

LS RESEARCH, LLC
WIRELESS PRODUCT DEVELOPMENT

W66 N220 Commerce Court • Cedarburg, WI 53012 • USA

Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

**TEST REPORT # 311330
LSR Job #: C-1349**

Compliance Testing of:

Wireless Entry/Exit Remote / Wireless Vent and Filter Boost Remote

Test Date(s):

November 23, 28, 29, December 1, 2011

Prepared For:

Honeywell

Attn: Dave Mulhouse

1985 Douglas Drive North

Golden Valley, MN 55422

In accordance with:
Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.247
Industry Canada (IC) RSS 210 Annex 8
Frequency Hopping Spread Spectrum (FHSS) Operating in the
Frequency Band 902-928 MHz

This Test Report is issued under the Authority of:

Signature:

Date: 12/28/2011

Test Report Reviewed by:

Signature:

Date: 12/28/2011

Tested by:

Peter Feilen, EMC Engineer.

Signature:

Date: 12/1/11

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS

EXHIBIT 1. INTRODUCTION	4
1.1 - Scope.....	4
1.2 – Normative References	4
1.3 - LS Research, LLC Test Facility	5
1.4 – Location of Testing.....	5
1.5 – Test Equipment Utilized	5
EXHIBIT 2. PERFORMANCE ASSESSMENT	6
2.1 – Client Information	6
2.2 - Equipment Under Test (EUT) Information	6
2.3 - Associated Antenna Description	6
2.4 - EUT'S Technical Specifications	7
2.5 - Product Description.....	8
EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS	9
3.1 - Climate Test Conditions.....	9
3.2 - Applicability & Summary Of EMC Emission Test Results	9
3.3 - Modifications Incorporated In The EUT For Compliance Purposes	9
3.4 - Deviations & Exclusions From Test Specifications	9
EXHIBIT 4. DECLARATION OF CONFORMITY	10
EXHIBIT 5. RADIATED EMISSIONS TEST.....	11
5.1 - Test Setup.....	11
5.2 - Test Procedure	11
5.3 - Test Equipment Utilized	11
5.4 - Test Results	11
5.5 - Calculation of Radiated Emissions Limits	12
5.6 - Radiated Emissions Test Data Chart.....	13
5.7 - Test Setup Photo(s) – Radiated Emissions Test	15
5.8 - Screen Captures - Radiated Emissions Test	17
5.9 - Receive Mode Testing	23
5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode	24

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 2 of 47

EXHIBIT 6. OCCUPIED BANDWIDTH	27
6.1 - Limits.....	27
6.2 - Method of Measurements	27
6.3 - Test Data	28
6.4 - Screen Captures - Occupied Bandwidth.....	28
EXHIBIT 7. BAND EDGE MEASUREMENTS	30
7.1 - Method of Measurements	30
7.2 – Screen Captures	30
EXHIBIT 8. POWER OUTPUT (CONDUCTED)	32
8.1 - Method of Measurements	32
8.2 - Test Data	32
8.3 - Screen Captures – Power Output (Conducted)	32
EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d).....	34
9.1 - Limits.....	34
9.2 – Conducted Harmonic and Spurious RF Measurements.....	34
9.3- Screen Captures – Spurious Radiated Emissions	36
EXHIBIT 10. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS.....	38
EXHIBIT 11. CHANNEL PLAN AND SEPARATION.....	39
11.1 - Screen Captures – Channel Separation	39
EXHIBIT 12. CHANNEL OCCUPANCY	42
EXHIBIT 13. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.....	43
EXHIBIT 14. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.	44
APPENDIX A – Test Equipment List.....	45
APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO	46
APPENDIX C - Uncertainty Statement.....	47

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 3 of 47

EXHIBIT 1. INTRODUCTION

1.1 - Scope

References:	FCC Part 15, Subpart C, Section 15.247 and 15.209 FCC Part 2, Section 2.1043 paragraph (b)1. RSS GEN and RSS 210 Annex 8
Title:	FCC : Telecommunication – Code of Federal Regulations, CFR 47, Part 15. IC : Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-Power License-Exempt Transmitters.
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
Environmental Classification:	Commercial, Industrial or Business Residential

1.2 – Normative References

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210 Annex 8	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
CISPR 16-1-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus.
CISPR 16-2-1	Specification for radio disturbance and immunity measuring apparatus and methods. Part 201: Conducted disturbance measurement.
FCC Public Notice DA 00-75	Part 15 Unlicensed Modular Transmitter Approval

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 4 of 47

1.3 - LS Research, LLC Test Facility

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. A copy of the accreditation may be accessed on our web site: www.lsr.com. Accreditation status can be verified at A2LA's web site: www.a2la2.net.

1.4 - Location of Testing

All testing was performed at the following location utilizing the facilities listed below, unless otherwise noted.

LS Research, LLC
W66 N220 Commerce Court
Cedarburg, Wisconsin, 53012 USA,

List of Facilities Located at LS Research, LLC:

Compact Chamber
Semi-Anechoic Chamber
Open Area Test Site (OATS)

1.5 - Test Equipment Utilized

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated in accordance with A2LA standards.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 5 of 47

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 – Client Information

Manufacturer Name:	Honeywell
Address:	1985 Douglas Drive North, Golden Valley, MN 55422
Contact Name:	Dave Mulhouse

2.2 - Equipment Under Test (EUT) Information

The following information has been supplied by the applicant.

Product Name:	Honeywell
Model Number:	REM1000R, HVC20A
Serial Number:	Engineering Sample

2.3 - Associated Antenna Description

Ceramic chip antenna, with a gain of -0.5 dBi.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 6 of 47

2.4 - EUT'S Technical Specifications

EUT Frequency Range (in MHz)	903-926.4 MHz
Maximum Conducted RF Power in Watts	0.0116 W
Minimum Conducted RF Power in Watts	0.0114 W
Maximum Conducted Output Power (in dBm)	10.65 dBm
Minimum Conducted Output Power (in dBm)	10.65 dBm
Field Strength at 3 meters	106.1 dBuV/m @ 3m
Occupied Bandwidth (99% BW)	68.2 kHz
Type of Modulation	FSK
Emission Designator	68K2FXD
EIRP (in mW)	10.35 mW
Transmitter Spurious (worst case) at 3 meters	51.2 dBuV/m @ 3m @ 3705.6 MHz, see P.14
Receiver Spurious (worst case) at 3 meters	43.3 dBuV/m @ 3m @ 5487 MHz, see P.23
Receiver Bandwidth	101.562kHz
Receiver Sensitivity	-104 dB
Frequency Tolerance %, Hz, ppm	Better than 100 ppm
Microprocessor Model # (if applicable)	Texas Instrument MSP430F5524
Antenna Information	
Detachable/non-detachable	Non-detachable
Type	Chip
Gain (in dBi)	-0.5 dBi
EUT will be operated under FCC Rule Part(s)	15.247
EUT will be operated under RSS Rule Part(s)	RSS-210
Modular Filing	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
Portable or Mobile?	Portable

RF Technical Information:

Type of Evaluation (check one)	X	SAR Evaluation: Device Used in the Vicinity of the Human Body
		SAR Evaluation: Body-worn Device
		RF Evaluation

Procedure for Portable RF Exposure from KDB 447498:

$$Output\ Power \leq \frac{60}{f\ (GHz)}\ (mW)$$

$$Output\ Power \leq \frac{60}{f\ (0.915)}\ (mW)$$

$$10.35\ mW \leq 65.57\ mW$$

Note: Since the peak output power of 10.35 mW is below the low threshold of 65.57 mW this device does not need SAR evaluation

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 7 of 47

2.5 - Product Description

This device has two functions, depending on which application it is paired with. As such, two product descriptions are possible.

Wireless Entry/Exit Remote:

The Wireless Entry/Exit Remote provides one-touch control of your heating or cooling system at the entry/exit point of your home or building.

The remote has three buttons. The button that is pressed sets the thermostat to that setting of the program schedule. That setting is held until another button is pressed on the remote or the regular program schedule is resumed at the thermostat.

Wireless Vent and Filter Boost Remote:

The Wireless Vent and Filter Boost Remote provides one-touch control of your ventilation and filtration system from bathrooms, laundry rooms, or any location in your home or building.

The remote has three buttons: 20, 40, and 60 minutes. The ventilation and filtration can be temporarily boosted for 20, 40, or 60 minutes, depending on the button pressed.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 8 of 47

EXHIBIT 3. EUT OPERATING CONDITIONS & CONFIGURATIONS DURING TESTS

3.1 - Climate Test Conditions

Temperature:	68-74 °F
Humidity:	40-45 %
Pressure:	695-745 mmHg

3.2 - Applicability & Summary Of EMC Emission Test Results

FCC and IC Paragraph	Test Requirements	Compliance (Yes/No)
FCC : 15.247 (a)(1)(i) IC : RSS 210 A8.1 (a)	20 dB Bandwidth	YES
FCC : 15.247(b) & 1.1310 IC : RSS 210 A8.4	Maximum Output Power	YES
FCC : 15.247(i), 1.1307, 1.1310, 2.1091 & 2.1093 IC : RSS 102	RF Exposure Limit	YES
FCC :15.247(c) IC : RSS 210 A8.5	RF Conducted Spurious Emissions at the Transmitter Antenna Terminal	YES
FCC:15.247 (a)(1)(i) IC: RSS 210 (b)	Carrier Frequency Separation	YES
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Number of hopping channels	YES
FCC:15.247 (a)(1)(i),(ii),(iii) IC: RSS 210 (c),(d),(e)	Time of occupancy (Dwell Time)	YES
FCC : 15.247(c), 15.209 & 15.205 IC : RSS 210 A8.2(b), section 2.2, 2.6 and 2.7	Transmitter Radiated Emissions	YES

3.3 - Modifications Incorporated In The EUT For Compliance Purposes

None Yes (explain below)

The device was operated at power level 0xC2. This is a one step reduction from full power.

3.4 - Deviations & Exclusions From Test Specifications

None Yes (explain below)

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 9 of 47

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.247, and Industry Canada RSS-210, Issue 8 (2010), Annex 8 for a Frequency Hopping Spread Spectrum (FHSS) Transmitter.

Note: If some emissions are seen to be within 3 dB of their respective limits; as these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 10 of 47

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 - Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4-2003. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuous modulated transmit mode for final testing using power as provided by a bench DC supply. 3 separate units were provided for testing on 3 different channels.

The applicable limits apply at a 3 meter distance. Measurements above 4 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on one of three (3) standard channels: low (903.0), middle (914.6) and high (926.4) to comply with FCC Part 15.35. The channels and operating modes were set on 3 separate units.

5.2 - Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Bi-conical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz. The maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height, using both horizontal and vertical antenna polarities.

The EUT was rotated along three orthogonal axes during the investigations to find the highest emission levels.

5.3 - Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as prescribed in ANSI C63.4.

