

REPORT

For

Nautilus International Cntrol & Eng. Ltd.

6866 Russell Avenue Burnaby, British Columbia V5J 4R9, Canada

Date: September 10, 2009

Report No.: 9505-1E

Revision No.: 0 Project No.: 9505

Equipment: 900MHz ISM Band Data Transceiver Module

Model No.: NRM-900-1

ONE STOP GLOBAL CERTIFICATION SOLUTIONS

3133-20800 Westminster Hwy, Richmond, BC V6V 2W3, Canada Phone: 604-247-0444 Fax: 604-247-0442

www.labtestcert.com

Revision No.: 0

Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009

Project No.: 9505

TABLE OF CONTENTS

TEST REPORT	
General product information:	
Frequencies	
List of ancillary and/or support equipment provided by the applicant	
Description of Interface Cables for Testing	
Software and Firmware	
Worst-case configuration and mode of operation during testing	6
Modifications Required for Compliance	
Test Equipment Verified for function	7
Measurement Uncertainty	
Markings	9
Test Summary	10
Antenna Requirements	11
Test Limits	11
Test Results:	11
6dB Bandwidth	12
Test Limits	
Test Setup	
Setup Block Diagram	
Test Results:	
Conducted Output Power	
Test Limits	
Test Setup	
Setup Block Diagram	
Test Results:	
Antenna Gain	
Test Limits	
Test Results:	
Band-edge Compliance of RF Conducted Emissions	
Test Limits	
Test Setup	
Setup Block Diagram	
Test Results:	
Spurious RF Conducted Emissions.	
Test Limits	
Test Setup	
Setup Block Diagram	
Test Results:	
Difference(dB) = Measured Carrier Level(dBm) - Measured Spurious Level(dBm)	
Spurious Radiated Emissions	
Test Limits	
Test Setup	
Setup Block Diagram	
Test Setup at OATS	
Test Result	
Conducted Power Spectral Density	
Test Limits	
Test Setup	37

Page 2 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd. Report No.: 9505-1E

Revision No.: 0

Date Issued: September 10, 2 Project No.: 9505

 Setup Block Diagram
 38

 Test Results:
 38

 RF Exposure (SAR)
 42

 Test Limits
 42

 Calculations
 43

 Limits
 44

 Results
 44

 Conclusion
 44

 Radiated Emission; Unintentional Radiators
 45

 Test Limits
 45

 Test Setup
 45

 Setup Block Diagram
 46

Date Issued: September 10, 2009

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

	-	
	TEST REPORT	
FCC	15.247:2008 / RSS-21	0, Issue 7
Report reference No	9505-1E	
Report Revision History:	✓ Rev. 0: Sep. 10, 2	2009
Tested by (printed name and signature)	Jeremy Lee	2 mes
Approved by (printed name and signature)	Kavinder Dhillon, Eng.L	Kavirde Shellon
Date of issue	Sep. 10, 2009	
Note: By signing this report, both the Testing Technician 1.) Statement of Independence # 3014 (LabTest Employee 2.) Independence, Impartiality, and Integrity #1039, clause 3.) Independence, Impartiality, and Integrity #1019, clause	s), e 11 (Engineering Service Subcontractors	
Testing Laboratory Name	LabTest Certification Inc.	
Address	3133 – 20800 Westminste	er Hwy, Richmond, B.C. V6V-2W3
FCC Site Registration No	: 444229	
IC Site Registration No.	: 5970B-1	
OATS Test Location Name	LabTest Certification Inc.	
Address	17325-48Ave., Surrey, BC, Canada	
Applicant's Name	Nautilus International Control & Engineering Ltd.	
Address	6866 Russell Avenue, Burnaby, B.C. Canada V5J 4R8	
Manufacturer's Name	: Same as Applicant	
Address	Same as Applicant	
Test specification		
Standards	.: > FCC15.247:2008 > RSS-210, Issue 7, June 2007	
Testing		
Date of receipt of test item	Aug. 27, 2009	
Date(s) of performance of test	Sep. 01 - 10, 2009	
Test item description	:	
Trademark	. <mark>:</mark> N/A	
Model and/or type reference	NRM-900-1	
Serial numbers	: N/A	
Electrical Rating(s)	: 3.6VDC from Lithium-Ion Rechargeable Battery	

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Pared Issued: September 10, 2000

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Product descriptions		
Type of modulation:	Digital Modulation System	
Operating Frequency Range	902 to 928MHz	
Application for:	900MHz ISM Band Data Transceiver Module	
Equipment mobility:	Yes	
Nominal Voltages for:	_X_ stand-alone equipment combined (or host) equipment test jig	
Supply Voltage:	AC Amps 3.6V DC40mAAmps	
If DC Power:	Internal Power Supply External Power Supply or AC/DC adapter X_ Battery Nickel Cadmium Alkaline Nickel-Metal Hydride Lithium-lon Lead Acid (Vehicle regulated) Other	
Size of equipment(L X W X H, mm): :	27.5 x 21 x 18	
Mass of equipment (g):	20	
Operating Temperature Range:	-10 °C to + 60 °C	
Test case verdicts		
Test case does not apply to the test object:	N/A	
Test item does meet the requirement:	Pass	
Test item does not meet the requirement:	Fail	

General product information:

The NRM-900-1 is a single-chip packet radio transceiver. It is programmed and controlled by the host microcontroller using SPI bus (serial data in, serial data out, clock, chip select) and two auxiliary status outputs (GDO0 and GDO2). The microcontroller's firmware determines all the major parameters in both transmit and receive modes of operation. The same SPI bus is used to supply the data to be transmitted to the radio and to retrieve the received data from the radio.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Frequencies

Module	Signal	Frequences (MHz)
Crystal Oscillator	Local OSC	26.0

List of ancillary and/or support equipment provided by the applicant

Model No.	Description	Manufacturer	Approvals/Standards
N/A	Test JIG	Nautilus	N/A
MFT120	1/4wavelength whip Antenna with magnetic base with RF Cable, TNC(m)	PCTEL Inc.	N/A
N/A	Cable Assay(BNC(f) to SMA(f))	N/A	N/A

Description of Interface Cables for Testing

Connected port	Cable Type	Cable length	Ferrite
N/A			

ARRANGEMENT OF INTERFACE CABLES: All interface cables were positioned for worst-case maximum emissions within the manner assumed to be a typical operation condition (please reference photographs).

Software and Firmware

Description	Version
N/A	

Worst-case configuration and mode of operation during testing

The test JIG has been designed to facilitate compliance testing of the Nautilus Radio Module, namely NRM-900-1.

The JIG closely emulates the typical Nautilus radio remote control system that hosts the radio module. It contains a microcontroller that programs the radio and then exercises it by sending a test message representative of a typical control message in the remote control system. It provides three working radio channels in each band: the first, the last and the middle.

Page 6 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

The JIG is powered by a Lithium-Ion rechargeable battery. The voltage supplied to the radio module is regulated, so discharging battery has no effect on the fixture's operation as long as the battery voltage remains above 3.4VDC.

The JIG has four DIP switches that control its main operating parameters. Note that changes in the DIP switches require power cycling to take effect.

DIP switches 1 and 2 determine the working channel according to the following table:

DIP switch 2	DIP switch 1	Frequency in 400MHz	Frequency in 900MHz
DIP SWILCH 2	DIP SWITCH I	band	band
Open	Open	430.0MHz	902.6MHz
Open	Closed	445.0MHz	915.0MHz
Closed	Open	460.0MHz	927.4MHz
Closed	Closed	460.0MHz	927.4MHz

DIP switch 3 determines the frequency band:

- Open 400MHz band;
- Closed 900MHz band.

DIP switch 4 determines mode of operation:

- Open Communication Slave;
- Closed Communication Master.

Communication Master initiates sending a packet every 100ms. Communication Slave transmits only after receiving a message from the Master. Therefore, for stand-alone testing the device under test should be configured as Master, i.e. DIP switch 4 should be closed.

Modifications Required for Compliance

None.

