

# **Certification Test Report**

FCC ID: HSW-DNT90E IC: 4492A-DNT90E

FCC Rule Part: 15.247
ISED Canada Radio Standards Specification: RSS-247

ACS Report Number: 16-0152.W06.1C

Manufacturer: Murata Electronics North America

Models: DNT90EC, DNT90EP

Test Begin Date: March 30, 2016 Test End Date: April 12, 2016

Report Issue Date: May 23, 2016



FOR THE SCOPE OF ACCREDITATION UNDER Certificate Number: AT-2021

This report must not be used by the client to claim product certification, approval, or endorsement by ANAB, NIST, or any agency of the Federal Government.

Reviewed by:

Kirby Munroe
Director, Wireless Certifications
ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 26 pages

## **TABLE OF CONTENTS**

| 1 | GENERAL                                                                              | 3  |
|---|--------------------------------------------------------------------------------------|----|
|   | 1.1 Purpose                                                                          | 3  |
|   | 1.2 PRODUCT DESCRIPTION                                                              |    |
|   | 1.3 TEST METHODOLOGY AND CONSIDERATIONS                                              |    |
| 2 |                                                                                      |    |
|   |                                                                                      |    |
|   | 2.1 LOCATION                                                                         |    |
|   | 2.3 RADIATED EMISSIONS TEST SITE DESCRIPTION                                         |    |
|   | 2.3.1 Semi-Anechoic Chamber Test Site                                                |    |
|   | 2.3.2 Open Area Tests Site (OATS)                                                    |    |
|   | 2.4 CONDUCTED EMISSIONS TEST SITE DESCRIPTION                                        | 8  |
| 3 |                                                                                      |    |
|   |                                                                                      |    |
| 4 | LIST OF TEST EQUIPMENT                                                               | 9  |
| 5 | SUPPORT EQUIPMENT                                                                    | 10 |
| 6 | EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM                                             | 10 |
|   |                                                                                      |    |
| 7 |                                                                                      |    |
|   | 7.1 Antenna Requirement – FCC: Section 15.203                                        |    |
|   | 7.2 POWER LINE CONDUCTED EMISSIONS – FCC 15.207, IC: RSS-GEN 8.8                     |    |
|   | 7.2.1 Measurement Procedure                                                          |    |
|   | 7.2.2 Measurement Results                                                            | 11 |
|   | 7.3 PEAK OUTPUT POWER - FCC 15.247(B)(2) IC: RSS-247 5.4(1)                          |    |
|   | 7.3.2 Measurement Procedure (Conducted Methody)                                      |    |
|   | 7.4 Channel Usage Requirements                                                       |    |
|   | 7.4.1 Carrier Frequency Separation – FCC 15.247(a)(1) IC: RSS-247 5.1(2)             |    |
|   | 7.4.1.1 Measurement Procedure                                                        | 15 |
|   | 7.4.1.2 Measurement Results                                                          |    |
|   | 7.4.2 Number of Hopping Channels – FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)            |    |
|   | 7.4.2.1 Measurement Procedure 7.4.2.2 Measurement Results                            |    |
|   | 7.4.3 Channel Dwell Time – FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)                    |    |
|   | 7.4.3.1 Measurement Procedure                                                        |    |
|   | 7.4.3.2 Measurement Results                                                          | 17 |
|   | 7.4.4 20dB / 99% Bandwidth - FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)                  |    |
|   | 7.4.4.1 Measurement Procedure                                                        |    |
|   | 7.4.4.2 Measurement Results                                                          |    |
|   | 7.5.1 Band-Edge Compliance of RF Conducted Emissions - FCC 15.247(d); IC RSS-247 5.5 |    |
|   | 7.5.1.1 Measurement Procedure                                                        |    |
|   | 7.5.1.2 Measurement Results                                                          |    |
|   | 7.5.2 RF Conducted Spurious Emissions - FCC 15.247(d); IC RSS-247 5.5                | 22 |
|   | 7.5.2.1 Measurement Procedure                                                        |    |
|   | 7.5.2.2 Measurement Results                                                          | —— |
|   | 7.5.3 Radiated Spurious Emissions - FCC 15.205, 15.209; RSS-Gen 8.9/8.10             |    |
|   | 7.5.3.1 Measurement Procedure                                                        |    |
|   | 7.5.3.3 Measurement Results                                                          |    |
|   | 7.5.3.4 Sample Calculation:                                                          |    |
| 8 | CONCLUSION                                                                           | 26 |

#### 1 GENERAL

#### 1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations and Innovation, Science, and Economic Development Canada's Radio Standards Specification RSS-247 Certification for modular approval.

### 1.2 Product description

The DNT90E is a frequency hopping spread spectrum (FHSS) transceiver operating in the 902-928 MHz frequency band which provides for wireless connectivity for point-to-point, point-to-multipoint and store-and-forward radio applications.

Two model variants of the DNT90E are available. Both model variants are electrically identical and differ only in the interface available for host integration. The DNT90EP radio modules have pins, while the DNT90EC modules are castellated.