5.4 - Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.247 and Canada RSS-210, Issue 8 (2010), Annex 8 for a FHSS transmitter. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 11 of 47

5.5 - Calculation of Radiated Emissions Limits

The maximum peak output power of an intentional radiator in the 902 to 928 MHz band, as specified in Title 47 CFR 15.247 and RSS 210 is 1 Watt. The harmonic and spurious RF emissions, as measured in any 100 kHz bandwidth, as specified in 15.247 (d) and RSS 210 A8.5, shall be at least 20 dB below the measured power of the desired signal, and must also meet the requirements described in 15.205(c) for FCC and section 2.2, 2.6 and 2.7 of RSS 210 for IC.

The following table depicts the general radiated emission limits above 30 MHz. These limits are obtained from Title 47 CFR, Part 15.209, for radiated emissions measurements. These limits were applied to any signals found in the 15.205 restricted bands. The mentioned limits correspond to those limits listed in RSS 210 section 2.7.

Frequency (MHz)	3 m Limit μ V/m	3 m Limit (dB μ V/m)	1 m Limit (dB μ V/m)
30-88	100	40.0	-
88-216	150	43.5	-
216-960	200	46.0	-
960-24,000	500	54.0	63.5

Sample conversion of field strength (μ V/m to dB μ V/m):

$$\text{dB}\mu\text{V/m} = 20 \log_{10} (100) = 40 \text{ dB}\mu\text{V/m} \text{ (from 30-88 MHz)}$$

For measurements made at 1.0 meter, a 9.5 dB correction has been invoked.

960 MHz to 10,000 MHz

500 μ V/m or 54.0 dB/ μ V/m at 3 meters

54.0 + 9.5 = 63.5 dB/ μ V/m at 1 meter

Sample Calculation:

Reported Measurement data = Raw receiver measurement (dB μ V/m) + Antenna correction Factor + Cable factor (dB) + Miscellaneous factors when applicable (dB)

Generic example of reported data at 880 MHz:

Reported Measurement data = 9.8 (raw receiver measurement) + 23.3 (antenna factor) + 1.45 (cable factor) = 34.6 (dB μ V/m).

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 12 of 47

5.6 - Radiated Emissions Test Data Chart

Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	Honeywell				
Date(s) of Test:	November 23, 28, December 1, 2011				
Project Engineer:	Peter Feilen				
Voltage:	3.0 VDC				
Operation Mode:	Continuous transmit, modulated mode				
Environmental Conditions in the Lab:	Temperature: 71°F Relative Humidity: 32 %				
EUT Power ¹ :		Single Phase <input type="text"/> VAC		3 Phase <input type="text"/> VAC	
	X	Battery	X	Other: Bench DC Supply	
EUT Placement:		80cm non-conductive table		10cm Spacers	
EUT Test Location:		3 Meter Semi-Anechoic FCC Listed Chamber		3/10m OATS	
Measurements:		Pre-Compliance		Preliminary	X
Detectors Used:		Peak	X	Quasi-Peak	Average

Note 1: While the device typically operates with a coin cell battery, a DC supply was used for test purposes as battery life in continuous transmit mode was extremely limited.

The following table depicts the level of significant spurious radiated RF emissions found (other than the fundamentals and its harmonics):

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dB μ V/m)	Quasi Peak Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
880.1	1.00	0	34.6	46.0	11.4	H	V
879.2	1.00	0	29.5	46.0	16.5	V	V
952.4	1.09	151	37.9	46.0	8.1	V	V
939.4	1.16	0	34.9	46.0	11.1	V	V
984.9	1.00	0	29.7	54.0	24.3	V	V
985.3	1.00	0	30.3	54.0	23.7	H	V

Note:

1. H: Horizontal, V: Vertical, F: Flat.
2. Emissions were the same per channel and EUT orientation.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 13 of 47

RADIATED EMISSIONS DATA CHART (continued)

The following table depicts the level of significant radiated harmonic emissions seen on Channel Low:

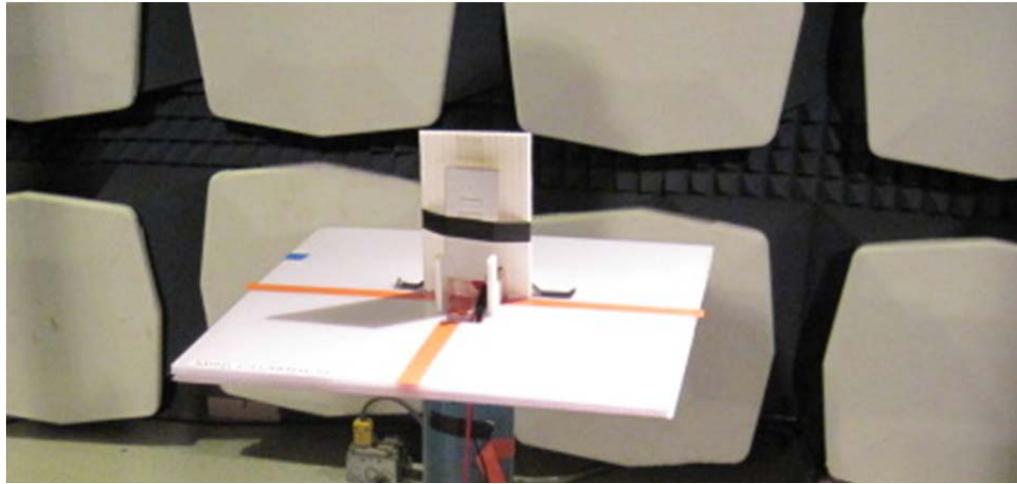
Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dB μ V/m)	Avg Reading (dB μ V/m)	Avg Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
2709	1.18	313	49.8	48.2	54.0	5.8	Horizontal	Side
3612	1.03	16	50.2	47.6	54.0	6.4	Horizontal	Flat
4515	1.00	6	54.8	52.5	63.5	11.0	Vertical	Vertical
5418	1.00	4	56.9	54.6	63.5	8.9	Vertical	Vertical
8127	1.07	354	53.2	49.3	63.5	14.2	Vertical	Side
9030	1.00	302	54.8	49.7	63.5	13.8	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel Middle:

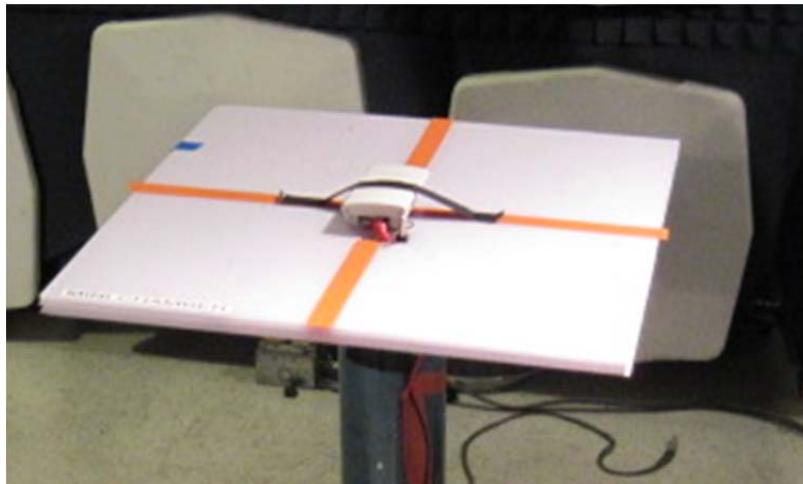
Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dB μ V/m)	Avg Reading (dB μ V/m)	Avg Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
2743.8	1.14	306	48.1	45.9	54.0	8.1	Horizontal	Side
3658.4	1.00	27	50.4	47.8	54.0	6.2	Horizontal	Flat
4573	1.08	32	56.0	54.4	63.5	9.1	Horizontal	Vertical
7316.8	1.06	9	52.7	48.5	63.5	15.0	Horizontal	Side
8231.4	1.12	277	47.5	52.5	63.5	11.0	Vertical	Vertical
9146	1.00	11	53.5	48.3	63.5	15.3	Horizontal	Side

The following table depicts the level of significant radiated harmonic emissions seen on Channel High:

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dB μ V/m)	Avg Reading (dB μ V/m)	Avg Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
2779.2	1.15	306	47.4	45.0	54.0	9.0	Horizontal	Side
3705.6	1.04	304	52.9	51.2	54.0	2.8	Horizontal	Flat
4632	1.09	21	52.5	50.3	54.0	3.7	Vertical	Side
7411.2	1.01	29	54.9	51.3	63.5	12.2	Horizontal	Side
8337.6	1.08	353	51.6	46.4	63.5	17.1	Horizontal	Side

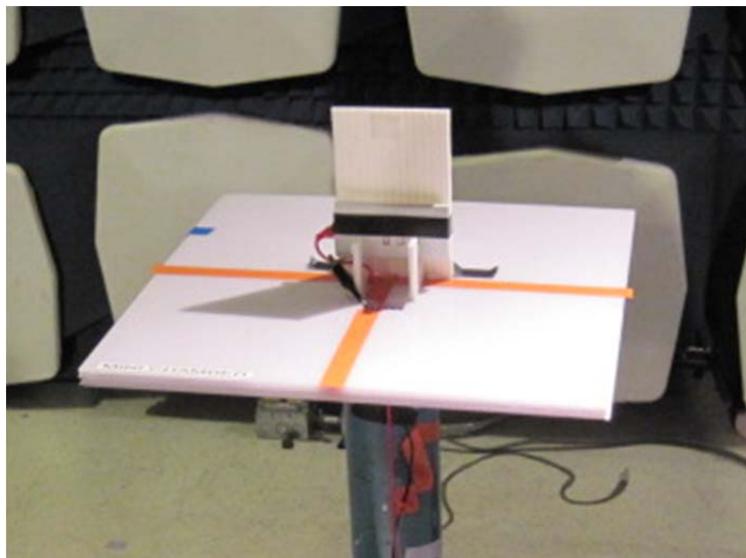

Notes:

1. A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.
2. Measurements above 4 GHz were made at 1 meters of separation from the EUT. Limits have been corrected to reflect the change in measurement distance.
3. H: Horizontal, V: Vertical, F: Flat, S: Side.


