

Test report No. : 13403530H
Page : 1 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

RADIO TEST REPORT

Test Report No.: 13403530H

Applicant : **DENSO CORPORATION**

Type of EUT : Electronic Key

Model Number of EUT : 14FTB

FCC ID : HYQ14FTB

Test regulation : FCC Part 15 Subpart C: 2020

Test Result : Complied (Refer to SECTION 3.2)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report covers Radio technical requirements.

 It does not cover administrative issues such as Manual or non-Radio test relative in the such as Manual or non-Radio test rela
 - It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 8. The information provided from the customer for this report is identified in Section 1.

Date of test:

Representative test engineer:

Junya Okuno

Engineer

Consumer Technology Division

Approved by:

Motoya Imura

Leader

Consumer Technology Division

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address,

http://japan.ul.com/resources/emc_accredited/

This report contains data that are not covered by the NVLAP accreditation.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 2 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

REVISION HISTORY

Original Test Report No.: 13403530H

Revision	Test report No.	Date	Page revised	Contents
-	13403530H	July 27, 2020	-	-
(Original)				

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 3 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

Reference: Abbreviations (Including words undescribed in this report)

MCS A2LA The American Association for Laboratory Accreditation Modulation and Coding Scheme AC Alternating Current MRA Mutual Recognition Arrangement AFH Adaptive Frequency Hopping N/A Not Applicable Amplitude Modulation NIST National Institute of Standards and Technology AMAmp, AMP Amplifier NS No signal detect. ANSI American National Standards Institute NSA Normalized Site Attenuation Ant, ANT Antenna NVLAP National Voluntary Laboratory Accreditation Program AP Access Point OBW Occupied Band Width ASK Amplitude Shift Keying **OFDM** Orthogonal Frequency Division Multiplexing Atten., ATT Attenuator P/M Power meter AVPCB Printed Circuit Board Average **BPSK** Binary Phase-Shift Keying PER Packet Error Rate BR Bluetooth Basic Rate PHY Physical Layer BTBluetooth PK Peak BT LE Bluetooth Low Energy PN Pseudo random Noise BandWidth BW PRBS Pseudo-Random Bit Sequence Cal Int Calibration Interval PSD Power Spectral Density CCK Complementary Code Keying QAM Quadrature Amplitude Modulation Ch., CH QP Quasi-Peak Comite International Special des Perturbations Radioelectriques CISPR QPSK Quadri-Phase Shift Keying CW Continuous Wave RBW Resolution Band Width DBPSK Differential BPSK RDS Radio Data System DC Direct Current RE Radio Equipment RF D-factor Distance factor Radio Frequency DFS Dynamic Frequency Selection RMS Root Mean Square DOPSK Differential OPSK RSS Radio Standards Specifications DSSS Direct Sequence Spread Spectrum Receiving RxSA, S/A EDR Enhanced Data Rate Spectrum Analyzer Equivalent Isotropically Radiated Power EIRP, e.i.r.p. SG Signal Generator SVSWR Site-Voltage Standing Wave Ratio **EMC** ElectroMagnetic Compatibility **EMI** ElectroMagnetic Interference TR Test Receiver ΕN European Norm Tx Transmitting ERP, e.r.p. Effective Radiated Power VRW Video BandWidth EU European Union Vert. Vertical Equipment Under Test EUT WLAN Wireless LAN Federal Communications Commission **FHSS** Frequency Hopping Spread Spectrum Frequency Modulation Freq. Frequency Frequency Shift Keying GFSK Gaussian Frequency-Shift Keying GNSS Global Navigation Satellite System GPS Global Positioning System Horizontal Hori. ICES Interference-Causing Equipment Standard IEC International Electrotechnical Commission IEEE Institute of Electrical and Electronics Engineers Intermediate Frequency ΙF ILAC International Laboratory Accreditation Conference ISED Innovation, Science and Economic Development Canada ISO International Organization for Standardization

UL Japan, Inc. Ise EMC Lab.