#### **Technical Details:**

| Detail                    | Description                         |
|---------------------------|-------------------------------------|
| Frequency Range           | 902.76 – 927.24 MHz                 |
| Number of Channels        | 52                                  |
| Modulation Format         | FSK                                 |
| Data Rates                | 100kbps                             |
| Operating Voltage         | 9Vdc                                |
| Antenna Type(s) / Gain(s) | Omni (Dipole) / 5dBi<br>Yagi / 6dBi |

Manufacturer Information: Murata Electronics North America 2200 Lake Park Drive Smyrna, GA 30080-7604

**EUT Serial Numbers: II** 

Test Sample Condition: The test samples were provided in good working order with no visible defects.

#### 1.3 Test Methodology and Considerations

Two DNT90EC and DNT90EP models are electrically identical and differ only in the interface available for host integration. To allow use of a test fixture during testing, the DNT90EP model was evaluated.

For radiated emissions the EUT was evaluated in three orthogonal orientations. The worst case orientation was the Y-orientation.

For AC power line conducted emissions the EUT was evaluated on an evaluation board with a commercially available wall wart power supply.

Software power settings during test: Transmit Power = 1; High Power Cal = 5

#### **2 TEST FACILITIES**

#### 2.1 Location

The radiated and conducted emissions test sites are located at the following address:

Advanced Compliance Solutions 5015 B.U. Bowman Drive Buford, GA 30518 Phone: (770) 831-8048

Fax: (770) 831-8598

#### 2.2 Laboratory Accreditations/Recognitions/Certifications

ACS is accredited to ISO/IEC 17025 by the ANSI-ASQ National Accreditation Board/ANAB accreditation program, and has been issued certificate number AT-2021 in recognition of this accreditation. Unless otherwise specified, all tests methods described within this report are covered under the ISO/IEC 17025 scope of accreditation.

The Semi-Anechoic Chamber Test Site, Open Area Test Site (OATS) and Conducted Emissions Site have been fully described, submitted to, and accepted by the FCC, Innovation, Science, and Economic Development Canada and the Japanese Voluntary Control Council for Interference by information technology equipment.

FCC Registration Number: 391271

Innovation, Science, and Economic Development Canada Lab Code: IC 4175A

VCCI Member Number: 1831

VCCI OATS Registration Number R-1526

VCCI Conducted Emissions Site Registration Number: C-1608

#### 2.3 Radiated Emissions Test Site Description

#### 2.3.1 Semi-Anechoic Chamber Test Site

The Semi-Anechoic Chamber Test Site consists of a 20' x 30' x 18' shielded enclosure. The chamber is lined with Toyo Ferrite Grid Absorber, model number FFG-1000. The ferrite tile grid is 101 x 101 x 19mm thick and weighs approximately 550 grams. These tiles are mounted on steel panels and installed directly on the inner walls of the chamber.

The turntable is 150cm in diameter and is located 160cm from the back wall of the chamber. The chamber is grounded via 1 - 8' copper ground rod, installed at the center of the back wall, it is bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is all steel, flush mounted table installed in an all steel frame. The table is remotely operated from inside the control room located 25' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Behind the turntable is a 3' x 6' x 4' deep shielded pit used for support equipment if necessary. The pit is equipped with 1 - 4" PVC chases from the turntable to the pit that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit.

A diagram of the Semi-Anechoic Chamber Test Site is shown in Figure 2.3-1 below:

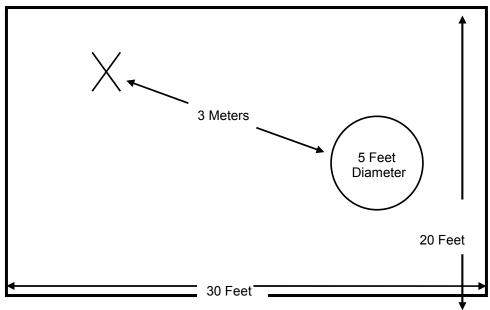



Figure 2.3-1: Semi-Anechoic Chamber Test Site

#### 2.3.2 **Open Area Tests Site (OATS)**

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electroplated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8 copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5-4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style re-enforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.10.

A diagram of the Open Area Test Site is shown in Figure 2.3-2 below:

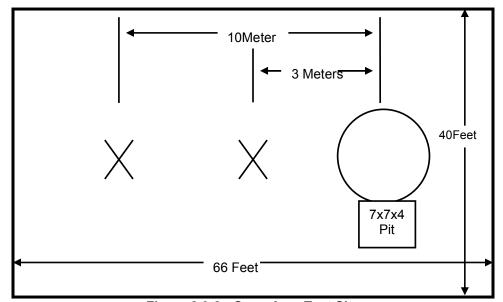



Figure 2.3-2: Open Area Test Site

#### 2.4 **Conducted Emissions Test Site Description**

The AC mains conducted EMI site is located in the main EMC lab. It consists of an 8' x 8' solid aluminum horizontal ground reference plane (GRP) bonded every 3" to an 8' X 8' vertical ground plane.

The site is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.10.