Test Equipment Verified for function

Model #	Description	Checked Function	Results
8596EM	Spectrum Analyzer	Frequency and Amplitude	Connected 300MHz and - 20dBm Cal_siganl and checked OK.
PA-103	Pre-Amplifier, 1 to 1,000MHz	Gain at 30 and 1,000Mhz	Gains are normal.
LPA-10-10	Pre-Amplifier, 1 to 10GHz	Gain at 1 and 4GHz	Gains are normal.
SAS-542	Anatenna, 30 to 300MHz	Checked structure	Normal – no damage
SAS-571	Anatenna, 1 to 18Hz	Checked structure	Normal – no damage
SAC-26G-3	RF Cable, up to 26.5GHz	Insertion Loss at 1 and 4GHz	Insertion Losses are normal
LCI-001	RF Cable, up to 1GHz	Insertion Losses from 30 to	Saved data

Page 7 of 53

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

		1,000MHz	
N/A	RF Cable, up to 10GHz	Insertion Loss upto 4GHz	Saved data
N/A	15dB Attenuator	Attenuation up to 4GHz	Saved data

Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests:

Parameter	Uncertainty(dB)
Radiated Emission, 30 to 300MHz	4.94
Radiated Emission, 300 to 1,000MHz	5.05
Radiated Emission, 1 to 26.5GHz	5.05
Conducted Measurements	2.86

Uncertainty figures are valid to a confidence level of 95%.

Date Issued: September 10, 2009 Project No.: 9505 Client: Nautilus International Control & Eng. Ltd.
Report No.: 9505-1E
Revision No.: 0

Markings

Blank

You should refer to the clause of FCC Part 2 Section 2.295 and FCC Part 15 Section 15.19 for information to be contained on the label as well as information about the label. Any other statements or labelling requirements may appear on a separate label at the option of the applicant/grantee.

According to FCC Section 2.925(a),

"(a)Each equipment covered in an application for equipment authorization shall bear a nameplate or label listing the following:

(1) FCC Identifier consisting of the two elements in the exact order specified in §2.926. The FCC Identifier shall be preceded by the term *FCC ID* in capital letters on a single line, and shall be a type size large enough to be legible without the aid of magnification.

Example: FCC ID XXX123. XXX-Grantee Code 123-Equipment Product Code"

According to FCC Section 15.19(a)(3), the following statement must be include on the identification label: This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Peter January No. 10505, 1E

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Test Summary

When configured and operated as specified in this report, the product was found to comply with the requirements as indicated below.

Test Type	Regulation	Measurement Method	Result
Antenna Requirements	15.203	N/A	PASS
6dB Bandwidth	15.247(a)(2) & RSS- 210	FCC Public notice DA 00-705	PASS
Conducted Output Power	15.247(b)(3) & RSS- 210	FCC Public notice DA 00-705	PASS
Antenna Gain	15.247(b)(4) & RSS- 210	FCC Public notice DA 00-705	PASS
Band Edge Compliance of RF Conducted Emissions	15.247(d) & RSS-210	FCC Public notice DA 00-705	PASS
Spurious RF Conducted Emissions	15.247(d) & RSS-210	FCC Public notice DA 00-705	PASS
Spurious Radiated Emissions	15. 247(d), 15.205(a), 15.209(a) & RSS-210	ANSI C63.4:2003	PASS
Conducted Power Spectral Density	15.247(e) & RSS-210	FCC Public notice DA 00-705	PASS
RF Exposure	15.247(i) & RSS-102	FCC1.1310	PASS
Radiated Emissions- Unintentional radiators	15.109(a) & ICES-003	ANSI C63.4:2003	PASS
AC Power Line Conducted Emission	15.207(a) & ICES-003	ANSI C63.4:2003	N/A ¹⁾

Note1): The EUT connected to host power system. This test was exempted by no connection to AC Power Line.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Antenna Requirements

Test Date	Sep. 01, 2009
Sample Number	764994
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/CABC0308

Test Limits

FCC15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Test Results:

The EUT was attached SMA(M) antenna connector with the requirements. And the user manual described about the recommended antenna spec. and direction of replacement

X Pass Fail N/A

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

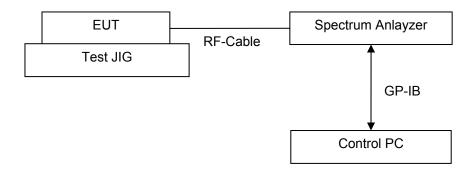
6dB Bandwidth

Temperature	27.9 °C
Relative Humidity	42.5 %
Barometric Pressure:	101.52 kPa
Test Date	Sep. 01, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 228
Reference Equipment (ID) (Calibration not required)	N1, N2
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

15.247(a)


(2) Systems using digital modulation techniques may operate in the 902–928MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Setup

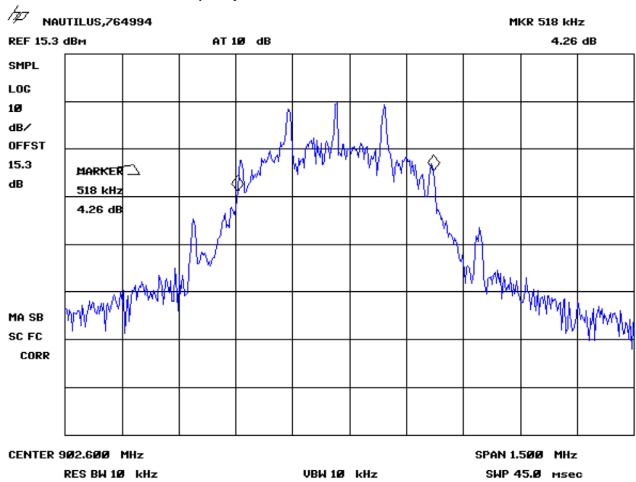
The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

- The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- ➤ The transmitter was transmitting as its maximum data rate for measuring 20dB BW.
- > The following measurements were made with
 - Span = approximately 2 to 3 times the 6dB bandwidth, centered on a channel for 6dB Bandwidth.
 - RBW ≥ 1% of each span
 - VBW ≥ RBW
 - Sweep = auto
 - Detector Function = peak
 - Trace = max hold
- Allowe the trace to stabilize.
- ➤ Use the function of 99% bandwidth in Spectrum Analayzer.

Setup Block Diagram

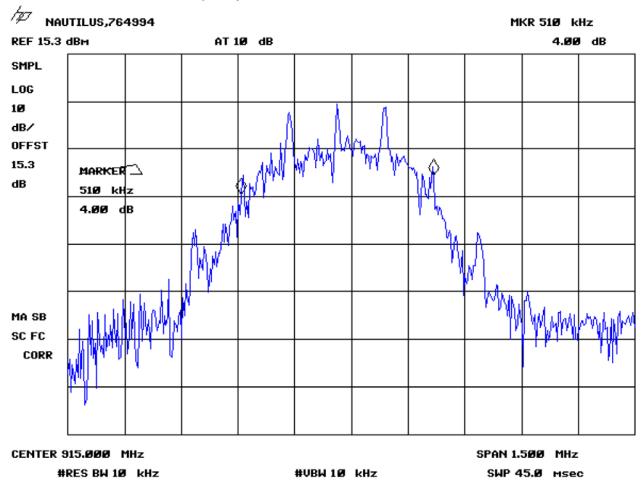
Page 12 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

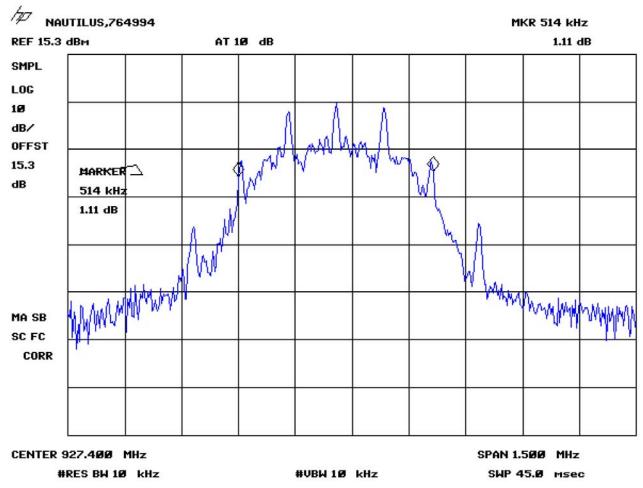

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

Test Results:

Channel Frequency(MHz)	6dB BW(kHz)	Limit(kHz)	Pass/Fail
902.60	518	≥ 500	Pass
915.00	510	≥ 500	Pass
927.40	514	≥ 500	Pass


X **Pass** Fail N/A

- 6dB Bandwidth at Carrier Frequency is 902.60MHz


Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- 6dB Bandwidth at Carrier Frequency is 915.00MHz

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- 6dB Bandwidth at Carrier Frequency is 927.40MHz

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Conducted Output Power

Temperature	27.9 °C
Relative Humidity	42.5 %
Barometric Pressure:	101.52 kPa
Test Date	Sep. 01, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 228
Reference Equipment (ID) (Calibration not required)	N1, N2
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

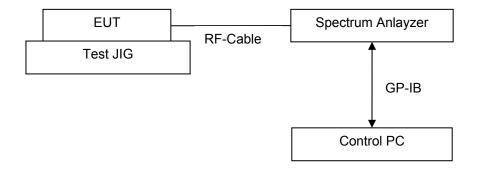
Test Limits

15.247(b)

(3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

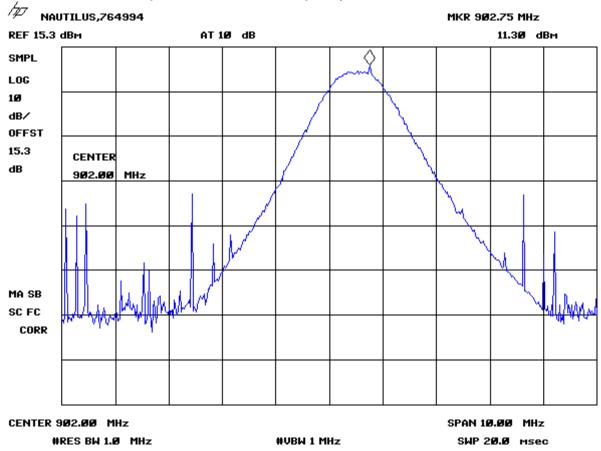

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT was set-up three diferrent transmiting mode, low-end, middle, and high-end.
- ➤ The transmitter was set-up as its maximum power.
- > The following measurements were made with
 - Span = 10MHz
 - RBW = 1MHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- Use the marker function to set the peak of the signal.
- The indicated level is the peak conductyed output power(with the addition of the cable loss).
- The measurement was not repeated as different power supplying, because of the DC power was supplied by host system.

Date Issued: September 10, 2009

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

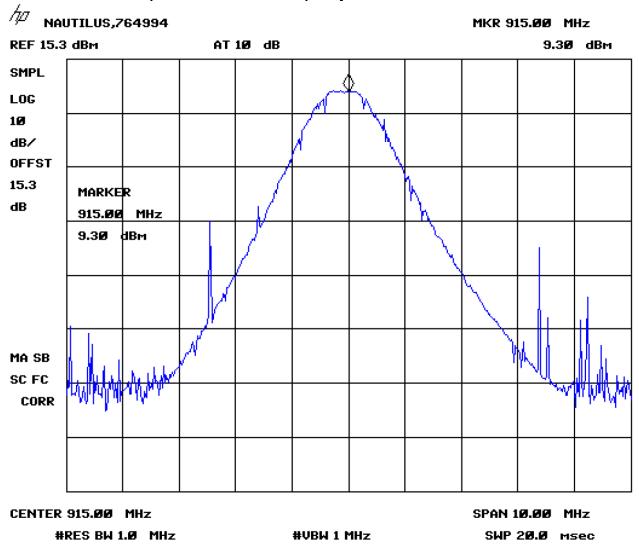
Client: Nautilus International Control & Eng. Ltd.

Setup Block Diagram

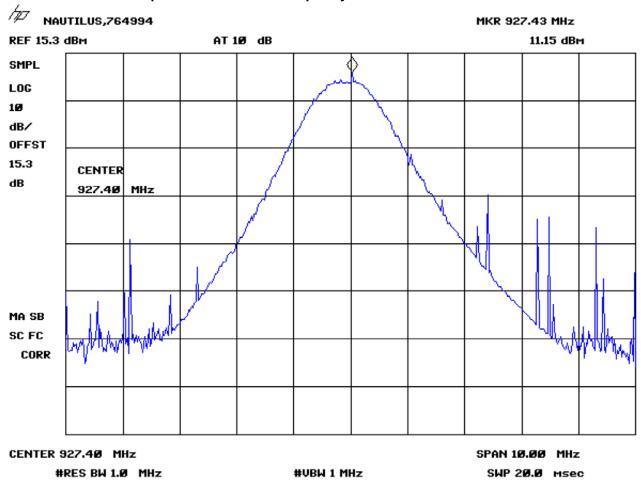

Test Results:

Channel Frequency(MHz)	Peak Power(dBm)	Limit(W/dBm)	Pass/Fail
902.60	11.30	≤ 1 / +30	Pass
915.00	9.30	≤ 1 / +30	Pass
927.40	11.15	≤ 1 / +30	Pass

	D	FF 2.54	NI/A
X	Pass	Fail	N/A


Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted maximum power at the Carrier Frequency is: 902.60MHz


Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted maximum power at the Carrier Frequency is: 915.00MHz

Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted maximum power at the Carrier Frequency is: 927.40MHz

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Antenna Gain

Test Date	Sep. 01, 2009
Sample Number	764994
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

15.247(b)

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Results:

Antenna description	Peak Antenna Gain(dBi)	Limit(dBi)	Pass/Fail
PCTEL, 915MHz ¼ Wavelength Antenna	0	≤ 6	Pass

X Pass Fail N/A

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

- Antenna Specification

MOBILE ANTENNAS

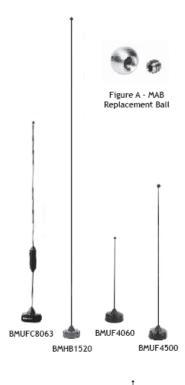
Chrome Nut Antennas

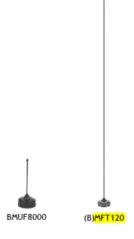
Client: Nautilus International Control & Eng. Ltd.

Chrome Nut Antennas

These antennas feature a super flexible design that protects the .062" diameter rod against damage that can be caused by limited vehicle height clearance. They also include a rubber seal gasket to prevent water leakage. All models are available in bright chrome or black finish.

Features


- · Economical
- Flexible rod
- · Ready to install; no rod cutting is required
- · Available in either bright chrome or black finish
- · Antenna includes rubber seal gasket to prevent water leakage
- · Mates with all 1-1/8"-18 thread mounts, including 3/4" mounts


MAXRAD

Technical Data

Maximum Power: 150 watts
Nominal Impedance: 50 ohms
VSWR: < 1.5:1
Radiator Material: .062" diameter stainless steel, bright or black finish
Mount Nut: Brass; bright or black chrome finish
Antenna Type: 1/4 Wave (Unity gain models) 5/8 Wave over a 1/4 Wave (3 dB gain models))

For detailed specifications, visit http://antenna.pctel.com.