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 14 of 47

5.7 - Test Setup Photo(s) – Radiated Emissions Test

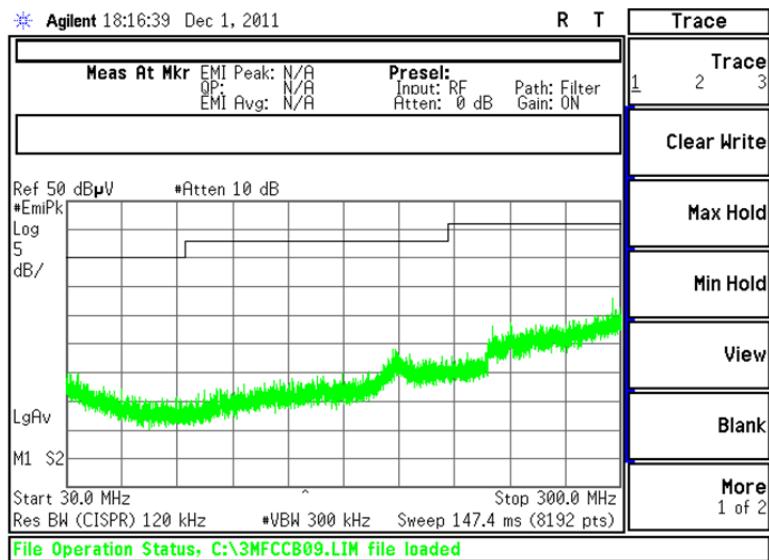
Vertical Orientation



Flat Orientation

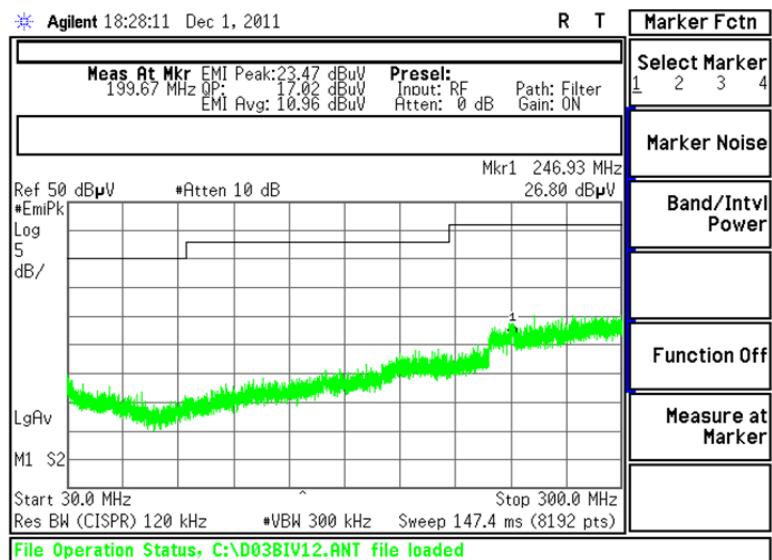
Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 15 of 47

Side Orientation

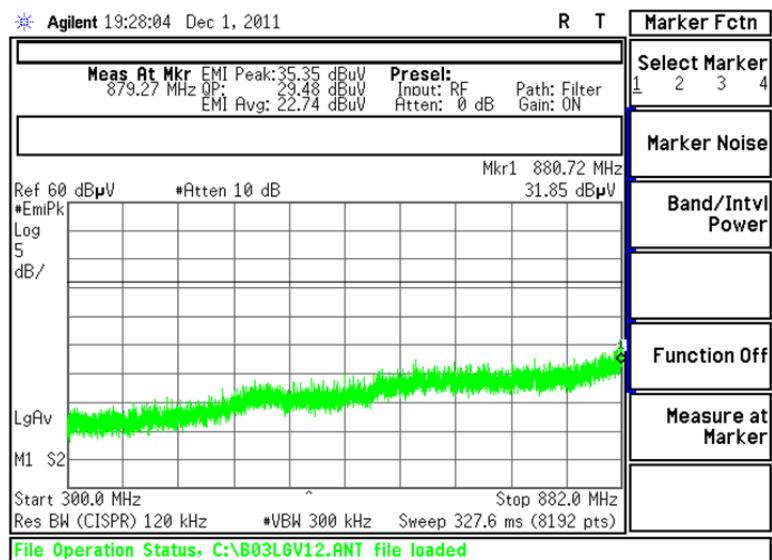

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 16 of 47

5.8 - Screen Captures - Radiated Emissions Test

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged Peak detector function is utilized when measuring frequencies above 1 GHz.

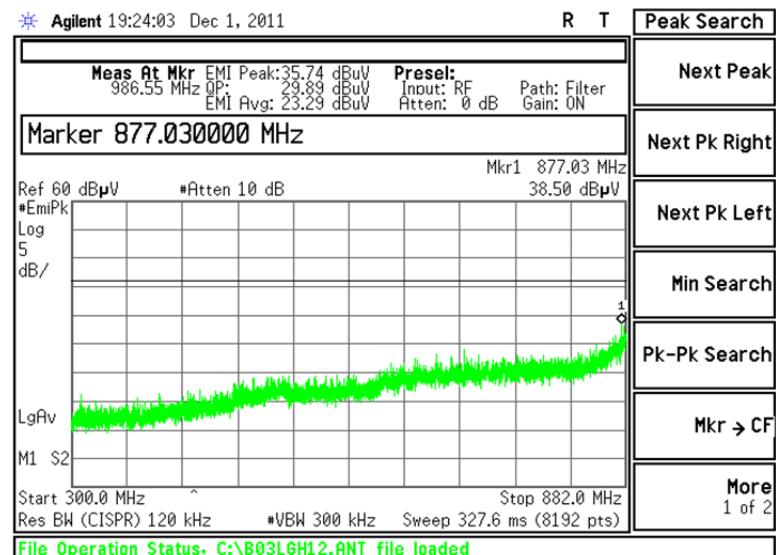

The signature scans shown here are from worst-case emissions, as measured on channels 903 MHz, 914.6 MHz, or 926.4 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 30-300 MHz, at 3m

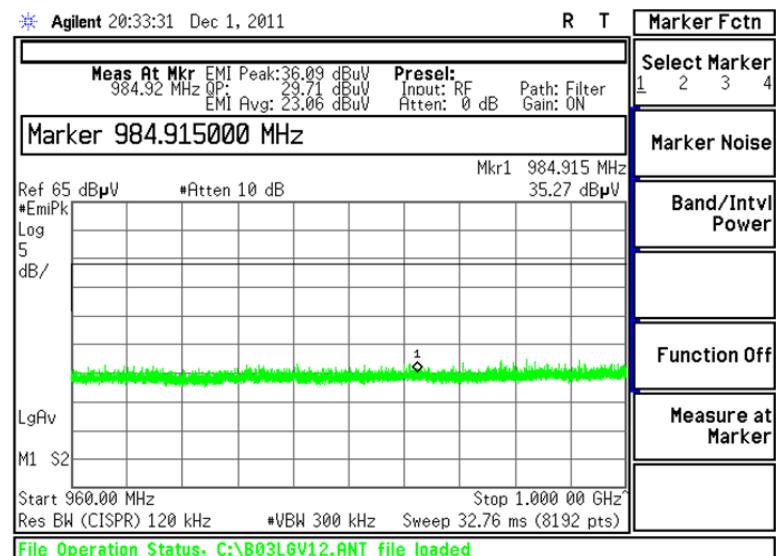


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 17 of 47

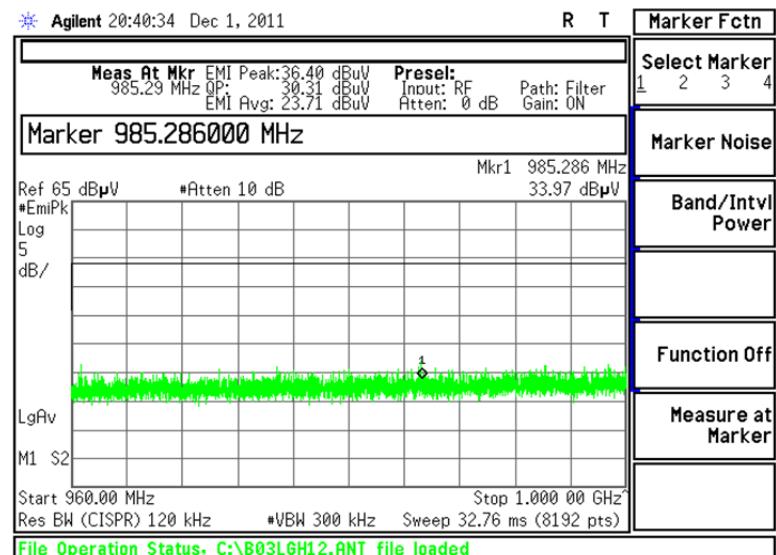
Antenna Horizontally Polarized, 30-300 MHz, at 3m



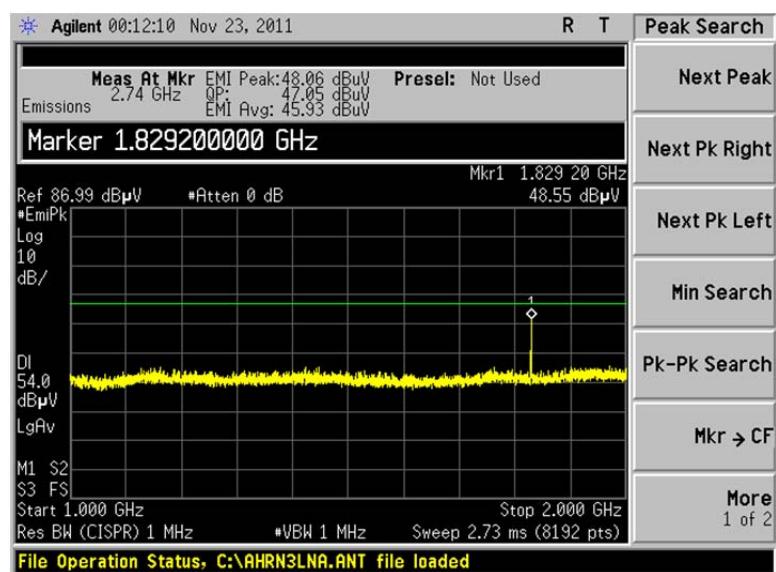
Antenna Vertically Polarized, 300-882 MHz, at 3m


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 18 of 47

Antenna Horizontally Polarized, 300-882 MHz, at 3m

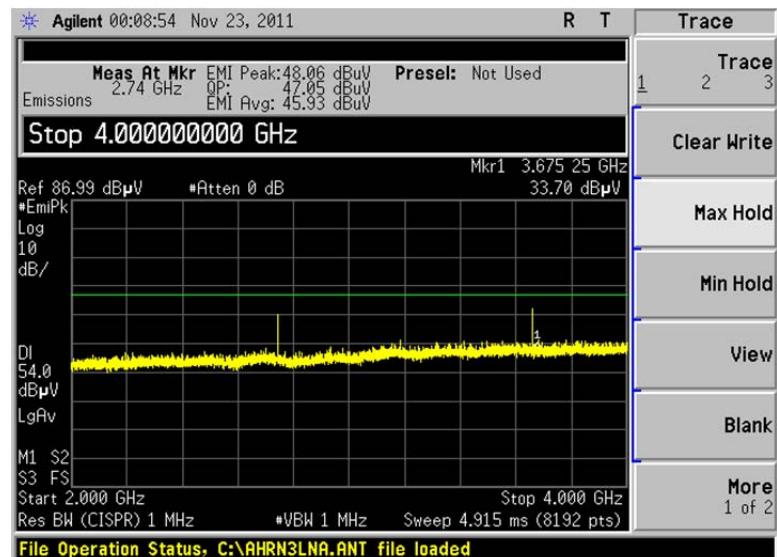

Note: The frequency range 882-902 MHz and 928-960 MHz is in the Band-edge section (Exhibit 7).

