

FCC Test Report

Report No.: RF160421C05E

FCC ID: I55-WCP003

Test Model: TPA-M601

Received Date: Apr. 21, 2016

Test Date: Apr. 27, 2016 ~ May 03, 2016

Issued Date: Jun. 04, 2016

Applicant: Merry Electronics Co. Ltd.

Address: No. 22, 23rd Road, Taichung Industrial Park, Taichung, Taiwan, ROC

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
(R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agency.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 General Description of Applied Standards	7
3.3 Description of Support Units	7
3.3.1 Configuration of System under Test	7
4 Test Types and Results	8
4.1 Radiated Emission and Bandedge Measurement.....	8
4.1.1 Limits of Radiated Emission and Bandedge Measurement	8
4.1.2 Test Instruments	10
4.1.3 Test Procedures.....	11
4.1.4 Deviation from Test Standard	11
4.1.5 Test Set Up	12
4.1.6 EUT Operating Conditions.....	12
4.1.7 Test Results	13
4.2 Conducted Emission Measurement	16
4.2.1 Limits of Conducted Emission Measurement	16
4.2.2 Test Instruments	17
4.2.3 Test Procedures.....	18
4.2.4 Deviation from Test Standard	18
4.2.5 TEST SETUP.....	18
4.2.6 EUT Operating Conditions.....	18
4.2.7 Test Results	19
5 Pictures of Test Arrangements.....	21
Appendix – Information on the Testing Laboratories	22

Release Control Record

Issue No.	Description	Date Issued
RF160421C05E	Original Release	Jun. 04, 2016

1 Certificate of Conformity

Product: Wireless charger

Brand: HP

Test Model: TPA-M601

Sample Status: Identical Prototype

Applicant: Merry Electronics Co. Ltd.

Test Date: Apr. 27, 2016 ~ May 03, 2016

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.209)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Vera Huang, **Date:** Jun. 04, 2016

Vera Huang / Specialist

Approved by : Stanley Wu, **Date:** Jun. 04, 2016

Stanley Wu / Assistant Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.209)			
Standard Section	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -12.85dB at 0.55400MHz.
15.209	Radiated Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -6.07dB at 69.77MHz.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (\pm)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.44 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	2.93 dB
	200MHz ~ 1000MHz	2.95 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product (PMN)	Wireless charger		
Brand	HP		
Test Model (HVIN)	TPA-M601		
Power Supply Rating	5.3 Vdc (adapter)		
Operating Frequency	135 kHz		
Antenna Type	Loop antenna		
Antenna Connector	N/A		
Accessory Device	Refer to Note as below		
Data Cable Supplied	Refer to Note as below		
EUT Category	Applicable	EUT Category	
		Component	Type
	WPT subassembly of the client	ISM	
		WPT subassembly of the source	Type 1 (ISM)
			Type 2 (Cat. II)
	√	Type 3 (Cat. I)	
		Wireless module (in the client or in the source)	Category II
Category I			

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Adapter	HP	WAD005	I/P: 100-240 Vac, 50-60 Hz, 0.3 A O/P: 5.3 Vdc, 2 A
USB Cable	JHL	USB-A cable	1.5 m cable

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.209)

ANSI C63.10-2013

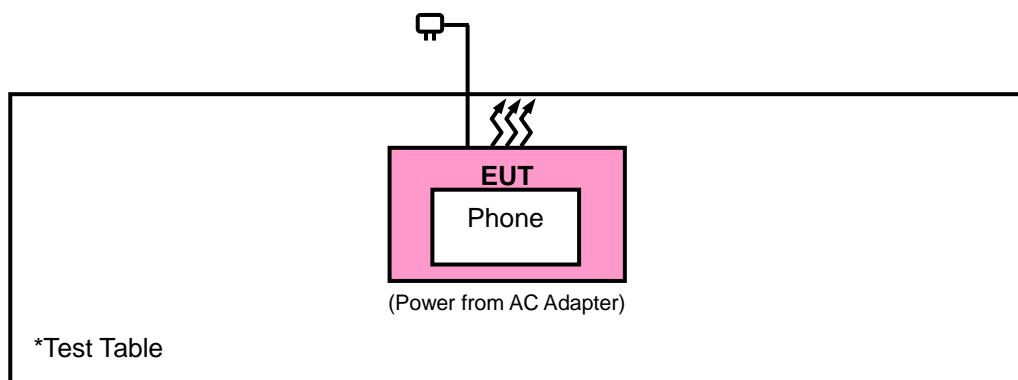
All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC).

