:01:48

APPENDIX G: MEASUREMENT EQUIPMENT

Description	Manufacturer	Type/Model	Asset #	Cal Due	Cal Date	
Bilog Antenna	☐ Chase ☐ Chase	CBL 6111B CBL 6112B	260398 260301	23APR07	23APR04	
RF Cable	Suhner Sucoflex	Ferrite bead loaded cable	260388	13APR07	13APR06	
Test Receiver	Rohde & Schwarz	ESMI	260424 / 260423	02FEB08	02FEB05	
rest Neceiver	Rohde & Schwarz	ESAI	260110 / 260111	021 LB00		
Mast Controller	EMCO	2090	260166	N/A	N/A	
Multi Device Controller TT1 (Turntable)	EMCO	2090	260165	N/A	N/A	
RF 10m East site Link						
- Cable 1	Suhner Sucoflex	NA	263191			
- Cable 2	Suhner Sucoflex	NA	263135		13APR06	
- Cable 3	Suhner Sucoflex	NA	263161	13APR07		
- Cable 4	Suhner Sucoflex	NA	263162			
- Switch Matrix Controller	TDL	SMC-002	260162			
- Amplifier	Hewlett Packard	8447F	260164			
Horn Antenna (Rx) 1 GHz – 18 GHz	⊠ EMCO	3115	260092	30AUG0 7	30AUG06	
Standard Gain Horn (Rx) 18 GHz – 26.5 GHz		3160-09	260064	N/A	27NOV01	
Standard Gain Horn (Rx) 26.5 GHz – 40 GHz	⊠ EMCO	3160-10	260065	N/A	27NOV01	
Test Receiver/Spectrum Analyzer	Rohde & Schwarz	ESI-40	CG0109	13SEP07	13SEP06	
High pass filter	MicroTronics	HPM14576	CG963	10AUG0 7	10AUG06	
LNA	Miteq	JSD00121	CG031	10AUG0 7	10AUG06	
LNA	Miteq	JSD00119	513217	19JAN08	19JAN07	
LNA	Miteq	JSD00120	513213	19JAN08	19JAN07	
Cable from Antenna to LNA	Sucoflex 104	2422774A	263187	10AUG0 7	10AUG06	
Cable from LNA to SA	Sucoflex 100	115757-4	263187	10AUG0 7	10AUG06	
Spectrum Analyzer 9k- 40GHz	Rohde & Schwarz	FSEK-20	260104	09MAY0 7	09MAY06	
LNA DC Power Supply	Xantrex	LXO 30-2	260483	NA	NA	
HPIB Extender	HP	37204	260096	N/A	N/A	

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

CG-554-RA-1-2 Model: LPD-24RC

Omnex Controls Inc FCC ID # IA9-LPD-24C

HPIB Extender	HP	37204	260168	N/A	N/A
Mast Controller	EMCO	2090	260166	N/A	N/A
Multi Device Controller TT1	EMCO	2090	260165	N/A	N/A

END OF DOCUMENT