JAB

LAN

LIMS

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Japan Accreditation Board

Laboratory Information Management System

Local Area Network

Test report No. : 13403530H
Page : 4 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

CONTENTS PAGE SECTION 1: Equipment under test (EUT)......5 **SECTION 2: SECTION 3:** Operation of EUT during testing......10 **SECTION 4:** Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)11 **SECTION 5: SECTION 6: SECTION 7: APPENDIX 1:**

Test instruments 20

UL Japan, Inc. Ise EMC Lab.

APPENDIX 2: APPENDIX 3:

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 5 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

SECTION 1: Customer information

Company Name : DENSO CORPORATION

Address : 1-1, Showa-cho, Kariya-shi, Aichi-ken, 448-8661, Japan

Telephone Number : +81-566-20-3955 Facsimile Number : +81-566-25-4837 Contact Person : TAKAYUKI HATTORI

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Electronic Key

Model Number : 14FTB

Serial Number : Refer to SECTION 4.2

Rating : DC 3.0 V Receipt Date : July 3, 2020

Country of Mass-production : Japan, United States of America, China

Condition of EUT : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab

2.2 Product Description

Model: 14FTB (referred to as the EUT in this report) is a Electronic Key.

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 314.35 MHz / 315.10 MHz*

*These two different frequencies are not emitted simultaneously.

Modulation : FSK (F1D)

Type of Battery : One lithium battery
Antenna type : Built-in type (Fixed)
Clock frequency (Maximum) : 18.37 MHz Crystal

Radio Type : Receiver Frequency of Operation : 134.2 kHz *1)

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The test of receiver part was performed separately from this test report, and the conformability is confirmed.

Test report No. : 13403530H Page : 6 of 24 **Issued date** : July 27, 2020 : HYQ14FTB FCC ID

* Original model: 14FTB has two types; Type A and Type B. The worst case was confirmed with Type A and Type B at pre check.

The test was performed with Type A, which had the worst result.

*Original model No.: 14FTB has 4 switches. Variation models have 3 switches and 2 switches.

The differences of Original model and Variation models are the number of switches, and design.

They are completely identical in RF characteristics.

Therefore the test was performed with the representative original type which was the worst one.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 7 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 26, 2020 and effective July 27, 2020 except 15.258

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.231 Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 8.8	FCC: Section 15.207 ISED: RSS-Gen 8.8	N/A	N/A	*1)
Automatically Deactivate	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(a)(1) ISED: RSS-210 A1.1	N/A	Complied a)	Radiated
Electric Field Strength of Fundamental Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.12	FCC: Section 15.231(b) ISED: RSS-210 A1.2	3.8 dB 314.350 MHz Horizontal PK with Duty Factor	Complied# b)	Radiated
Electric Field Strength of Spurious Emission	FCC: ANSI C63.10:2013 6 Standard test methods ISED: RSS-Gen 6.13	FCC: Section 15.205 Section 15.209 Section 15.231(b) ISED: RSS-210 A1.2, 4.4 RSS-Gen 8.9	9.4 dB 2200.450 MHz Horizontal PK with Duty Factor	Complied b)	Radiated
-20dB Bandwidth	FCC: ANSI C63.10:2013 6 Standard test methods ISED: -	FCC: Section 15.231(c) ISED: Reference data	N/A	Complied c)	Radiated

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Automatically deactivate)
- b) Refer to APPENDIX 1 (data of Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission))
- c) Refer to APPENDIX 1 (data of -20 dB and 99% Occupied Bandwidth)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This test was performed with the New Battery (DC 3.0~V) and the constant voltage was supplied to the EUT during the tests. Therefore, the EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} The revision does not affect the test result conducted before its effective date.

^{*1)} The test is not applicable since the EUT does not have AC Mains.