The test report has been issued separately.

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


No.	Product	Brand	Model No.	Serial No.	FCC ID
A.	Phone	N/A	N/A	N/A	Provided by client

No.	Signal Cable Description Of The Above Support Units
1.	N/A

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.3.1 Configuration of System under Test

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Applicable	EUT Category	
	Component	Type
	WPT subassembly of the client	ISM
✓	WPT subassembly of the source	Type 1 (ISM)
		Type 2 (Cat. II)
		Type 3 (Cat. I)
Frequency Range (MHz)	Limits in dB(μ A/m) at 3 m distance Quasi-peak	
0.009 – 0.070	88	106
0.070 – 0.1485	88 Decreasing linearly with logarithm of frequency to 58	106 Decreasing linearly with logarithm of frequency to 76
0.1485 – 30	58 Decreasing linearly with logarithm of frequency to 22	76 Decreasing linearly with logarithm of frequency to 40

NOTE: The limits apply to induction cooking appliances for domestic use which have a diagonal dimension of less than 1.6 m.

Measurement is performed using the "Van Veen loop method" as described in 2.6.5 of CISPR 16-2.

Transmitters whose fundamental emission lies below 490 kHz and for which it is shown that all emissions are at least 40 dB below the general field strength limits listed in below table.

Applicable	EUT Category	
	Component	Type
	Wireless module (in the client or in the source)	Category II
		Category I
Transmitter Radiated Emissions		
Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3
Receiver Radiated Emission		
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3
30 ~ 88	100	3

NOTE:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2016	Jan. 20, 2017
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep. 03, 2015	Sep. 02, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 04, 2016	Jan. 03, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Jan. 08, 2016	Jan. 07, 2017
Loop Antenna	EM-6879	269	Jul. 31, 2015	Jul. 30, 2016
Agilent Communications Tester-Wireless	8960 Series 10	MY53201073	Jul. 03, 2015	Jul. 02, 2017
Preamplifier EMCI	EMC 012645	980115	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 184045	980116	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2015	Dec. 27, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 12, 2015	Oct. 11, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 12, 2015	Oct. 11, 2016
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 12, 2015	Oct. 11, 2016
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower & Turn Table Controller MF	MF-7802	NA	NA	NA
High Speed Power Meter	ML2495A	1012010	Aug. 21, 2015	Aug. 20, 2016
Power Sensor	MA2411B	1232001	Oct. 01, 2015	Sep. 30, 2016

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
3. The test was performed in HwaYa Chamber 10.
4. The horn antenna and HP preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1GHz if tested.
5. The FCC Site Registration No. is 690701.
6. The IC Site Registration No. is IC7450F-10.

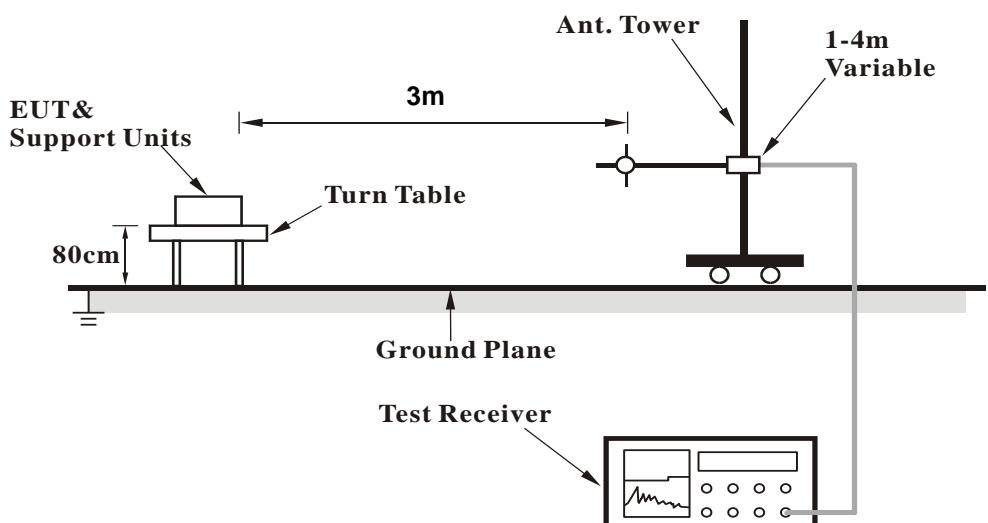
4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 3MHz for RMS Average (Duty cycle < 98%) for Average detection (AV) at frequency above 1GHz, then the measurement results was added to a correction factor (10 log(1/duty cycle)).
4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
5. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Set Up

