


ZEBRA TECHNOLOGIES CORP

P4T PRINTER WITH BLUETOOTH RADIO

Model: ZBR4WA

20 August 2008

Report No.: SL08041104-ZBR-024 (15.247)(P4T-BT)
(This report supersedes NONE)

Modifications made to the product : None

This Test Report is Issued Under the Authority of:

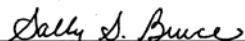
Choon Sian Ooi Test Engineer	Leslie Bai Engineering Reviewer

This test report may be reproduced in full only.
Test result presented in this test report is applicable to the representative sample only.

SIEMIC ACREDITATION DETAILS: NVLAP Lab Code: 200729-0

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005**NVLAP LAB CODE: 200729-0****SIEMIC Laboratories**
San Jose, CA


*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO-ILAC-IAF Communiqué dated 18 June 2005).*

2008-01-01 through 2008-12-31

Effective dates

Sally S. Bruce

For the National Institute of Standards and Technology

SIEMIC ACREDITATION DETAILS: FCC Registration No. 783147

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046

December 20, 2007

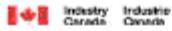
Registration Number: 783147

SIEMIC Laboratories
2206 Ringwood Avenue,
San Jose, CA 95131

Attention: Leslie Bai

Re: Measurement facility located at San Jose
3 & 10 meter site
Date of Renewal: December 20, 2007

Dear Sir or Madam:


Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish
Industry Analyst

SIEMIC ACREDITATION DETAILS: Industry of Canada Registration No. 4842-1

May 23rd, 2008

OLR-HLL: 46405-4842

Submission No: 126129

 Siemic Inc.
 2205 Ringwood Ave.
 San Jose CA 95131
 USA

Attention: Leslie Bai

Dear Sir/Madame:

The Bureau has received your application for the registration / renewal of a 310m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (4842A-1). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please be informed that the Bureau is now utilizing a new site numbering scheme in order to simplify the electronic filing process. Our goal is to reduce the number of secondary codes associated to one particular company. The following changes have been made to your record.

- Your primary code is: **4842**
- The company number associated to the site(s) located at the above address is: **4842A**
- The table below is a summary of the changes made to the unique site registration number(s):

New Site Number	Obsolete Site Number	Description of Site	Expiry Date (YYYY-MM-DD)
4842A-1	4842-1	3m Chamber	2010-05-23

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2003 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2003 shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 meter OATS or 3 meter chamber). If the test facility is not accredited to ANSI C63.4-2003 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval no. to exceed two years. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL: http://strategis.ic.gc.ca/epic/internet/ineeb-blst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca. Please reference our file and submission number above for all correspondence.

Yours sincerely,

S. Pauls
 Test & Measurement Specialist
 Certification and Accreditation Bureau
 1700 Caledon Ave, Building 94
 Mississauga, Ontario L3L 1K6

SIEMIC ACREDITATION DETAILS: Japan VCCI Registration No. 2195

**Voluntary Control Council for Interference
by Information Technology Equipment**
7F MOA Bldg, 2-3-5, Azabudai,
Minato-Ku, Tokyo, Japan, 106-0041
Tel+81-3-5575-3138
Fax+81-3-5575-3137
<http://www.vcciar.jp>

February 12, 2004

TO: SIEMIC, INC.

Membership NO: 2195

We confirmed your payment for annual membership fee and admission fee. Thank you very much for your remitting.

Please find enclosed VCCI documents. As admission fee and annual membership fee were confirmed, your company registered as VCCI official member.

From now on, it is possible for your company to submit conformity verification report or/and application for registration of measurement facilities.

Please find necessary forms for your submission from VCCI web-site.
www.vcciar.jp

When you submit conformity verification report, please submit to Ms. Yoko Inagaki / inagaki@vcciar.jp and application for registration of measurement facilities, please submit to Mr. Masaru Denda / denda@vcciar.jp

Their address, phone and fax number are absolutely same as L. Please refer address indicated on top right-hand corner of this page.

If you have any other questions regarding membership, feel free to contact me.
Thank you very much.

Best Regards,

Naoko Hori (Ms.)
VCCI
hori@vcciar.jp

Enclosure

SIEMIC ACREDITATION DETAILS: Japan RF Technologies Accreditation No. MRF050927

RFT

Certificate

This is to certify that the
Quality Management System
of

SIEMIC , Inc.

2206 Ringwood Avenue
San Jose, California 95131 U.S.A

has been authorized to carry out Japan Specified Radio Equipment test by
order and under supervision of RF Technologies Co., Ltd. according to
Notification No.88 of Radio Law.

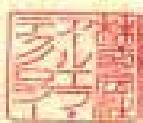
An assessment of the laboratory was conducted according to the "Procedure and
Conditions for Appointments of 2.4GHz Band Low power data communications system
that Bluetooth and Wireless LAN test with reference to ISO/IEC 17025
by an RF Technologies Co., Ltd. auditor.

Audit Report No. MRF050927

Kazuyuki Sanashina

Auditor
RF Technologies Co., Ltd.

Toshihiro Kogami


President
RF Technologies Co., Ltd.

Audit Date
September 27th, 2005

Issued Date
October 5th, 2005

This Certificate is valid until **September 26th 2006 or next schedule audit.**

No.006 Registered Certification Body
RF Technologies Co., Ltd.
472, Nippa-cho, Kohoku-ku, Yokohama, 223-0057, Japan

SIEMIC ACREDITATION DETAILS: Korea MIC Lab Code: KR0032

시험기관지정서
Certificate
of Designated Testing Laboratory

지정번호(No.) : KR0032

시험기관명 : (주)현대고정인증기술원

(Name of Lab.) (Hyundai Calibration & Certification Technologies Co., Ltd)

주 소 : 경기도 이천시 부발읍 아미리 산136-1

(Address) (137-1, Ami-ri, Bubal-eup, Icheon-si, Kyunggi-Do, Korea)
2206 Ringwood Avenue San Jose, CA, USA.

시험분야 및 범위 : 유선(Telecommunication Part)

(Area & Category) 무선(Radio Communication Part)

전자파장해(EMI) : 미국지사 포함

전자파내성(EMS) : 미국지사 포함

전기안전(Safety)

전자파흡수율(SAR)

위 기관을 정보통신기기시험기관지정및관리등에관한규칙에
의해 정보통신기기시험기관으로 지정합니다.