Test report No. : 13403530H
Page : 8 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks	
99 % Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: RSS-210 A1.3	N/A	-	Radiated	
Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the following results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Radiated emission

Itadiated ciliissio	Kaulateu emission								
Measurement distance	Frequency ran	Uncertainty (+/-)							
3 m	9 kHz to 30 M	Hz	3.3 dB						
10 m			3.2 dB						
3 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB						
		(Vertical)	5.0 dB						
	200 MHz to 1000 MHz	(Horizontal)	5.2 dB						
		(Vertical)	6.3 dB						
10 m	30 MHz to 200 MHz	(Horizontal)	4.8 dB						
		(Vertical)	4.8 dB						
	200 MHz to 1000 MHz	(Horizontal)	5.0 dB						
		(Vertical)	5.0 dB						
3 m	1 GHz to 6 GI	łz	4.9 dB						
	6 GHz to 18 G	6 GHz to 18 GHz							
1 m	10 GHz to 26.5 GHz		5.5 dB						
	26.5 GHz to 40 G	5.5 dB							
10 m	1 GHz to 18 G	Hz	5.2 dB						

Antenna Terminal test

Test Item	Uncertainty (+/-)
Automatically Deactivate	0.10 %
-20 dB Emission Bandwidth / 99 % Occupied Bandwidth	0.96 %

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 9 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*NVLAP Lab. code: 200572-0 / FCC Test Firm Registration Number: 199967 / ISED Lab Company Number: 2973C

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.11 measurement room	6.2 x 4.7 x 3.0	4.8 x 4.6	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): $2.0 \times 2.0 \text{ m}$ for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 10 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Test Item*	Mode
Automatically Deactivate	Normal use mode
Electric Field Strength of Fundamental Emission	Transmitting mode (Tx) *1)
Electric Field Strength of Spurious Emission	
-20 dB & 99 % Occupied Bandwidth	

^{*} The system was configured in typical fashion (as a user would normally use it) for testing.

* EUT was set by the software as follows;

Software: Product program Version 0000C104

(Date: 2019.08.21, Storage location: EUT memory)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

4.2 Configuration and peripherals

A

Description of EUT

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Electronic Key	14FTB	No.1 *1)	DENSO	EUT
	-		No.2 *2)	CORPORATION	

^{*1)} Used for Normal use mode

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} The software of this mode is the same as one of normal product, except that EUT continues to transmit when transmitter button is being pressed (For Normal use mode, EUT stops to transmit in a given time, even if transceiver button is being pressed.)

^{*} Setup was taken into consideration and test data was taken under worse case conditions.

^{*2)} Used for Transmitting mode

Test report No. : 13403530H
Page : 11 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

SECTION 5: Radiated emission (Electric Field Strength of Fundamental and Spurious Emission)

Test Procedure and conditions

[For below 30 MHz]

The noise level was checked by moving a search-coil (Loop Antenna) close to the EUT.

[For 30 MHz to 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The measuring antenna height was varied between 1 and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

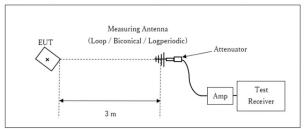
Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detector function of the test receiver / spectrum analyzer.

Test Antennas are used as below;

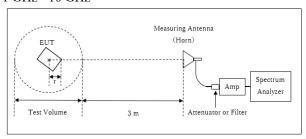
Frequency	Below 30 MHz	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Loop	Biconical	Logperiodic	Horn


	From 9 kHz to 90 kHz and From 110 kHz to 150 kHz	From 90 kHz to 110 kHz	From 150 kHz to 490 kHz	From 490 kHz to 30 MHz	From 30 MHz to 1 GHz	Above 1 GHz
Detector Type	Peak	Peak	Peak	Peak	Peak and Peak with Duty factor	Peak and Peak with Duty factor
IF Bandwidth	200 Hz	200 Hz	9.1 kHz	9.1 kHz	120 kHz	PK: S/A: RBW 1 MHz, VBW: 3 MHz

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 12 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

[Test Setup]


Below 1 GHz

× : Center of turn table

Test Distance: 3 m

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

Distance Factor: $20 \times \log (4.0 \text{ m} / 3.0 \text{ m}) = 2.50 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 4.0 m

 $SVSWR\ Volume: 2.0\ m$

(SVSWR Volume has been calibrated based on CISPR

16-1-4.) r = 0.0 m

* The test was performed with r = 0.0 m since EUT is small and it was the rather conservative condition.