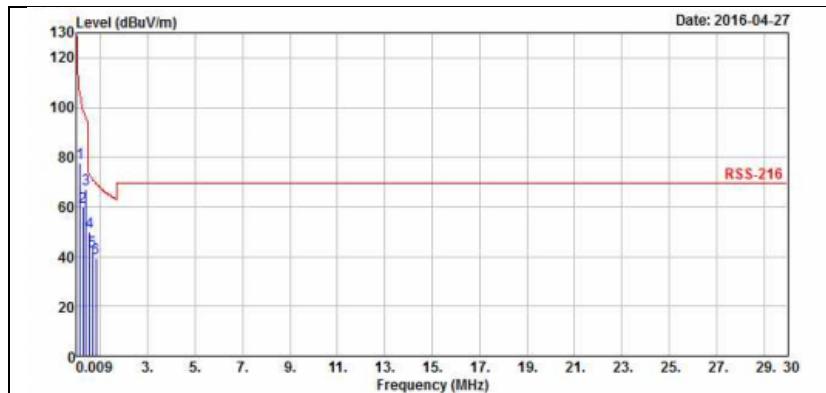
<Frequency Range below 30MHz>

<Frequency Range below 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Placed the EUT on the testing table.
- Use the software to control the EUT under transmission condition continuously at specific channel frequency.

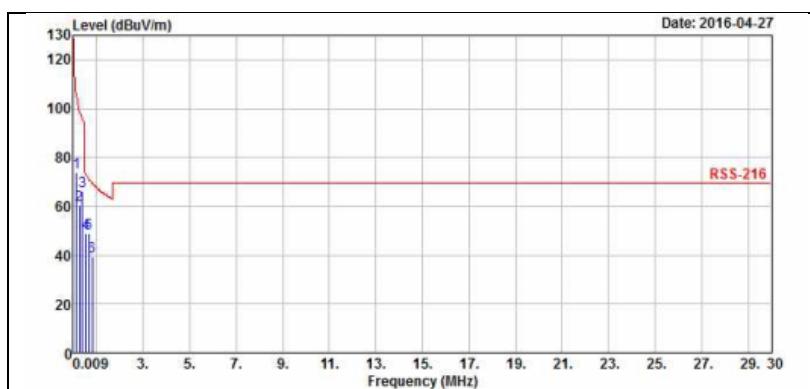

4.1.7 Test Results

Eut Test Condition			Measurement Detail						
Input Power	120Vac, 60 Hz		Frequency Range	0.009~30MHz					
Environmental Conditions	25deg. C, 65%RH		Detector Function	Quasi-Peak					
Tested By	Toby Tian								

Antenna Polarity & Test Distance: Loop Antenna Open at 3M										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.135	77.68	63.26	105	-27.32	55.38	0.02	40.98	100	360	Peak
0.27	59.87	51.09	98.98	-39.11	49.58	0.02	40.82	100	360	Peak
0.405	67.19	61.41	95.45	-28.26	46.45	0.04	40.71	100	360	Peak
0.54	50.03	46.09	72.96	-22.93	44.53	0.07	40.66	100	360	Peak
0.675	42.32	39.78	71.02	-28.7	43.14	0.09	40.69	100	360	Peak
0.81	39.33	37.91	69.43	-30.1	42.02	0.11	40.71	100	360	Peak

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB) – Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. Above limits have been translated by the formula



Eut Test Condition		Measurement Detail	
Input Power	120Vac, 60 Hz	Frequency Range	0.009~30MHz
Environmental Conditions	25deg. C, 65%RH	Detector Function	Quasi-Peak
Tested By	Toby Tian		

Antenna Polarity & Test Distance: Loop Antenna Close at 3M										
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
0.135	74.01	59.59	105	-30.99	55.38	0.02	40.98	100	0	Peak
0.27	60.28	51.5	98.98	-38.7	49.58	0.02	40.82	100	0	Peak
0.405	66.35	60.57	95.45	-29.1	46.45	0.04	40.71	100	0	Peak
0.54	48.86	44.92	72.96	-24.1	44.53	0.07	40.66	100	0	Peak
0.675	48.86	46.32	71.02	-22.16	43.14	0.09	40.69	100	0	Peak
0.81	39.1	37.68	69.43	-30.33	42.02	0.11	40.71	100	0	Peak