Antenna Vertically Polarized, 960-1000 MHz, at 3m

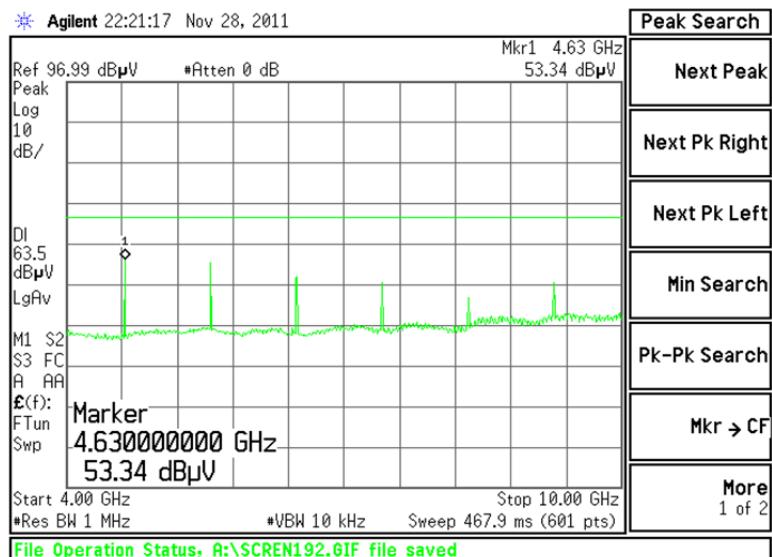


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 19 of 47

Antenna Horizontally Polarized, 960-1000 MHz, at 3m

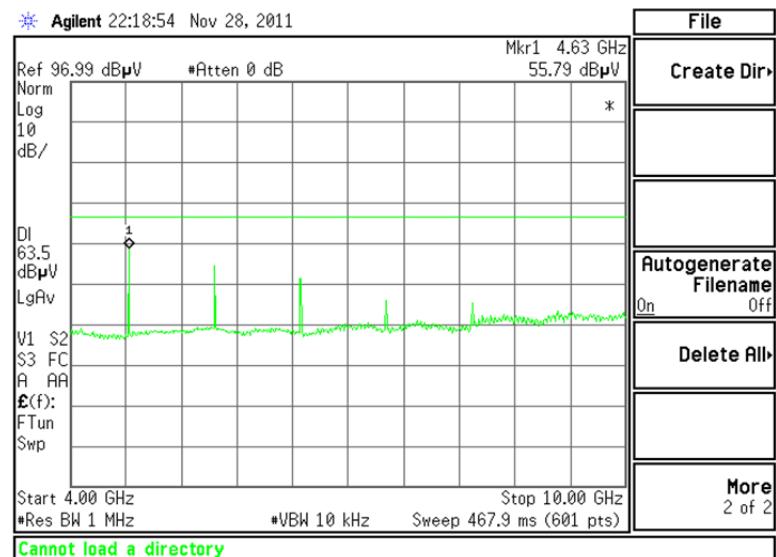


Antenna Vertically Polarized, 1000-2000 MHz, at 3m



Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 20 of 47

Antenna Vertically Polarized, 2000-4000 MHz, at 3m



Antenna Vertically Polarized, 4000-10000 MHz, at 1m

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 21 of 47

Antenna Horizontally Polarized, 4000-10000 MHz, at 1m

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 22 of 47

5.9 - Receive Mode Testing

Per the requirements of RSS-210 and CFR 47 part 15, the EUT was placed in continuous receive mode and the radiated spurious emissions were measured and compared to the limits stated in RSS-Gen Section 4.10 and CFR 47 15.109.

The test setup, procedure, and equipment utilized were identical to that described in sections 5.1, 5.2, and 5.3 of this document.

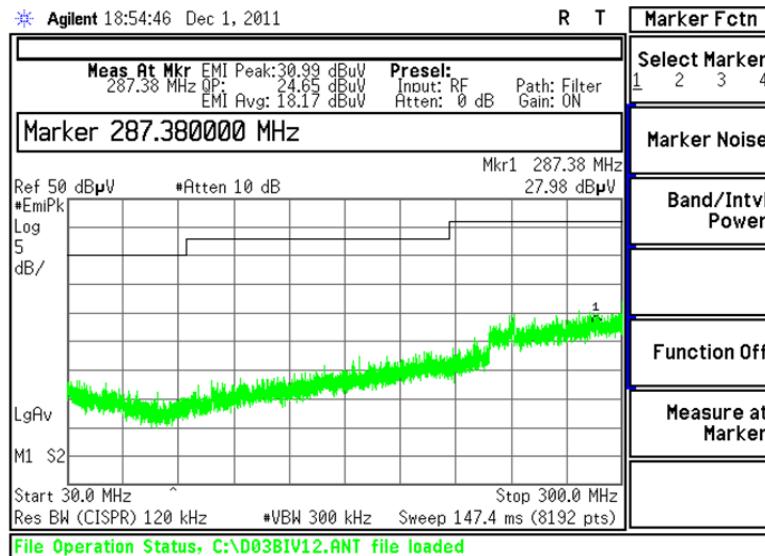
Measurement data and screen captures from the receive tests are presented below:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dB μ V/m)	Quasi Peak Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
287.4	1.00	0	24.65	46.0	21.4	V	V
298.3	1.00	0	25.95	46.0	20.1	H	V
986.6	1.00	0	29.89	54.0	24.1	H	V
993.1	1.00	0	28.96	54.0	25.0	V	V

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dB μ V/m)	Average Reading (dB μ V/m)	Average Limit (dB μ V/m)	Margin (dB)	Antenna Polarity	EUT orientation
3889.0	1.00	0	44.85	35.43	54.0	18.5	H	V
5417.0	1.21	25	50.34	44.69	63.5	18.8	H	F
5417.0	1.00	137	51.04	46.86	63.5	16.6	V	F
5417.0	1.18	327	52.97	49.97	63.5	13.5	V	S
5417.0	1.13	145	51.77	47.77	63.5	15.7	H	S
5417.0	1.00	327	53.92	51.12	63.5	12.4	H	V
5417.0	1.16	220	51.41	47.02	63.5	16.5	V	V
5487.0	1.18	221	51.64	47.98	63.5	15.5	V	V
5487.0	1.00	31	55.08	52.79	63.5	10.7	H	V
5487.0	1.10	150	52.94	48.34	63.5	15.2	H	S
5487.0	1.01	340	54.1	50.82	63.5	12.7	V	S
5487.0	1.06	122	53.8	50.39	63.5	13.1	V	F
5487.0	1.16	17	50.76	44.98	63.5	18.5	H	F
5558.0	1.27	37	50.21	44.38	63.5	19.1	H	F
5558.0	1.13	95	51.54	47.04	63.5	16.5	V	F
5558.0	1.00	2	53.06	49.30	63.5	14.2	V	S
5558.0	1.13	149	50.88	46.37	63.5	17.1	H	S
5558.0	1.00	29	54.38	51.74	63.5	11.8	H	V
5558.0	1.00	27	50.88	45.11	63.5	18.4	V	V

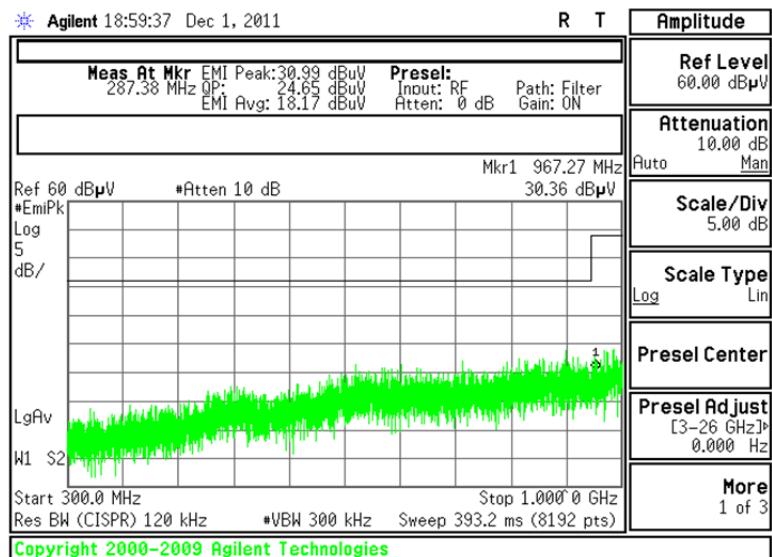
Notes:

1. A Quasi-Peak Detector was used in measurements below 1 GHz. To ensure the peak emissions did not exceed 20 dB above the limits a peak detector was used. A peak detector with video averaging was used for measurements above 1 GHz.
2. Measurements above 4 GHz were made at 1 meters of separation from the EUT.
3. H: Horizontal, V: Vertical, F: Flat, S: Side.

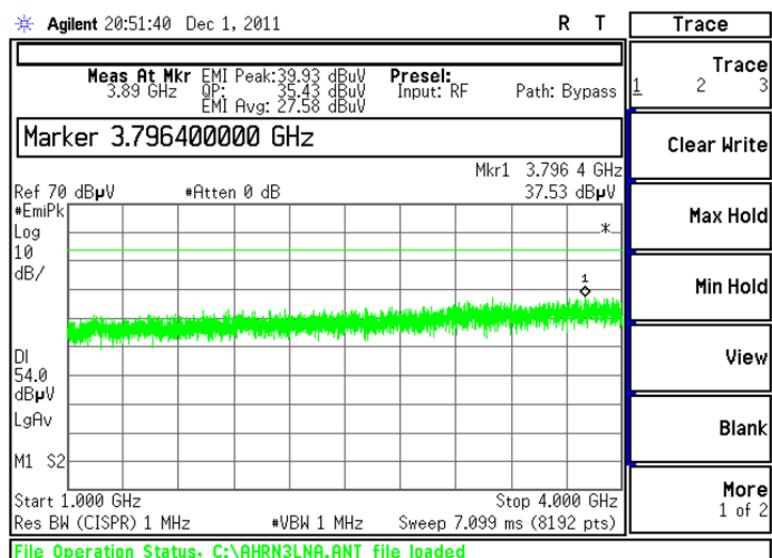

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 23 of 47

5.10 - Screen Captures - Radiated Emissions Testing – Receive Mode

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a video averaged peak detector function is utilized when measuring frequencies above 1 GHz.