*This is to certify that
the above mentioned laboratory is designated
as the testing laboratory in accordance with
the Regulations on Designation of Testing Laboratory
for Information and Communication Equipment.*

2005년(Year) 7월(Month) 5일(Date)

전파연구소장

*Director General of Radio Research Laboratory
Ministry of Information and Communication
Republic of Korea*

SIEMIC ACREDITATION DETAILS: Korea CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
 Gaithersburg, Maryland 20889

April 17, 2006

Mr. Leslie Bai
 SIEMIC Laboratories
 2206 Ringwood Avenue
 San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Ministry of Informatics and Communication's Radio Research Laboratory (RRL) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA. The pertinent information about your laboratory's designation is as follows:

CAB Name: SIEMIC Laboratories
 Identification No.: US0160
 Scope:

Coverage	Standards	Date of Recognition
Electro-Magnetic Interference	1. RRL Notice No. 2005-82: Technical Requirements for Electromagnetic Interference 2. Annex 8(KN-22), RRL Notice No. 2005-131: Conformity Assessment Procedure for Electromagnetic Interference	April 13, 2006
Electro Magnetic Susceptibility	1. RRL Notice No. 2005-130: Technical Requirements for Electromagnetic Susceptibility 2. Annex 1-7(KN-61000-4-2, -4-3, -4-4, -4-5, -4-6, -4-8, -4-11), RRL Notice No. 2005-132: Conformity Assessment Procedure for Electromagnetic Susceptibility	April 13, 2006

You may submit test data to RRL to verify that the equipment to be imported into Korea satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements.

The names of all recognized CABs will be posted on the NIST website at <http://ts.nist.gov/mra>. If you have any questions please contact Mr. Jagindar (Joe) Dhillon at (301) 975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman
 Group Leader, Standards Coordination and Conformity Group

cc: Jagindar Dhillon

SIEMIC ACREDITATION DETAILS: Taiwan BSMI Accreditation No. SL2-IN-E-1130R

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Gaithersburg, Maryland 20889

May 3, 2006

Mr. Leslie Bai
SIEMIC Laboratories
2206 Ringwood Avenue
San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that your laboratory has been recognized by the Chinese Taipei's Bureau of Standards, Metrology, and Inspection (BSMI) under the Asia Pacific Economic Cooperation (APEC) Mutual Recognition Arrangement (MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, **Phase I** Procedures, of the APEC Tel MRA. You may submit test data to BSMI to verify that the equipment to be imported into Chinese Taipei satisfies the applicable requirements. The designation of your organization will remain in force as long as its accreditation for the designated scope remains valid and comply with the designation requirements. The pertinent designation information is as follows:

- BSMI number: **SL2-IN-E-1130R** (Must be applied to the test reports)
- U.S. Identification No: **US0160**
- Scope of Designation: **CNS 13438**
- Authorized signatory: **Mr. Leslie Bai**

The names of all recognized CABs will be posted on the NIST website at <http://ts.nist.gov/mra>. If you have any questions, please contact Mr. Dhillon at 301-975-5521. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman
Group Leader, Standards Coordination and Conformity Group

cc: Jagindar Dhillon

SIEMIC ACREDITATION DETAILS: Taiwan NCC CAB ID: US0160

UNITED STATES DEPARTMENT OF COMMERCE
National Institute of Standards and Technology
Gaithersburg, Maryland 20889

August 8, 2006

Mr. Leslie Bai
SIEMIC Laboratories
2206 Ringwood Avenue
San Jose, CA 95131

Dear Mr. Bai:

I am pleased to inform you that SIEMIC Laboratories has been recognized by the Chinese Taipei's National Communications Commission (NCC) under the Asia Pacific Economic Cooperation for Telecommunications and Information, Mutual Recognition Arrangement (APEC Tel MRA). Your laboratory is now designated to act as a Conformity Assessment Body (CAB) under Appendix B, Phase I Procedures, of the APEC Tel MRA.

You may submit test data to NCC to verify that the equipment to be imported into Chinese Taipei satisfies their applicable requirements using the following guidelines:

- Your laboratory's assigned 6-digit U.S. identification number is **US0160**. You should reference this number in your correspondence.
- The scope of designation is limited to **LP9002**. Your designation will remain in force as long as your accreditation remains valid for the scope of designation.

If you have any questions please contact Mr. Joginder Dhillon via email at dhillon@nist.gov or via fax at 301-975-5414. The names of all recognized laboratories will be posted on the NIST website at <http://ts.nist.gov/mra>. We appreciate your continued interest in our international conformity assessment activities.

Sincerely,

David F. Alderman
Group Leader, Standards Coordination and Conformity Group

cc: Joginder Dhillon

SIEMIC ACREDITATION DETAILS: Mexico NOM Recognition

CANARA NACIONAL
DE LA INDUSTRIA
ELECTRONICA, DE
TELECOMUNICACIONES
E INFORMATICA

Laboratorio Valentin V. Rivero

Méjico D.F. a 16 de octubre de 2008.

LESLIE BAI
DIRECTOR OF CERTIFICATION
SIEMIC LABORATORIES, INC.
ACCEESSING GLOBAL MARKETS
P R E S E N T E

En contestación a su escrito de fecha 5 de septiembre del año en curso, le comento que estamos muy interesados en su intención de firmar un Acuerdo de Reconocimiento Mutuo, para lo cual adjunto a este escrito encontrara el Acuerdo en idioma inglés y español prellenado de los cuales le pido sea revisado y en su caso corregido, para que si está de acuerdo poder firmarlo para mandarlo con las autoridades Mexicanas para su visto bueno y así poder ejercer dicho acuerdo.

Aprovecho este escrito para mencionarle que nuestro intermedio gestor será la empresa Isabel de México, S. A. de C. V., empresa que ha colaborado durante mucho tiempo con nosotros en lo referente a la evaluación de la conformidad y que cuenta con amplia experiencia en la gestión de la certificación de cumplimiento con Normas Oficiales Mexicanas de producto en México.

Me despido de usted enviándole un cordial saludo y esperando sus comentarios al Acuerdo que nos ocupa.

Atentamente:

Ing. Faustino Sánchez González
Gerente Técnico del Laboratorio de
CANIETI

SIEMIC ACREDITATION DETAILS: Hong Kong OFTA Recognition No. D23/16V

Your Ref. 叢函號 : D23/16 V
Our Ref. 本局號 :

Telephone 電話 : (852) 2961 6320
(852) 2838 5004
Fax No. 圖文傳真 :
E-mail 電郵地址 : 20 July 2005

Mr. Leslie Bai
Director of Certification,
SIEMIC Laboratories
2206 Ringwood Avenue
San Jose, California 95131
USA

Dear Mr. Bai,

Application of Recognised Testing Agency (RTA)

Referring your submission of 28 June 2005 in relation to the application of RTA, I am pleased to inform you that OFTA has appointed SIEMIC Laboratories (SIEMIC) as a Recognised Testing Agency (RTA) :

Please note that, under the Hong Kong Telecommunications Equipment Evaluation and Certification (HKTEC) Scheme, SIEMIC is authorized to conduct evaluation tests on telecommunications equipment against the following HKTA specifications :

Scope of recognition (HKTA Specifications) :


1001, 1002, 1004, 1006, 1007, 1008
1010, 1015, 1016
1022, 1026, 1027, 1029
1030, 1031, 1032, 1033, 1034, 1035, 1039
1041, 1042, 1043, 1045, 1047, 1048
2001

You are requested to refer to and comply with the code of practice and guidelines for RTA as given in the Information Note OFTA 1411 "Recognised Testing Agency (RTA) for Conducting Evaluation Test of Telecommunications Equipment", which can be downloaded from OFTA's homepage at <http://www.ofta.gov.hk/tec/information-notes.html>.