- The carrier level (or, noise levels) was (or were) measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

Noise levels of all the frequencies were measured at the position.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore, the test with mechanical key was performed only.

*The result is rounded off to the second decimal place, so some differences might be observed.

Measurement range : 9 kHz - 3.2 GHz Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H Page : 13 of 24 Issued date : July 27, 2020 FCC ID : HYQ14FTB

SECTION 6: Automatically deactivate

Test Procedure

The measurement was performed with Electric field strength using a spectrum analyzer.

Test data : APPENDIX

Test result : Pass

SECTION 7: -20 dB and 99 % Occupied Bandwidth

Test Procedure

The test was measured with a spectrum analyzer using a test fixture.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
20 dB Bandwidth	150 kHz	1 kHz	3 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99 % Occupied Bandwidth	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer
Peak hold was applied as Worst-case measurement.							

Test data : APPENDIX

Test result : Pass

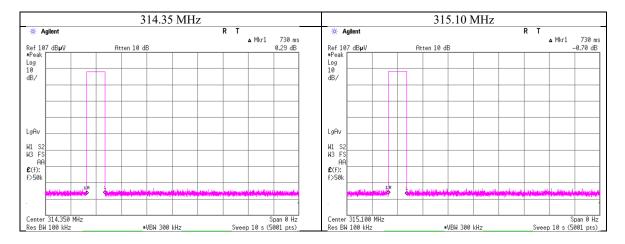
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 14 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

APPENDIX 1: Test data

Automatically deactivate


Report No. 13403530H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date July 8, 2020
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Junya Okuno

Mode Normal use mode 314.35 MHz / 315.10 MHz

Tx Frequency	Time of	Limit	Result
	Transmitting		
[MHz]	[sec]	[sec]	
314.35	0.730	5.00	Pass
315.10	0.730	5.00	Pass

^{*} The EUT transmits UHF when LF signal is received from a car or a button on the EUT is pressed. In both cases, the UHF transmission is stopped within 5 seconds. So the test was performed by a button-pressed operation as the worst case. Please refer to the "Theory of Operation" for details.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 15 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13403530H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date July 8, 2020
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Junya Okuno