A diagram of the room is shown below in figure 2.4-1:

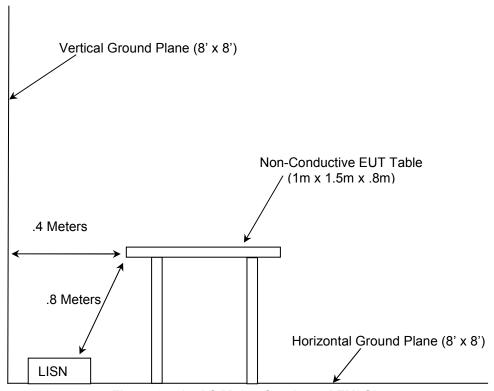



Figure 2.4-1: AC Mains Conducted EMI Site

#### **APPLICABLE STANDARD REFERENCES**

The following standards were used:

- \* ANSI C63.10-2013: American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
- \* US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures, 2016
- US Code of Federal Regulations (CFR): Title 47, Part 15, Subpart C: Radio Frequency Devices, Intentional Radiators, 2016
- ISED Canada Radio Standards Specification: RSS-247 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices, Issue 1, May 2015
- ISED Canada Radio Standards Specification: RSS-GEN - General Requirements and Information for the Certification of Radiocommunication Equipment, Issue 4, Nov 2014.

## 4 LIST OF TEST EQUIPMENT

The calibration interval of test equipment is annually or the manufacturer's recommendations. Where the calibration interval deviates from the annual cycle based on the instrument manufacturer's recommendations, it shall be stated below.

**Table 4-1: Test Equipment** 

| - same :             |                       |                     |                    |            |                       |            |  |
|----------------------|-----------------------|---------------------|--------------------|------------|-----------------------|------------|--|
| AssetID Manufacturer |                       | Model #             | Equipment Type     | Serial #   | Last Calibration Date | Due Date   |  |
| 1                    | Rohde & Schwarz       | ESMI - Display      | Spectrum Analyzers | 833771/007 | 7/14/2015             | 7/14/2016  |  |
| 2                    | Rohde & Schwarz       | ESMI-Receiver       | Spectrum Analyzers | 839587/003 | 7/14/2015             | 7/14/2016  |  |
| 30                   | Spectrum Technologies | DRH-0118            | Antennas           | 970102     | 4/30/2015             | 4/30/2017  |  |
| 40                   | EMCO                  | 3104                | Antennas           | 3211       | 2/10/2015             | 2/10/2017  |  |
| 73                   | Agilent               | 8447D               | Amplifiers         | 2727A05624 | 7/15/2015             | 7/15/2016  |  |
| 167                  | ACS                   | namber EMI Cable \$ | Cable Set          | 167        | 10/20/2015            | 10/20/2016 |  |
| 168                  | Hewlett Packard       | 11947A              | Attenuators        | 44829      | 1/8/2016              | 1/8/2017   |  |
|                      |                       | SMR-290AW-          |                    |            |                       |            |  |
| 292                  | Florida RF Cables     | 480.0-SMR           | Cables             | None       | 2/17/2016             | 2/17/2017  |  |
| 316                  | Rohde Schwarz         | ESH3-Z5             | LISN               | 861189-010 | 7/14/2015             | 7/14/2016  |  |
| 324                  | ACS                   | Belden              | Cables             | 8214       | 5/5/2015              | 5/5/2016   |  |
| 337                  | Microwave Circuits    | H1G513G1            | Filters            | 282706     | 5/20/2015             | 5/20/2016  |  |
| 338                  | Hewlett Packard       | 8449B               | Amplifiers         | 3008A01111 | 8/21/2015             | 8/21/2017  |  |
| 340                  | Aeroflex/Weinschel    | AS-20               | Attenuators        | 7136       | 7/13/2015             | 7/13/2016  |  |
| 412                  | Electro Metrics       | LPA-25              | Antennas           | 1241       | 7/24/2014             | 7/24/2016  |  |
|                      |                       | SMS-200AW-72.0-     |                    |            |                       |            |  |
| 422                  | Florida RF            | SMR                 | Cables             | 805        | 10/30/2015            | 10/30/2016 |  |
|                      |                       | SMRE-200W-12.0-     |                    |            |                       |            |  |
| 616                  | Florida RF Cables     | SMRE                | Cables             | N/A        | 9/3/2015              | 9/3/2016   |  |
| 622                  | Rohde & Schwarz       | FSV40               | Analyzers          | 101338     | 7/15/2015             | 7/15/2016  |  |
| RE112                | Rohde & Schwarz       | ESIB26              | Receiver           | 836119/012 | 7/16/2015             | 7/16/2016  |  |

### **5 SUPPORT EQUIPMENT**

**Table 5-1: Support Equipment** 

| Item | Equipment Type   | ent Type Manufacturer N |                                | Serial Number |
|------|------------------|-------------------------|--------------------------------|---------------|
| 1    | Evaluation Board | Murata                  | WSN802G/DNT90<br>Developer Kit | 0007D6        |
| 2    | DC Power Supply  | Glob Tek, Inc.          | GT-41052-1509                  | N/A           |

### **6 EQUIPMENT UNDER TEST SETUP BLOCK DIAGRAM**

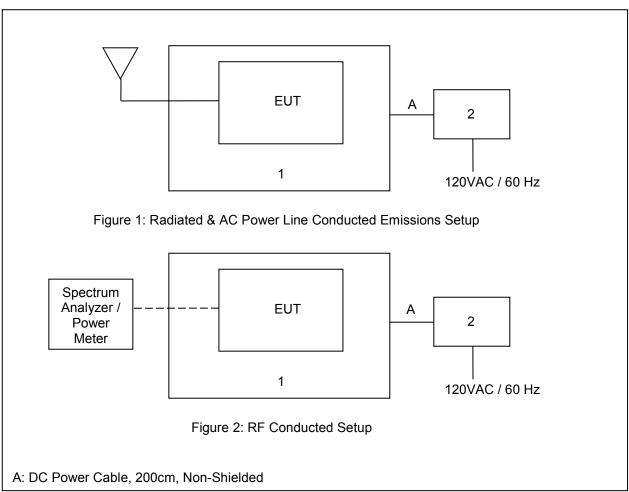



Figure 6-1: Test Setup Block Diagram

#### 7 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document.

#### 7.1 Antenna Requirement – FCC: Section 15.203

The antennas used are an Omni (Dipole) with 5dBi gain and a Yagi with 6dBi gain. These antennas are detachable utilizing U.Fl coupling to the EUT, therefore satisfying the requirements of Section 15.203.

#### 7.2 Power Line Conducted Emissions - FCC 15.207, IC: RSS-Gen 8.8

#### 7.2.1 Measurement Procedure

ANSI C63.10 was the guiding document for this evaluation. Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

#### 7.2.2 Measurement Results

Table 7.2.2-1: Conducted EMI Results Line 1 – Antenna 1 – Dipole

| Frequency<br>(MHz) | Corrected Reading    |                   | Limit<br>(dBuV) | Margin<br>(dB) | Line | Correction (dB) |  |
|--------------------|----------------------|-------------------|-----------------|----------------|------|-----------------|--|
| , ,                | Quasi-Peak<br>(dBuV) | Average<br>(dBuV) | ( ,             | <b>(</b> )     |      |                 |  |
| 0.249499           |                      | 19.63             | 51.53           | 31.90          | L1   | 9.6             |  |
| 0.249499           | 35.92                |                   | 61.57           | 25.65          | L1   | 9.6             |  |
| 0.391183           | 0.391183 28.5        |                   | 47.88           | 19.37          | L1   | 9.7             |  |
| 0.391183           | 33.60                |                   | 57.91           | 24.31          | L1   | 9.7             |  |
| 0.718638           |                      | 23.03             | 46.00           | 22.97          | L1   | 9.7             |  |
| 0.718638           | 28.31                |                   | 56.00           | 27.69          | L1   | 9.7             |  |
| 12.502104          |                      | 26.99             | 50.00           | 23.01          | L1   | 10.0            |  |
| 12.502104          | 28.18                |                   | 60.00           | 31.82          | L1   | 10.0            |  |
| 12.746192          | 746192 29.28         |                   | 50.00           | 20.72          | L1   | 10.0            |  |
| 12.746192          | 30.50                |                   | 60.00           | 29.50          | L1   | 10.0            |  |
| 12.809118          | 2.809118 28.50       |                   | 50.00           | 21.50          | L1   | 10.0            |  |
| 12.809118          | 29.35                |                   | 60.00           | 30.65          | L1   | 10.0            |  |

Table 7.2.2-2: Conducted EMI Results Line 2 – Antenna 1 – Dipole

| Frequency<br>(MHz) |                                    |                   | Limit Margin Line |       | Line | Correction<br>(dB) |  |
|--------------------|------------------------------------|-------------------|-------------------|-------|------|--------------------|--|
| ,                  | Quasi-Peak<br>(dBuV)               | Average<br>(dBuV) |                   | (* )  |      |                    |  |
| 0.179358           |                                    | 19.47             | 54.39             | 34.92 | N    | 9.6                |  |
| 0.179358           | 35.71                              |                   | 64.41             | 28.70 | N    | 9.6                |  |
| 0.217134           | 0.217134        0.217134     37.78 |                   | 52.72             | 31.22 | N    | 9.6                |  |
| 0.217134           |                                    |                   | 62.75             | 24.97 | N    | 9.6                |  |
| 0.363226           |                                    | 21.12             | 48.47             | 27.35 | N    | 9.6                |  |
| 0.363226           | 28.78                              |                   | 58.50             | 29.72 | N    | 9.6                |  |
| 0.638678           |                                    | 16.42             | 46.00             | 29.58 | N    | 9.7                |  |
| 0.638678           | 22.37                              |                   | 56.00             | 33.63 | N    | 9.7                |  |
| 0.798397           |                                    | 16.13             | 46.00             | 29.87 | N    | 9.7                |  |
| 0.798397           | 22.18                              |                   | 56.00             | 33.82 | N    | 9.7                |  |
| 4.417936           |                                    | 9.59              | 46.00             | 36.41 | N    | 9.8                |  |
| 4.417936           | 14.97                              |                   | 56.00             | 41.03 | N    | 9.8                |  |

Table 7.2.2-3: Conducted EMI Results Line 1 – Antenna 2 – Yagi

| Frequency<br>(MHz) | Corrected                          | l Reading         | Limit<br>(dBuV) | Margin<br>(dB) | Line | Correction<br>(dB) |
|--------------------|------------------------------------|-------------------|-----------------|----------------|------|--------------------|
|                    | Quasi-Peak<br>(dBuV)               | Average<br>(dBuV) |                 |                |      |                    |
| 0.236273           |                                    | 16.81             | 51.99           | 35.18          | L1   | 9.6                |
| 0.236273           | 35.27                              |                   | 62.03           | 26.76          | L1   | 9.6                |
| 0.246392           | 0.246392        0.246392     35.28 |                   | 51.64           | 34.34          | L1   | 9.6                |
| 0.246392           |                                    |                   | 61.68           | 26.40          | L1   | 9.6                |
| 0.262225           |                                    | 19.12             | 51.12           | 32.00          | L1   | 9.6                |
| 0.262225           | 34.04                              |                   | 61.16           | 27.12          | L1   | 9.6                |
| 0.386673           |                                    | 22.31             | 47.97           | 25.66          | L1   | 9.7                |
| 0.386673           | 28.25                              |                   | 58.00           | 29.75          | L1   | 9.7                |
| 0.725952           |                                    | 20.09             | 46.00           | 25.91          | L1   | 9.7                |
| 0.725952           | 25.85                              |                   | 56.00           | 30.15          | L1   | 9.7                |
| 0.726854           | 26854 18.61                        |                   | 46.00           | 27.39          | L1   | 9.7                |
| 0.726854           | 25.14                              |                   | 56.00           | 30.86          | L1   | 9.7                |

Table 7.2.2-4: Conducted EMI Results Line 2 – Antenna 2 – Yagi

| Frequency<br>(MHz) | Corrected                                                                  | l Reading         | Limit<br>(dBuV) | Margin<br>(dB) | Line | Correction<br>(dB) |
|--------------------|----------------------------------------------------------------------------|-------------------|-----------------|----------------|------|--------------------|
| ,                  | Quasi-Peak<br>(dBuV)                                                       | Average<br>(dBuV) |                 | (* )           |      |                    |
| 0.400401           |                                                                            | 19.37             | 47.70           | 28.33          | N    | 9.7                |
| 0.400401           | 0.400401     27.36       0.468537        0.468537     22.33       0.671443 |                   | 57.72           | 30.36          | N    | 9.7                |
| 0.468537           |                                                                            |                   | 46.49           | 33.23 N        |      | 9.7                |
| 0.468537           |                                                                            |                   | 56.50           | 34.17          | N    | 9.7                |
| 0.671443           |                                                                            |                   | 46.00           | 28.47          | N    | 9.7                |
| 0.671443           | 22.95                                                                      |                   | 56.00           | 33.05          | N    | 9.7                |
| 0.791684           |                                                                            | 17.68             | 46.00           | 28.32          | N    | 9.7                |
| 0.791684           | 22.45                                                                      |                   | 56.00           | 33.55          | N    | 9.7                |
| 2.324749           |                                                                            | 10.29             | 46.00           | 35.71          | N    | 9.7                |
| 2.324749           | 15.37                                                                      |                   | 56.00           | 40.63          | N    | 9.7                |
| 4.036372           | 36372 7.92                                                                 |                   | 46.00           | 38.08          | N    | 9.8                |
| 4.036372           | 13.19                                                                      |                   | 56.00           | 42.81          | N    | 9.8                |

## 7.3 Peak Output Power - FCC 15.247(b)(2) IC: RSS-247 5.4(1)

### 7.3.1 Measurement Procedure (Conducted Method)

The RF output port of the EUT was directly connected to the input of a power meter using suitable attenuation. The device employs > 50 channels at any given time therefore the power is limited to 1 Watt.

#### 7.3.2 Measurement Results

Table 7.3.2-1: Maximum Conducted Peak Output Power

| Frequency<br>[MHz] | Level<br>[dBm] |
|--------------------|----------------|
| 902.76             | 25.43          |
| 915.24             | 25.50          |
| 927.24             | 24.85          |

#### 7.4 Channel Usage Requirements

#### 7.4.1 Carrier Frequency Separation – FCC 15.247(a)(1) IC: RSS-247 5.1(2)

#### 7.4.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The span of the spectrum analyzer was set wide enough to capture two adjacent peaks. The RBW was set to approximately 30% of the channel spacing and adjusted as necessary to best identify the center of each channel. The VBW was set > RBW.

#### 7.4.1.2 Measurement Results

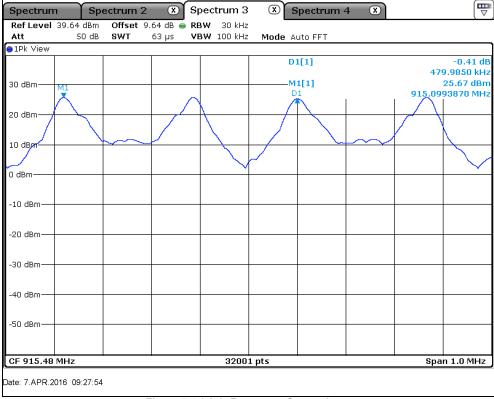



Figure 7.4.1.2-1: Frequency Separation

### 7.4.2 Number of Hopping Channels – FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)

#### 7.4.2.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The span of the spectrum analyzer was set wide enough to capture the frequency band of operation. The RBW was set to < 30% of the channel spacing and VBW set to ≥ RBW.

#### 7.4.2.2 Measurement Results

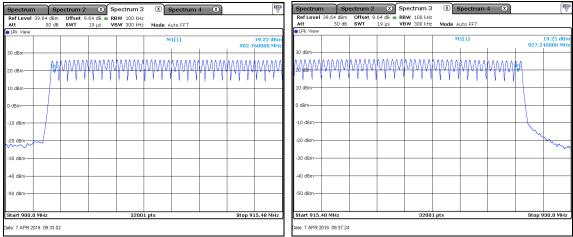



Figure 7.4.2.2-1: No. of Hopping Channels

Figure 7.4.2.2-2: No. of Hopping Channels

### 7.4.3 Channel Dwell Time - FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)

#### 7.4.3.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The span of the spectrum analyzer display was set 0 Hz centered on a hopping channel. The RBW of the spectrum analyzer was set to  $\leq$  the EUT channel spacing and VBW set to  $\geq$  RBW. The Marker Delta function of the analyzer was utilized to determine the dwell time.

