

Honeywell, Automation and Control Solutions

RTH9580WF01

FCC 15.207:2017

FCC 15.247:2017

802.11 bgn Radio

Report # HNYW0203.1

NVLAP Lab Code: 201049-0

CERTIFICATE OF TEST

Last Date of Test: February 13, 2017
Honeywell, Automation and Control Solutions
Model: RTH9580WF01

Radio Equipment Testing

Standards

- tall tall tall	
Specification	Method
FCC 15.207:2017	ANSI C63.10:2013
FCC 15.247:2017	KDB 558074

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
11.6	Duty Cycle	Yes	Pass	
11.8.2	Occupied Bandwidth	Yes	Pass	
11.9.1.1	Output Power	Yes	Pass	
11.10.2	Power Spectral Density	Yes	Pass	
11.11	Band Edge Compliance	Yes	Pass	
11.11	Spurious Conducted Emissions	Yes	Pass	
11.12.1, 11.13.2, 6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Jeremiah Darden, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

 $\mbox{\bf OFCA}$ – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

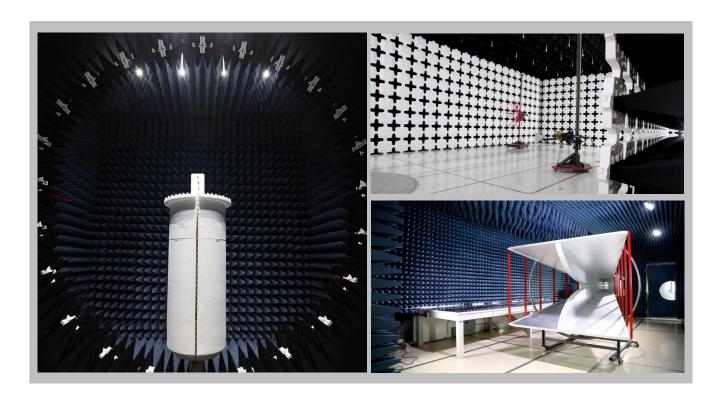
MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

FACILITIES


California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

5/225

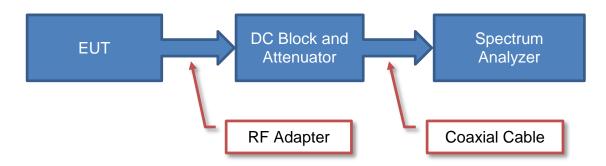
(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600			
	NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innovation, Science and Economic Development Canada							
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
	VCCI							
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157			

MEASUREMENT UNCERTAINTY

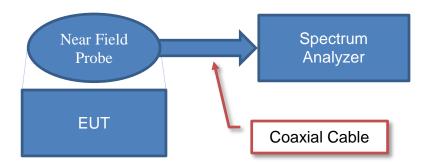
Measurement Uncertainty

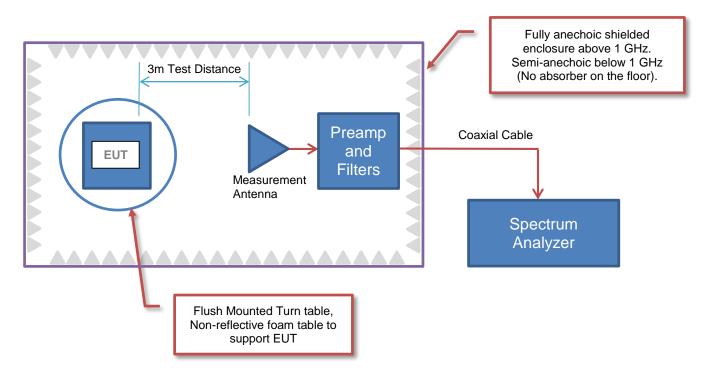
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.


The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.9 dB	-4.9 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Honeywell, Automation and Control Solutions
Address:	1985 Douglas Drive North
City, State, Zip:	Golden Valley, MN 55422-3992
Test Requested By:	Job Villafuerte
Model:	RTH9580WF01
First Date of Test:	February 8, 2017
Last Date of Test:	February 13, 2017
Receipt Date of Samples:	February 7, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The RTH9580WF01 is a wifi enabled thermostat operating in the 2.4GHz ISM band. The product employs a USI system-in-package module WMNBM09 and is considered a single component from Honeywell's perspective. The WMNBM09 supports 802.11b/g/n protocols using OFDM 16QAM, 64QAM, DSSS, DBPSK, DQPSK, and CCK modulations. All data rates used within the 802.11b/g/n protocols are supported. This model is only intended to be operated in North America and the radio is locked via firmware to USA operation which excludes channels 12, 13, and 14.