Mode Transmitting mode 314.35 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
314.350	PK	85.8	83.0	13.8	10.8	38.7	-	71.7	68.9	95.5	23.8	26.6	Carrier
628.700	PK	40.0	38.9	19.2	13.0	38.2	-	34.0	32.9	75.5	41.5	42.6	Outside
943.050	PK	33.4	33.5	21.7	14.8	37.9	-	32.1	32.2	75.5	43.4	43.3	Outside
1257.400	PK	46.6	46.5	25.9	6.2	37.0	-	41.7	41.6	75.5	33.8	33.9	Outside
1571.750	PK	46.5	46.7	25.3	5.7	36.8	-	40.7	40.9	73.9	33.2	33.0	Inside
1886.100	PK	46.9	46.8	25.6	5.6	36.5	-	41.6	41.6	75.5	33.9	33.9	Outside
2200.450	PK	46.8	46.7	28.5	5.7	36.5	-	44.5	44.4	73.9	29.4	29.5	Inside
2514.800	PK	46.7	46.5	27.5	5.8	36.5	-	43.6	43.3	75.5	31.9	32.2	Outside
2829.150	PK	46.6	46.6	28.4	5.9	36.6	-	44.4	44.3	73.9	29.5	29.6	Inside
3143.500	PK	46.8	46.9	28.7	6.1	36.6	-	45.0	45.0	75.5	30.6	30.5	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Mai	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d:	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
314.350	PK	85.8	83.0	13.8	10.8	38.7	0.0	71.7	68.9	75.5	3.8	6.6	Carrier
628.700	PK	40.0	38.9	19.2	13.0	38.2	0.0	34.0	32.9	55.5	21.5	22.6	Outside
943.050	PK	33.4	33.5	21.7	14.8	37.9	0.0	32.1	32.2	55.5	23.4	23.3	Outside
1257.400	PK	46.6	46.5	25.9	6.2	37.0	0.0	41.7	41.6	55.5	13.8	13.9	Outside
1571.750	PK	46.5	46.7	25.3	5.7	36.8	0.0	40.7	40.9	53.9	13.2	13.0	Inside
1886.100	PK	46.9	46.8	25.6	5.6	36.5	0.0	41.6	41.6	55.5	13.9	13.9	Outside
2200.450	PK	46.8	46.7	28.5	5.7	36.5	0.0	44.5	44.4	53.9	9.4	9.5	Inside
2514.800	PK	46.7	46.5	27.5	5.8	36.5	0.0	43.6	43.3	55.5	11.9	12.2	Outside
2829.150	PK	46.6	46.6	28.4	5.9	36.6	0.0	44.4	44.3	53.9	9.5	9.6	Inside
3143.500	PK	46.8	46.9	28.7	6.1	36.6	0.0	45.0	45.0	55.5	10.6	10.5	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

Since the peak emission result satisfied the average limit, duty factor was omitted.

Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13403530H
Page : 16 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

Radiated Emission (Electric Field Strength of Fundamental and Spurious Emission)

Report No. 13403530H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date July 8, 2020
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Junya Okuno

Mode Transmitting mode 315.10 MHz

PK

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Res	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	Inside or Outside
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	of Restricted Bands
315.100	PK	85.7	82.8	13.8	10.8	38.7	-	71.6	68.7	95.6	24.0	26.9	Carrier
630.200	PK	40.0	38.6	19.2	13.0	38.2	-	34.0	32.6	75.6	41.6	43.0	Outside
945.300	PK	34.0	33.8	21.7	14.8	37.8	-	32.7	32.5	75.6	42.9	43.1	Outside
1260.400	PK	46.8	46.7	25.9	6.2	37.0	-	41.9	41.8	75.6	33.7	33.8	Outside
1575.500	PK	46.7	46.9	25.3	5.7	36.8	-	40.8	41.1	73.9	33.1	32.8	Inside
1890.600	PK	46.7	46.9	25.6	5.6	36.5	-	41.5	41.6	75.6	34.1	34.0	Outside
2205.700	PK	46.5	46.3	28.4	5.7	36.5	-	44.2	44.0	73.9	29.7	29.9	Inside
2520.800	PK	46.4	46.9	27.5	5.8	36.5	-	43.3	43.7	75.6	32.3	31.9	Outside
2835.900	PK	46.5	46.5	28.4	5.9	36.6	-	44.3	44.2	73.9	29.7	29.7	Inside
3151.000	PK	46.3	46.5	28.7	6.1	36.6	-	44.5	44.7	75.6	31.1	30.9	Outside