PCTEL, Inc. WEB: www.antenna.pctel.com

25

Date Issued: September 10, 2009 Project No.: 9505

Client: Nautilus International Control & Eng. Ltd. Report No.: 9505-1E

Revision No.: 0

MOBILE ANTENNAS

Chrome Nut Antennas

Antenna Electrical Specifications

	Model	Frequency Range	Factory Tuned Frequency	Gain
SHIP	(B)MFT120	118-940 MHz	Field Tunable	Unity
SHIP	(B)MHB1520	152-162 MHz	157 MHz	Unity
	MHB1620	162-174 MHz	167 MHz	Unity
	MUF4060	406-430 MHz	418 MHz	Unity
	MUF4300	430-450 MHz	440 MHz	Unity
SHIP	MUF4500	450-470 MHz	460 MHz	Unity
	MUF4700	470-490 MHz	480 MHz	Unity
	MUF4900	490-512 MHz	501 MHz	Unity
OUIR)	MUF7000	760-870 MHz	816 MHz	Unity

Model	Frequency Range	Factory Tuned Frequency	Gain
(B)MUF8063	806-866 MHz	815 MHz	3 dB
B)MUF8000	806-896 MHz	835 MHz	Unity
(B)MUF8253	825-896 MHz	835 MHz	3 dB
MUF8963	896-940 MHz	898 MHz	3 dB
MUF24005	2400-2480 MHz	2.45 GHz	5 dB

Mechanical Specifications

Model	Antenna Height at lowest frequency
(B)MFT120	Approximately 24"
(B)MHB1520	Approximately 21.625"
MHB1620	Approximately 21.625"
MUF4060	Approximately 7.375"
MUF4300	Approximately 7.375"
MUF4500	Approximately 7.375"
MUF4700	Approximately 7.375"
MUF4900	Approximately 7.375"
MUF7000	Approximately 3.3"

Model	Antenna Height at lowest frequency
(B)MUF8063	Approximately 14.5"
(B)MUF8000	Approximately 2.9"
(B)MUF8253	Approximately 14.0"
MUF8963	Approximately 12.0"
MUF24005	Approximately 8.75"

The Quik Ship icon indicates that the product is available for immediate delivery from select distributors.

*Prefix "B" indicates black.

26 PCTEL, Inc. WEB: www.antenna.pctel.com Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505 Report No.: 9505-1E

Report No.: 9505-1E

Band-edge Compliance of RF Conducted Emissions

Temperature	23.9 °C
Relative Humidity	48.9 %
Barometric Pressure:	101.85 kPa
Test Date	Sep. 03, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 228
Reference Equipment (ID) (Calibration not required)	N1, N2
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

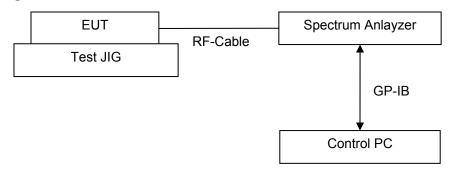
15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The transmitter was transmitting as its maximum data rate.
- > The following measurements were made with
 - Span = wide enough to capture the peak level of the emission operating on thechannel closet to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.
 - RBW = 100kHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- > Set the marker on the emission at the bandedge, or on the highest modulation product outside of band, if this level is greater than that at the bandedge.
- ➤ Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- > The marker-delta value was measured.
- > The EUT was set-up two diferrent transmiting mode, low-end and high-end.
- ➤ The transmitter was set-up as its maximum power.


Prepared by: LabTest Certification Inc.

Date Issued: September 10, 2009

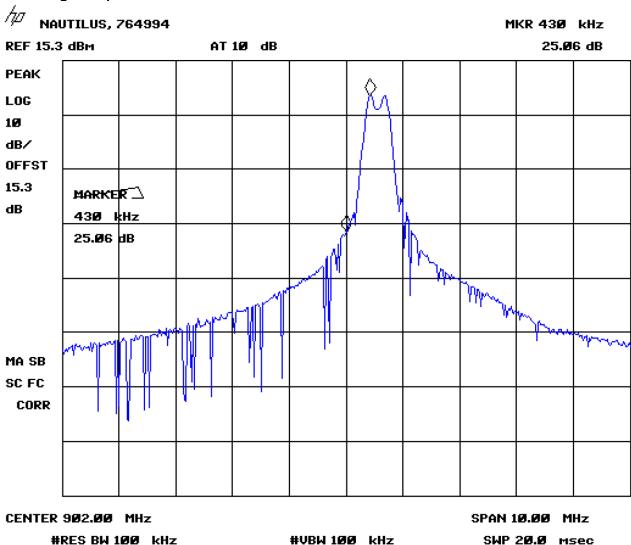
Report No.: 9505-1E Project No.: 9505 Revision No.: 0

Client: Nautilus International Control & Eng. Ltd.

Setup Block Diagram

Test Results:

Channel Frequency(MHz)	Difference(dB)	Limit(dB)	Pass/Fail
Low-end	25.06	> 20	Pass
High-end	41.22	> 20	Pass

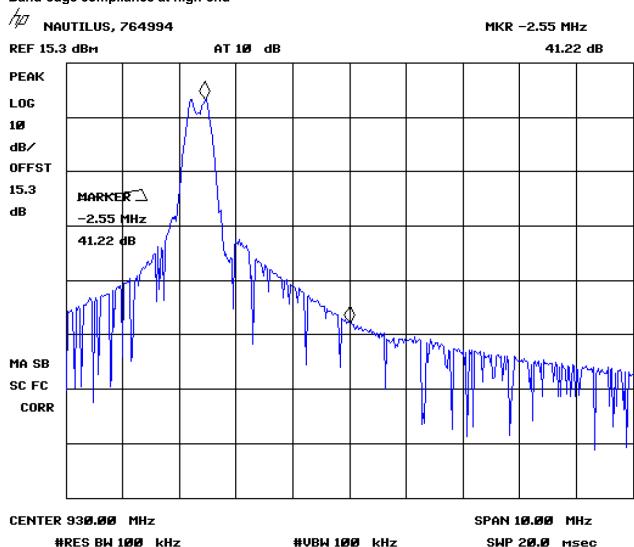

~	D	Fail	N/A
×	Pass	-211	NI/A

Project No.: 9505

Client: Nautilus International Control & Eng. Ltd. Report No.: 9505-1E

Revision No.: 0

- Band-edge compliance at low-end



Project No.: 9505

Client: Nautilus International Control & Eng. Ltd.

Report No.: 9505-1E Revision No.: 0

- Band-edge compliance at high-end

Prepared by: LabTest Certification Inc. Client: Nautilus International Control & Eng. Ltd. Date Issued: September 10, 2009 Report No.: 9505-1E

Project No.: 9505 Revision No.: 0

Spurious RF Conducted Emissions

Temperature	23.9 °C
Relative Humidity	48.9 %
Barometric Pressure:	101.85kPa
Test Date	Sep. 03, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 228
Reference Equipment (ID) (Calibration not required)	N1, N2
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

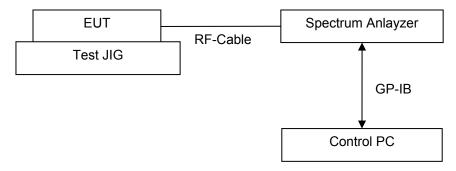
- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT was set-up three diferrent transmiting mode, low-end, middle, and high-end.
- > The transmitter was set-up as its maximum power.
- > The following measurements were made with
 - Span = wide enough to capture the peak level of the in-band emission and all spurious emissions(e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic.
 - RBW = 100kHz.
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- Set the marker on the peak of any spurious emission recorded.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E


Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Setup Block Diagram

Test Results:

Difference(dB) = Measured Carrier Level(dBm) - Measured Spurious Level(dBm)