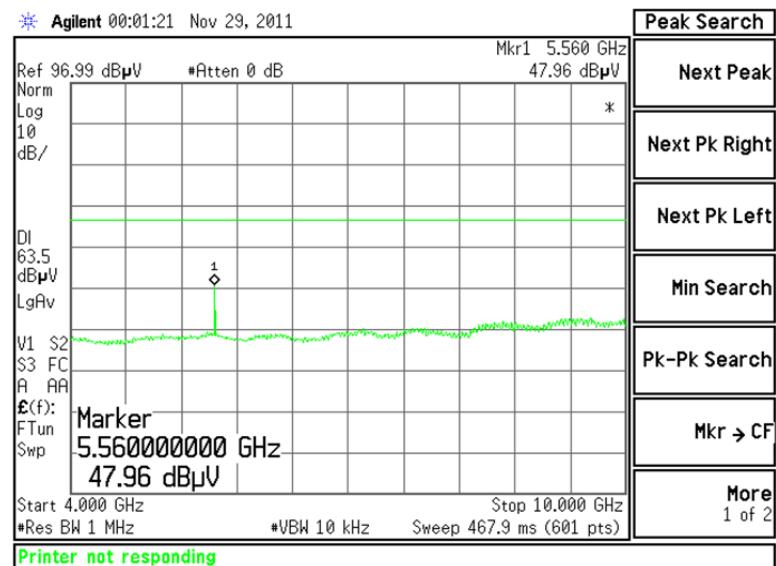

The signature scans shown here are from worst-case emissions, as measured on channels 903 MHz, 914.6 MHz, or 926.4 MHz, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

Antenna Vertically Polarized, 30 MHz to 300 MHz



Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 24 of 47

Antenna Horizontally Polarized, 300 MHz to 1000 MHz



Antenna Vertically Polarized, 1000 MHz to 4000 MHz

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 25 of 47

Antenna Horizontally Polarized, 4000 MHz to 10000MHz

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 26 of 47

EXHIBIT 6. OCCUPIED BANDWIDTH

6.1 - Limits

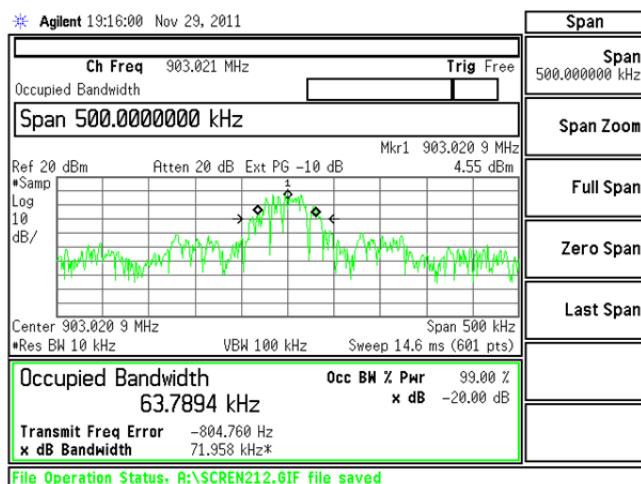
For a frequency Hopping system in the 902 to 928 MHz band, the 20 dB bandwidth shall not exceed 500 kHz for FCC CFR 47 15.247 (a)(1)(i) and IC RSS 210 A8.1(c).

6.2 - Method of Measurements

The transmitter output was connected to the Spectrum Analyzer. The built-in measurement function of the Agilent E4446A spectrum analyzer was used. The occupied bandwidth of the fundamental frequency was measured with the Spectrum Analyzer using 10 kHz RBW and VBW=100 kHz.

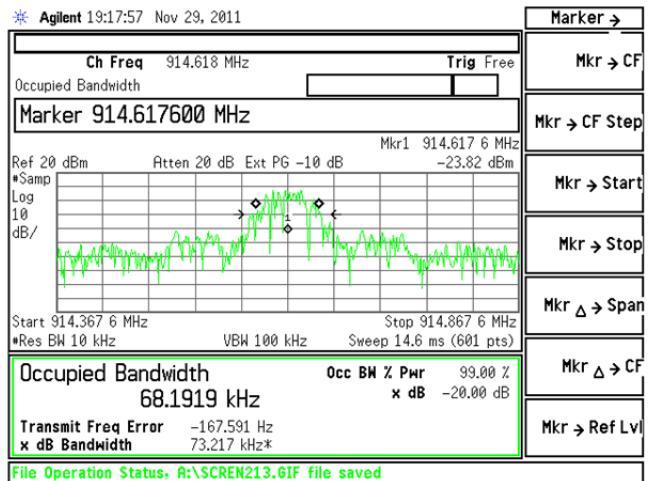
For this portion of the tests, a direct measurement of the transmitted signal was performed at the antenna port of the EUT, via a cable connection to a spectrum analyzer. An attenuator was placed in series with the cable to protect the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements, without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 1 kHz for this portion of the tests. The EUT was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used in peak-hold mode while measurements were made, as presented in the chart below.

From this data, the greatest 20 dB occupied bandwidth is 73.2 kHz.

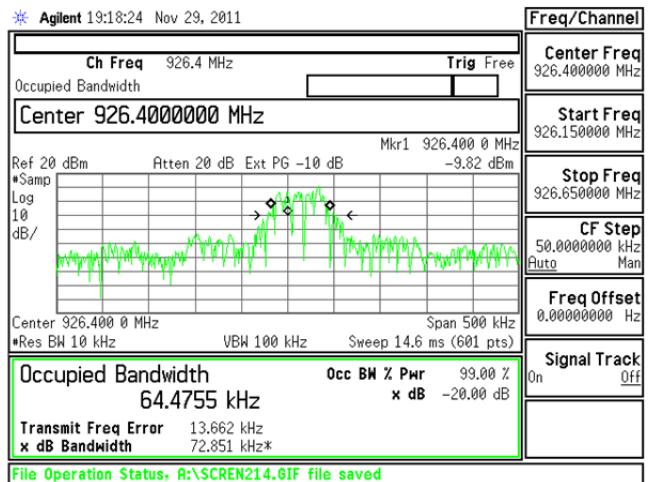

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 27 of 47

6.3 - Test Data

Center Frequency (MHz)	Measured -20 dBc Occ. BW (kHz)
903.0	71.96
914.6	73.22
926.4	72.85


6.4 - Screen Captures - Occupied Bandwidth

Channel low -20 dBc Occupied Bandwidth

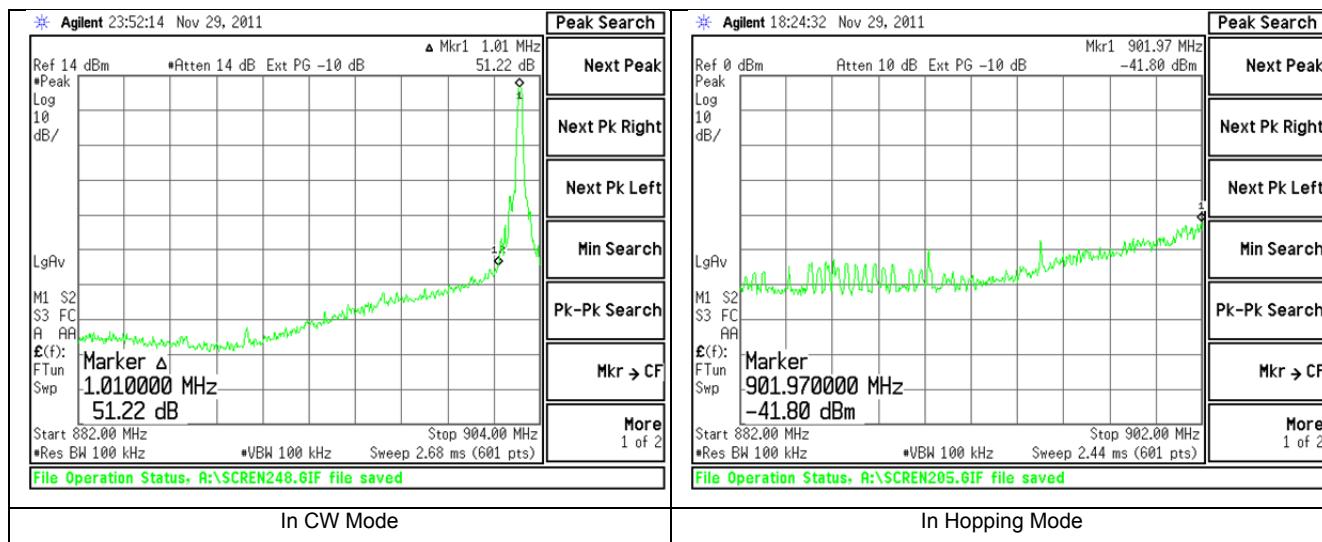


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 28 of 47

Channel middle -20 dBc Occupied Bandwidth

Channel high -20 dBc Occupied Bandwidth

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 29 of 47

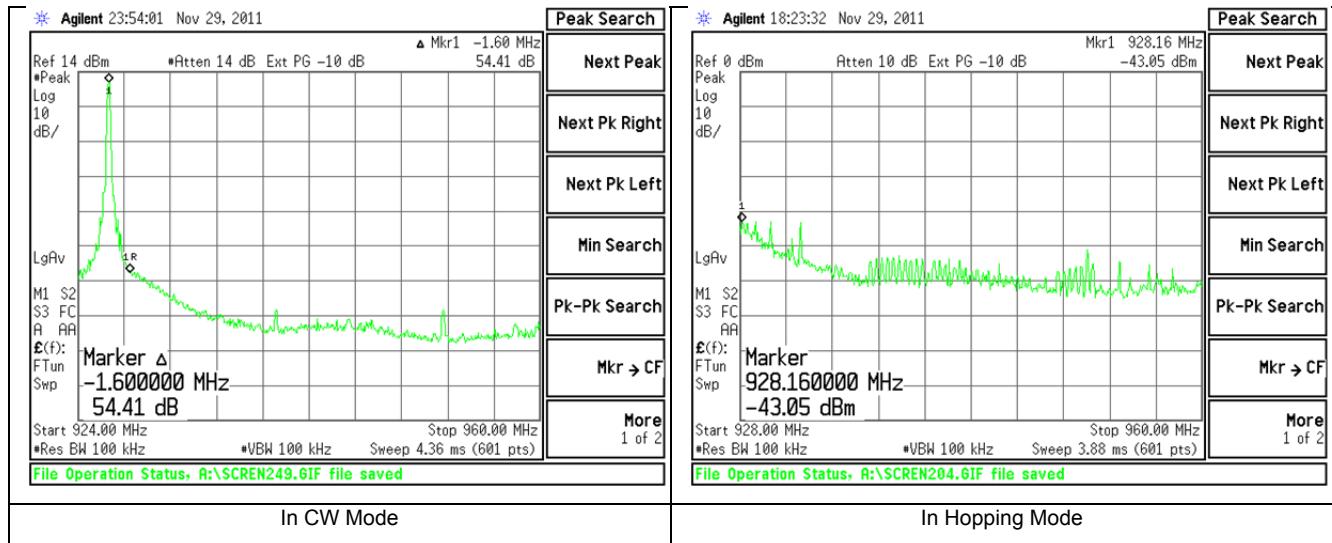

EXHIBIT 7. BAND EDGE MEASUREMENTS

7.1 - Method of Measurements

FCC 15.209(b) and 15.247(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902 MHz to 928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

7.2 – Screen Captures

Screen Capture Demonstrating Compliance at the Lower Band-Edge



The Lower Band-Edge limit, in this case, would be 86.1 dBuV/m at 3m radiated.

The Lower Band-Edge limit, in this case, would be -9.45 dBm conducted.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 30 of 47

Screen Capture Demonstrating Compliance at the Higher Band-Edge

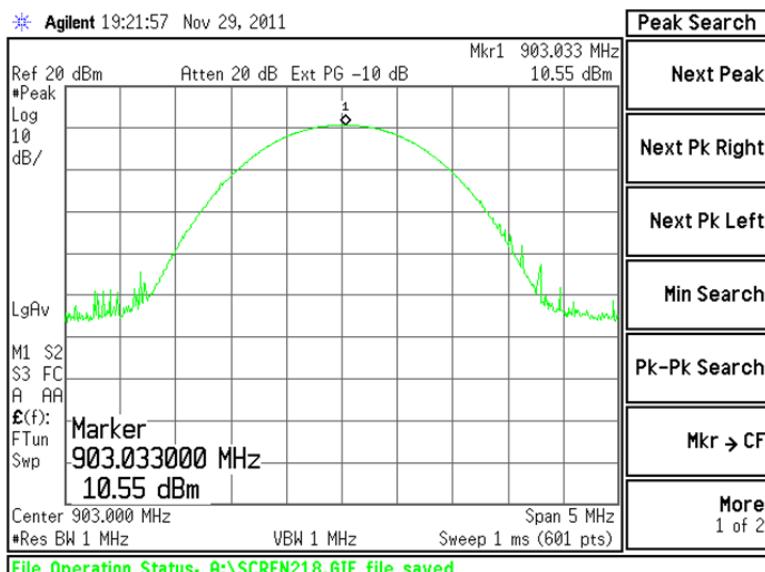
The Upper Band-Edge limit, in this case, would be 85.9 dBuV/m at 3m radiated.

The Upper Band-Edge limit, in this case, would be -9.35 dBm at 3m conducted.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 31 of 47

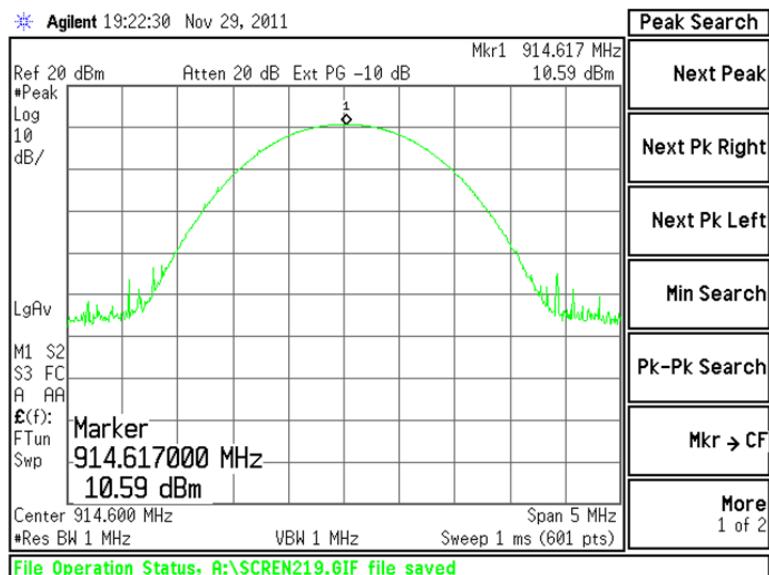
EXHIBIT 8. POWER OUTPUT (CONDUCTED)

8.1 - Method of Measurements

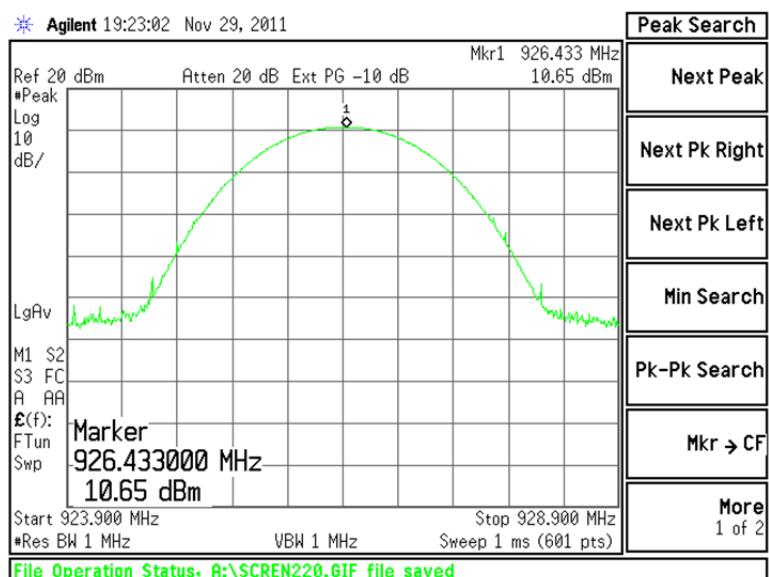

The conducted RF output power of the EUT was measured at the antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, allowing direct measurements without the need for any further corrections. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with resolution bandwidths set to 1 MHz and a span of 5 MHz with measurements from a peak detector presented in the chart below.

8.2 - Test Data

CHANNEL	CENTER FREQ (MHz)	LIMIT (dBm)	MEASURED POWER (dBm)	MARGIN (dB)
LOW	903.0	30.0	10.55	19.45
MIDDLE	914.6	30.0	10.59	19.41
HIGH	926.4	30.0	10.65	19.35


8.3 - Screen Captures – Power Output (Conducted)

Channel Low



Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 32 of 47

Channel Middle

Channel High

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 33 of 47

EXHIBIT 9. CONDUCTED SPURIOUS EMISSIONS: 15.247(d)

9.1 - Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 db below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 – Conducted Harmonic and Spurious RF Measurements

FCC Part 15.247(d) and IC RSS 210 A8.5 both require a measurement of conducted harmonic and spurious RF emission levels, as reference to the carrier level when measured in a 100 kHz bandwidth. For this test, the spurious and harmonic RF emissions from the EUT were measured at the EUT antenna port using a short RF cable along with an attenuator as protection for the spectrum analyzer. The loss from the cable and the attenuator were added on the analyzer as gain offset settings, thereby allowing direct readings of the measurements made without the need for any further corrections. A spectrum analyzer was used with the resolution bandwidth set to 100 kHz for this portion of the tests. The unit was configured to run in a continuous transmit mode, while being supplied with typical data as a modulation source. The spectrum analyzer was used with measurements from a peak detector presented in the chart below. Screen captures were acquired and any noticeable spurious and harmonic signals were identified and measured.

Conducted harmonics:

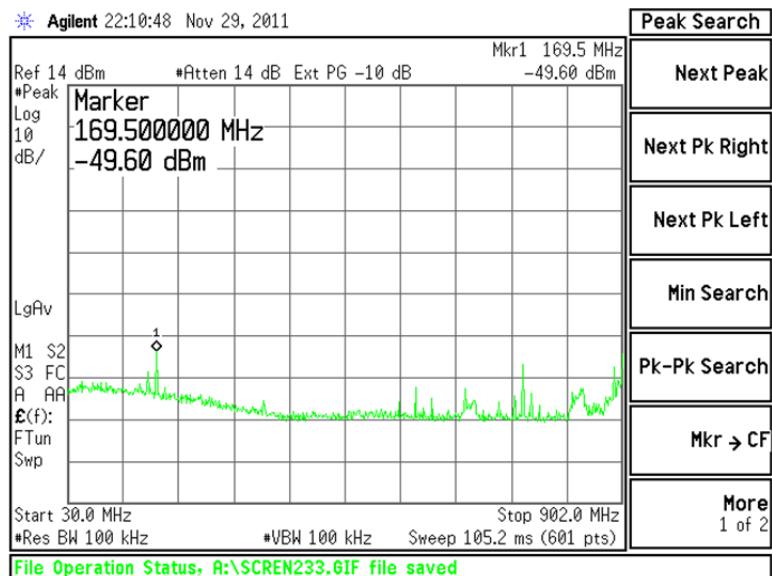
Freq\Chan	0\906	914.6	926.4
fo	10.5	10.6	10.6
2fo	-32.4	-32.6	-32.7
3fo	-48.6	-49.1	-49.9
4fo	-69.6	-69.0	-68.6
5fo	-68.6	-70.6	-71.9
6fo	-78.7	-79.5	-79.7
7fo	-73.8	-73.4	-73.1
8fo	-74.1	-73.9	-73.4
9fo	-66.4	-64.4	-65.2
10fo	-71.6	-71.4	-70.5

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 34 of 47

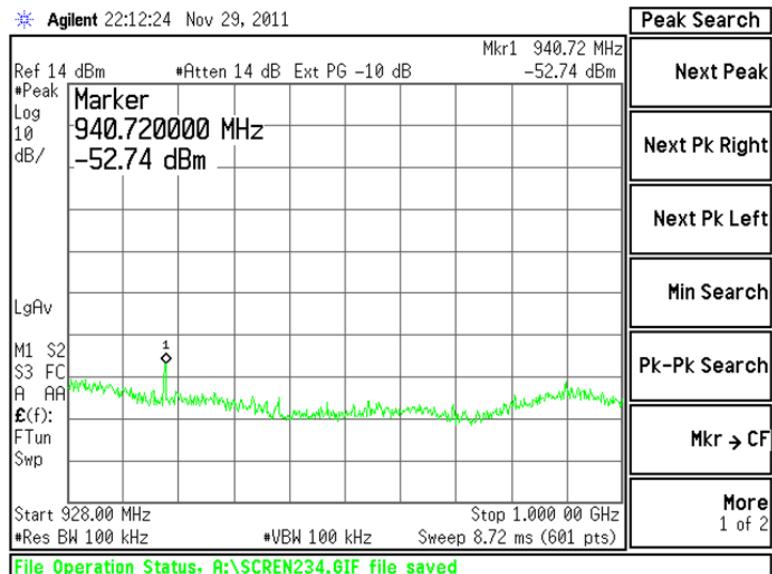
Conducted spurious emissions:

Hopping Mode On:

Freq(MHz)	Chan	level(dBm)
743.6	N/A	-51.56
169.50	N/A	-48.96
1853.00	N/A	-35.5
30.00	N/A	-48.89
928.36	N/A	-30.46

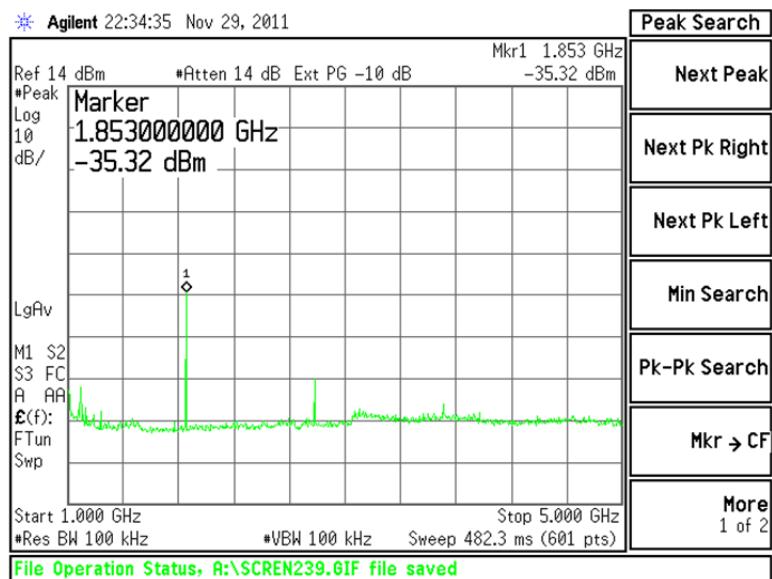

One Channel at a Time On (CW Mode)