PK with Duty factor

Frequency	Detector	Rea	ding	Ant	Loss	Gain	Duty	Re	sult	Limit	Ma	rgin	Remark
		[dB	uV]	Factor			Factor	[dBu	V/m]		[d	B]	
[MHz]		Hor	Ver	[dB/m]	[dB]	[dB]	[dB]	Hor	Ver	[dBuV/m]	Hor	Ver	
315.100	PK	85.7	82.8	13.8	10.8	38.7	0.0	71.6	68.7	75.6	4.0	6.9	Carrier
630.200	PK	40.0	38.6	19.2	13.0	38.2	0.0	34.0	32.6	55.6	21.6	23.0	Outside
945.300	PK	34.0	33.8	21.7	14.8	37.8	0.0	32.7	32.5	55.6	22.9	23.1	Outside
1260.400	PK	46.8	46.7	25.9	6.2	37.0	0.0	41.9	41.8	55.6	13.7	13.8	Outside
1575.500	PK	46.7	46.9	25.3	5.7	36.8	0.0	40.8	41.1	53.9	13.1	12.8	Inside
1890.600	PK	46.7	46.9	25.6	5.6	36.5	0.0	41.5	41.6	55.6	14.1	14.0	Outside
2205.700	PK	46.5	46.3	28.4	5.7	36.5	0.0	44.2	44.0	53.9	9.7	9.9	Inside
2520.800	PK	46.4	46.9	27.5	5.8	36.5	0.0	43.3	43.7	55.6	12.3	11.9	Outside
2835.900	PK	46.5	46.5	28.4	5.9	36.6	0.0	44.3	44.2	53.9	9.6	9.7	Inside
3151.000	PK	46.3	46.5	28.7	6.1	36.6	0.0	44.5	44.7	55.6	11.1	10.9	Outside

Sample calculation:

Result of PK = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier)

Result of PK with Duty factor = Reading + Ant Factor + Loss {Cable + Attenuator + Filter (above 1 GHz) + Distance factor (above 1 GHz)} - Gain (Amplifier) + Duty factor

For above 1GHz: Distance Factor: $20 \times \log (4.0 \text{ m/}3.0 \text{ m}) = 2.50 \text{ dB}$

Since the peak emission result satisfied the average limit, duty factor was omitted.

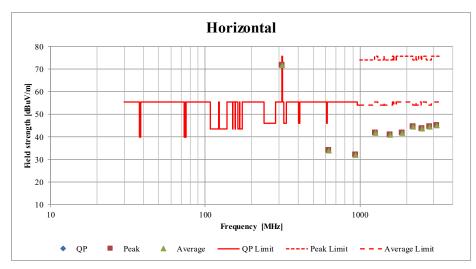
Although Duty of this product was 100% or less, the result of AV (PK with Duty factor) was calculated by applying Duty 100% as worst.

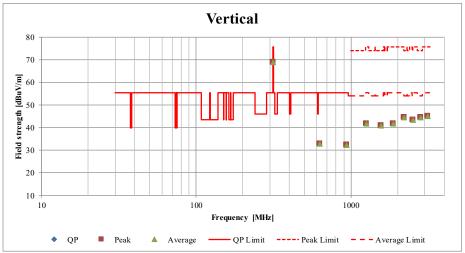
UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

Test report No. : 13403530H
Page : 17 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB


Radiated Spurious Emission (Plot data, Worst case)


Report No. 13403530H Test place Ise EMC Lab. Semi Anechoic Chamber No.1

Date July 8, 2020

Temperature / Humidity 22 deg. C / 55 % RH Engineer Junya Okuno

Mode Transmitting mode 314.35 MHz

^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H Page : 18 of 24 Issued date : July 27, 2020 FCC ID : HYQ14FTB

-20 dB and 99% Occupied Bandwidth

Report No. 13403530H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1

Date July 8, 2020
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Junya Okuno

Engineer Junya Okuno Mode Transmitting mode

Mode Transmitting mode 314.35 MHz / 315.10 MHz

Bandwidth Limit: Fundamental Frequency 31

314.35 MHz x 0.25% = 785.88 kHz

- * The above limit was calculated from more stringent nominal frequency.
- * Method of KDB 926416 for systems employing non sweeping frequencies was referred.