#### 7.4.3.2 Measurement Results

Table 7.4.3.2-1: Channel Dwell Time

| Single<br>Occurrence | Number of<br>Occurrences /<br>10s | Total Dwell Time<br>(ms) |
|----------------------|-----------------------------------|--------------------------|
| 10.58                | 10                                | 105.8                    |

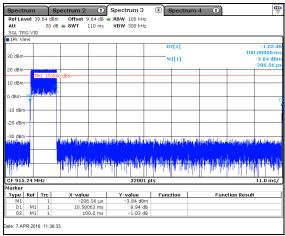



Figure 7.4.3.2-1: Dwell Time - 100ms




Figure 7.4.3.2-1: Dwell Time - 10s

#### 7.4.4 20dB / 99% Bandwidth - FCC 15.247(a)(1)(i) IC: RSS-247 5.1(3)

#### 7.4.4.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The span of the spectrum analyzer display was set between two times and five times the occupied bandwidth (OBW) of the emission. The RBW of the spectrum analyzer was set to approximately 1 % to 5 % of the OBW. The trace was set to max hold with a peak detector active. The marker delta measurement function of the analyzer was utilized to determine the 20 dB bandwidth of the emission.

The occupied bandwidth measurement function of the spectrum analyzer was used to measure the 99% bandwidth. The span of the analyzer was set to capture all products of the modulation process, including the emission sidebands. The resolution bandwidth was set to 1% to 5% of the occupied bandwidth. The video bandwidth was set to 3 times the resolution bandwidth. A peak detector was used.

#### 7.4.4.2 Measurement Results

Table 7.4.4.2-1: 20dB / 99% Bandwidth

| Frequency<br>[MHz] | 20dB Bandwidth<br>[kHz] | 99% Bandwidth<br>[kHz] |
|--------------------|-------------------------|------------------------|
| 902.76             | 411.36                  | 417.71                 |
| 915.24             | 411.05                  | 419.08                 |
| 927.24             | 410.49                  | 422.21                 |

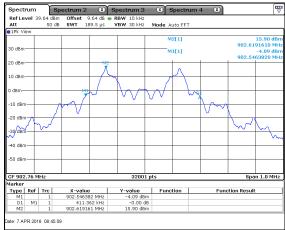



Figure 7.4.4.2-1: 20dB BW Low Channel

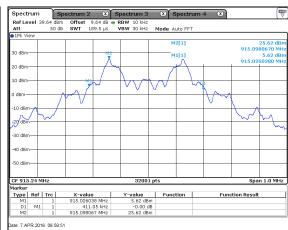



Figure 7.4.4.2-2: 20dB BW Mid Channel

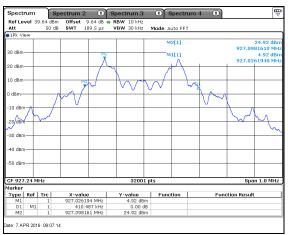



Figure 7.4.4.2-3: 20dB BW High Channel

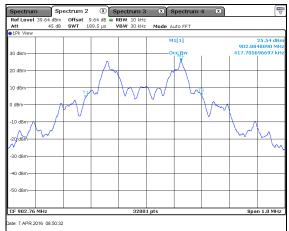



Figure 7.4.4.2-4: 99% BW Low Channel

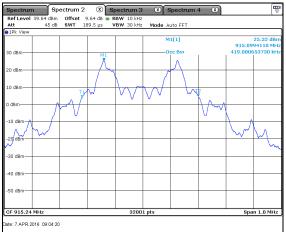



Figure 7.4.4.2-5: 99% BW Mid Channel

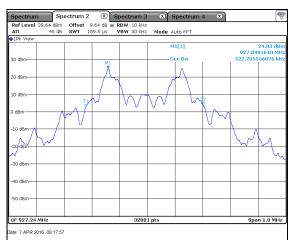
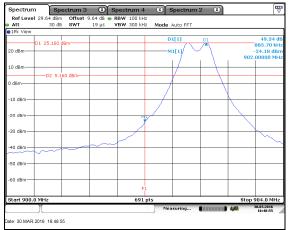



Figure 7.4.4.2-6: 99% BW High Channel

#### 7.5 Band-Edge Compliance and Spurious Emissions


# 7.5.1 Band-Edge Compliance of RF Conducted Emissions - FCC 15.247(d); IC RSS-247 5.5

#### 7.5.1.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The EUT was investigated at the lowest and highest channel available to determine band-edge compliance. For each measurement the spectrum analyzer's RBW was set to 100 kHz, and the VBW was set to 300 kHz.