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
– Pre-Amplifier Factor(dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission level – Limit value.
5. Above limits have been translated by the formula

Eut Test Condition			Measurement Detail						
Frequency Range		Below 1000MHz			Input Power			120Vac, 60 Hz	
Environmental Conditions		25deg. C, 65%RH			Detector Function			Quasi-Peak	
Tested By		Toby Tian							

Antenna Polarity & Test Distance: Horizontal at 3 m										
Frequency (MHz)	Emissino Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
70.74	23.46	43.87	40	-16.54	10.53	0.85	31.79	121	153	Peak
135.73	26.64	45.16	43.5	-16.86	12.08	1.14	31.74	129	214	Peak
196.84	29.67	50.56	43.5	-13.83	9.57	1.28	31.74	133	255	Peak
328.76	25.54	42.01	46	-20.46	13.64	1.71	31.82	111	128	Peak
478.14	22.45	35.37	46	-23.55	16.89	2.05	31.86	118	306	Peak
586.78	22.37	32.96	46	-23.63	19.3	2.24	32.13	102	114	Peak
Antenna Polarity & Test Distance: Vertical at 3 m										
Frequency (MHz)	Emissino Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
39.7	32.93	49.74	40	-7.07	13.54	0.64	30.99	103	222	Peak
69.77	33.93	54.13	40	-6.07	10.77	0.85	31.82	125	247	Peak
134.76	21.37	39.98	43.5	-22.13	12.01	1.14	31.76	128	355	Peak
196.84	22.54	43.43	43.5	-20.96	9.57	1.28	31.74	124	6	Peak
414.12	21.05	35.5	46	-24.95	15.62	1.94	32.01	116	98	Peak
561.56	21.94	33.08	46	-24.06	18.72	2.2	32.06	108	331	Peak

REMARKS:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor

Margin value = Emission level – Limit value.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Applicable		EUT Category	
		Component	Type
		WPT subassembly of the client	
		ISM	
		WPT subassembly of the source	
			Type 1 (ISM)
			Type 2 (Cat. II)
√		Type 3 (Cat. I)	
Frequency Range (MHz)	Induction cooking appliance limits db(uV)		
	Quasi-peak dB(µV)	Average dB(µV)	
0.009 – 0.050	110	–	
0.050 – 0.1485	90 Decreasing linearly with logarithm of frequency to 80	–	
0.1485 – 0.5	66 Decreasing linearly with logarithm of frequency to 56	Decreasing linearly with logarithm of frequency to 46	
0.5 – 5	56	46	
5 – 30	60	50	
NOTE: The mains terminal disturbance voltage limits for a 100/110 v rated system are under consideration.			

Applicable		EUT Category	
		Component	Type
<input type="checkbox"/>		Wireless module	
<input type="checkbox"/>		(in the client or in the source)	
Frequency (MHz)		Conducted Limit (dBuV)	
		Quasi-peak	Average
0.15 - 0.5		66 - 56	56 - 46
0.50 - 5.0		56	46
5.0 - 30.0		60	50

Note: 1. The lower limit shall apply at the transition frequencies.

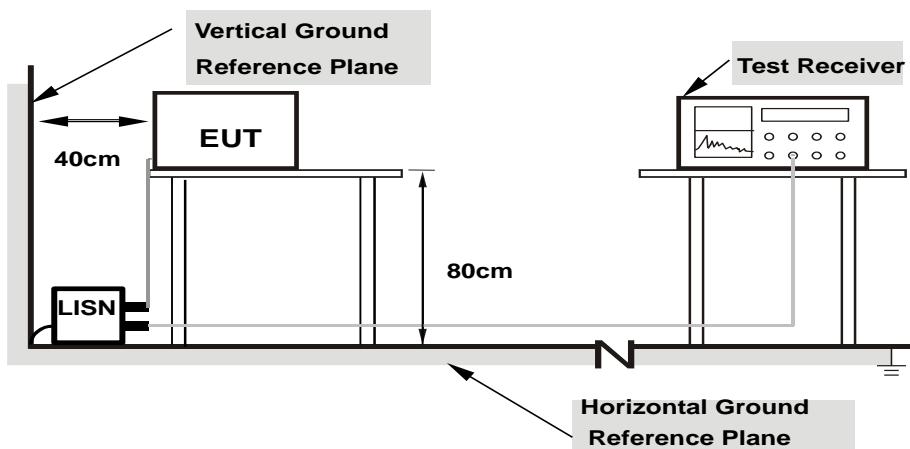
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date Of Calibration	Due Date Of Calibration
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Nov. 16, 2015	Nov. 15, 2016
RF signal cable (with 10dB PAD) Woken	5D-FB	Cable-cond1-01	Dec. 26, 2015	Dec. 25, 2016
LISN ROHDE & SCHWARZ (EUT)	ESH3-Z5	835239/001	Feb. 26, 2016	Feb. 25, 2017
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Jul. 24, 2015	Jul. 23, 2016
Software ADT	BV ADT_Cond_V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 2. The test was performed in HwaYa Shielded Room 1.
 3. The VCCI Site Registration No. is C-2040.