The RTH9580WF01 contains two antennas which are managed by the SIP module which controls an rf switch. Both antennas are PCB antennas. There is only 1 rx/tx path out of the radio such that only one antenna is operated at a time (singlestream). The antenna which receives the strongest signal is used for the next transmission.

Testing Objective:

To demonstrate compliance of the 802.11 radio under FCC 15.247 for operation in the 2.4 GHz band.

CONFIGURATIONS

Configuration HNYW0203-1

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
Radio Module (Direct Connect)	Honeywell, Automation and Control Solutions	RTH9580WF01	0027301	

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
AC Adapter	CUI Inc	EPA240050-P5R-SZ	None		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
AC Power	No	1.8m	No	AC Adapter	Radio Module (Direct Connect)	

Configuration HNYW0203- 2

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Radio Module (Radiated)	Honeywell, Automation and Control Solutions	RTH9580WF01	0027324		

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
AC Adapter	CUI Inc	EPA240050-P5R-SZ	None		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
AC Power	No	1.8m	No	AC Adapter	Radio Module (Radiated)

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Spurious	Tested as	No EMI suppression	EUT remained at
1	2/8/2017	Conducted	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
			Tested as	No EMI suppression	EUT remained at
2	2/8/2017	Duty Cycle	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	2/8/2017	Bandwidth	delivered to	devices were added or	Element following the
		Dandwidth	Test Station.	modified during this test.	test.
		/8/2017 Output Power	Tested as	No EMI suppression	EUT remained at
4	2/8/2017		delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Power	Tested as	No EMI suppression	EUT remained at
5	2/8/2017	Spectral	delivered to	devices were added or	Element following the
		Density	Test Station.	modified during this test.	test.
		Rand Edge	Tested as	No EMI suppression	EUT remained at
6	2/8/2017	/8/2017 Band Edge Compliance	delivered to	devices were added or	Element following the
			Test Station.	modified during this test.	test.
		Powerline	Tested as	No EMI suppression	EUT remained at
7	2/9/2017	Conducted	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	Scheduled testing
8	2/13/2017	Radiated	delivered to	devices were added or	J
		Emissions	Test Station.	modified during this test.	was completed.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Per the standard, an insulating material was also added to ground plane between the EUT's power and remote I/O cables. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
LISN	Solar Electronics	9252-50-R-24-BNC	LJK	9/21/2016	9/21/2017
Receiver	Rohde & Schwarz	ESCI	ARF	6/22/2016	6/22/2017
Cable - Conducted Cable Assembly	Northwest EMC	TXA, HHZ, TQR	TXAA	5/17/2016	5/17/2017

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

HNYW0203-2

MODES INVESTIGATED

Transmitting Antenna 0 at Mid Ch 2437 MHz, 1 Mbps Transmitting Antenna 1 at Mid Ch 2437 MHz, 1 Mbps

EUT:	RTH9580WF01	Work Order:	HNYW0203
Serial Number:	0027324	Date:	02/09/2017
Customer:	Honeywell, Automation and Control Solutions	Temperature:	23.2°C
Attendees:	Job Villafuerte	Relative Humidity:	26.7%
Customer Project:	None	Bar. Pressure:	1030 mb
Tested By:	Willie Love	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	HNYW0203-2

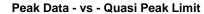
TEST SPECIFICATIONS

Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

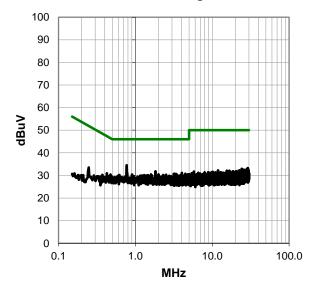
Run #:	5	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS


ΑO

EUT OPERATING MODES

Transmitting Antenna 0 at Mid Ch 2437 MHz, 1 Mbps


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

0.616

2.295

1.303

1.456

0.475

1.228

1.389

3.198

4.351

4.366

1.157

10.3

10.4

10.4

10.4

10.6

10.3

10.3

10.2

10.2

10.2

10.1

RESULTS - Run #5

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.769	14.6	19.9	34.5	56.0	-21.5		
1.825	12.1	19.7	31.8	56.0	-24.2		
4.023	11.3	19.8	31.1	56.0	-24.9		
0.781	11.1	19.9	31.0	56.0	-25.0		
3.161	10.9	19.8	30.7	56.0	-25.3		
3.247	10.9	19.8	30.7	56.0	-25.3		
4.481	10.9	19.8	30.7	56.0	-25.3		
3.418	10.8	19.8	30.6	56.0	-25.4		
1.594	10.8	19.7	30.5	56.0	-25.5		
1.997	10.7	19.8	30.5	56.0	-25.5		
4.802	10.7	19.8	30.5	56.0	-25.5		
4.940	10.7	19.8	30.5	56.0	-25.5		
0.907	10.5	19.9	30.4	56.0	-25.6		
2.508	10.5	19.8	30.3	56.0	-25.7		
3.937	10.5	19.8	30.3	56.0	-25.7		
0.616	10.3	19.9	30.2	56.0	-25.8		
2.295	10.4	19.8	30.2	56.0	-25.8		
1.303	10.4	19.7	30.1	56.0	-25.9		
1.456	10.4	19.7	30.1	56.0	-25.9		
0.475	10.6	19.8	30.4	56.4	-26.0		
1.228	10.3	19.7	30.0	56.0	-26.0		
1.389	10.3	19.7	30.0	56.0	-26.0		
3.198	10.2	19.8	30.0	56.0	-26.0		
4.351	10.2	19.8	30.0	56.0	-26.0		
4.366	10.2	19.8	30.0	56.0	-26.0		
1.157	10.1	19.8	29.9	56.0	-26.1		

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Limit (dBuV)	Margin (dB)
0.769	14.6	19.9	34.5	46.0	-11.5
1.825	12.1	19.7	31.8	46.0	-14.2
4.023	11.3	19.8	31.1	46.0	-14.9
0.781	11.1	19.9	31.0	46.0	-15.0
3.161	10.9	19.8	30.7	46.0	-15.3
3.247	10.9	19.8	30.7	46.0	-15.3
4.481	10.9	19.8	30.7	46.0	-15.3
3.418	10.8	19.8	30.6	46.0	-15.4
1.594	10.8	19.7	30.5	46.0	-15.5
1.997	10.7	19.8	30.5	46.0	-15.5
4.802	10.7	19.8	30.5	46.0	-15.5
4.940	10.7	19.8	30.5	46.0	-15.5
0.907	10.5	19.9	30.4	46.0	-15.6
2.508	10.5	19.8	30.3	46.0	-15.7
3.937	10.5	19.8	30.3	46.0	-15.7

19.9

19.8

19.7

19.7

19.8

19.7

19.7

19.8

19.8

19.8

19.8

30.2

30.2

30.1

30.1

30.4

30.0

30.0

30.0

30.0

30.0

29.9

46.0

46.0

46.0

46.0

46.4

46.0

46.0

46.0

46.0

46.0

46.0

-15.8

-15.8

-15.9

-15.9

-16.0

-16.0

-16.0

-16.0

-16.0

-16.0

-16.1

Peak Data - vs - Average Limit

CONCLUSION

Pass

Tested By

EUT:	RTH9580WF01	Work Order:	HNYW0203
Serial Number:	0027324	Date:	02/09/2017
Customer:	Honeywell, Automation and Control Solutions	Temperature:	23.2°C
Attendees:	Job Villafuerte	Relative Humidity:	26.7%
Customer Project:	None	Bar. Pressure:	1030 mb
Tested By:	Willie Love	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	HNYW0203-2

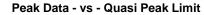
TEST SPECIFICATIONS

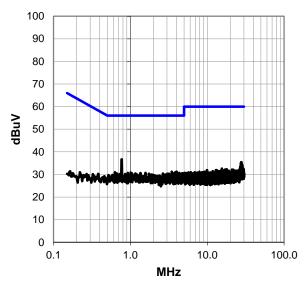
Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

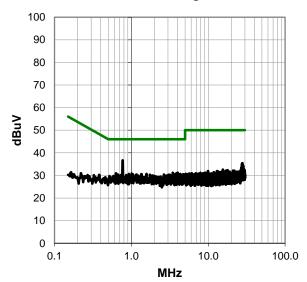
Run #:	6	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS


Α0


EUT OPERATING MODES

Transmitting Antenna 0 at Mid Ch 2437 MHz, 1 Mbps


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

4.728

0.669

1.165

2.650

3.567

4.918

28.015

1.739

3.038

10.7

10.5

10.6

10.6

10.6

10.6

13.2

10.6

10.5

RESULTS - Run #6

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.769	16.8	19.9	36.7	56.0	-19.3		
27.829	14.2	21.2	35.4	60.0	-24.6		
3.993	11.4	19.8	31.2	56.0	-24.8		
3.455	11.3	19.8	31.1	56.0	-24.9		
0.631	11.1	19.9	31.0	56.0	-25.0		
3.862	11.2	19.7	30.9	56.0	-25.1		
27.426	13.7	21.2	34.9	60.0	-25.1		
1.008	11.1	19.7	30.8	56.0	-25.2		
4.030	11.0	19.8	30.8	56.0	-25.2		
0.926	10.8	19.9	30.7	56.0	-25.3		
1.571	11.0	19.7	30.7	56.0	-25.3		
1.351	10.9	19.7	30.6	56.0	-25.4		
3.758	10.9	19.7	30.6	56.0	-25.4		
4.336	10.8	19.8	30.6	56.0	-25.4		
27.653	13.4	21.2	34.6	60.0	-25.4		
28.116	13.4	21.2	34.6	60.0	-25.4		
1.045	10.8	19.7	30.5	56.0	-25.5		
4.728	10.7	19.8	30.5	56.0	-25.5		
0.669	10.5	19.9	30.4	56.0	-25.6		
1.165	10.6	19.8	30.4	56.0	-25.6		
2.650	10.6	19.8	30.4	56.0	-25.6		
3.567	10.6	19.8	30.4	56.0	-25.6		
4.918	10.6	19.8	30.4	56.0	-25.6		
28.015	13.2	21.2	34.4	60.0	-25.6		
1.739	10.6	19.7	30.3	56.0	-25.7		
3.038	10.5	19.8	30.3	56.0	-25.7		

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Limit (dBuV)	Margin (dB)
0.769	16.8	19.9	36.7	46.0	-9.3
27.829	14.2	21.2	35.4	50.0	-14.6
3.993	11.4	19.8	31.2	46.0	-14.8
3.455	11.3	19.8	31.1	46.0	-14.9
0.631	11.1	19.9	31.0	46.0	-15.0
3.862	11.2	19.7	30.9	46.0	-15.1
27.426	13.7	21.2	34.9	50.0	-15.1
1.008	11.1	19.7	30.8	46.0	-15.2
4.030	11.0	19.8	30.8	46.0	-15.2
0.926	10.8	19.9	30.7	46.0	-15.3
1.571	11.0	19.7	30.7	46.0	-15.3
1.351	10.9	19.7	30.6	46.0	-15.4
3.758	10.9	19.7	30.6	46.0	-15.4
4.336	10.8	19.8	30.6	46.0	-15.4
27.653	13.4	21.2	34.6	50.0	-15.4
28.116	13.4	21.2	34.6	50.0	-15.4
1.045	10.8	19.7	30.5	46.0	-15.5

19.8

19.9

19.8

19.8

19.8

19.8

21.2

19.7

19.8

30.5

30.4

30.4

30.4

30.4

30.4

34.4

30.3

30.3

46.0

46.0

46.0

46.0

46.0

46.0

50.0

46.0

46.0

-15.5

-15.6

-15.6

-15.6

-15.6

-15.6

-15.6

-15.7

-15.7

Peak Data - vs - Average Limit

CONCLUSION

Pass

Tested By

EUT:	RTH9580WF01	Work Order:	HNYW0203
Serial Number:	0027324	Date:	02/09/2017
Customer:	Honeywell, Automation and Control Solutions	Temperature:	23.2°C
Attendees:	Job Villafuerte	Relative Humidity:	26.7%
Customer Project:	None	Bar. Pressure:	1030 mb
Tested By:	Willie Love	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	HNYW0203-2

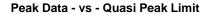
TEST SPECIFICATIONS

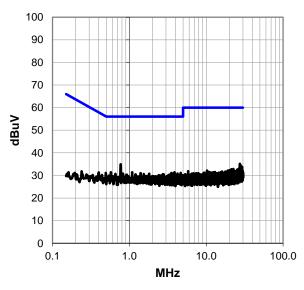
Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

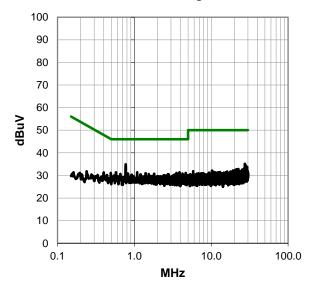
Run #:	7	Line:	Neutral	Add. Ext. Attenuation (dB):	0

COMMENTS


Α1


EUT OPERATING MODES

Transmitting Antenna 1 at Mid Ch 2437 MHz, 1 Mbps


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

4.828

10.3

19.8

RESULTS - Run #7

Peak Data - vs - Quasi Peak Limit

	Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)		
0.769	15.0	19.9	34.9	56.0	-21.1		
0.575	11.5	19.9	31.4	56.0	-24.6		
1.086	11.7	19.7	31.4	56.0	-24.6		
3.858	11.6	19.7	31.3	56.0	-24.7		
3.530	11.3	19.8	31.1	56.0	-24.9		
4.664	11.3	19.8	31.1	56.0	-24.9		
27.433	13.9	21.2	35.1	60.0	-24.9		
0.493	11.3	19.8	31.1	56.1	-25.0		
1.400	11.3	19.7	31.0	56.0	-25.0		
0.825	10.9	19.9	30.8	56.0	-25.2		
4.235	11.0	19.8	30.8	56.0	-25.2		
0.657	10.8	19.9	30.7	56.0	-25.3		
1.810	11.0	19.7	30.7	56.0	-25.3		
3.646	10.9	19.8	30.7	56.0	-25.3		
1.538	10.9	19.7	30.6	56.0	-25.4		
1.202	10.8	19.7	30.5	56.0	-25.5		
2.735	10.7	19.8	30.5	56.0	-25.5		
2.795	10.7	19.8	30.5	56.0	-25.5		
3.407	10.6	19.8	30.4	56.0	-25.6		
28.015	13.2	21.2	34.4	60.0	-25.6		
0.915	10.4	19.9	30.3	56.0	-25.7		
3.310	10.5	19.8	30.3	56.0	-25.7		
4.261	10.5	19.8	30.3	56.0	-25.7		
4.534	10.4	19.8	30.2	56.0	-25.8		
2.679	10.3	19.8	30.1	56.0	-25.9		
4.828	10.3	19.8	30.1	56.0	-25.9		

Peak Data - vs - Average Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.769	15.0	19.9	34.9	46.0	-11.1	
0.575	11.5	19.9	31.4	46.0	-14.6	
1.086	11.7	19.7	31.4	46.0	-14.6	
3.858	11.6	19.7	31.3	46.0	-14.7	
3.530	11.3	19.8	31.1	46.0	-14.9	
4.664	11.3	19.8	31.1	46.0	-14.9	
27.433	13.9	21.2	35.1	50.0	-14.9	
0.493	11.3	19.8	31.1	46.1	-15.0	
1.400	11.3	19.7	31.0	46.0	-15.0	
0.825	10.9	19.9	30.8	46.0	-15.2	
4.235	11.0	19.8	30.8	46.0	-15.2	
0.657	10.8	19.9	30.7	46.0	-15.3	
1.810	11.0	19.7	30.7	46.0	-15.3	
3.646	10.9	19.8	30.7	46.0	-15.3	
1.538	10.9	19.7	30.6	46.0	-15.4	
1.202	10.8	19.7	30.5	46.0	-15.5	
2.735	10.7	19.8	30.5	46.0	-15.5	
2.795	10.7	19.8	30.5	46.0	-15.5	
3.407	10.6	19.8	30.4	46.0	-15.6	
28.015	13.2	21.2	34.4	50.0	-15.6	
0.915	10.4	19.9	30.3	46.0	-15.7	
3.310	10.5	19.8	30.3	46.0	-15.7	
4.261	10.5	19.8	30.3	46.0	-15.7	
4.534	10.4	19.8	30.2	46.0	-15.8	
2.679	10.3	19.8	30.1	46.0	-15.9	

CONCLUSION

Pass

Tested By

30.1

46.0

-15.9

EUT:	RTH9580WF01	Work Order:	HNYW0203
Serial Number:	0027324	Date:	02/09/2017
Customer:	Honeywell, Automation and Control Solutions	Temperature:	23.2°C
Attendees:	Job Villafuerte	Relative Humidity:	26.7%
Customer Project:	None	Bar. Pressure:	1030 mb
Tested By:	Willie Love	Job Site:	TX01
Power:	110VAC/60Hz	Configuration:	HNYW0203-2

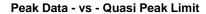
TEST SPECIFICATIONS

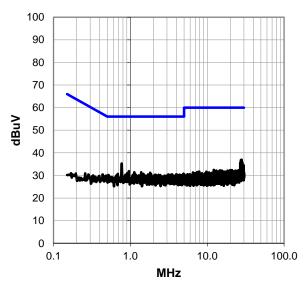
Specification:	Method:
FCC 15.207:2017	ANSI C63.10:2013

TEST PARAMETERS

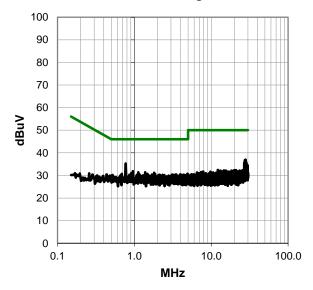
Run #:	8	Line:	High Line	Add. Ext. Attenuation (dB):	0

COMMENTS


Α1


EUT OPERATING MODES

Transmitting Antenna 1 at Mid Ch 2437 MHz, 1 Mbps


DEVIATIONS FROM TEST STANDARD

None

Peak Data - vs - Average Limit

3.489

28.370

29.690

0.859

1.079

10.6

13.2

13.0

10.4

10.6

RESULTS - Run #8

Peak Data - vs - Quasi Peak Limit

Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
0.769	15.4	19.9	35.3	56.0	-20.7	
28.015	15.8	21.2	37.0	60.0	-23.0	
27.433	15.5	21.2	36.7	60.0	-23.3	
0.956	12.0	19.9	31.9	56.0	-24.1	
28.597	14.3	21.3	35.6	60.0	-24.4	
26.847	14.4	21.1	35.5	60.0	-24.5	
1.127	11.7	19.7	31.4	56.0	-24.6	
1.385	11.7	19.7	31.4	56.0	-24.6	
1.814	11.5	19.7	31.2	56.0	-24.8	
0.907	11.1	19.9	31.0	56.0	-25.0	
27.620	13.8	21.2	35.0	60.0	-25.0	
0.687	10.8	19.9	30.7	56.0	-25.3	
1.482	10.9	19.8	30.7	56.0	-25.3	
4.899	10.9	19.8	30.7	56.0	-25.3	
1.866	10.9	19.7	30.6	56.0	-25.4	
3.959	10.7	19.8	30.5	56.0	-25.5	
27.303	13.4	21.1	34.5	60.0	-25.5	
28.474	13.2	21.3	34.5	60.0	-25.5	
1.172	10.6	19.8	30.4	56.0	-25.6	
1.691	10.7	19.7	30.4	56.0	-25.6	
3.116	10.6	19.8	30.4	56.0	-25.6	
3.489	10.6	19.8	30.4	56.0	-25.6	
28.370	13.2	21.2	34.4	60.0	-25.6	
29.690	13.0	21.4	34.4	60.0	-25.6	
0.859	10.4	19.9	30.3	56.0	-25.7	
1.079	10.6	19.7	30.3	56.0	-25.7	

Peak Data - vs - Average Limit					
Freq	Amp.	Factor	Adjusted	Spec. Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
0.769	15.4	19.9	35.3	46.0	-10.7
28.015	15.8	21.2	37.0	50.0	-13.0
27.433	15.5	21.2	36.7	50.0	-13.3
0.956	12.0	19.9	31.9	46.0	-14.1
28.597	14.3	21.3	35.6	50.0	-14.4
26.847	14.4	21.1	35.5	50.0	-14.5
1.127	11.7	19.7	31.4	46.0	-14.6
1.385	11.7	19.7	31.4	46.0	-14.6
1.814	11.5	19.7	31.2	46.0	-14.8
0.907	11.1	19.9	31.0	46.0	-15.0
27.620	13.8	21.2	35.0	50.0	-15.0
0.687	10.8	19.9	30.7	46.0	-15.3
1.482	10.9	19.8	30.7	46.0	-15.3
4.899	10.9	19.8	30.7	46.0	-15.3
1.866	10.9	19.7	30.6	46.0	-15.4
3.959	10.7	19.8	30.5	46.0	-15.5
27.303	13.4	21.1	34.5	50.0	-15.5
28.474	13.2	21.3	34.5	50.0	-15.5
1.172	10.6	19.8	30.4	46.0	-15.6
1.691	10.7	19.7	30.4	46.0	-15.6
3.116	10.6	19.8	30.4	46.0	-15.6

19.8

21.2

21.4

19.9

19.7

CONCLUSION

Pass

Tested By

30.4

34.4

34.4

30.3

30.3

46.0

50.0

50.0

46.0

46.0

-15.6

-15.6

-15.6

-15.7

-15.7