If you have any queries, please do not hesitate to contact me.

Yours sincerely,

(K K Sin)
for Director-General
of Telecommunications

This page has been left blank intentionally.

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	16
2	TECHNICAL DETAILS.....	17
3	MODIFICATION	18
4	TEST SUMMARY	19
5	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS.....	20
	ANNEX A. TEST INSTRUMENT & METHOD	30
	ANNEX B EUT AND TEST SETUP PHOTOGRAPHS	34
	ANNEX C. TEST SETUP AND SUPPORTING EQUIPMENT.....	34
	ANNEX D USER MANUAL, BLOCK & CIRCUIT DIAGRAM.....	38

SIEMIC, INC.
Accessing global markets

Title: RF Test Report Zebra Technologies Corp ,Model : ZBR4WA
To FCC 15.247 2008, RSS 210 Issue 7: 2007

Serial# SL08041104-ZBR-024 (15.247)(P4T-BT)
Issue Date 20 August 2008
Page 15 of 38
www.siemic.com

This page has been left blank intentionally.

1 Executive Summary & EUT information

The purpose of this test programme was PCII application and to demonstrate compliance of the Zebra Technologies Corp , P4T Printer with Bluetooth Radio Model: ZBR4WA against the current Stipulated Standards. The P4T Printer with Bluetooth Radio have demonstrated compliance with the FCC 15.247 2008 and RSS 210 Issue 7 2007.

EUT Information

EUT Description	: Zebra Technologies will only use the ZBR4WA radio within Zebra products, primarily portable printers. Both the radio and the antenna will be mounted inside the product and will not be user accessible. Nothing that Zebra does in the external circuitry surrounding the ZBR4WA module will have any affect on either the transmitter or receiver characteristics of the Taiyo-Yuden module. The only affect that Zebra has on the RF performance is the Zebra custom antenna that is used in each printer. Bluetooth radios are designed to operate in the international ISM Band from 2.400 to 2.4835 GHZ. They are frequency-hopping radios with 79 channels at a channel spacing of 1 MHz. The modulation is Gaussian Frequency Shift Keying with a BT = 0.5. The modulation index is between 0.28 and 0.35. The raw data rate is 1 million symbols / second.
Model No	: ZBR4WA
Serial No	: 0010-00-75
Input Power	: 100~240 VAC, 50~60Hz 24 VDC , 2.92A Power Supply ➔ Model : FSP048-DBCA2
Classification Per Stipulated Test Standard	: Spread Spectrum System / Device

2 TECHNICAL DETAILS

Purpose	Compliance testing of Buletooth Radio Module with stipulated standard
Applicant / Client	Zebra Technologies Corp
Manufacturer	Zebra Technologies Corp 333 Corporate Woods Parkway. Vernon Hills, IL 60061
Laboratory performing the tests	SIEMIC Laboratories
Test report reference number	SL08041104-ZBR-024 (15.247)(P4T-BT)
Date EUT received	05 July 2008
Standard applied	47 CFR §15.247 (2008) and RSS 210 Issue 7: 2007
Dates of test (from - to)	July 14-July 25 2008
No of Units:	1
Equipment Category:	DSS
Trade Name:	Zebra Technologies Corp
Model :	ZBR4WA
RF Operating Frequency (ies)	2402 to 2480 MHz
Number of Channels :	79
Modulation :	Gaussian Frequency Shift Keying
FCC ID :	I28MD-ZBR4WA
IC ID :	3798B-ZBR4WA

Title: RF Test Report Zebra Technologies Corp ,Model : ZBR4WA
To FCC 15.247 2008, RSS 210 Issue 7:2007

Serial# SL08041104-ZBR-024 (15.247)(P4T-BT)
Issue Date 20 August 2008
Page 18 of 38
www.siemic.com

3 MODIFICATION

NONE

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All Testing has been performed according to below product classification:
Spread Spectrum System / Device

Test Results Summary

Test Standard		Description	Pass / Fail
CFR 47 Part 15.247: 2007	RSS 210 Issue 7: 2007		
15.203		Antenna Requirement	Pass
15.205	RSS210(A8.5)	Restricted Band of Operation	Pass
15.207(a)	RSSGen(7.2.2)	Conducted Emissions Voltage	Pass
15.247(a)(1)	RSS210(A8.1)	Channel Separation	N/A
15.247(a)(1)	RSS210(A8.1)	Occupied Bandwidth	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(a)(2)	RSS210 (A8.2)	Bandwidth	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(a)(1)	RSS210(A8.1)	Number of Hopping Channels	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(a)(1)	RSS210(A8.1)	Time of Occupancy	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(b)	RSS210(A8.4)	Output Power	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(c)	RSS210(A8.4)	Antenna Gain > 6 dBi	N/A
15.247(d)	RSS210(A8.5)	Conducted Spurious Emissions	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.209; 15.247(d)	RSS210(A8.5)	Radiated Spurious Emissions	Pass
15.247(e)	RSS210(A8.3)	Power Spectral Density	N/A
15.247(f)	RSS210(A8.3)	Hybrid System Requirement	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(g)	RSS210(A8.1)	Hopping Capability	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(h)	RSS210(A8.1)	Hopping Coordination Requirement	Pass - Refer to Limited Modular Approval FCC ID:ZBR4WA Report
15.247(i)	RSSGen(5.5)	RF Exposure requirement	Pass
	RSSGen(4.8)	Receiver Spurious Emissions	Pass

ANSI C63.4: 2003/ RSS-Gen Issue 2: 2007

PS: All measurement uncertainties are not taken into consideration for all presented test result.

5 MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

5.1 Antenna Requirement

Requirement(s): 47 CFR §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna requirement must meet at least one of the following:

- a) Antenna must be permanently attached to the device.
- b) Antenna must use a unique type of connector to attach to the device.
- c) Device must be professionally installed. Installer shall be responsible for ensuring that the correct antenna is employed with the device.