4.2.3 Test Procedures


- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 TEST SETUP

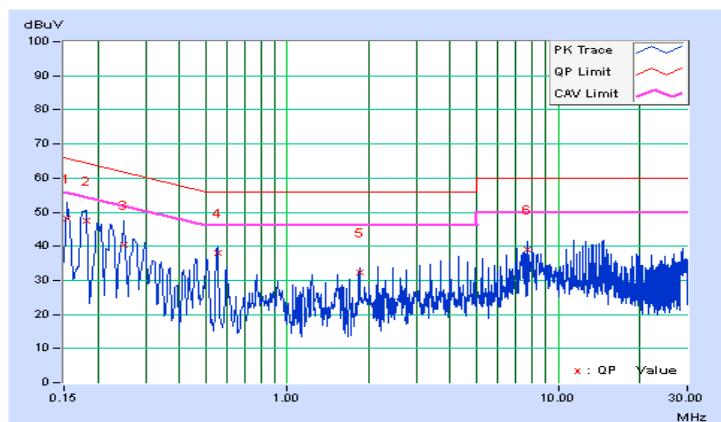
Note:

1. Support units were connected to second LISN.
2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

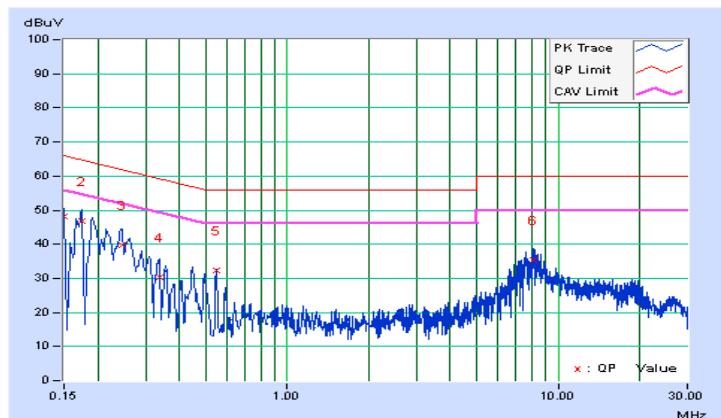

4.2.7 Test Results

Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25°C, 65%RH
Tested by	Toby Tian	Test Date	2016/4/27

No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
	1	10.02	38.17	27.54	48.19	37.56	65.78	55.78	-17.60	-18.23
2	0.18085	10.02	37.60	25.14	47.62	35.16	64.45	54.45	-16.82	-19.28
3	0.25006	10.05	30.40	20.11	40.45	30.16	61.76	51.76	-21.30	-21.59
4	0.55400	10.14	27.89	23.01	38.03	33.15	56.00	46.00	-17.97	-12.85
5	1.84600	10.26	22.00	21.26	32.26	31.52	56.00	46.00	-23.74	-14.48
6	7.69000	10.61	28.45	21.50	39.06	32.11	60.00	50.00	-20.94	-17.89

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	120Vac, 60Hz	Environmental Conditions	25°C, 65%RH
Tested by	Toby Tian	Test Date	2016/4/27

No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
	0.15000	10.03	38.22	25.00	48.25	35.03	66.00	56.00	-17.75	-20.97
2	0.17400	10.03	36.76	23.66	46.79	33.69	64.77	54.77	-17.98	-21.08
3	0.24600	10.06	29.76	19.99	39.82	30.05	61.89	51.89	-22.07	-21.84
4	0.33767	10.10	20.36	9.61	30.46	19.71	59.26	49.26	-28.80	-29.55
5	0.54600	10.15	22.06	16.36	32.21	26.51	56.00	46.00	-23.79	-19.49
6	8.06200	10.68	24.84	11.94	35.52	22.62	60.00	50.00	-24.48	-27.38

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab/Telecom Lab

Tel: 886-3-5935343
Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---