Freq(MHz)	Chan	level(dBm)
9933	low	-60.49
929.08	low	-56.62
902.00	low	-19.66
745.00	mid	-52.64
902.00	mid	-50.3
169.50	mid	-49.6
940.60	mid	-51.54
1087.00	mid	-55.5
5667	mid	-57.47
5667	high	-58.13
1093	high	-58.26
952.36	high	-53.51
939.4	high	-52.84
928.12	high	-41.08
169.5	high	-50.48

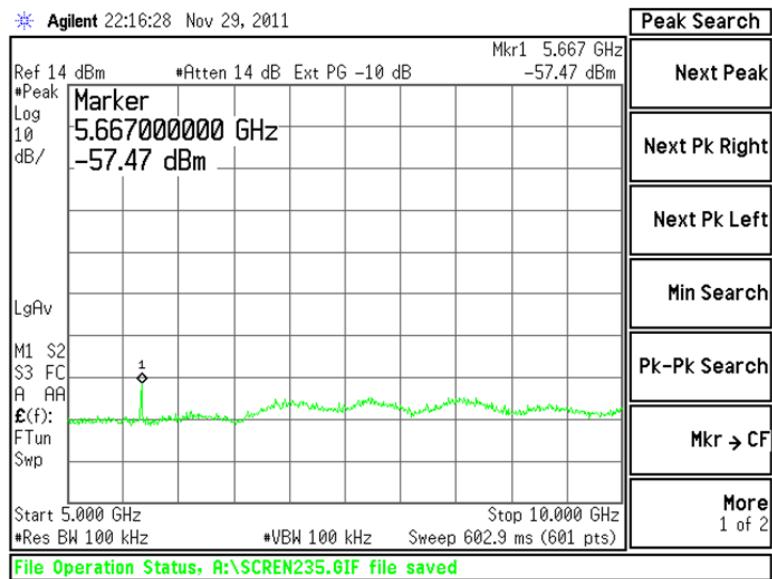

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 35 of 47

9.3- Screen Captures - Spurious Radiated Emissions

30 MHz up to 902 MHz



928 MHz up to 1000 MHz



Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 36 of 47

1000 MHz up to 5000 MHz

5000 MHz up to 10000 MHz

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 37 of 47

EXHIBIT 10. FREQUENCY & POWER STABILITY OVER VOLTAGE VARIATIONS

For measurements of the frequency and power stability, the transmitter was powered by an external bench-type variable power supply. A Spectrum Analyzer was used to measure the frequency at the appropriate frequency markers and also the output power at the antenna port.

2.55 VDC		3.0 VDC		3.45 VDC		
Power	Frequency	Power	Frequency	Power	Frequency	Channel
10.49	903.000000	10.5	903.000000	10.53	903.038700	low
10.56	914.598300	10.57	914.598300	10.6	914.598300	mid
10.69	926.394900	10.69	926.394900	10.72	926.394900	high

Channel	max	min	freq drift (Hz)
lo	903.038700	903.000000	0.0387
mid	914.598300	914.598300	0
hi	926.394900	926.394900	0

The power was then cycled On/Off to observe system response. No unusual response was observed, the emission characterizes were well behaved, and the system returned to the same state of operation as before the power cycle.

The maximum shift in frequency is **0.0387 Hz** which is better than 100 ppm in the 902 MHz to 928 MHz band.

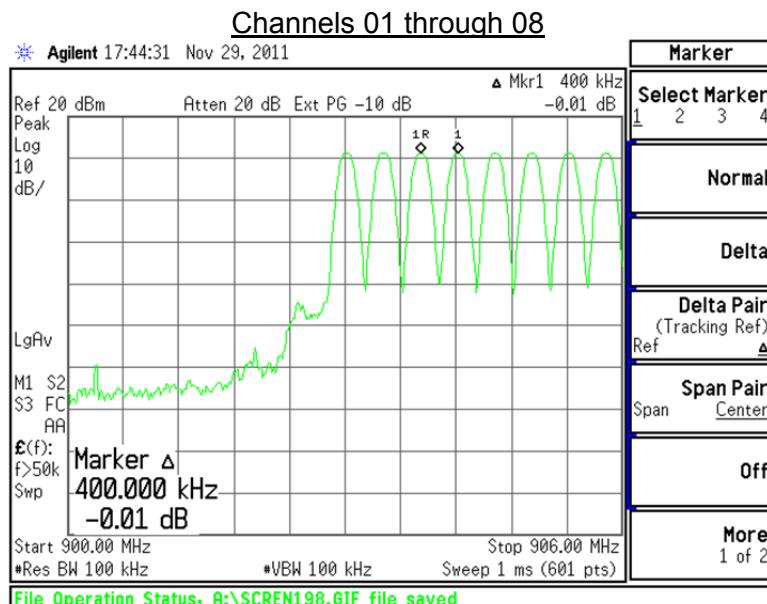
Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 38 of 47

EXHIBIT 11. CHANNEL PLAN AND SEPARATION

A spectrum analyzer was used with a resolution bandwidth of 100 kHz to measure the channel separation of the EUT.

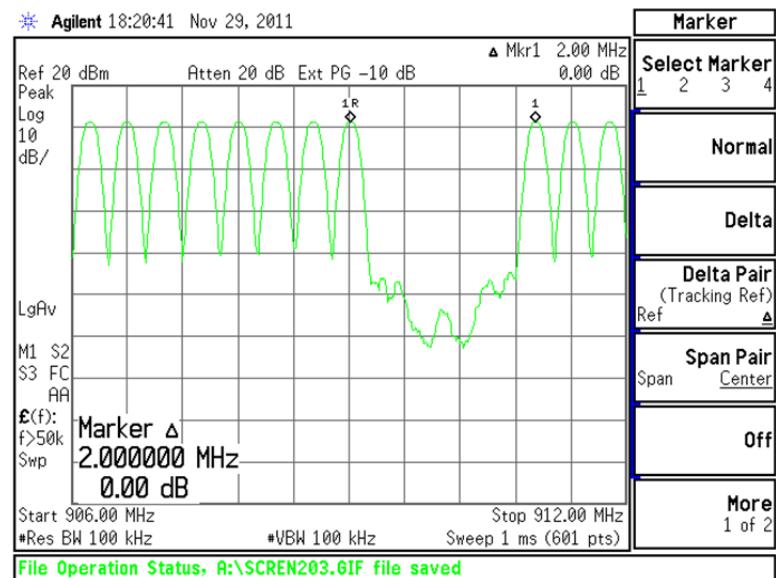
The minimum and maximum channel-separations measured for this device are 400.0 kHz and 2007 kHz respectively. The maximum occupied bandwidth of the device, as reported in the previous section is 73.2 kHz.

The minimum channel separation limit as stated in FCC CFR 47 15.247 and IC RSS210 is 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater.

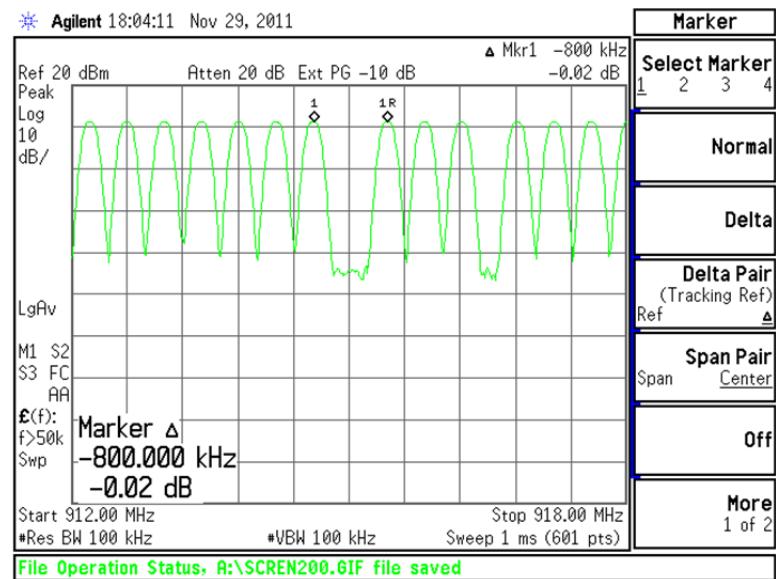

The minimum number of channels limit as stated in FCC CFR 47 15.247 and IC RSS210 is 50 channels for channel bandwidth less than 250 kHz. and 25 channels for channel bandwidth greater than 250 kHz.

The following plots show compliance is met as well as describe this spacing, and also establish the channel separation and plan.

RANGE (MHz)	# OF CHANS	Max separation
900-906	8.0	400 kHz
906-912	11.0	2.000 MHz
912-918	13.5	800 kHz
918-925	13.5	2.007 MHz
925-928	4.0	400 kHz