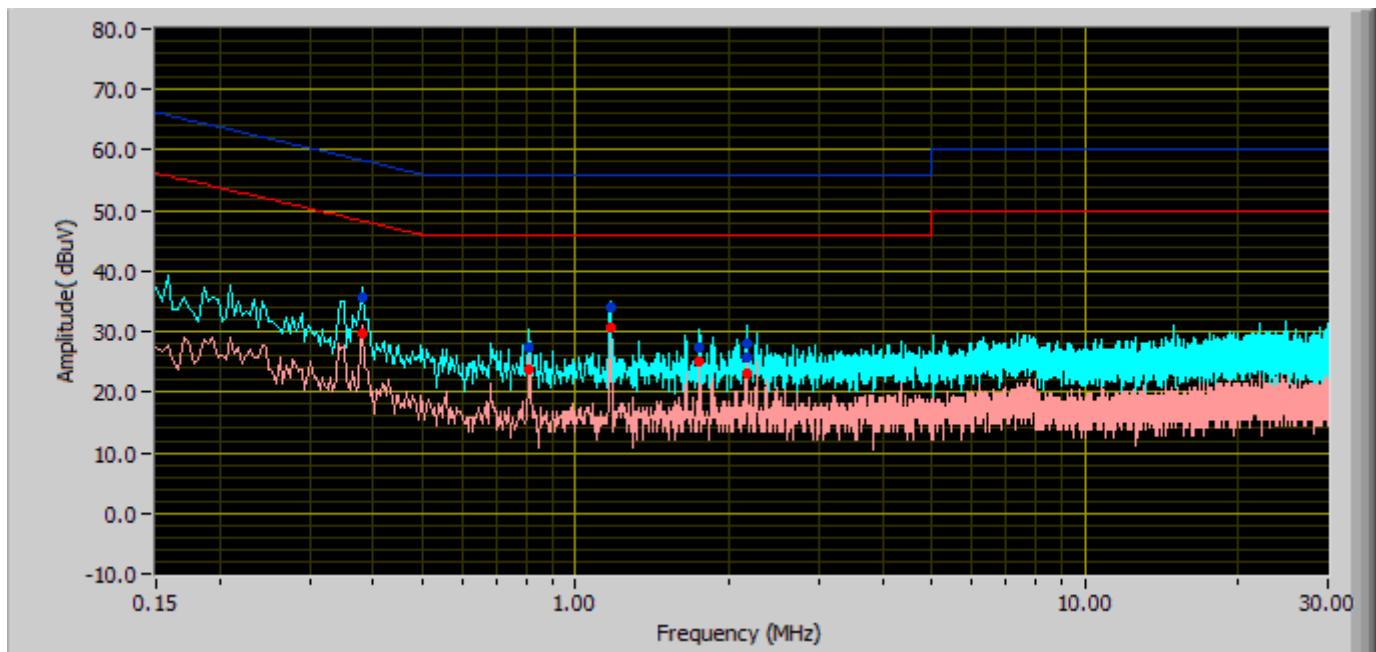
The antenna is printed inverted antenna (CQ 18673-G1M). Antenna maximum gain is 2dBi for 2400–2483.5 MHz band

5.2 Conducted Emissions Voltage

Requirement :

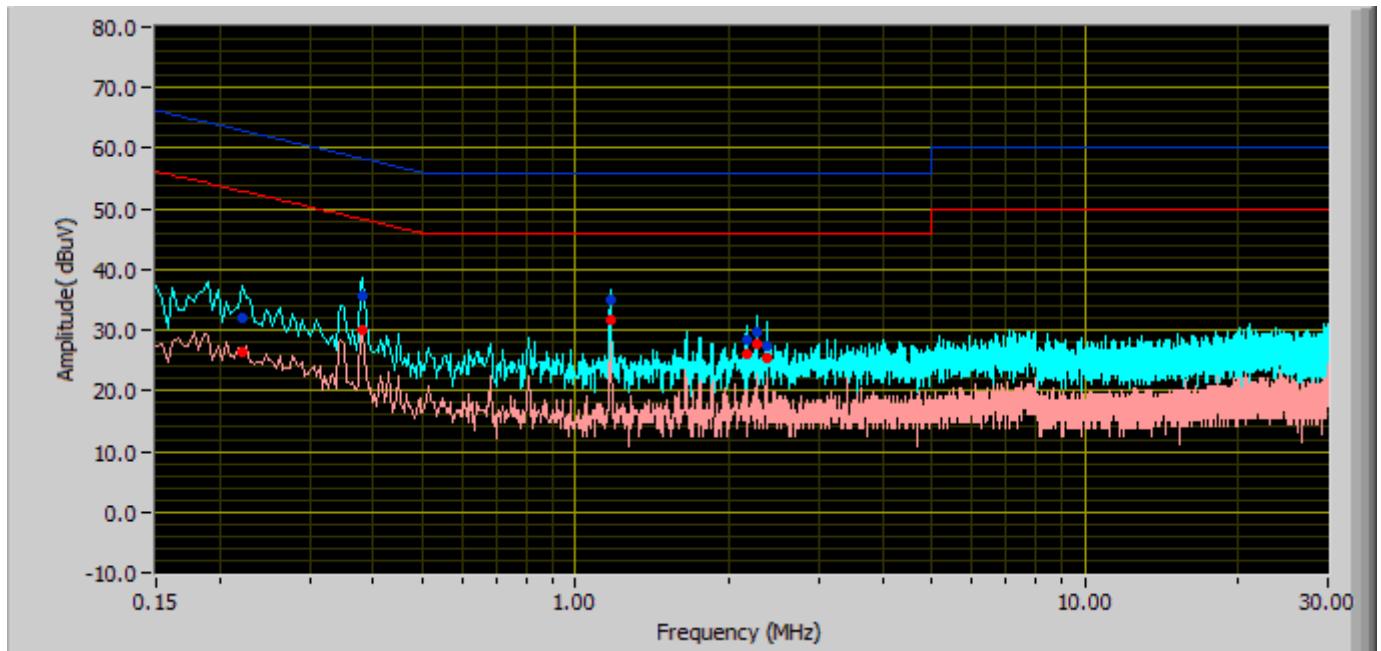
Frequency of emission (MHz)	Conducted limit (dB μ V)	
	Quasi-peak	Average
0.15–0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

*Decreases with the logarithm of the frequency.


Procedures:

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
3. Conducted Emissions Measurement Uncertainty
 All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz – 30MHz (Average & Quasi-peak) is ± 3.86 dB.
4. Environmental Conditions Temperature 25°C
 Relative Humidity 50%
 Atmospheric Pressure 1019mbar

Test Date : July 14-July 25 2008


Tested By :Choon Sian Ooi

Results:

120V, 60Hz, Neutral Line

Frequency (MHz)	QP Value (dB μ V)	Class B Limit (dB)	Margin (dB)	Avg Value (dB μ V)	Class B Limit (dB)	Margin (dB)	Line
0.38	35.56	58.28	-22.71	29.54	48.28	-18.73	Neutral
1.17	33.97	56.00	-22.03	30.85	46.00	-15.15	Neutral
2.16	28.10	56.00	-27.90	25.68	46.00	-20.32	Neutral
2.17	25.68	56.00	-30.32	23.18	46.00	-22.82	Neutral
1.75	27.36	56.00	-28.64	25.03	46.00	-20.97	Neutral
0.81	27.39	56.00	-28.61	23.61	46.00	-22.39	Neutral