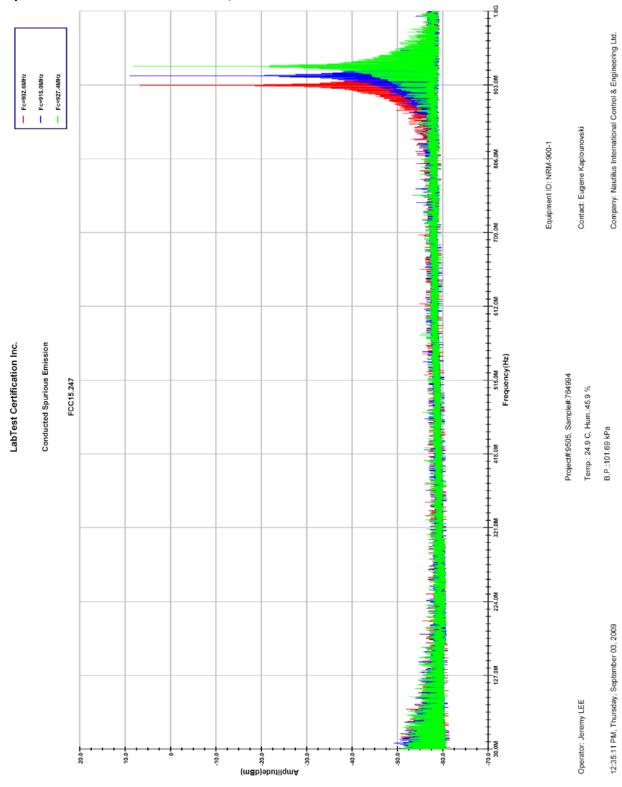
Description	Frequency (MHz)	Measured (dBm)	Difference (dB)	Limit (dB)	Pass/Fail
Carrier_Low End	902.6	+6.72	-	-	-
Spurious	901.85	-18.65	25.37	> 20	Pass
Sparious	1006.85	-45.61	52.33	> 20	Pass
2 nd Harmonic	1805.2	-38.35	45.07	> 20	Pass
3 rd Harmonic	2707.8	-39.07	45.79	> 20	Pass
4 th Harmonic	3610.4	-58.33	65.05	> 20	Pass
5 th Harmonic	4512.0	-57.60	64.32	> 20	Pass
6 th Harmonic	5415.6	-57.19	63.91	> 20	Pass
7 th Harmonic	6318.2	-55.42	62.14	> 20	Pass
8 th Harmonic	7220.8	-50.19	56.91	> 20	Pass
9 th Harmonic	8123.4	-48.06	54.78	> 20	Pass
10 th Harmonic	9026.0	-49.76	56.48	> 20	Pass
Carrier_Middle	915.0	+8.95	-	-	-
Courious	915.93	-20.75	29.70	> 20	Pass
Spurious	1000.00	-42.85	51.80	> 20	Pass
2 nd Harmonic	1830.0	-37.29	46.24	> 20	Pass
3 rd Harmonic	2745.0	-39.28	48.23	> 20	Pass

Page 29 of 53

Prepared by: LabTest Certification Inc.

Date Issued: September 10, 2009

Project No.: 9505


Client: Nautilus	International Co	ntrol & Eng. Ltd.	
	Rep	ort No.: 9505-1E	
		Revision No.: 0	
		_	

4 th Harmonic	3660.0	-57.03	65.98	> 20	Pass
5 th Harmonic	4575.0	-56.85	65.80	> 20	Pass
6 th Harmonic	5490.0	-56.21	65.16	> 20	Pass
7 th Harmonic	6405.0	-54.87	63.82	> 20	Pass
8 th Harmonic	7320.0	-47.83	56.78	> 20	Pass
9 th Harmonic	8235.0	-47.21	56.16	> 20	Pass
10 th Harmonic	9150.0	-49.63	58.58	> 20	Pass
Carrier_High End	927.4	+8.22	-	-	-
Spurious	928.64	-21.94	30.16	> 20	Pass
Spurious	1001.96	-42.48	50.70	> 20	Pass
2 nd Harmonic	1854.8	-37.37	45.59	> 20	Pass
3 rd Harmonic	2782.2	-40.43	48.65	> 20	Pass
4 th Harmonic	309.6	-58.04	66.26	> 20	Pass
5 th Harmonic	4637.0	-57.08	65.30	> 20	Pass
6 th Harmonic	5564.4	-56.67	64.89	> 20	Pass
7 th Harmonic	6491.8	-55.22	63.44	> 20	Pass
8 th Harmonic	7419.2	-47.79	56.01	> 20	Pass
9 th Harmonic	8346.6	-47.82	56.04	> 20	Pass
10 th Harmonic	9274.0	-49.02	57.24	> 20	Pass

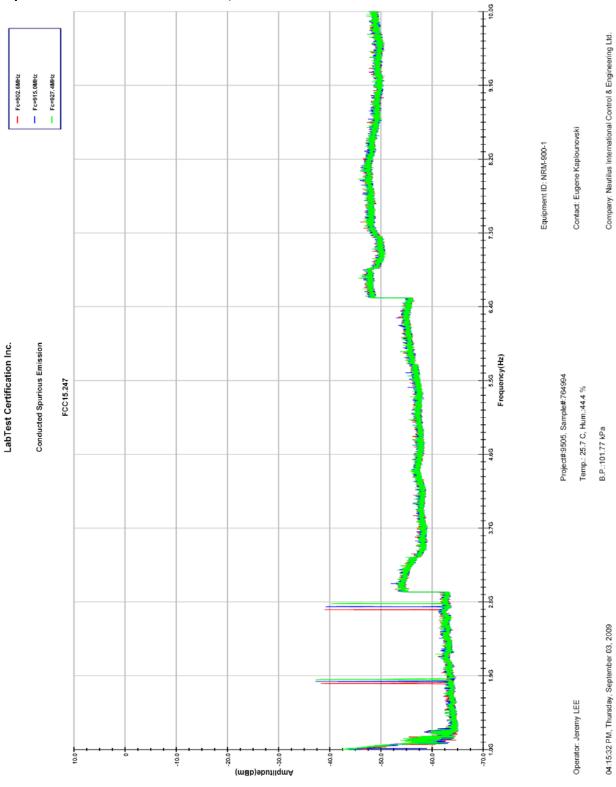
X **Pass** Fail N/A

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Spurious RF Conducted Emissions, 30 to 1000MHz.

Page 31 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.


Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

- Spurious RF Conducted Emissions, 1 to 10GHz.

Page 32 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Spurious Radiated Emissions

Temperature	22.4 °C
Relative Humidity	61.5 %
Barometric Pressure:	101.70 kPa
Test Date	Sep. 02, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 112, 227-1, 227-3, 228
Reference Equipment (ID) (Calibration not required)	141, 233, 235
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

15.247(d)

Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

15.205(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735–2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73–74.6	1645.5-1646.5	9.3–9.5
6.215–6.218	74.8–75.2	1660-1710	10.6–12.7
6.26775–6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175–6.31225	123-138	2200-2300	14.47–14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7–21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425–8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975–12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36–13.41.			` ′

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

15.209(a)

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

² Above 38.6

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505 Report No.: 9505-1E Revision No.: 0

Frequency (MHz)	Field strength (microvolts/meter)	Measure- ment dis- tance (meters)
0.009–0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705–30.0	30	30
30–88	100 **	3
88–216	150 **	3
216–960	200 **	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, FCC 15.33:2008, FCC 15.35:2008, and ANSI C63.4, 2003, and FCC Public notice DA 00-705 Released March 30, 2000.

Test procedure is based on the FCC15.31(a)(3) - Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.207(e) and 15.209(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.

Prescan tests were performed to determine the "worst-case" orientation of the EUT (By Manipulating the EUT's position through all three orthogonal axes). With the EUT positioned in the "worst case" orientation, emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- > The EUT was set-up three diferrent transmiting mode, low-end, middle, and high-end.
- > The transmitter was set-up as its maximum power.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 120kHz for f < 1GHz, and 1MHz for f ≥ 1GHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak

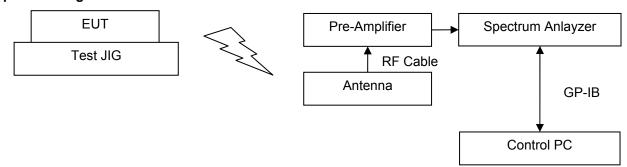
Page 34 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

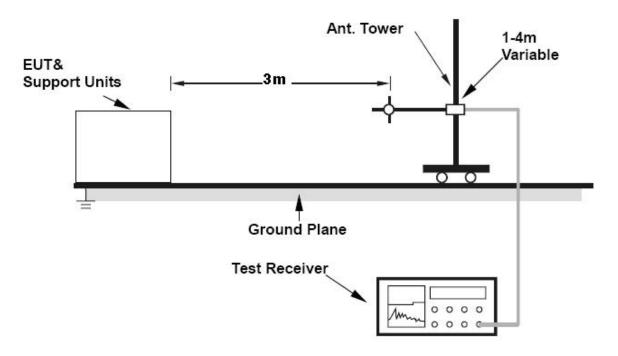
Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505


Revision No.: 0

Client: Nautilus International Control & Eng. Ltd.


