Division of APREL Laboratories.

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole BCL-141. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole BCL-141 was received from customer in good condition for re-calibration, SMA connector required cleaning prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 20 °C +/- 0.5 °C

Division of APREL Laboratories.

Dipole Calibration Results

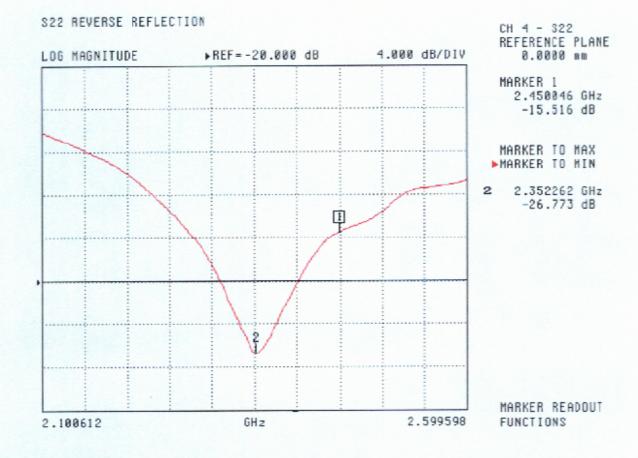
Mechanical Verification

APREL		APREL	Measured	Measured	
Length		Height	Length	Height	
ı	51.5 mm	30.4 mm	51.6 mm	30.5 mm	

Tissue Validation

Head Tissue 2450 MHz	Measured
Dielectric constant, ε _r	39.2
Conductivity, o [S/m]	1.80

5


Division of APREL Laboratories.

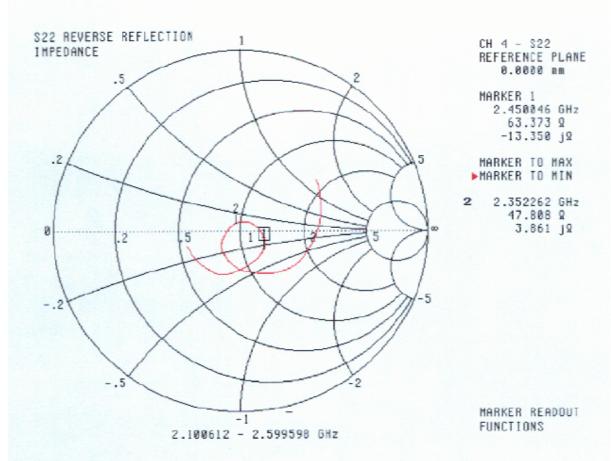
Electrical Calibration

Test	Result		
S11 R/L	-26.77 dB to -15.52 dB		
SWR	1.095 U to 1.397 U		
Impedance	47.81 Ω to 63.37 Ω		

The Following Graphs are the results as displayed on the Vector Network Analyzer.

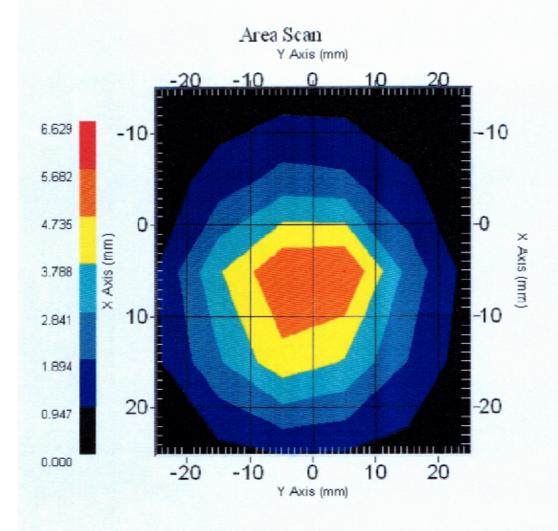
S11 Parameter Return Loss

Division of APREL Laboratories.


SWR

Division of APREL Laboratories.

Smith Chart Dipole Impedance


8

This page has been reviewed for content and attested to by signature within this document.

Division of APREL Laboratories.

System Validation Results Using the Electrically Calibrated Dipole

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point	
2450 MHz	5.31	2.44	10.18	

This page has been reviewed for content and attested to by signature within this document.