314.35MHz

-20dB Bandwidth	
[kHz]	
36.623	_

315.10MHz

-20dB Bandwidth	
[kHz]	
36.560	

-20dB Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
73.183	785.88	Pass

Bandwidth Limit: Fundamental Frequency 314.35 MHz x 0.25% = 785.88 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
36.1953	785.88	Pass

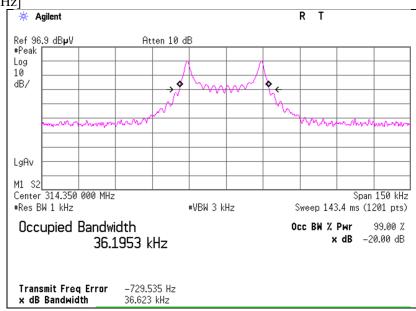
Bandwidth Limit: Fundamental Frequency 315.10 MHz x 0.25% = 787.75 kHz

99% Occupied Bandwidth	Bandwidth Limit	Result
[kHz]	[kHz]	
36.1867	787.75	Pass

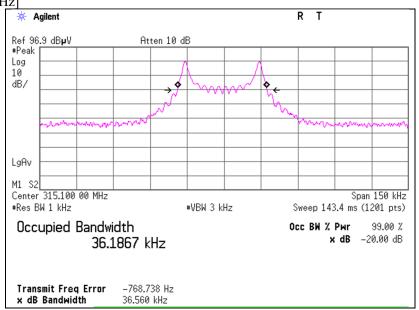
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H Page : 19 of 24 Issued date : July 27, 2020 FCC ID : HYQ14FTB

-20dB and 99% Occupied Bandwidth


Report No. 13403530H Test place Ise EMC Lab.

Semi Anechoic Chamber No.1


Date July 8, 2020
Temperature / Humidity 22 deg. C / 55 % RH
Engineer Junya Okuno

Mode Transmitting mode 314.35 MHz / 315.10 MHz

[314.35 MHz]

[315.10 MHz]

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 13403530H
Page : 20 of 24
Issued date : July 27, 2020
FCC ID : HYQ14FTB

APPENDIX 2: Test instruments

Test equipment

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MAEC-01	141998	AC1_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 10m	DA-06881	06/08/2020	24
RE	MOS-27	141566	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q26	01/07/2020	12
RE	MMM-03	141530	Digital Tester	Fluke Corporation	FLUKE 26-3	78030621	08/20/2019	12
RE	MJM-25	142226	Measure	KOMELON	KMC-36	-	-	-
RE	COTS-ME MI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	_	-	-
RE	MAEC-01- SVSWR	141994	AC1_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 10m	DA-06881	04/16/2019	24
RE	MAT-08	141213	Attenuator(6dB)	Weinschel Corp	2	BK7971	11/14/2019	12
RE	KBA-05	141198		Schwarzbeck Mess - Elektronik	VHA9103+BBA9106	2513	04/22/2020	12
RE	MCC-02	141350	Coaxial Cable	Suhner/storm/Agilent/T SJ	-	-	06/25/2020	12
RE	MTR-09	141950	EMI Test Receiver	Rohde & Schwarz	ESU26	100412	06/03/2020	12
RE	MLA-20	141264	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess - Elektronik	VUSLP9111B	9111B-189	04/22/2020	12
RE	MPA-19	141585	Pre Amplifier	MITEQ	MLA-10K01-B01-35	1237616	02/10/2020	12
RE	MHA-05	141511	Horn Antenna 1-18GHz	Schwarzbeck Mess - Elektronik	BBHA9120D	253	09/03/2019	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/06/2019	12
RE	MPA-01	141576	Pre Amplifier	Keysight Technologies Inc	8449B	3008A01671	02/20/2020	12
RE	MSA-14	141901		Keysight Technologies Inc	E4440A	MY48250080	10/06/2019	12
RE	MHF-27	141297	High Pass Filter (1.1-10GHz)	ТОКҮО КЕІКІ	TF219CD1	1001	01/09/2020	12
RE	MLPA-07	142645	Loop Antenna	UL Japan	-	-	-	-

^{*}Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item:

RE: Radiated emission, 99 % Occupied Bandwidth, -20 dB bandwidth, and Automatically deactivate tests

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN