Revision: 2

Issue Date: January 21, 2021

Final Test Date: February 10, 2021

Test Report - FCC PART 97 Linear Amplifier (AMP) Prepared For: Ameritron

Approved for Release By:

Signature: Bruno Churc

Name & Title: Bruno Clavier, General Manager

Date of Signature

(YYYY-MM-DD): 2021-02-11

This test report shall not be reproduced except in full without the written and signed permission of Timco Engineering Inc. (IIA). This test report relates only to the items tested as identified and is not valid for any subsequent changes or modifications made to the equipment under test.

Timco Engineering, Inc., an IIA Company 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com

Table of Contents

1.		CUSTOMER INFORMATION	4
••	11		
2.		LOCATION OF TESTING	
	2.1 2.2	1207 27 30 37 70 70 70 70 70 70 70 70 70 70 70 70 70	
3.		TEST SAMPLE(S) (EUT/DUT)	7
	3.1 3.2 3.3 3.4	DESCRIPTION OF THE EUT	8 9
4.		TEST METHODS & APPLICABLE REGULATORY LIMITS	10
	4.1 4.2		
5.		MEASUREMENT UNCERTAINTY	10
6.		ENVIRONMENTAL CONDITIONS	10
	6.1	Temperature & Humidity	10
7.		LIST OF TEST EQUIPMENT AND TEST FACILITY	11
	7.1	List of Test Equipment	11

Timco Engineering, Inc., an IIA Company TIMCO 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com

8.	TEST	RESULTS	12
	8.1 PC	wer at the Final Amplifier	13
	8.2 RF	OUTPUT POWER & GAIN	14
	8.3 Ot	it-of-band Rejection	15
	8.3.1	Out-of-band Rejection	16
	8.3.1	Out-of-band Rejection 26-28 MHz Region	
	8.4 BA	ndwidth & Emission	18
	8.5 IN	put VS Output Signal Comparison	19
	8.5.1	12.5 kHz FM	20
	8.5.2	FM Data	21
	8.5.3	AM	22
	8.5.4	LSB AM	23
	8.5.5	USB AM	24
	8.5.6	12.5 kHz FM	25
	8.5.7	FM Data	26
	8.5.8	AM	27
	8.5.9	LSB AM	28
	8.5.10	USB AM	29
	8.6 Cc	nducted Spurious Emissions	30
	8.6.1	All bands, Operating State, Scanned Below 30 MHz	31
	8.6.2	All bands, Operating State, Scanned Above 30 MHz	32
	8.6.3	All bands, Stand-By State, Scanned Below 30 MHz	33
	8.6.4	All bands, Stand-By State, Scanned Above 30 MHz	34
	8.6.1	All bands, Off State, Scanned Below 30 MHz	35
	8.6.2	All bands, Off State, Scanned Above 30 MHz	36
	8.7 SP	urious Radiated Emissions	37
	8.7.1	Peak Radiated Emissions from Each Band	38
	8.8 Mo	dulation Characteristics	39
	8.9 FR	equency Stability	40
9.	PHOT	OGRAPHS OF THE EUT	41
10.	TEST :	SETUP PHOTOGRAPHS	41
11.	HISTO	PRY OF TEST REPORT CHANGES	41

1. Customer Information

Applicant: Ameritron

Address: 300 Industrial Park Road

Starkville MS 39759

Technical Contact: Martin Jue 662-323-5869

Email address: mfjue@mfjenterprises.com

1.1 Test Result Summary

The following test procedure and guidance were used for measuring FCC PART 97 (AMATEUR RADIO SERVICE); ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters. Full test results are available in this report.

No additions to the test methods were needed. There were no deviations, or exclusions from the test methods. No test results are from external providers or from the customer. The test results relate only to the items tested. Timco does not offer opinions and interpretations, only a pass/fail statement.

The Following is for Test item FCC ID: HO82WUALS706

Applicable Clauses from Part 2				
FCC Part 2 Clauses	Result: (Pass, Fail, N/A)			
2.202	Bandwidth & Emission	Pass		
2.1033 (c)(8)	Power at the Final Amplifier	Pass		
2.1046 (a)	RF Output Power	Pass		
2.1047	Modulation characteristics	n/a		
2.1049	Occupied Bandwidth	Pass		
2.1051	Spurious emissions at antenna terminals	Pass		
2.1053	Field strength of spurious radiation	Pass		
2.1055	Frequency stability	n/a		

Timco Engineering, Inc., an IIA Company T I M C O 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com

Applicable Clauses from PART 97				
FCC PART 97 Clauses Description of the requirements				
97.317(a)(1)	Transmitter Power	Pass		
97.317(a)(1)	Spurious emissions during TX, Stand-By, and Off	Pass		
97.317(a)(2)	Gain	Pass		
97.317(a)(3)	Gain in 27 MHz band	Pass		

KDB 935210 D05 v01r04				
FCC KDB 935210 D05 Clauses Description of the requirements				
4.1	Test Signals for PLMRS (Input Signals)	Reported		
4.2	AGC Threshold	n/a		
4.3	Out-of-Band Rejection	Reported		
4.4	Input-versus-Output Signal Comparison	Pass		
4.5	Output Power	Pass		
4.5	Amplifier/Booster Gain	Pass		
4.6	Noise Figure	n/a		
4.7.2	Out-of-band/Out-of-block Conducted Emissions (Intermodulation Products)	n/a		
4.7.3	EUT Spurious Conducted Emissions	Pass		
4.8	Frequency Stability	n/a		
4.9	Spurious Radiated Emissions	Pass		

2. Location of Testing

2.1 Test Laboratory

Timco Engineering Inc. is a subsidiary of Industrial Inspection & Analysis, Inc. ("IIA").