Quasi-Peak Limit

Average Limit

120V, 60Hz, Phase Line

Frequency (MHz)	QP Value (dB μ V)	Class B Limit (dB)	Margin (dB)	Avg Value (dB μ V)	Class B Limit (dB)	Margin (dB)	Line
1.17	34.95	56.00	-21.05	31.54	46.00	-14.46	Phase
0.38	35.77	58.28	-22.50	30.12	48.28	-18.15	Phase
2.27	29.59	56.00	-26.41	27.80	46.00	-18.20	Phase
2.37	27.54	56.00	-28.46	25.54	46.00	-20.46	Phase
2.16	28.29	56.00	-27.71	26.17	46.00	-19.83	Phase
0.22	32.11	62.87	-30.76	26.51	52.87	-26.36	Phase

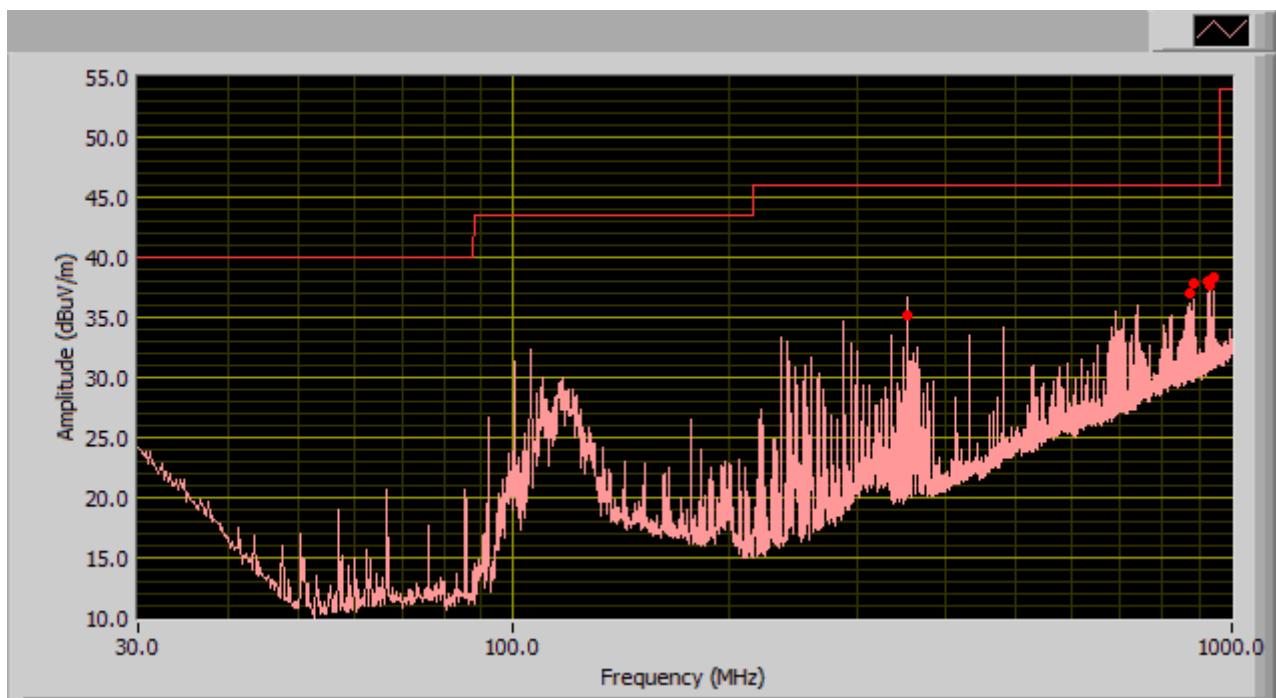
5.10 Radiated Spurious Emission < 1GHz

Test Date : July 14-July 25 2008

Tested By :Choon Sian Ooi

Standard Requirement: 47 CFR §15.247(d)

Procedures: Radiated emissions were measured according to ANSI C63.4. The EUT was set to transmit at the highest output power. The EUT was set to transmit at mid channel. Note that setting the channel other than mid, the spurious emissions are the same.

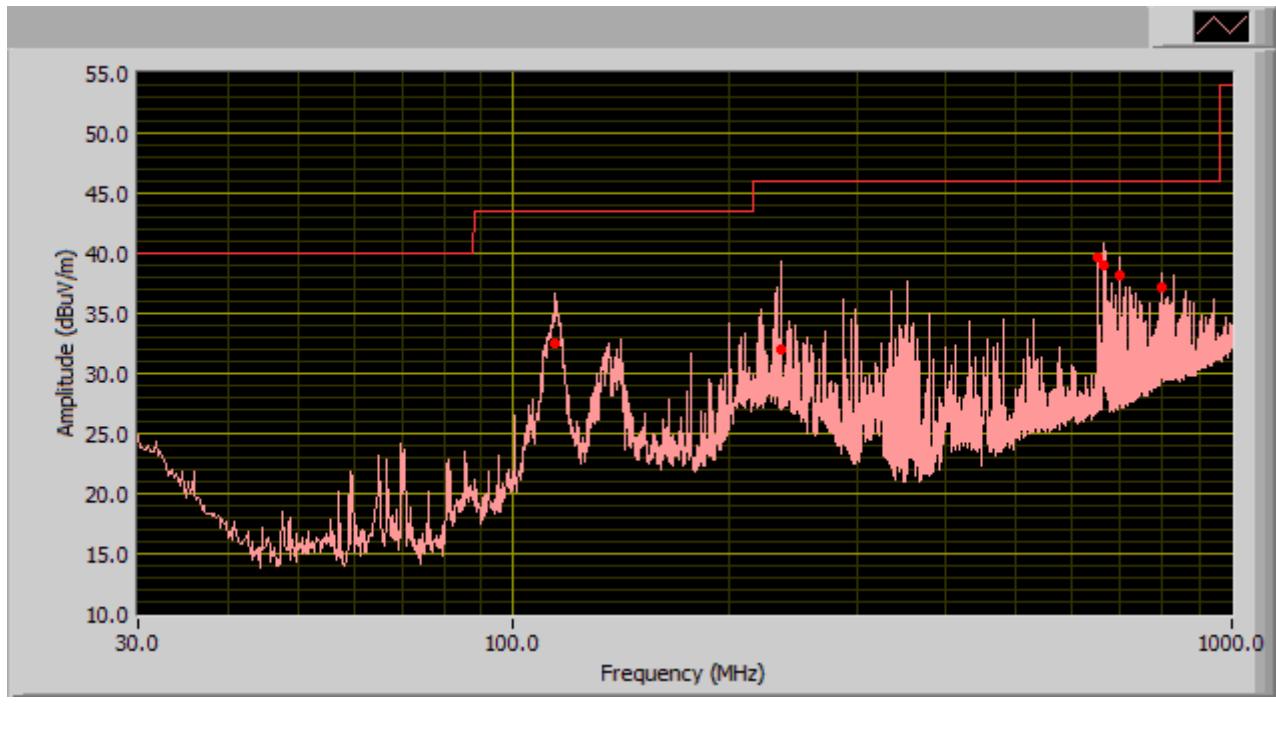

The limit is converted from microvolts/meter to decibel microvolts/meter.