Technologies Corp.	MODEL: MZ
NOT C. III. d. T. L. and in	
NCL Calibration Laboratories	
Division of APREL Laboratories.	
Test Equipment	
The test equipment used during Probe Cal and, current calibration status are listed an R:\NCL\Calibration Equipment\Instrument List	d located on the main APREL serv

10

This page has been reviewed for content and attested to by signature within this document.

APPENDIX D - TEST SYSTEM VERIFICATIONS SCANS

Liquid Measurement and System validation Result

2006-09-06

Stimulant	Freq [MHz]	Parameters	Liquid Temp [°C]	Target Value	Measured Value	Deviation [%]	Limits [%]
	2450	$\epsilon_{\rm r}$	22	52.7	52.8	0.19	±5
Body		σ	22	1.95	1.96	0.51	±5
		1g SAR	22	56.84	57.3	0.81	±10
	2450	$\epsilon_{\rm r}$	22	39.2	38.9	-0.76	±5
Head		σ	22	1.80	1.79	-0.56	±5
		1g SAR	22	52.4	51.9	-0.95	±10

 $[\]varepsilon_r$ = relative permittivity, σ = conductivity and ρ =1000kg/m³

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Validation for Body

DUT: Dipole 2450 MHz; Type: D-2450-S-1; Serial: BCL-141

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 52.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

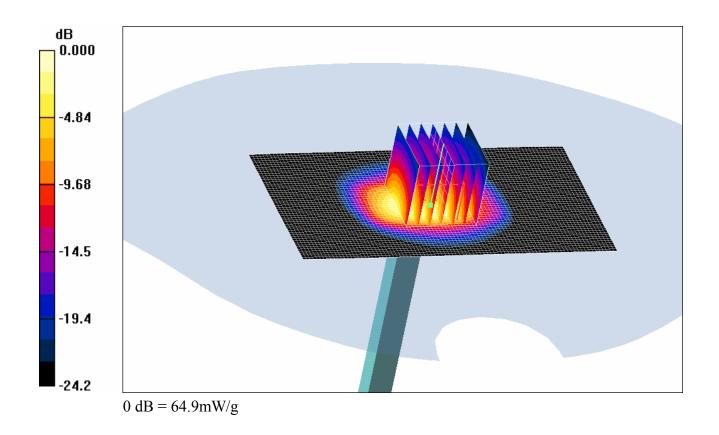
DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(4.27, 4.27, 4.27); Calibrated: 5/02/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 10/18/2005

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032


Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=10mm, Pin=1W /**Area Scan (51x91x1):** Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 65.7 mW/g

d=10mm, Pin=1W /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 186.5 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 137.4 W/kg

SAR(1 g) = 57.3 mW/g; SAR(10 g) = 24.4 mW/gMaximum value of SAR (measured) = 64.9 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

System Validation for Head

DUT: Dipole 2450 MHz; Type: D-2450-S-1; Serial: BCL-141

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 1.79 \text{ mho/m}$; $\varepsilon_r = 38.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1604; ConvF(4.60, 4.60, 4.60); Calibrated: 5/02/2006

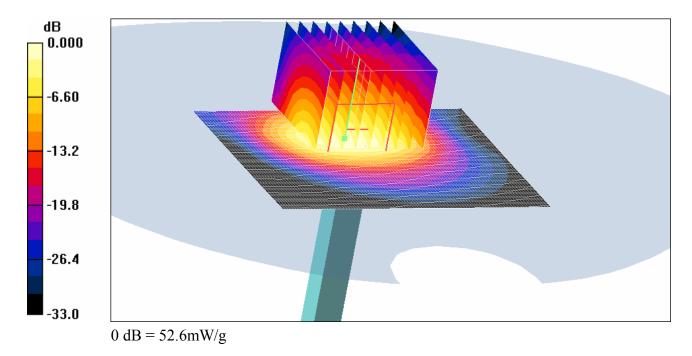
• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 10/18/2005

Phantom: SAM with CRP; Type: SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

d=10mm, Pin=1W /**Area Scan (81x101x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 55.1 mW/g


d=10mm, Pin=1W /Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 198.4 V/m; Power Drift = 0.331 dB

Peak SAR (extrapolated) = 125.1 W/kg

SAR(1 g) = 51.9 mW/g; SAR(10 g) = 23.8 mW/g

Maximum value of SAR (measured) = 52.6 mW/g