Trace = Single trace up to capturing the whole range of signal

• Detecting Method = Quasi peak for f < 1GHz, and Averaging detector for f ≥ 1GHz

Setup Block Diagram

Test Setup at OATS

Test Result

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)— Pre-Amplifier Gain(dB)

Page 35 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

Frequency (MHz)	Measured (dBuV)	AF (dB/m)	CL (dB)	Pre- Amp (dB)	Radiated Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Results		
Fc=902.60M	Hz									
1805.20	25.69	25.48	20.22	29.15	42.24	53.98	11.74	Pass		
2707.80	26.76	28.78	17.91	27.94	45.51	53.98	8.47	Pass		
Fc=915.00MHz										
1830.00	25.65	25.79	20.00	29.10	42.34	53.98	11.64	Pass		
2745.00	26.60	28.89	18.05	27.90	45.63	53.98	8.35	Pass		
Fc=927.40M	Hz									
1854.80	25.63	26.10	19.79	29.05	42.46	53.98	11.52	Pass		
2782.20	26.74	28.99	18.18	27.86	46.05	53.98	7.93	Pass		

^{*} All other Spurious and Harmonics were under Ambient.

- Table of Spurious Radiated Emissions: 1 to 10GHz, Quasi-peak Detecting, Antenna was used SAS-571.

LabTest Certification Inc. Intentional Radiated Emission FCC15.249 & 205, 3meters, Harmonic Model Number: NRM-900-1

Operator: Jeremy Lee

Contact: Eugene Kaplounovski Company: Nautilus International Control & Engineering Ltd. 01:09:03 PM, Wednesday, September 02, 2009

Frequency	AVG Measu	ırAntenna	Cable	Preamp	Emission	Limit	 Margin	Tower	T/T	Pol	
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	cm	Degree	7 7 -	
1.805 GHz	25.35	25.48	20.22	-29.15	41.90	53.98	12.08	110.0	0.0	Н	
1.830 GHz	25.65	25.79	20.00	-29.10	42.34	53.98	11.64	110.0	0.0	Н	
1.854 GHz	25.63	26.10	19.79	-29.05	42.46	53.98	11.52	110.0	0.0	Н	
2.708 GHz	26.76	28.78	17.91	-27.94	45.51	53.98	8.47	110.0	0.0	Н	
2.745 GHz	26.34	28.89	18.05	-27.90	45.37	53.98	8.61	110.0	0.0	Н	
2.782 GHz	26.49	28.99	18.18	27.86	45.81	53.98	8.17	110.0	0.0	Н	
Project #: 9!	94										
Temp.: 22.4 C, Hum.: 61.5 %											
Barometer Pres.:101.70kPa											

LabTest Certification Inc. Intentional Radiated Emission FCC15.249 & 205, 3meters, Vertical Model Number: NRM-900-1

Operator: Jeremy Lee Contact: Eugene Kaplounovski

01:09:03 PM, Wednesday, September 02, 2009 Company: Nautilus International Control & Engineering Ltd.

Frequency	AVG Meas	urAntenna	Cable	Preamp	Emission	Limit	Margin	 Tower	Т/Т	Pol
MHz	dBuV	dB/m	_dB	dB	dBuV/m	dBuV/m	dB	cm	Degree	
1.805 GHz	25.69	25.48	20.22	-29.15	42.24	53.98	11.74	110.0	0.0	V
1.830 GHz	25.94	25.79	20.00	-29.10	42.63	53.98	11.35	110.0	0.0	V
1.855 GHz	25.15	26.10	19.78	-29.05	41.98	53.98	12.00	110.0	0.0	
2.708 GHz	26.74	28.78	17.91	-27.94	45.48	53.98	8.50	110.0	0.0	V
2.745 GHz	26.60	28.89	18.05	-27.90	45.63	53.98	8.35	110.0	0.0	V
2.782 GHz	26.74	28.99	18.18	-27.86	46.05	53.98	7.93	110.0	0.0	V
Project #: 95	505, Samp	le #: 76499	94							
Гетр.: 22.4 (C, Hum.:	61.5 %								
Barometer Pre	es.:101.7	0kPa								

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Conducted Power Spectral Density

Temperature	25.5 °C
Relative Humidity	43.8 %
Barometric Pressure:	102.53 kPa
Test Date	Sep. 10, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 228
Reference Equipment (ID) (Calibration not required)	N1, N2
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

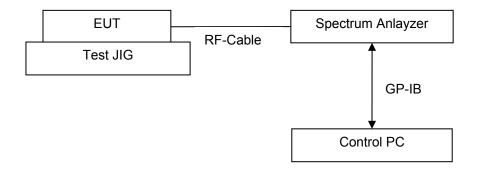
Test Limits

15.247(e)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, and FCC Public notice DA 00-705 Released March 30, 2000.

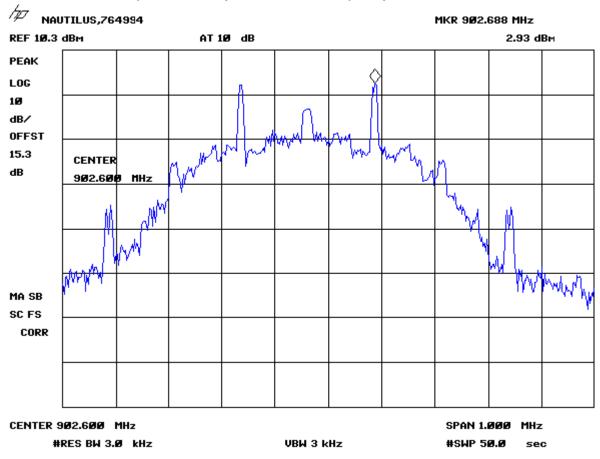

- > The RF output of the EUT was connected to the RF input port of the Spectrum Analyzer.
- > The EUT was set-up three diferrent transmiting mode, low-end, middle, and high-end.
- > The transmitter was set-up as its maximum power.
- > The following measurements were made with
 - Span = 1MHz
 - RBW = 3kHz
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
- Allowed the trace to stabilize.
- Use the marker function to set the peak of the signal.
- The indicated level is the peak conductived output power(with the addition of the cable loss).

Date Issued: September 10, 2009

Project No.: 9505

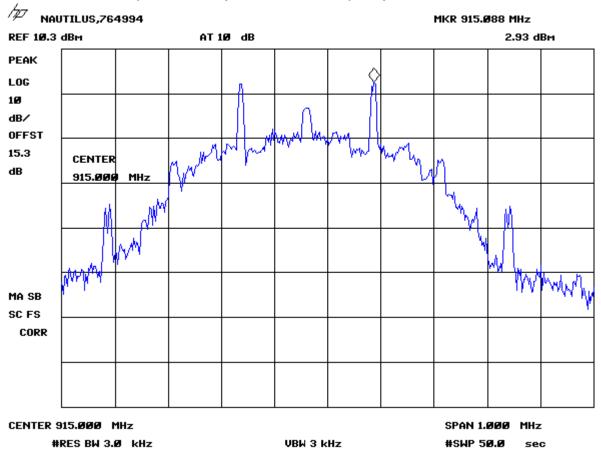
Client: Nautilus International Control & Eng. Ltd. Report No.: 9505-1E Revision No.: 0

Setup Block Diagram

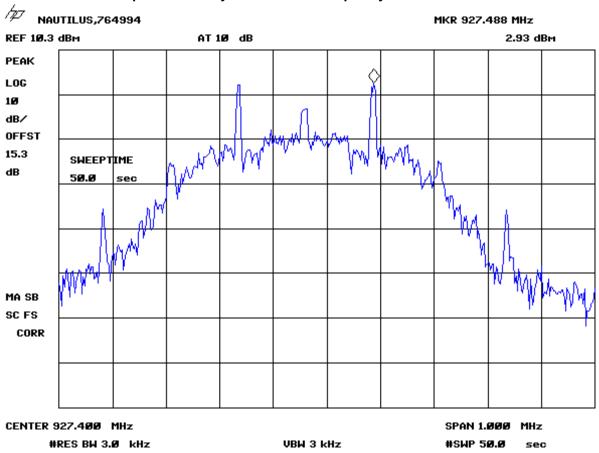

Test Results:

Channel Frequency(MHz)	Peak Power Density (dBm)	Limit(dBm)	Pass/Fail
902.60	2.93	≤ +8	Pass
915.00	2.93	≤ +8	Pass
927.40	2.93	≤ +8	Pass

Y	Pass	Fail	N/A


Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted Power Spectral Density at the Carrier Frequency is: 902.60MHz


Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted Power Spectral Density at the Carrier Frequency is: 915.00MHz

Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- Conducted Power Spectral Density at the Carrier Frequency is: 927.40MHz

Prepared by: LabTest Certification Inc.