Sample Calculation: Corrected Amplitude = Raw Amplitude (dBuV/m) + ACF(dB) + Cable Loss(dB)

Test Result:

Radiated Emission Plot (Transmit Mode)

Test Data


Limit

Test Data

Frequency (MHz)	Quasi-Peak (dB μ V/m) @ 3m	Antenna height (cm)	Turntable position (deg)	Polarity	Limit (dB μ V/m)	Margin (dB)
932.22	37.73	103.00	287.00	V	46.00	-8.27
943.66	38.29	325.00	81.00	H	46.00	-7.71
925.52	38.05	395.00	284.00	H	46.00	-7.95
353.86	35.21	107.00	251.00	H	46.00	-10.79
884.66	37.83	254.00	337.00	H	46.00	-8.17
873.14	37.04	149.00	83.00	H	46.00	-8.96

Radiated Emission Plot (Receive Mode)

Test Data

Test Data

Frequency (MHz)	Quasi-Peak (dB μ V/m) @ 3m	Antenna height (cm)	Turntable position (deg)	Polarity	Limit (dB μ V/m)	Margin (dB)
664.38	38.79	100.00	222.00	H	46.00	-7.21
699.88	38.20	100.00	337.00	H	46.00	-7.80
235.83	31.95	100.00	312.00	H	46.00	-14.05
648.67	39.18	100.00	215.00	H	46.00	-6.82
114.39	32.65	199.00	263.00	H	43.50	-10.85
800.76	37.18	100.00	351.00	H	46.00	-8.82

5.10 Radiated Spurious Emissions > 1GHz & Band Edge

Test Date : July 14-July 25 2008

Test Date : July 11 / July 23 /

Standard Requirement: 47 CFR §15.247(d)

Procedures: Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. Investigated up to 10th harmonic of the operating frequency.

Sample Calculation:

EUT Field Strength = Raw Amplitude(dB μ V/m) – Amplifier Gain(dB) + Antenna Factor(dB) + Cable Loss(dB) + Filter Attenuation(dB, if used)

Test Result:

Low Channel

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H / V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.804	36.67	180	155	v	33	4.125	32.49	41.305	74	-32.695	Peak
4.804	37.5	180	155	h	33	4.125	32.49	42.135	74	-31.865	Peak
4.804	23.33	180	155	v	33	4.125	32.49	27.965	54	-26.035	Ave
4.804	23.17	180	155	h	33	4.125	32.49	27.805	54	-26.195	Ave
7.206	34.32	180	155	v	35.5	5.22	32.39	42.65	74	-31.35	Peak
7.206	33.12	180	155	h	35.5	5.22	32.39	41.45	74	-32.55	Peak
7.206	24.17	180	155	v	35.5	5.22	32.39	32.5	54	-21.5	Ave
7.206	24.02	180	155	h	35.5	5.22	32.39	32.35	54	-21.65	Ave
9.608	36.67	180	155	v	39.2	6.255	32.32	49.805	74	-24.195	Peak
9.608	35.23	180	155	h	39.2	6.255	32.32	48.365	74	-25.635	Peak
9.608	23.12	180	155	v	39.2	6.255	32.32	36.255	54	-17.745	Ave
9.608	23.12	180	155	h	39.2	6.255	32.32	36.255	54	-17.745	Ave

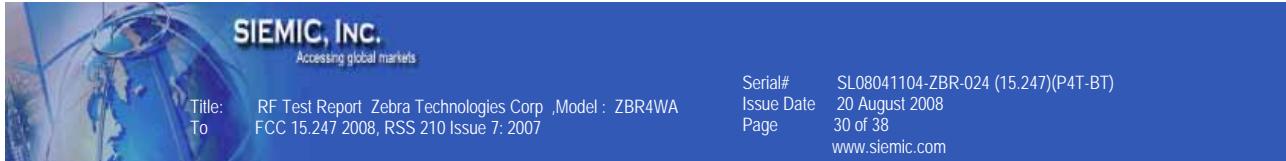
Emission was scanned up to 25GHz.

Mid Channel

Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H / V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.882	35.1	180	155	v	33	4.125	32.49	39.735	74	-34.265	Peak
4.882	34.81	180	155	h	33	4.125	32.49	39.445	74	-34.555	Peak
4.882	24.81	180	155	v	33	4.125	32.49	29.445	54	-24.555	Ave
4.882	23.91	180	155	h	33	4.125	32.49	28.545	54	-25.455	Ave
7.323	35.71	180	155	v	35.5	5.22	32.39	44.04	74	-29.96	Peak
7.323	34.12	81	155	h	35.5	5.22	32.39	42.45	74	-31.55	Peak
7.323	24.91	180	155	v	35.5	5.22	32.39	33.24	54	-20.76	Ave
7.323	24.51	180	155	h	35.5	5.22	32.39	32.84	54	-21.16	Ave
9.764	36.41	180	155	v	39.2	6.255	32.32	49.545	74	-24.455	Peak
9.764	35.91	180	155	h	39.2	6.255	32.32	49.045	74	-24.955	Peak
9.764	24.81	180	155	v	39.2	6.255	32.32	37.945	54	-16.055	Ave
9.764	23.71	180	155	h	39.2	6.255	32.32	36.845	54	-17.155	Ave

Emission was scanned up to 25GHz.

High Channel


Frequency	Reading	Direction	Height	Polar	Antenna Loss	Cable loss	Amplifier	Corrected Reading	15.247/15.209	15.247/15.209	
GHz	(dBuV/m)	Degree	Meter	H / V	(dB)	(dB)	(dB)	(dBuV/m)	Limit (dBuV/m)	Margin	Comments
4.96	36.2	180	155	v	33	4.125	32.49	40.835	74	-33.165	Peak
4.96	35.34	180	155	h	33	4.125	32.49	39.975	74	-34.025	Peak
4.96	25.13	180	155	v	33	4.125	32.49	29.765	54	-24.235	Ave
4.96	24.12	180	155	h	33	4.125	32.49	28.755	54	-25.245	Ave
7.44	35.99	180	155	v	35.5	5.22	32.39	44.32	74	-29.68	Peak
7.44	34.71	180	155	h	35.5	5.22	32.39	43.04	74	-30.96	Peak
7.44	25.21	180	155	v	35.5	5.22	32.39	33.54	54	-20.46	Ave
7.44	24.11	180	155	h	35.5	5.22	32.39	32.44	54	-21.56	Ave
9.92	37.11	180	155	v	39.2	6.255	32.32	50.245	74	-23.755	Peak
9.92	36.11	180	155	h	39.2	6.255	32.32	49.245	74	-24.755	Peak
9.92	25.11	180	155	v	39.2	6.255	32.32	38.245	54	-15.755	Ave
9.92	24.41	180	155	h	39.2	6.255	32.32	37.545	54	-16.455	Ave

Emission was scanned up to 25GHz.