#### 7.5.1.2 Measurement Results

#### **NON-HOPPING MODE:**



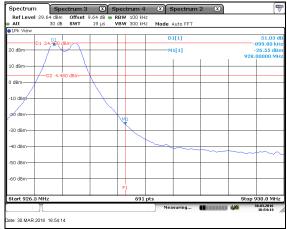



Figure 7.5.1.2-1: Lower BE

Figure 7.5.1.2-2: Upper BE

# **HOPPING MODE:**

Models: DNT90EC, DNT90EP






Figure 7.5.1.2-3: Lower BE Hopping

Figure 7.5.1.2-4: Upper BE Hopping

#### RF Conducted Spurious Emissions - FCC 15.247(d); IC RSS-247 5.5 7.5.2

#### 7.5.2.1 Measurement Procedure

The RF output port of the EUT was directly connected to the input of the spectrum analyzer using suitable attenuation. The EUT was investigated for conducted spurious emissions from 30MHz to 10GHz, 10 times the highest fundamental frequency. Measurements were made at the low, center and high channels of the EUT. For each measurement, the spectrum analyzer's RBW was set to 100kHz. A peak detector function was used with the trace set to max hold.

#### 7.5.2.2 Measurement Results

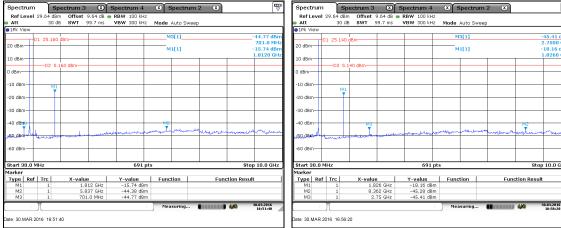



Figure 7.5.2.2-1: 30 MHz - 10 GHz - LCH

Figure 7.5.2.2-2: 30 MHz - 10 GHz - MCH

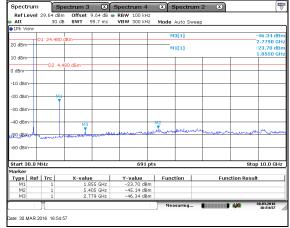



Figure 7.5.2.2-3: 30 MHz - 10 GHz - HCH

#### 7.5.3 Radiated Spurious Emissions - FCC 15.205, 15.209; RSS-Gen 8.9/8.10

#### 7.5.3.1 Measurement Procedure

Radiated emissions tests were made over the frequency range of 30MHz to 10GHz, 10 times the highest fundamental frequency.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000MHz, quasi-peak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000MHz, peak and average measurements were made with RBW and VBW of 1 MHz and 3MHz respectively.

The EUT was caused to generate a continuous modulated carrier on the hopping channel.

Each emission found to be in a restricted band was compared to the applicable radiated emission limits.

## 7.5.3.2 Duty Cycle Correction

For average radiated measurements, using a 10.58% duty cycle, the measured level was reduced by a factor 19.51dB. The duty cycle correction factor is determined using the formula: 20log (10.58/100) = -19.51dB. A detailed analysis of the duty cycle timing is provided in the Theory of Operation accompanying the application for certification.

#### 7.5.3.3 Measurement Results

Table 7.5.3.3-1: Radiated Spurious Emissions Tabulated Data – Antenna 1 – Dipole

| Frequency<br>(MHz) | Frequency (dBuV) |         | Antenna Correction Polarity Factors |               | Corrected Level (dBuV/m) |         | Limit<br>(dBuV/m) |         | Margin<br>(dB) |         |
|--------------------|------------------|---------|-------------------------------------|---------------|--------------------------|---------|-------------------|---------|----------------|---------|
| ()                 | pk               | Qpk/Avg | (H/V)                               | (dB)          | pk                       | Qpk/Avg | pk                | Qpk/Avg | pk             | Qpk/Avg |
|                    | Low Channel      |         |                                     |               |                          |         |                   |         |                |         |
| 2708.28            | 52.02            | 43.74   | Н                                   | -3.79         | 48.23                    | 20.43   | 74.0              | 54.0    | 25.8           | 33.6    |
| 2708.28            | 48.79            | 37.90   | V                                   | -3.79         | 45.00                    | 14.59   | 74.0              | 54.0    | 29.0           | 39.4    |
| 3611.04            | 49.05            | 38.53   | Н                                   | -0.87         | 48.18                    | 18.15   | 74.0              | 54.0    | 25.8           | 35.9    |
| 3611.04            | 48.49            | 37.26   | V                                   | -0.87         | 47.62                    | 16.88   | 74.0              | 54.0    | 26.4           | 37.1    |
|                    |                  |         | ı                                   | Middle Channe | el                       |         |                   |         |                |         |
| 2745.72            | 48.21            | 41.68   | Н                                   | -3.56         | 44.65                    | 18.61   | 74.0              | 54.0    | 29.4           | 35.4    |
| 2745.72            | 54.22            | 48.24   | V                                   | -3.56         | 50.66                    | 25.17   | 74.0              | 54.0    | 23.3           | 28.8    |
| 3660.96            | 49.24            | 37.21   | Н                                   | -0.54         | 48.70                    | 17.16   | 74.0              | 54.0    | 25.3           | 36.8    |
| 3660.96            | 49.23            | 39.16   | V                                   | -0.54         | 48.69                    | 19.11   | 74.0              | 54.0    | 25.3           | 34.9    |
| 4576.2             | 49.24            | 37.59   | Н                                   | 1.19          | 50.43                    | 19.27   | 74.0              | 54.0    | 23.6           | 34.7    |
| 4576.2             | 48.98            | 40.36   | V                                   | 1.19          | 50.17                    | 22.04   | 74.0              | 54.0    | 23.8           | 32.0    |
| 7321.92            | 46.21            | 35.69   | V                                   | 8.07          | 54.28                    | 24.25   | 74.0              | 54.0    | 19.7           | 29.8    |
|                    | High Channel     |         |                                     |               |                          |         |                   |         |                |         |
| 2781.72            | 55.29            | 48.23   | Н                                   | -3.58         | 51.71                    | 25.14   | 74.0              | 54.0    | 22.3           | 28.9    |
| 2781.72            | 50.61            | 41.83   | V                                   | -3.58         | 47.03                    | 18.74   | 74.0              | 54.0    | 27.0           | 35.3    |
| 3708.96            | 52.86            | 44.17   | Н                                   | -0.50         | 52.36                    | 24.16   | 74.0              | 54.0    | 21.6           | 29.8    |
| 3708.96            | 49.02            | 38.53   | V                                   | -0.50         | 48.52                    | 18.52   | 74.0              | 54.0    | 25.5           | 35.5    |
| 4636.2             | 48.39            | 38.08   | Н                                   | 1.24          | 49.63                    | 19.81   | 74.0              | 54.0    | 24.4           | 34.2    |