Date Issued: September 10, 2009

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

Client: Nautilus International Control & Eng. Ltd.

RF Exposure (SAR)

Test Date	Sep. 03, 2009
Sample Number	764994
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/CABC0308

Test Limits

FCC15.247 (i)

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

FCC1.1310

The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of § 2.1093 of this chapter. Further information on evaluating compliance with these limits can be found in the FCC's OST/OET Bulletin Number 65, "Evaluating Compliance with FCC-Specified Guidelines for Human Exposure to Radiofrequency Radiation."

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	strength strength		Averaging time (minutes)							
(A) Lim	(A) Limits for Occupational/Controlled Exposures										
0.3–3.0 3.0–30	614 1842/f	1.63 4.89/f	*(100) *(900/f²)	6 6							
30–300	61.4	0.163	1.0 f/300 5	6 6 6							
(B) Limits	for General Populati	on/Uncontrolled Exp	oosure								
0.3-1.34	614 824/f 27.5	1.63 2.19/f 0.073	*(100) *(180/f²) 0.2 f/1500 1.0	30 30 30 30 30							

f = frequency in MHz

Included are calculations that determine that minimum distance from the transmitter antenna that will ensure an exposure limit at or below the guidelines given in Table 1 of Section 1.1310 for the general population. The formula for these calculations are taken from OET Bulletin 65, edition 97-01, August 1997; "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields".

Page 42 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

^{* =} Plane-wave equivalent power density

NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Pate Issued: September 10, 2009

Report No.: 9505-1F

Date Issued: September 10, 2009

Report No.: 9505-1E

Revision No.: 0

Calculations

Per Table 1 of Section 1.1310, the limit for General Population/Uncontrolled Exposure at 902 to 928MHz is f/1500 mW/cm², where f is frequency in MHz.

Per OET Bulletin 65, Edition 97-01, the formula for calculating power density is: $S=P*G/4\pi d^2$ with:

```
Given
```

 $E=\sqrt{(30*P*G)/d}$

and

S=E^2/3770

where

E=Field Strength in Volts/meter

P=Power in Watts

G=Numeric antenna gain

D=Distance in meters

S=Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d=\sqrt{((30*P*G)/(3770*S)}$

Changing to units of Power to mW and Distance to cm, using:

P(mW)=P(W)/1000 and

D(cm)=100*d(m)

yields

d=100* $\sqrt{30}$ *(P/1000)*G)/(3770*S)) d=0.282* $\sqrt{(P*G/S)}$

where

d=distance in cm

P=Power in mW

G=Numeric antenna gain

S=Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

 $P(mW)=10^{(P(dBm)/10)}$ and

 $G(numeric)=10^{(G(dBi)/10)}$

yields

 $d=0.282*10^{(P+G)/20}/\sqrt{S}$ Equation(1)

where

d=MPE distance in cm

P=Power in dBm

G=Antenna Gain in dBi

S=Power Density Limit in mW/cm^2

Equation (1) and the measured peak power is used to calculate the MPE distance.

Prepared by: LabTest Certification Inc. Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Limits

From §1.1310 Table 1 (B), S=1.0mW/cm^2

Results

No non-compliance noted:

Channel Frequency(MHz)	Power Density Limit (mW/cm^2)	Output Power (dBm)	Gain of Antenna (dBi)	MPE distance (cm)
902.60	0.60	+11.30	0	1.337
915.00	0.61	+9.30	0	1.053
927.40	0.62	+11.15	0	1.285

Conclusion

For mobile or fixed location transmitters, the minimum separation distance is 20cm, even if calculations indicate that the MPE distance would be less. Therefore, the minimum safe distance has to be inserted in the EUT's User Manual.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Report No: 9505-1F

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Radiated Emission; Unintentional Radiators

Temperature	25.3 °C
Relative Humidity	57.2 %
Barometric Pressure:	101.22 kPa
Test Date	Sep. 02, 2009
Sample Number	764994
Calibrated Test Equipment (ID)	106, 112, 227-1, 228
Reference Equipment (ID) (Calibration not required)	124, 233, 235
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.flightstats.com/go/Airport/weather.do?airportCode=YVR

Test Limits

FCC 15.109 (a):

Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of emission (MHz)	Field strength (microvolts/ meter)
30–88	100
88–216	150
216–960	200
Above 960	500

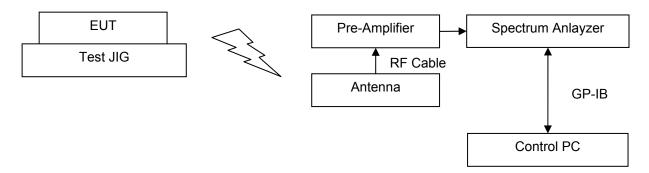
Test Setup

The test was performed in accordance with FCC 15.247:2008, FCC 15.31:2008, FCC 15.33:2008, FCC 15.35:2008, and ANSI C63.4, 2003, and FCC Public notice DA 00-705 Released March 30, 2000.

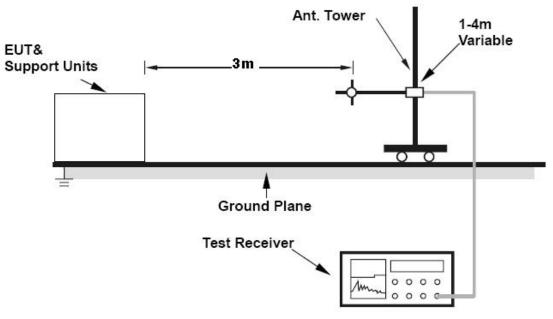
Test procedure is based on the FCC15.31(a)(3) - Other intentional and unintentional radiators are to be measured for compliance using the following procedure excluding sections 4.1.5.2, 5.7, 9 and 14: ANSI C63.4–2003: "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz" (incorporated by reference, see § 15.38). This incorporation by reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51.

NOTE to Paragraph (a)(3): Digital devices tested to show compliance with the provisions of §§ 15.107(e) and 15.109(g) must be tested following the ANSI C63.4 procedure described in paragraph (a)(3) of this section.[As stated in the adopting R&O, ANSI C63.4 is not used for measurements below 30 MHz.]

The EUT was placed on a 1 meter by 1.5 meters wide and 0.8-meter high nonconductive table that was placed directly onto a flush mounted turntable. The EUT was connected to its support equipment with any excess I/O cabling bundled to approximately 1 meter. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna supporter. It is measured with a receiver – spectrum analyzer, was software controlled. The antennas were balanced dipoles. For frequencies of 80 MHz or above, the antennas were resonant in length, and for frequencies below 80 MHz it had a length equal to the 80 MHz resonant length.


Client: Nautilus International Control & Eng. Ltd.

Project No.: 9505 Revision No.: 0


Tests were performed to determine the Idle orientation of the EUT. With the EUT positioned in the Idle, emissions from the unit were maximized by manipulating the cables, and by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable.

- > The EUT was set-up idle mode.
- The following measurements were made with
 - Span = wide enough to fully capture the emission being measured.
 - RBW = 120kHz.
 - VBW ≥ RBW
 - Sweep = Auto
 - Detector Function = peak
 - Trace = Single trace up to capturing the whole range of signal
 - Detecting Method = Quasi peak.