Band Edge

Channel	Polarity	Detector	Frequency	Result	Limit	Margin
Low Channel	V	Peak	2400	35.15	74	-38.85
Low Channel	H	Peak	2400	37.49	74	-36.51
Low Channel	V	Avg	2400	22.82	54	-31.18
Low Channel	H	Avg	2400	23.99	54	-30.01

Channel	Polarity	Detector	Frequency	Result	Limit	Margin
High Channel	V	Peak	2483.5	31.82	74	-42.18
High Channel	H	Peak	2483.5	37.33	74	-36.67
High Channel	V	Avg	2483.5	19.82	54	-34.18
High Channel	H	Avg	2483.5	24.83	54	-29.17

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Manufacturer	Model	CAL Due Date
Spectrum Analyzer	HP	8564E	04/26/2009
EMI Receiver	Rohde & Schwarz	ESIB 40	04/25/2009
R&S LISN	R&S	ESH2-Z5	04/24/2009
CHASE LISN	Chase	MN2050B	04/24/2009
Antenna(1 ~18GHz)	Emco	3115	10/04/2008
Antenna (30MHz~2GHz)	Sunol Sciences	JB1	10/04/2008
Chamber	Lingren	3m	04/18/2009
Pre-Amplifier(1 ~ 26GHz)	HP	8449	04/24/2009
DMM	Fluke	73III	04/25/2009
Variac	KRM	AEEC-2090	See Note
DMM	Fluke	51II	See Note
Horn Antenna (18~40GHz)	Com Power	AH-840	03/19/2010
Microwave Pre-Amp (18~40GHz)	Com Power	PA-840	5/21/2010

Note: No calibration required.

Annex A.ii. CONDUCTED EMISSIONS TEST DESCRIPTION

Test Set-up

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table, as shown in Annex B.
2. The power supply for the EUT was fed through a $50\Omega/50\mu\text{H}$ EUT LISN, connected to filtered mains.
3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable.
4. All other supporting equipments were powered separately from another main supply.

Test Method

1. The EUT was switched on and allowed to warm up to its normal operating condition.
2. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver.
3. High peaks, relative to the limit line, were then selected.
4. The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 KHz. For FCC tests, only Quasi-peak measurements were made; while for CISPR/EN tests, both Quasi-peak and Average measurements were made.
5. Steps 2 to 4 were then repeated for the LIVE line (for AC mains) or DC line (for DC power).

Sample Calculation Example

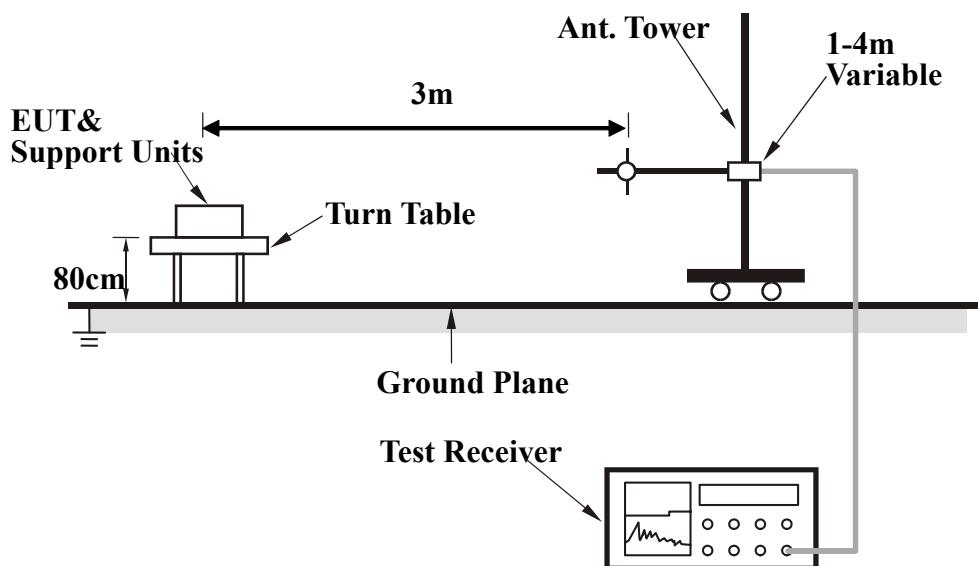
At 20 MHz limit = $250 \mu\text{V} = 47.96 \text{ dB}\mu\text{V}$

Transducer factor of LISN, pulse limiter & cable loss at 20 MHz = 11.20 dB

Q-P reading obtained directly from EMI Receiver = $40.00 \text{ dB}\mu\text{V}$
(Calibrated for system losses)

Therefore, Q-P margin = $47.96 - 40.00 = 7.96$ i.e. **7.96 dB below limit**

Annex A. iii RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 10th Harmonic , was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS).

Test Set-up

1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.
5. Repeat step 4 until all frequencies need to be measured were complete.
6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	Peak	100 kHz	100 kHz
Above 1000	Peak	1 MHz	1 MHz
	Average	1 MHz	10 Hz

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

$$\text{Peak} = \text{Reading} + \text{Corrected Factor}$$

where

$$\text{Corr. Factor} = \text{Antenna Factor} + \text{Cable Factor} - \text{Amplifier Gain (if any)}$$