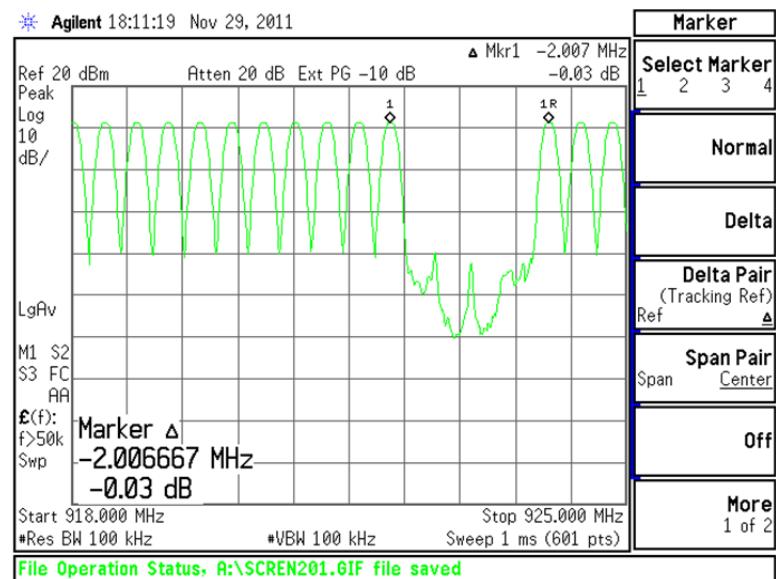

Total number of channels = 50

11.1 - Screen Captures – Channel Separation

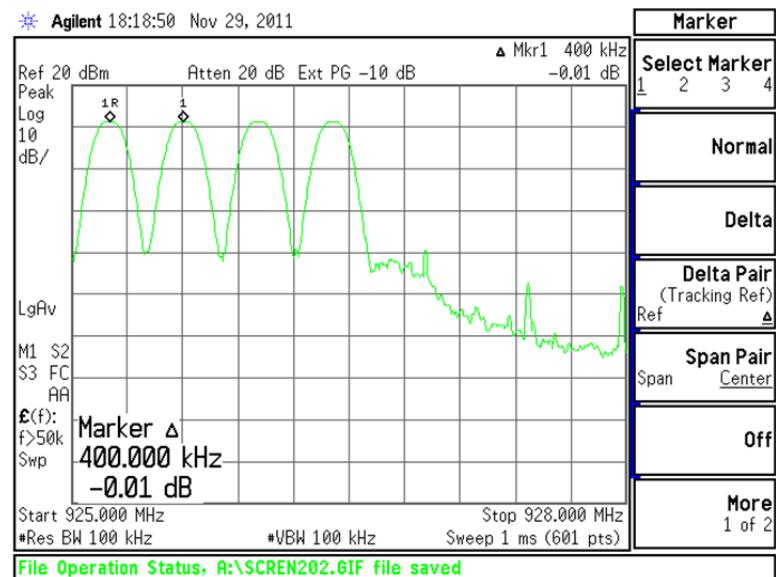


Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 39 of 47

Channels 9 through 19



Channels 20 through 34



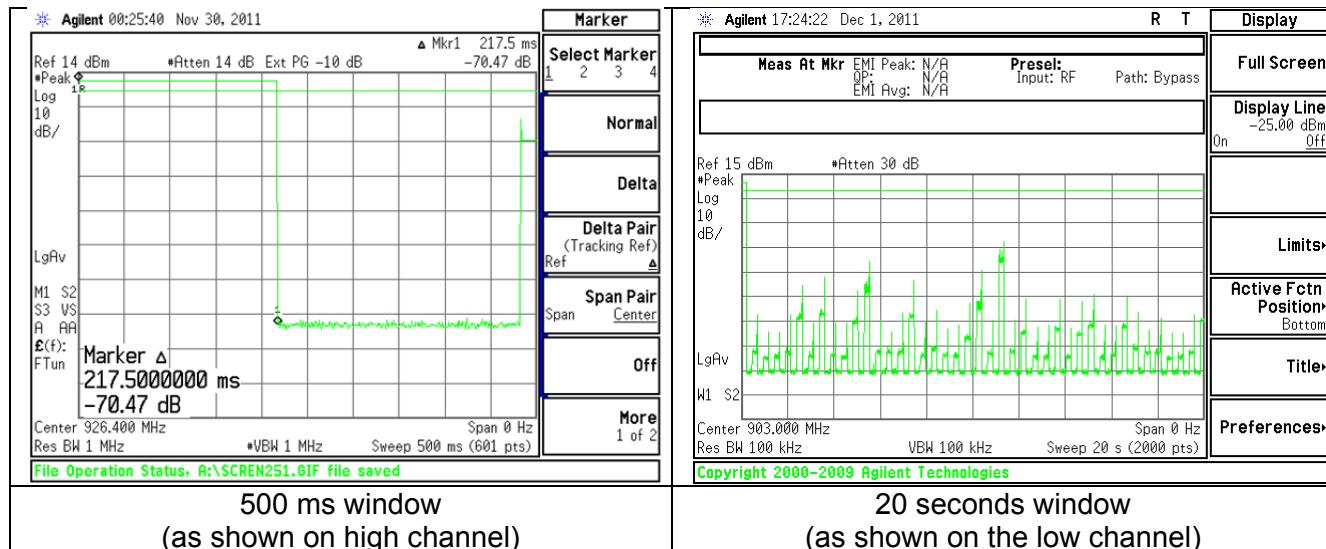
Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 40 of 47

Channels 34 through 47

Channels 47 through 50

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 41 of 47

EXHIBIT 12. CHANNEL OCCUPANCY


Part 15.247(a)(1) requires a channel occupancy, for this device, of no more than 400 milliseconds in a 20 second window. The channel occupancy for this EUT was measured using a spectrum analyzer, set to zero-span at the frequency of interest. With the analyzer in peak-hold mode, the transmission lengths can be measured by adjusting the sweep rate of the analyzer. A suitable sweep rate was used to measure the channel occupancy at the low, mid and high channels.

The longest time any transmission will occur on a single channel is 217.5 milliseconds. In a 20 second window, each channel has 1 transmission cycle. The maximum occupancy in a 20 second window is calculated by multiplying 1 transmission cycle by 217.5 milliseconds transmission duration per cycle, to arrive at 217.5 milliseconds total occupancy.

Channel	Frequency (MHz)	Total Occupancy in 20 seconds (ms)	Occupancy in 400 ms window (ms)
Low	903.0	217.50	217.50
Middle	914.6	217.50	217.50
High	926.4	217.50	217.50

Plots of Channel Occupancy

Channel Occupancy

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 42 of 47

EXHIBIT 13. EQUAL CHANNEL USAGE AND PSEUDORANDOM HOPPING SEQUENCE.

Note: This section is provided by the manufacturer. Please review the operation manual (confidential).

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 43 of 47

EXHIBIT 14. RECEIVER SYNCHRONIZATION AND RECEIVER INPUT BANDWIDTH.

Note: This section is provided by the manufacturer.

At the core of the radio block is an integrated transceiver, CC1101 manufactured by Texas Instruments. The CC1101 is configured by the RF protocol microcontroller to operate at frequencies as determined by a frequency sequencing algorithm. The bandwidth, transmit power, and modulation rate and type are set identically for all of the 50 frequencies utilized by this system. The protocol microcontroller provides the commissioned network with a synchronization signal periodically.

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 44 of 47

APPENDIX A - Test Equipment List

Date : <u>1-Dec-2011</u>	Type Test : <u>TX and RX Radiated Spurious Emissions</u>	Job # : <u>C-1349</u>						
Prepared By: <u>Peter</u>	Customer : <u>Honeywell</u>	Quote #: <u>311330</u>						
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	EE 960156	100KHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/6/2011	6/6/2012	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/6/2011	6/6/2012	Active Calibration
3	EE 960158	RF Preselector	Agilent	N9039A	MY46520110	6/11/2011	6/11/2012	Active Calibration
4	EE 960159	0.8 - 21GHz LNA	Mini-Circuits	ZVA-213X-S+	740411007	9/19/2011	9/19/2012	Active Calibration
5	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	4/27/2011	4/27/2012	Active Calibration
6	AA 960150	Bicon Antenna	ETS	3110B	0003-3346	11/15/2011	11/15/2012	Active Calibration
7	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	11/15/2011	11/15/2012	Active Calibration
8	EE 960160	0.8-21GHz LNA	Mini-Circuits	ZVA-213X-S+	977711030	4/27/2011	4/27/2012	Active Calibration
9	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	1/4/2011	1/4/2012	Active Calibration
10	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2012	Active Calibration
11	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	4/25/2011	4/25/2012	Active Calibration
	AA 960155	900MHz High Pass Filter	KWM	HPF-L-14185	7272-03	2/28/2011	2/28/2012	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas T. Smith

Date : <u>1-Dec-2011</u>	Type Test : <u>Conducted Measurements</u>	Job # : <u>C-1349</u>						
Prepared By: <u>Peter</u>	Customer : <u>Honeywell</u>	Quote #: <u>311330</u>						
No.	Asset #	Description	Manufacturer	Model #	Serial #	Cal Date	Cal Due Date	Equipment Status
1	AA 960144	Phaseflex	Gore	EKD01D010720	5800373	6/1/2011	6/1/2012	Active Calibration
2	EE 960073	Spectrum Analyzer	Agilent	E4446A	US45300564	4/25/2011	4/25/2012	Active Calibration

Project Engineer: Peter Fulin

Quality Assurance: Thomas T. Smith

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 45 of 47

APPENDIX B – Test Standards: CURRENT PUBLICATION DATES RADIO

STANDARD #	DATE	Am. 1	Am. 2	STANDARD #	DATE	Am. 1
ANSI C63.4	2003			IEC 61000-4-4	2004-07	2010-10
ANSI C63.10	2009			IEC 61000-4-5	2005-11	
CISPR 11	2009-05	2009-12 P		IEC 61000-4-6	2008-10	
CISPR 12	2007-05			IEC 61000-4-8	2009-09	
CISPR 14-1	2005-11	2008-11		IEC 61000-4-11	2004-03	
CISPR 14-2	2001-11	2001-11	2008-05	IEC 61000-6-1	2005-03	
CISPR 16-1-1 Note 1	2010-01			IEC 61326-1	2006-06	
CISPR 16-1-2 Note 1	2003	2004-04	2006-07	ISO 14982	1998-07	
CISPR 22	2008-09			MIL Std. 461E	1999-08	
CISPR 24	1997-09	2001-07	2002-10	RSS GEN	2010-12	
EN 55011	2009			RSS 119	2007-06	
EN 55014-1	2006			RSS 123	1999-11	
EN 55014-2	1997			RSS 125	2000-03	
EN 55022	2006	2007		RSS 131	2003-07	
EN 60601-1-2	2007-03			RSS 136	2002-10	
EN 61000-3-2	2006-05			RSS 137	2009-02	
EN 61000-3-3	2008-12			RSS 210	2010-12	
EN 61000-4-2	2009-05			RSS 213	2005-12	
EN 61000-4-3	2006-07	2008-05		RSS 243	2010-02	
EN 61000-4-4	2004			RSS 310	2007-06	
EN 61000-4-5	2006-12					
EN 61000-4-6	2009-05					
EN 61000-4-8	1994	2001		Updated on 08-23-11		
EN 61000-4-11	2004-10					
EN 61000-6-1	2007-02					
EN 61000-6-2	2005-12					
EN 61000-6-3	2007-02					
EN 61000-6-4	2007-02					
FCC 47 CFR, Parts 0-15, 18, 90, 95	2011					
FCC Public Notice DA 00-1407	2000					
FCC ET Docket # 99-231	2002					
FCC Procedures	2007					
ICES 001	2006-06					
ICES 002	2009-08					
ICES 003	2004-02					
IEC 60601-1-2 Note 1	2007-03					
IEC 61000-3-2	2005-11	2008-03	2009-02			
IEC 61000-3-3	2008-06					
IEC 61000-4-2	2008-12					
IEC 61000-4-3	2008-04	2008-04	2009-12 FD			

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 46 of 47

APPENDIX C - Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.24 dB
Radiated Emissions	3-Meter Chamber, Log Periodic Antenna	4.8 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.18 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.92 dB
Conducted Emissions	Shielded Room/EMCO LISN	1.60 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	1.128 Volts/Meter
Conducted Immunity	3 Volts level	1.0 V

Prepared For: Honeywell	EUT: "Wireless Entry/Exit Remote" "Wireless Vent and Filter Boost Remote"	LS Research, LLC
Report # 311330	Model #: REM1000R HVC20A	Template: 15.247 FHSS template 05-28-2010
LSR Job #: C-1349	Serial#:	Page 47 of 47