Setup Block Diagram

Test Setup at OATS

Page 46 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by: LabTest Certification Inc. Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

Test Result

Operator: Jeremy Lee

Operator: Jeremy Lee

Radiated Emission (dBuV/m) = Measured Emission (dBuV) + Antenna Factor(1/m) + Cable Loss(dB)- Pre-Amplifier Gain(dB)

X **Pass** Fail N/A

- Table of Radiated Emissions: 30 to300MHz, Quasi-peak Detecting, Antenna was used SAS-542.

LabTest Certification Inc. Unintentional Radiated Emissions FCC15.109, Class B, 3 meters, Horizontal Model #: NRM-900-1 Contact: Eugene Kaplounovski

Company: Nautilus International Control & Engineering Ltd. 03:52:52 PM, Wednesday, September 02, 2009

Frequency	Measured	AntFactor	CableLoss	Preamp	Emission	Limit	Margin	T/T	Tower	Pol
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	degree	cm	
132.77 MHz	52.43	11.78	3.24	-33.00	34.45	43.52	9.07	298.9	373.3	H
188.09 MHz	44.59	13.66	3.85	-32.86	29.25	43.52	14.27	346.4	150.0	H
210.26 MHz	46.54	14.60	4.09	-32.85	32.37	43.52	11.15	346.3	150.0	H
221.23 MHz	53.27	14.72	4.18	-32.80	39.38	46.02	6.64	58.9	320.5	H
232.31 MHz	47.14	15.09	4.29	-32.75	33.77	46.02	12.25	173.8	342.8	H
254.49 MHz	50.53	16.42	4.58	-32.66	38.88	46.02	7.14	289.1	362.9	H
ı Project # : 95	05, Sample	#: 746499	4							
Temp.: 25.3 C,	Hum.: 57.	2 %								
Barometer Pres	.:101.22 k	Pa								

LabTest Certification Inc.
Unintentional Radiated Emissions
FCC15.109, Class B, 3 meters, Vertical
Model #: NRM-900-1
Contact: Eugene Kaplounovski
r 02, 2009 Company: Nautilus International Control & Engineering Ltd.

03:52:52 PM, Wednesday, September 02, 2009

Frequency	Measured	AntFactor	CableLoss	Preamp	Emission	Limit	Margin	T/T	Tower	Pol
MHz	dBuV	dB/m	dB	dB	dBuV/m	dBuV/m	dB	degree	cm	
132.774 MHz	41.67	11.78	3.24	-33.00	23.69	43.52	19.83	340.3	385.5	V
188.087 MHz	52.52	13.66	3.85	-32.86	37.18	43.52	6.34	220.9	373.5	
210.258 MHz	47.14	14.60	4.09	-32.85	32.97	43.52	10.55	90.9	384.4	V
221.229 MHz	46.42	14.72	4.18	-32.80	32.53	46.02	13.49	17.8	387.1	V
232.314 MHz	36.00	15.09	4.29	-32.75	22.63	46.02	23.39	278.2	352.5	V
254.486 MHz	39.51	16.42	4.58	-32.66	27.86	46.02	18.16	93.3	377.5	v
Project # : 9505, Sample #: 7464994										
Temp.: 25.3 C,	Hum.: 57.	2 %								
Barometer Pres	.:101.22 k	Pa								

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

Conducted Emission

Test Date	Sep. 01, 2009
Sample Number	764994
Tested By	Jeremy LEE

Use the barometric pressure reported at: http://www.theweathernetwork.com/weather/CABC0308

Test Limits

FCC 15.207 (a)

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Test Results

The test was exempted by there is no public utility (AC) power line connection.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Peter January No. 10505, 1F.

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

APPENDIX A: Test Equipment Used

ID No.	Description	Manufacturer	Model	Serial No.	Calibration Date	Calibration Due Date	Calibration Certificate No:	Calibration Laboratory
106	Spectrum Analyzer	HP	8596EM	3536A00113	30-Sep-2008	30-Sep-2009	280731	Wescan
112	GTEM EMC Chamber	Emco	5317	N/A	04-Oct-2005	04-Oct-2010	1000082343	Wescan
124	Pre-Amplifier	Com-Power	PA-103	161118	N/A	N/A	N/A	N/A
141	Pre-Amplifier	RF Bay	LPA-10-10	04521173	N/A	N/A	N/A	N/A
227-1	Biconical Antenna	A.H. Systems	SAS-542	716	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
227-3	Horn Antenna	A.H. Systems	SAS-571	936	29-Apr-2009	29-Apr-2010	10399EE	A.H. Systems
228	Humidity/ Temperature Logger	Veriteq	SP-2000- 20R	07072157	16-Sep-2008	16-Sep-2009	0133270	Veriteq
233	Coaxial RF Cable	N/A	LCI-001	N/A	N/A	N/A	N/A	N/A
235	Turn table /Tower System	Sunol Sciences Co.	SC104V	031407-1	N/A	N/A	N/A	N/A
N1	Coaxial RF Cable(N(m) to BNC(m))	N/A	N/A	N/A	N/A	N/A	N/A	N/A
N2	Attenuator	Mini-circuits	UNAT-15+	3 0548	N/A	N/A	N/A	N/A

Prepared by: LabTest Certification Inc. Client: Nautilus International Control & Eng. Ltd. Report No.: 9505-1E

Revision No.: 0

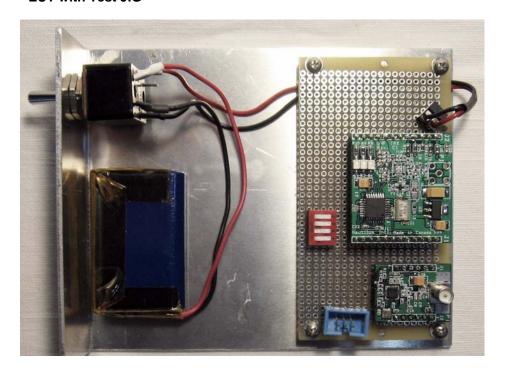
Date Issued: September 10, 2009

Project No.: 9505

APPENDIX B: EUT Photos

- EUT: Top View

- EUT: Bottom View



Page 50 of 53

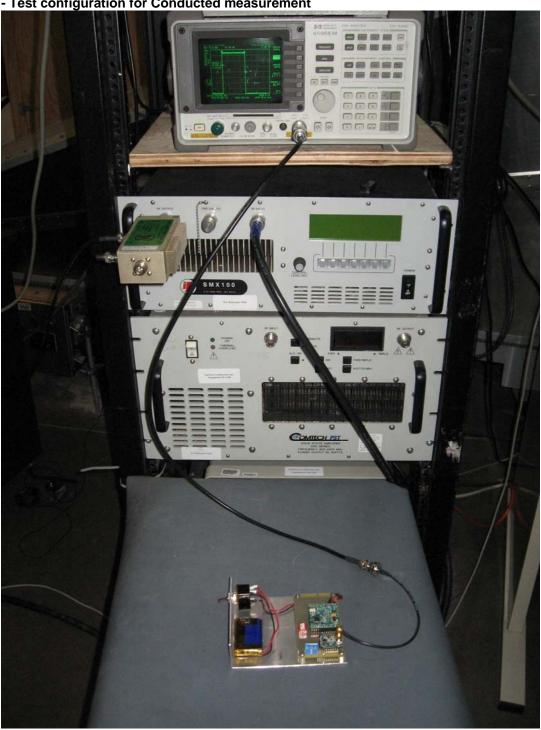
Client: Nautilus International Control & Eng. Ltd.

Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009 Report No.: 9505-1E Project No.: 9505 Revision No.: 0

- EUT with Test JIG

- Cable Assay

Page 51 of 53


This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by: LabTest Certification Inc. Date Issued: September 10, 2009

Report No.: 9505-1E Project No.: 9505 Revision No.: 0

APPENDIX C: Test setup photos

- Test configuration for Conducted measurement

Page 52 of 53

This document shall not be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from LabTest Certification Inc.

Prepared by: LabTest Certification Inc.

Client: Nautilus International Control & Eng. Ltd.

Date Issued: September 10, 2009

Report No.: 9505-1E

Date Issued: September 10, 2009

Report No.: 9505-1E

Project No.: 9505

Revision No.: 0

END OF REPORT