And the average value is

$$\text{Average} = \text{Peak Value} + \text{Duty Factor or}$$

$$\text{Set RBW} = 1\text{MHz}, \text{VBW} = 10\text{Hz}.$$

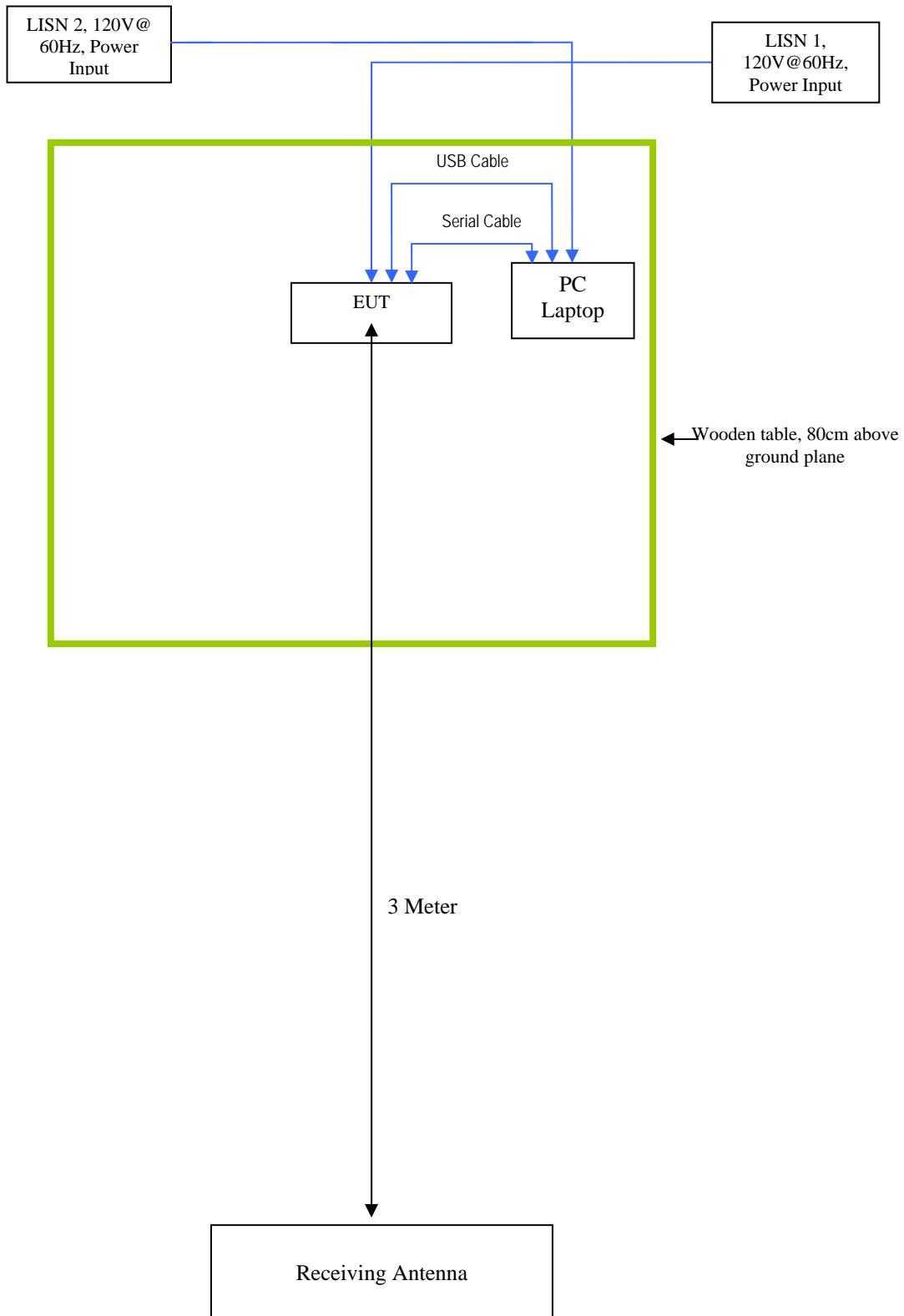
Note :

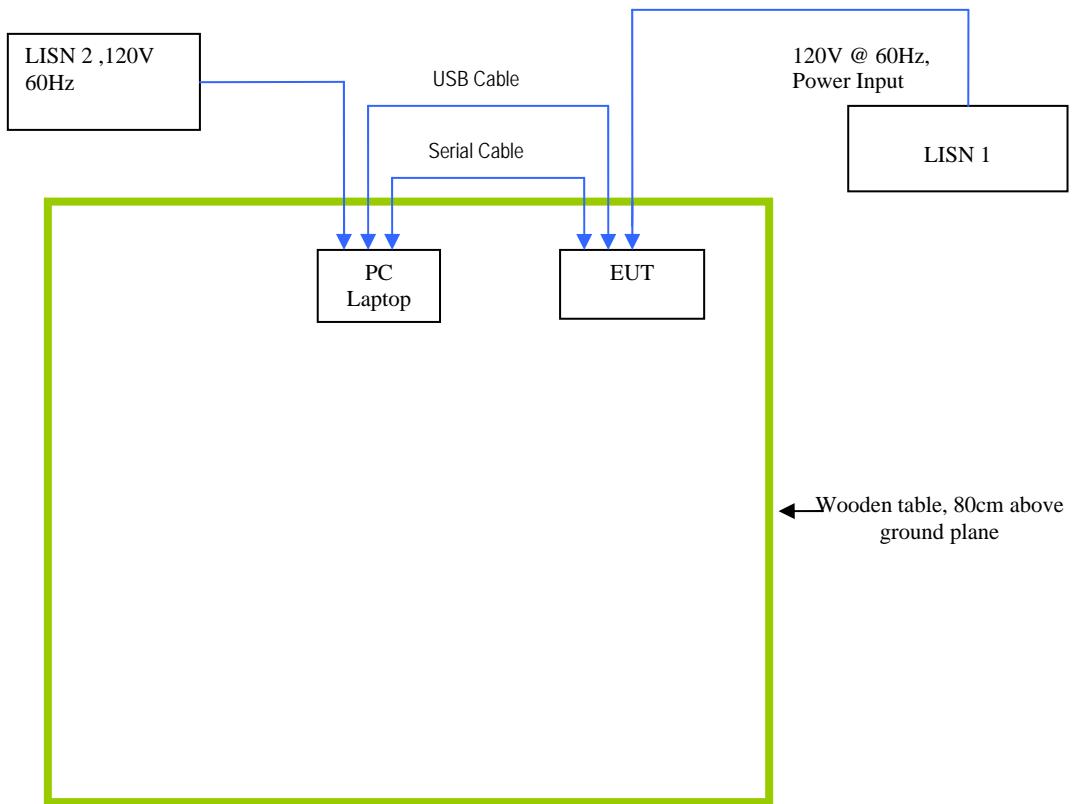
If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Annex B EUT AND TEST SETUP PHOTOGRAPHS

Please see the attachment

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

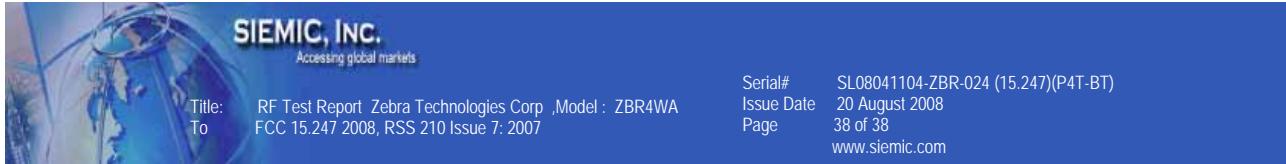

EUT TEST CONDITIONS


Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Equipment Description (Including Brand Name)	Model & Serial Number	Cable Description (List Length, Type & Purpose)
PC Laptop / DELL	Latitude DS520	USB & Serial Cable , 1meter From PC Laptop to EUT

Block Configuration Diagram for Radiated Emission



Block Configuration Diagram for Conducted Emission

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT was exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was connected to PC and configured using manufacturer's program for continuous printing to simulate the worst case.
Others Testing	The EUT was connected to PC and configured using manufacturer's program for TX mode with full power to simulate the worst case.

Annex D USER MANUAL, BLOCK & CIRCUIT DIAGRAM

Please see attachment