Table 7.5.3.3-2: Radiated Spurious Emissions Tabulated Data – Antenna 2 – Yagi

| F                  | Level<br>(dBuV) |         | Antenna  | Correction | Corrected Level (dBuV/m) |         | Limit<br>(dBuV/m) |         | Margin<br>(dB) |         |
|--------------------|-----------------|---------|----------|------------|--------------------------|---------|-------------------|---------|----------------|---------|
| Frequency<br>(MHz) |                 |         | Polarity | Factors    |                          |         |                   |         |                |         |
|                    | pk              | Qpk/Avg | (H/V)    | (dB)       | pk                       | Qpk/Avg | pk                | Qpk/Avg | pk             | Qpk/Avg |
| Low Channel        |                 |         |          |            |                          |         |                   |         |                |         |
| 2708.28            | 56.72           | 49.61   | Н        | -3.79      | 52.93                    | 26.30   | 74.0              | 54.0    | 21.1           | 27.7    |
| 2708.28            | 53.03           | 44.60   | V        | -3.79      | 49.24                    | 21.29   | 74.0              | 54.0    | 24.8           | 32.7    |
| 3611.04            | 57.02           | 49.50   | Н        | -0.87      | 56.15                    | 29.12   | 74.0              | 54.0    | 17.9           | 24.9    |
| 3611.04            | 51.43           | 42.01   | V        | -0.87      | 50.56                    | 21.63   | 74.0              | 54.0    | 23.4           | 32.4    |
| Middle Channel     |                 |         |          |            |                          |         |                   |         |                |         |
| 2745.72            | 54.81           | 47.01   | Н        | -3.69      | 51.12                    | 23.81   | 74.0              | 54.0    | 22.9           | 30.2    |
| 2745.72            | 50.09           | 40.21   | V        | -3.69      | 46.40                    | 17.01   | 74.0              | 54.0    | 27.6           | 37.0    |
| 3660.96            | 50.44           | 41.02   | Н        | -0.68      | 49.76                    | 20.83   | 74.0              | 54.0    | 24.2           | 33.2    |
| 3660.96            | 48.56           | 37.59   | V        | -0.68      | 47.88                    | 17.40   | 74.0              | 54.0    | 26.1           | 36.6    |
| High Channel       |                 |         |          |            |                          |         |                   |         |                |         |
| 2781.72            | 55.12           | 48.21   | Н        | -3.58      | 51.54                    | 25.12   | 74.0              | 54.0    | 22.5           | 28.9    |
| 2781.72            | 46.91           | 34.95   | V        | -3.58      | 43.33                    | 11.86   | 74.0              | 54.0    | 30.7           | 42.1    |
| 3708.96            | 49.35           | 39.12   | Н        | -0.50      | 48.85                    | 19.11   | 74.0              | 54.0    | 25.1           | 34.9    |
| 4636.2             | 48.18           | 37.24   | Н        | 1.24       | 49.42                    | 18.97   | 74.0              | 54.0    | 24.6           | 35.0    |

#### 7.5.3.4 Sample Calculation:

 $R_C = R_U + CF_T$ 

Where:

CF<sub>T</sub> = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

 $R_U$  = Uncorrected Reading  $R_C$  = Corrected Level AF = Antenna Factor CA = Cable Attenuation AG = Amplifier Gain

DC = Duty Cycle Correction Factor

#### **Example Calculation: Peak - Dipole Antenna**

Corrected Level: 52.02 - 3.79 = 48.23dBuV/m Margin: 74dBuV/m - 48.23dBuV/m = 25.8dB

#### **Example Calculation: Average – Dipole Antenna**

Corrected Level: 43.74 - 3.79 - 19.51 = 20.43dBuV

Margin: 54dBuV - 20.43dBuV = 33.6dB

### 8 CONCLUSION

In the opinion of ACS, Inc. the DNT90EC and DNT90EP, manufactured by Murata Electronics North America meets the requirements of FCC Part 15 subpart C and Industry Canada's Radio Standards Specification RSS-247.

# **END REPORT**