

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA
Phone: 262.375.4400 • Fax: 262.375.4248
www.lsr.com

TEST REPORT # 311062 A LSR Job #: C-1154

Compliance Testing of:

TH8320ZW1000 Touchscreen Thermostat

Test Date(s):

April 4th, 5th 2011

Prepared For:

Honeywell
1985 Douglas Drive North
Golden Valley, MN 55422

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249
Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 902 MHz – 928 MHz

This Test Report is issued under the Authority of:

Khairul Aidi Zainal, Senior EMC Engineer.

Signature:

Date: 6/15/2011

Test Report Reviewed by:

Shane Rismeyer, EMC Engineer

Signature:

Date: 6/8/11

Tested by:

Khairul Aidi Zainal, Senior EMC Engineer

Signature:

Date: 6/8/11

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

EXHIBIT 1: INTRODUCTION	
1.1 Scope	4
1.2 Normative References	4
1.3 LS Research, LLC Test Facility	5
1.4 Location of Testing	5
1.5 Test Equipment Utilized	5
EXHIBIT 2: PERFORMANCE ASSESSMENT	
2.1 Client Information	6
2.2 Equipment Under Test (EUT) Information	6
2.3 Associated Antenna Description	6
2.4 EUT's Technical Specifications	7
2.5 Product Description	8
EXHIBIT 3: EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	
3.1 Climate Test Conditions	8
3.2 Applicability & Summary of EMC Emission Test Results	8
3.3 Modifications Incorporated in the EUT for Compliance Purposes	8
3.4 Deviations & Exclusions from Test Specifications	8
EXHIBIT 4: DECLARATION OF CONFORMITY	
EXHIBIT 5: RADIATED EMISSIONS TESTING	
5.1 Test Setup	10
5.2 Test Procedure	10
5.3 Test Equipment Utilized	11
5.4 Test Results	11
5.5 Calculation of Radiated Emissions Limits	12
5.6 Radiated Emissions Test Data Chart	14
5.7 Test Setup Photo(s) – Radiated Emissions Test	16
5.8 Screen Captures – Radiated Emissions Test	17
EXHIBIT 6: CONDUCTED EMISSIONS TEST, AC POWER LINE	
6.1 Test Setup	20
6.2 Test Procedure	20
6.3 Test Equipment Utilized	20
6.4 Test Results	20
6.5 FCC Limits of Conducted Emissions at the AC Mains Ports	21
6.6 Conducted Emissions Test Data Chart	22
6.7 Test Setup Photo(s) – Conducted Emissions Test	23
6.8 Screen Captures – Conducted Emissions Test	24

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 2 of 32

TABLE OF CONTENTS (Page 2 of 2)

EXHIBIT 7: OCCUPIED BANDWIDTH	
7.1 Limits	25
7.2 Method of Measurements	25
7.3 Test Data	25
7.4 Screen Captures – Occupied Bandwidth	25
EXHIBIT 8: BAND-EDGE MEASUREMENTS	
8.1 Method of Measurements	26
EXHIBIT 9: FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS	27
EXHIBIT 10: MPE CALCULATIONS	28
APPENDICES	
APPENDIX A: TEST EQUIPMENT LIST	29
APPENDIX B: TEST STANDARDS – RADIO	31
APPENDIX C: UNCERTAINTY STATEMENT	32

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 3 of 32

EXHIBIT 1. INTRODUCTION

1.1 SCOPE

References:	FCC Part 15, Subpart C, Section 15.249 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 2
Title:	FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	<ul style="list-style-type: none">• Commercial, Industrial or Business• Residential

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 4 of 32

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012 USA, utilizing the facilities listed below, unless otherwise noted.

List of Facilities Located at LS Research, LLC:

- Compact Chamber
- Semi-Anechoic Chamber
- Open Area Test Site (OATS)

1.5 TEST EQUIPMENT UTILIZED

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 5 of 32

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	Honeywell
Address:	1985 Douglas Dr. North, Golden Valley, MN 55422
Contact Name:	Patrick Hudson

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	None
Model Number:	TH8320ZW1000
Serial Number:	Engineering Samples.

2.3 ASSOCIATED ANTENNA DESCRIPTION

Integrated PCB quarter-wave antenna.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 6 of 32

2.4 EUT'S TECHNICAL SPECIFICATIONS

Additional Information:

EUT Frequency Range (in MHz)	908.40 MHz and 908.42 MHz
RF Power in Watts	
Maximum:	0.000627 Watts
Field Strength at 3 meters	93.2 dB μ V/m
Occupied Bandwidth (99%)	102.0 kHz
Type of Modulation	FSK
Emission Designator	Manchester Coding :102KF1D NRZ Coding :102KF1D
EIRP (in mW)	0.627 mW
Transmitter Spurious (worst case) at 3 meters	39.6 dB μ V/m (1816.8 Mhz)
Stepped (Y/N)	N
Step Value:	N/A
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	8051 MCU from Zensys.
Antenna Information	
Detachable/non-detachable	Non-detachable
Type	PCB quarter wave
Gain (in dBi)	N/A
EUT will be operated under FCC Rule Part(s)	15.249
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Portable or Mobile?	Mobile

RF Technical Information:

Since the output power of the EUT, 0.627mW, no RF evaluation is necessary.

2.5 PRODUCT DESCRIPTION

The TH8320ZW1000 touchscreen thermostat is a unit that controls and keeps temperature within 1 degrees Fahrenheit of the set-point.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 7 of 32

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 CLIMATE TEST CONDITIONS

Temperature:	71° F
Humidity:	41%
Pressure:	736 mmHg

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC : 15.207 IC : RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	Yes
IC : RSS GEN section 4.6.1	20 dB Bandwidth	Yes
FCC : 15.249(A) & 1.1310 IC : RSS 210 A2.9 (a)	Maximum Output Power	Yes
FCC : 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	N/A
FCC : 15.249(a) IC : RSS 210 A2.9(a)	Transmitter harmonics	Yes
FCC : 15.249(d), 15.209 & 15.205 IC : RSS 210 A2.9(b),	Transmitter Radiated Emissions	Yes

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3 MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None Yes (explain below)

3.4 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS

None Yes (explain below)

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 8 of 32

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 9 of 32

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a variable AC supply. The unit has the capability to operate on 1 (one) channel and as the EUT was supplied with 24VAC, it transmits continuously at that channel.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one channel: **908.4 MHz** to comply with FCC Part 15.31.

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz.

In the frequency range of 30 MHz to 4 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 4 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity.

The EUT was positioned in its intended installation orientation for the test.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 10 of 32

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 11 of 32

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS AND REPORTED DATA.

Reported data:

For both fundamental and spurious emissions measurement, the data reported includes all necessary correction factors. These correction factors are loaded onto the EMI receiver when measurements are performed.

Reported Measurement data = Raw receiver measurement (dB μ V/m) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB) – amplification factor when applicable (dB).

Generic example of reported data at 200 MHz:

Reported Measurement data = 18.2 (raw receiver measurement) + 15.8 (antenna factor) + 1.45 (cable factor) = 35.45 (dB μ V/m).

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 902-928 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits, must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 902-928 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m.

Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d

The harmonic limit of –50 dBc with respect to the fundamental limit would be:

$$94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$$

with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μ V/m)	3 m Limit (dB μ V/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μ V/m)	3 m Limit (dB μ V/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 12 of 32

Sample conversion from field strength μ V/m to $\text{dB}\mu$ V/m:

from 30 - 88 MHz for example: $\text{dB}\mu\text{V/m} = 20 \log_{10} (3\text{m limit})$
 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40,000 MHz
500 μ V/m or 54.0 $\text{dB}\mu$ V/m at 3 meters
 $54.0 + 9.5 = 63.5 \text{ dB}\mu\text{V/m at 1 meter}$

Note: Limits are conservatively rounded to the nearest tenth of a whole number.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 13 of 32

5.6

RADIATED EMISSIONS TEST DATA CHART

Measurements of Electromagnetic Radiated Emissions

Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	Honeywell						
Date(s) of Test:	April 4 th and 5 th 2011						
Project Engineer:	Khairul Aidi Zainal						
Test Engineer(s):	Khairul Aidi Zainal						
Voltage:	24 VAC						
Operation Mode:	Continuously transmitting, modulated						
Environmental Conditions in the Lab:	Temperature: 71° F Relative Humidity: 41 %						
EUT Power:		Single Phase 120 VAC				3 Phase ____ VAC	
		Battery			X	Other: 24 VAC	
EUT Placement:	X	80cm non-conductive table			10cm Spacers		
EUT Test Location:	X	3 Meter Semi-Anechoic FCC Listed Chamber			3/10m OATS		
Measurements:		Pre-Compliance			Preliminary	X	Final
Detectors Used:	X	Peak		X	Quasi-Peak	X	Average

The following table depicts the level of radiated fundamental:

FREQ (MHz)	ANT	EUT	HEIGHT (m)	AZIMUTH (°)	PEAK (dB μ V/m)	Q.PEAK (dB μ V/m)	AVERAGE (dB μ V/m)	Q.PEAK (mV/m)	LIMIT (mV/m)	LIMIT (dB μ V/m)	MARGIN (dB)
908.40	V	TT	1.00	298	90.4	90.1	88.6	32.1	50.0	94.0	3.9
908.40	H	TT	1.48	342	93.9	93.2	91.2	45.7	50.0	94.0	0.8

Note:

1. V = Vertical; H = Horizontal; TT = Table Top.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 14 of 32

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of harmonic emissions seen:

FREQ (MHz)	ANT	EUT	HEIGHT (m)	AZIMUTH (°)	PEAK (dB μ V/m)	Q.PEAK (dB μ V/m)	AVERAGE (dB μ V/m)	LIMIT (dB μ V/m)	MARGIN (dB)	NOTES
1816.80	V	TT	1.16	168	44.9	42.2	39.6	54.0	14.4	
2725.2	V	TT	1.42	212	41.8	38.3	32.5	54.0	21.5	
3633.6	H	TT	1.23	176	43.6	40.3	33.9	54.0	20.1	
4542.0									0.0	3.0
5450.4									0.0	3.0
6358.8									0.0	3.0
7267.2									0.0	3.0
8175.6									0.0	3.0
9084.0									0.0	3.0

Notes:

- 1) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- 2) Measurements above 4 GHz were made at 1 meter of separation from the EUT.
- 3) Measurement below receiver system noise floor.

The following table depicts the level of significant spurious radiated RF emissions (other than harmonics) found:

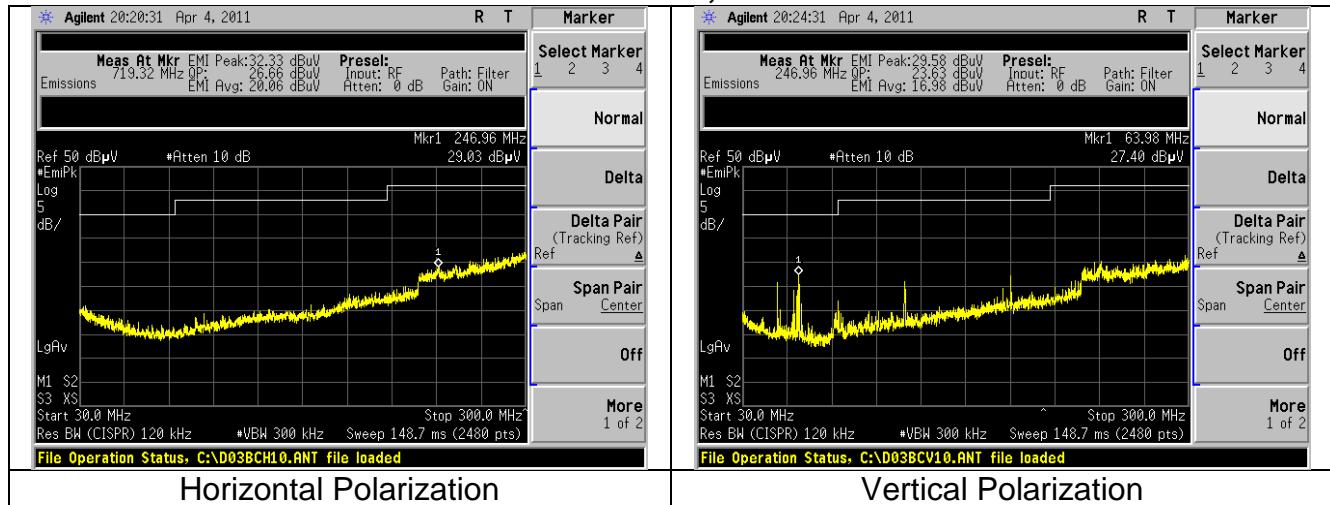
FREQ (MHz)	ANT	EUT	HEIGHT (m)	AZIMUTH (°)	PEAK (dB μ V/m)	Q.PEAK (dB μ V/m)	AVERAGE (dB μ V/m)	LIMIT (dB μ V/m)	MARGIN (dB)	NOTES
826.41	H	TT	1.00	0	33.4	26.9	20.4	46.0	25.7	2.0
716.78	V	TT	1.00	0	32.8	26.9	20.3	46.0	25.7	2.0
246.96	H	TT	1.00	0	29.6	23.6	17.0	43.0	19.4	2.0
63.99	V	TT	1.07	351	32.0	30.0	24.4	40.0	10.0	
127.96	V	TT	1.00	10	28.3	24.6	10.5	43.0	18.5	
2413.77	V	TT	1.00	276	56.7	49.8	39.0	54.0	15.0	
2412.62	H	TT	1.00	184	48.0	40.8	34.6	54.0	19.5	

Note:

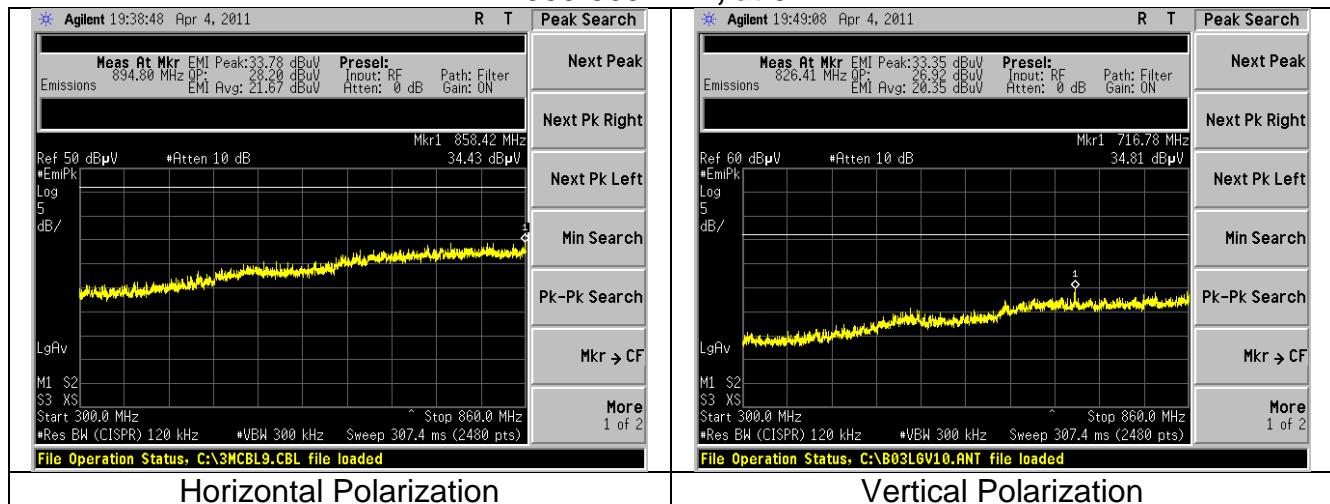
1. H = Horizontal, V = Vertical, TT= Table Top.
2. Data listed are measurements of the system noise floor.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 15 of 32

5.7 Test Setup Photo(s) – Radiated Emissions Test

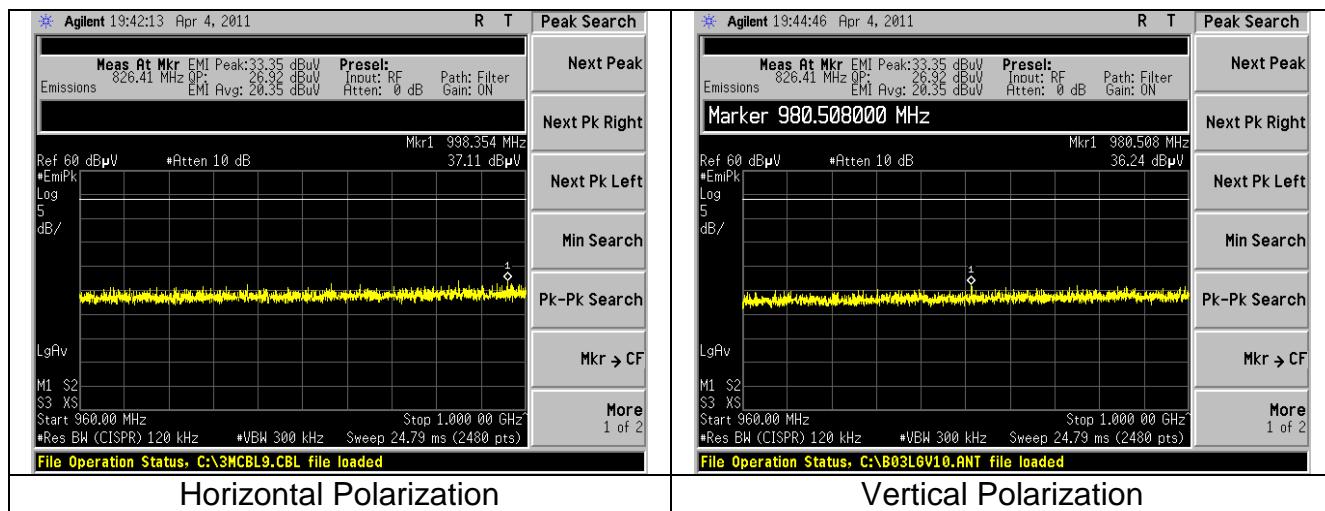


Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 16 of 32

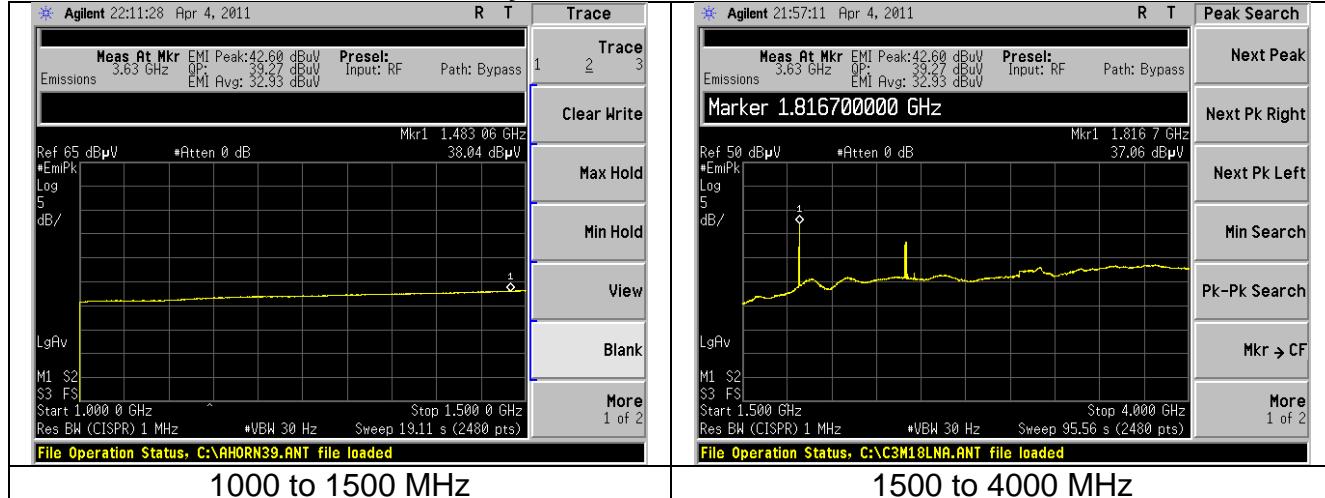

5.8 Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

30-300 MHz, at 3m

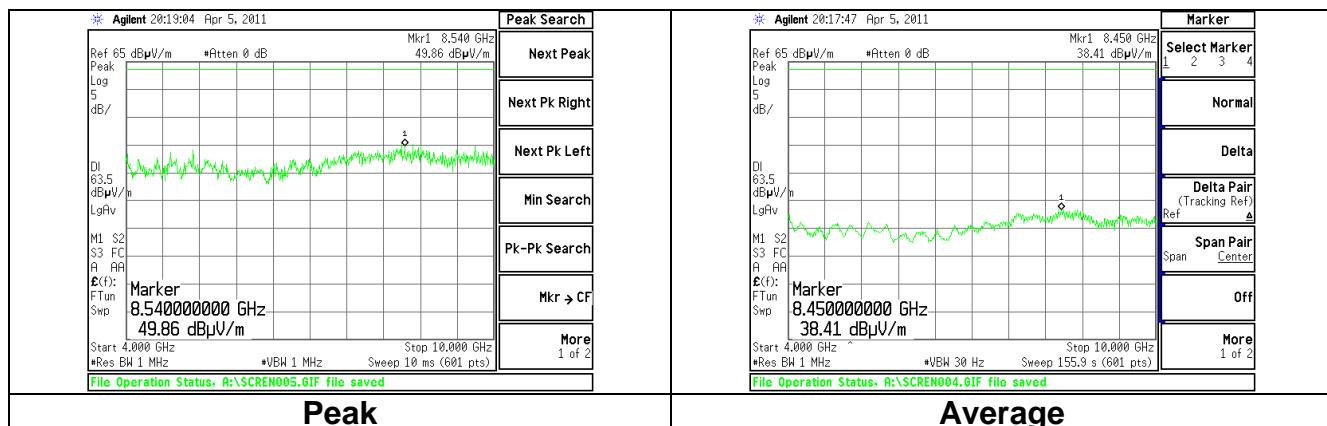

300-860 MHz, at 3m

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 17 of 32


Screen Captures - Radiated Emissions Testing (continued)

960 to 1000 MHz, at 3m

Note: Signature scan of 860 – 902 MHz and 928 – 960 MHz is in Exhibit 8 (Band-edges) of this report.


Antenna Horizontally Polarized, 1000 MHz to 4000 MHz, at 3m

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 18 of 32

Screen Captures - Radiated Emissions Testing (continued)

4000-10000 MHz, at 1m

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 19 of 32

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINES

6.1 Test Setup

The test area and setup are in accordance with ANSI C63.4 and with Title 47 CFR, FCC Part 15, Industry Canada RSS-210 and RSS GEN. The EUT was placed on a non-conductive wooden table, with a height of 80 cm above the reference ground plane. The EUT's power cable was plugged into a 50Ω (ohm), 50/250 µH Line Impedance Stabilization Network (LISN). The AC power supply of 24V was provided via an appropriate broadband EMI Filter, and then to the LISN line input. Final readings were then taken and recorded. After the EUT was setup and connected to the LISN, the RF Sampling Port of the LISN was connected to a 10 dB Attenuator-Limiter, and then to EMI receiver System. The EMCO LISN used has the ability to terminate the unused port with a 50Ω (ohm) load when switched to either L1 (line) or L2 (neutral).

6.2 Test Procedure

The EUT was investigated in continuous modulated transmit mode for this portion of the testing. The appropriate frequency range and bandwidths were selected on the EMI Receiver, and measurements were made. The bandwidth used for these measurements is 9 kHz, as specified in CISPR 16-1, Section 1, Table 1, for Quasi-Peak and Average detectors in the frequency range of 150 kHz to 30 MHz. Final readings were then taken and recorded.

6.3 Test Equipment Utilized

A list of the test equipment and accessories utilized for the Conducted Emissions test is provided in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. Calibrations of the LISN and Limiter were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. All cables are calibrated and checked periodically for conformance. The emissions are measured on the EMI System, which has automatic correction for all factors stored in memory and allows direct readings to be taken.

6.4 Test Results

The EUT was found to **MEET** the Conducted Emission requirements of FCC Part 15.207 and RSS GEN 7.2.2 for Conducted Emissions for an Intentional Radiator. See the Data Charts and Graphs for more details of the test results.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 20 of 32

6.5 FCC Limits of Conducted Emissions at the AC Mains Ports

Frequency Range (MHz)	Class B Limits (dB μ V)		Measuring Bandwidth
	Quasi-Peak	Average	
0.150 -0.50 *	66-56	56-46	
0.5 – 5.0	56	46	
5.0 – 30	60	50	
* The limit decreases linearly with the logarithm of the frequency in this range.		RBW = 9 kHz VBW \geq 9 kHz for QP VBW = 1 Hz for Average	

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 21 of 32

6.6

CONDUCTED EMISSIONS TEST DATA CHART

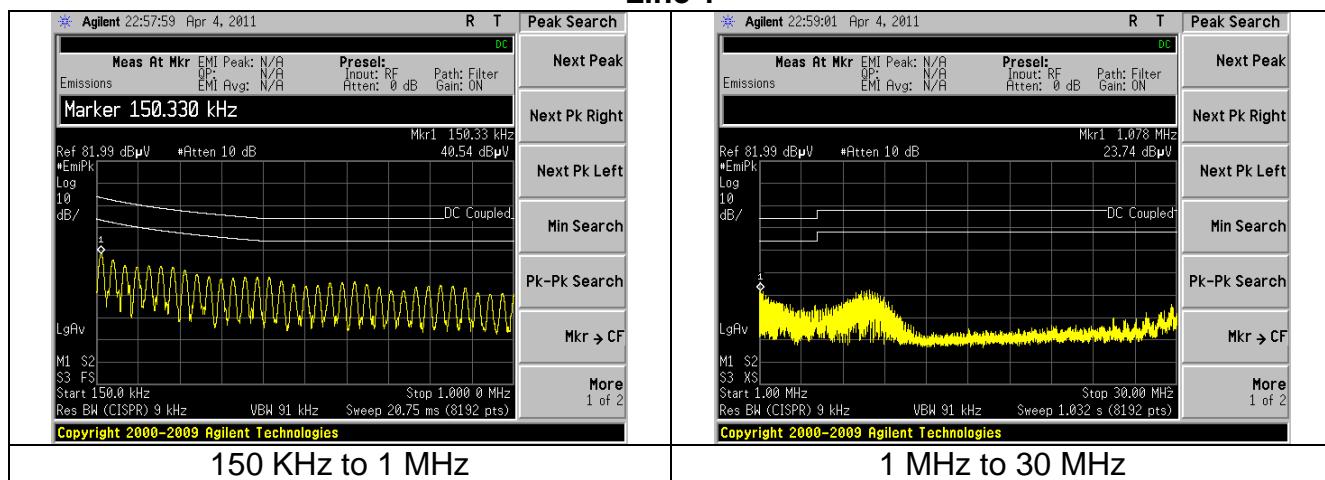
Frequency Range inspected: 150 KHz to 30 MHz

Manufacturer:	Honeywell		
Date(s) of Test:	April 4 th 2011		
Project Engineer:	Khairul Aidi Zainal		
Test Engineer:	Khairul Aidi Zainal		
Voltage:	24 VAC		
Operation Mode:	Continuously Transmitting		
Environmental Conditions in the Lab:	Temperature: 71° F Relative Humidity: 41 %		
Test Location:	<input checked="" type="checkbox"/>	AC Mains Test area	Chamber
EUT Placed On:	<input checked="" type="checkbox"/>	40cm from Vertical Ground Plane	10cm Spacers
	<input checked="" type="checkbox"/>	80cm above Ground Plane	Other:
Measurements:	Pre-Compliance	Preliminary	<input checked="" type="checkbox"/> Final
Detectors Used:	Peak	<input checked="" type="checkbox"/> Quasi-Peak	<input checked="" type="checkbox"/> Average

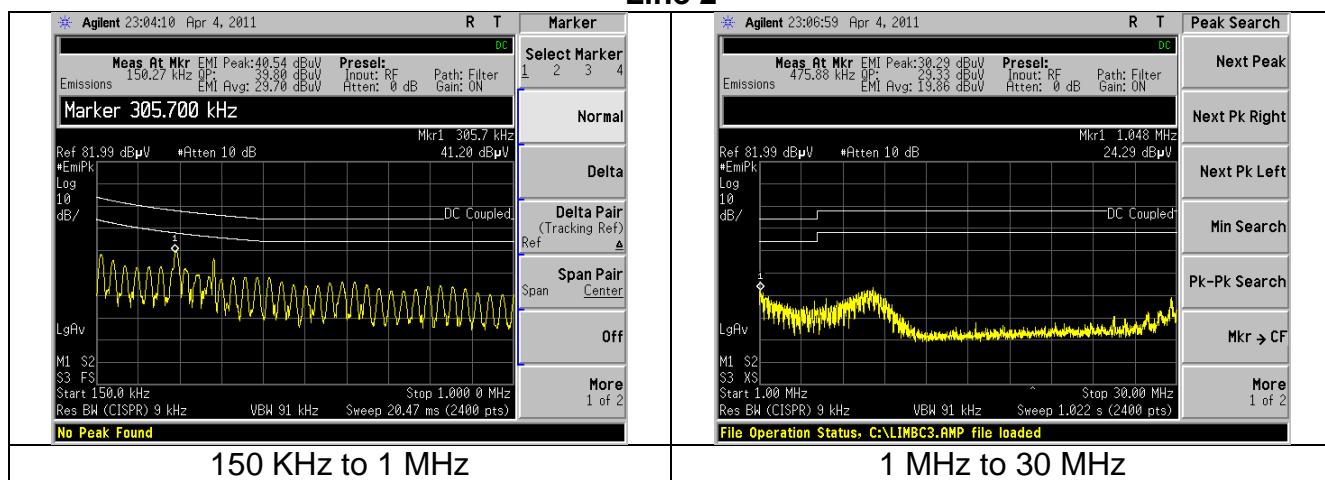
		<u>QUASI-PEAK</u>			<u>AVERAGE</u>		
Frequency (MHz)	Line	Reading (dB μ V)	Limit (dB μ V)	Margin (dB)	Reading (dB μ V)	Limit (dB μ V)	Margin (dB)
0.150	1	40.1	66.0	25.8	29.9	56.0	26.1
0.475	1	30.5	56.4	25.9	21.0	46.4	25.5
8.640	1	23.0	60.0	37.0	9.1	50.0	40.9
0.150	2	39.8	66.0	26.2	29.7	56.0	26.3
0.301	2	33.3	60.2	26.9	24.9	50.2	25.3
0.476	2	29.3	56.4	27.1	19.9	46.4	26.6

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 22 of 32

6.7 Test Setup Photo(s) – Conducted Emissions Test



Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 23 of 32


6.8 Screen Captures – Conducted Emissions Test

These screen captures represent Peak Emissions. For conducted emission measurements, both a Quasi-Peak detector function and an Average detector function are utilized. The emissions must meet both the Quasi-peak limit and the Average limit as described in 47 CFR 15.207 and RSS GEN 7.2.2 (Table 2).

Line 1

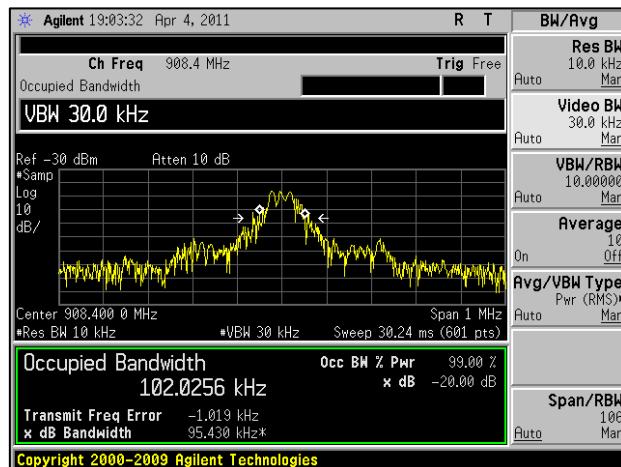
Line 2

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 24 of 32

EXHIBIT 7. OCCUPIED BANDWIDTH (99%):

7.1 Limits

There are no limits specified. The occupied bandwidth need only be reported.


7.2 Method of Measurements

This test was performed radiated in a 3-meter semi-anechoic chamber using the spectrum analyzer measurement function. A sample detector was used to perform the measurement and the RBW was set to be 1% of the span as required per RSS GEN.

7.3 Test Data

Center Frequency (MHz)	Measured 99% BW (kHz)
908.4	102

7.4 Screen Captures - OCCUPIED BANDWIDTH

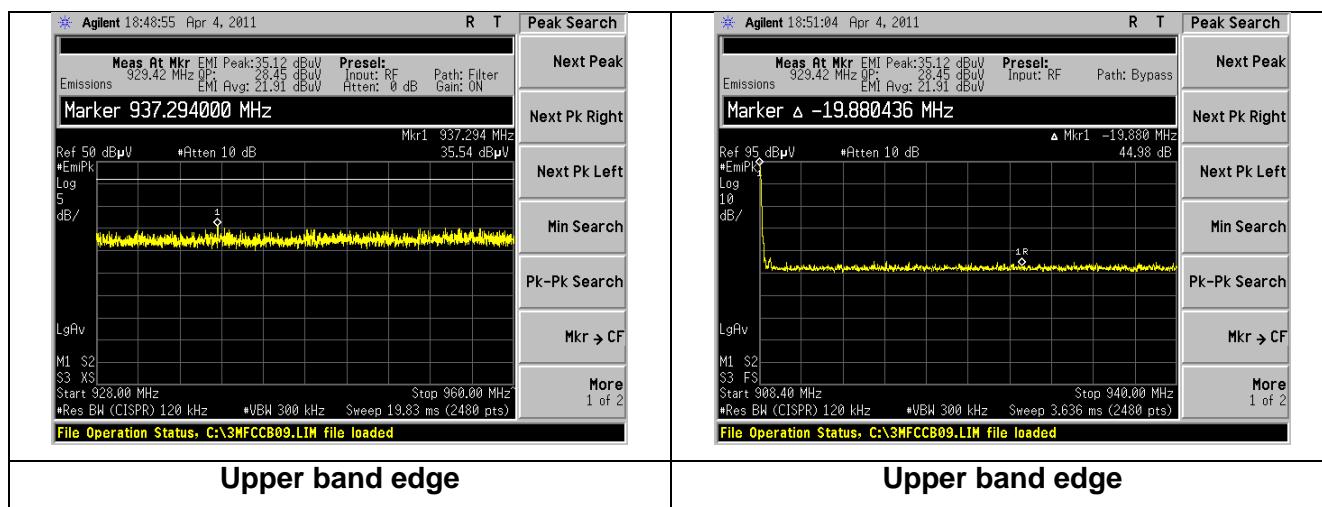
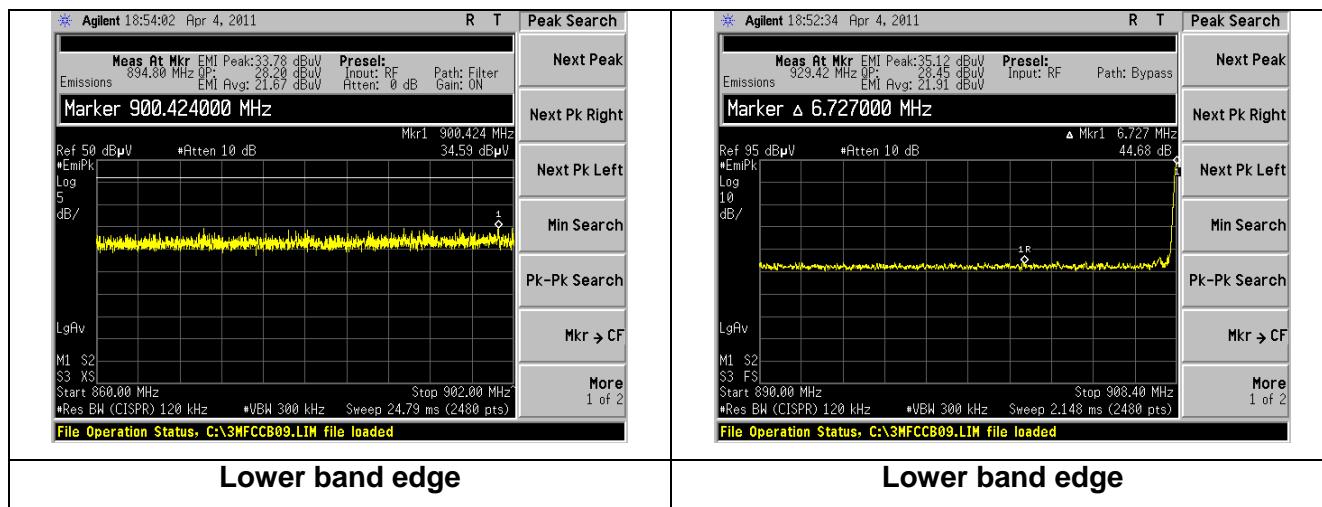


Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 25 of 32

EXHIBIT 8.BAND-EDGE MEASUREMENTS

8.1 Method of Measurements

FCC 15.209(b) and 15.249(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902-928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source.

Screen Capture Demonstrating Compliance at the Band-Edges

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 26 of 32

EXHIBIT 9. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

The stability of the device was examined as a function of the input voltage available to the EUT. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers.

Using a variable AC power supply, the voltage was varied by $\pm 15\%$.

A spectrum analyzer was used to measure the frequency at the appropriate frequency markers. For this test, the EUT was placed in continuous transmit CW mode.

20.4VAC		24 VAC		27.6VAC	
Frequency (Hz)	Field Strength (dB μ V/m)	Frequency (Hz)	Field Strength (dB μ V/m)	Frequency (Hz)	Field Strength (dB μ V/m)
908399130	89.370	908399161	89.400	908399086	89.400

Maximum Frequency Deviation	75	Hz
Maximum field strength deviation	0.030	dB

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characteristics were well behaved, and the system returned to the same state of operation as before the power cycle.

No anomalies were noted in the measured transmit power and the frequency stability was better than 100 ppm during the voltage variation tests.

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 27 of 32

EXHIBIT 10. MPE CALCULATIONS

The following MPE calculations are based on a PCB quarter-wave antenna, with a measured ERP of 93.2 dB μ V/m (at 3 meters).

<u>Prediction of MPE limit at a given distance</u>		
Equation from page 18 of OET Bulletin 65, Edition 97-01		
	$S = \frac{PG}{4\pi R^2}$	
where:	S = power density	
	P = power input to the antenna	
	G = power gain of the antenna in the direction of interest relative to an isotropic radiator	
	R = distance to the center of radiation of the antenna	
Maximum peak output power at antenna input terminal:	-2.00	(dBm)
Maximum peak output power at antenna input terminal:	0.631	(mW)
Antenna gain(typical):	0	(dBi)
Maximum antenna gain:	1.000	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	908.4	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.6	(mW/cm ²)
Power density at prediction frequency:	0.000126	(mW/cm ²)
Margin of Compliance at 20 cm =	36.8	dB

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 28 of 32

APPENDIX A

Date : 4-Apr-2011

Type Test : Conducted Emissions (107,207)

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960008	LISN	EMCO	3816/2NM	9701-1057	1/4/2011	1/4/2012	Active Calibration
4	AA 960072	Transient Limiter	HP	11947A	3107A02515	10/8/2010	10/8/2011	Active Calibration

Project Engineer: AIDI

Quality Assurance: Peter

Date : 4-Apr-2011

Type Test : Occupied Bandwidth (20dB)

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/19/2010	10/19/2011	Active Calibration

Project Engineer: AIDI

Quality Assurance: Mike

Date : 4-Apr-2011

Type Test : Radiated Emissions (209)

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/19/2010	10/19/2011	Active Calibration
4	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	10/19/2010	10/19/2011	Active Calibration
5	AA 960158	Double Ridge Horn Antenna	EMCO	3117	109300	8/19/2010	8/19/2011	Active Calibration
6	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	8/19/2010	8/19/2011	Active Calibration
7	AA 960155	900MHz High Pass Filter	KWM	HPF-L-14185	7272-03	2/28/2011	2/28/2012	Active Calibration
8	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	11/9/2010	11/9/2011	Active Calibration

Project Engineer: AIDI

Quality Assurance: Peter

C

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 29 of 32

LS RESEARCH LLC
Wireless Product Development
Equipment Calibration

Date : 4-Apr-2011

Type Test : Radiated Harmonics

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960158	Double Ridge Horn Antenna	EMCO	3117	109300	8/19/2010	8/19/2011	Active Calibration
4	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	8/19/2010	8/19/2011	Active Calibration
5	AA 960155	900MHz High Pass Filter	KVM	HPF-L-14185	7272-03	2/28/2011	2/28/2012	Active Calibration
6	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	9/22/2010	9/22/2011	Active Calibration
7	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	1/4/2011	1/4/2012	Active Calibration
8	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/4/2010	6/4/2011	Active Calibration

Project Engineer: Aidi

Quality Assurance: Peter

LS RESEARCH LLC
Wireless Product Development
Equipment Calibration

Date : 4-Apr-2011

Type Test : Radiated Band-Edge

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/19/2010	10/19/2011	Active Calibration

Project Engineer: Aidi

Quality Assurance: Peter

LS RESEARCH LLC
Wireless Product Development
Equipment Calibration

Date : 4-Apr-2011

Type Test : Radiated Fundamental

Job # : C-1154

Prepared By: AIDI

Customer : Honeywell

Quote #: 311062

No	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/7/2010	6/7/2011	Active Calibration
2	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/7/2010	6/7/2011	Active Calibration
3	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	10/19/2010	10/19/2011	Active Calibration

Project Engineer: Aidi

Quality Assurance: Peter

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 30 of 32

APPENDIX B
TEST STANDARDS – CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2	STANDARD #	DATE	Am. 1	Am. 2
ANSI C63.4	2009			IEC 61000-4-4	2004-07	2010-10	
ANSI C63.10	2009			IEC 61000-4-5	2005-11		
CISPR 11	2009-05	2009-12 P		IEC 61000-4-6	2008-10		
CISPR 12	2007-05			IEC 61000-4-8	2009-09		
CISPR 14-1	2005-11	2008-11		IEC 61000-4-11	2004-03		
CISPR 14-2	2001-11	2001-11	2008-05	IEC 61000-6-1	2005-03		
CISPR 16-1-1 Note 1	2010-01			IEC 61326-1	2006-06		
CISPR 16-1-2 Note 1	2003	2004-04	2006-07	ISO 14982	1998-07		
CISPR 22	2008-09			MIL Std. 461E	1999-08		
CISPR 24	1997-09	2001-07	2002-10	RSS GEN	2010-12		
EN 55011	2007-05			RSS 119	2007-06		
EN 55014-1	2006			RSS 123	1999-11		
EN 55014-2	1997			RSS 125	2000-03		
EN 55022	2006	2007		RSS 131	2003-07		
EN 60601-1-2	2007-03			RSS 136	2002-10		
EN 61000-3-2	2006-05			RSS 137	2009-02		
EN 61000-3-3	2008-12			RSS 210	2010-12		
EN 61000-4-2	2009-05			RSS 213	2005-12		
EN 61000-4-3	2006-07	2008-05		RSS 243	2005-11		
EN 61000-4-4	2004			RSS 310	2007-06		
EN 61000-4-5	2006-12						
EN 61000-4-6	2009-05						
EN 61000-4-8	1994	2001					
EN 61000-4-11	2004-10						
EN 61000-6-1	2007-02						
EN 61000-6-2	2005-12						
EN 61000-6-3	2007-02						
EN 61000-6-4	2007-02						
FCC 47 CFR, Parts 0-15, 18, 90, 95	2010						
FCC Public Notice DA 00-1407	2000						
FCC ET Docket # 99-231	2002						
FCC Procedures	2007						
ICES 001	2006-06						
ICES 002	2009-08						
ICES 003	2004-02						
IEC 60601-1-2 Note 1	2007-03						
IEC 61000-3-2	2005-11	2008-03	2009-02				
IEC 61000-3-3	2008-06						
IEC 61000-4-2	2008-12						
IEC 61000-4-3	2008-04	incl in 2008-04	2009-12 FD				

Note 1: Test not on LSR Scope of Accreditation.

Updated on 02-03-10
P=Project FD= Final Draft

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 31 of 32

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For:Honeywell	EUT: Moravia	LS Research, LLC
Report #: 311062	Model #:TH8320ZW1000	Template: 15.249 8-11-2010
LSR Job #:C-1154	Serial #: Engineering Samples	Page 32 of 32