Testing was performed at Timco's permanent laboratory located at 849 NW State Road 45, Newberry, Florida 32669

FCC test firm # 578780 FCC Designation # US1070 FCC site registration is under A2LA certificate # 0955.01 ISED Canada test site registration # 2056A EU Notified Body # 1177 For all designations see A2LA scope # 0955.01

2.2 Testing was performed, reviewed by

Dates of Testing: January 21, 2021 – February 10, 2021

Signature:

Name & Title: Franklin Rose, EMC Specialist

Date of Signature

(YYYY-MM-DD): 2021-02-11

Signature:

Sr. EMC Engineer EMC-003838-NE

Name & Title: Tim Royer, EMC Engineer

Date of Signature

(YYYY-MM-DD): 2021-02-11

3. Test Sample(s) (EUT/DUT)

The test sample was received: January 21, 2021

3.1 Definitions

External RF power amplifier. A device capable of increasing power output when used in conjunction with, but not an integral part of, a transmitter.

3.2 Description of the EUT

A description as well as unambiguous identification of the EUT(s) tested. Where more than one sample is required for technical reasons (such as the use of connected units for the purpose of conducted output power testing where the product units will have integral antennas), each specific test shall identify which unit was tested.

Identification			
FCC ID:	HO82WUALS706		
Brief Description	Linear Amplifier		
Type of Modular	n/a		
Model(s) #	ALS-706		
Firmware Version	n/a		
Serial Number	00001		

Technical Characteristics			
Technology	External RF Power Amplifier/Linear Amplifier		
Frequency Range	1.8 - 54 MHz (split as appropriate to FCC Part 97)		
RF O/P Power (Max.)	57.78 dBm (600 W)		
Modulation	n/a		
Bandwidth & Emission Class	A1A, A3A, A3E, F1D, F3E, J1D, J3C, J3E, J3F		
Duty Cycle	100%		
Antenna Connector	UHF		
Voltage Rating (AC or Batt.)	50 V DC		

Antenna Characteristics					
Antenna Name	Frequency Range	Antenna Type	Dimensions	Antenna Gain	
n/a	n/a	n/a	n/a	n/a	

Note: This EUT does not include antenna(s).

3.3 Configuration of EUT

Test Modes			
Band	Amateur Band		
1.8 - 2 MHz	160 m		
3.5 - 4 MHz	80 m		
7 – 7.3 MHz	40 m		
10.1 – 10.15 MHz	30 m		
14 – 14.35 MHz	20 m		
18.068 – 18.168 MHz	17 m		
21 – 21.45 MHz	15 m		
24.89 – 24.99 MHz	12 m		
28 – 29.7 MHz	10 m		
50 - 54 MHz	6 m		

Note: The EUT is used in conjunction with Part 97 Amateur Radio transmitter devices.

Operating conditions during Testing:

No other modifications of the device under test (including firmware, specific software settings, and input/output signal levels to the EUT) were made.

Peripherals used during Testing:

A representative amateur radio transmitter was used to supply the amplifier with all appropriate input signals at ~100 W.

3.4 Test Setup of EUT

Equipment, antenna, and cable arrangement. The setup of the equipment and cable or wire placement on the test site that produces the highest radiated and the highest ac power line conducted emissions shall be shown clearly and described. Information on the orientation of portable equipment during testing shall be included. Drawings or photographs may be used for this purpose.

Test Setups are included in the test report.

4. Test methods & Applicable Regulatory Limits

4.1 Test methods/Standards/Guidance:

Test procedures and guidance for measuring Licensed PART 97 Licensed device:

- 1) ANSI C63.26-2015
- 2) FCC KDB 935210 D05 v01r04 Industrial Signal Boosters (guidance only)

4.2 Applied Limits and Regulatory Limits:

1) FCC CFR 47 PART 97.3175, 97.317

5. Measurement Uncertainty

Parameter	Uncertainty (dB)	
Conducted Emissions	± 3.14 dB	
Radiated Emissions (9kHz – 30 MHz)	± 3.08 dB	
Radiated Emissions (30 – 200 MHz)	± 2.16 dB	
Radiated Emissions (200 – 1000 MHz)	± 2.15 dB	
Radiated Emissions (1 GHz – 18 GHz)	± 2.14 dB	
Radiated Emissions (18 GHz – 40 GHz)	± 2.31 dB	
Note: The uncertainties provided in this table represent an expanded uncertainty expressed at approximately the		

Note: The uncertainties provided in this table represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of K=2.

6. Environmental Conditions

6.1 Temperature & Humidity

Measurements performed at the test site did not exceed the following:

measurements perfermed at the test site and her exceed the renorming.				
Temperature	23 C +/- 5%			
Humidity	55% +/- 5%			
Note: Specific environmental conditions that are applicable	e to a specific test are available in the test result section.			

7. List of Test Equipment and Test Facility

The test equipment used identified by type, manufacturer, serial number, or other identification and the date on which the next calibration or service check is due.

Description of the firmware or software used to operate EUT for testing purposes.

A complete list of all test equipment used shall be included with the test report. The manufacturer's model and serial numbers, and date of last calibration, and calibration interval shall be included. Measurement cable loss, measuring instrument bandwidth and detector function, video bandwidth, if appropriate, and antenna factors shall also be included where applicable.

7.1 List of Test Equipment

Device	Manufacturer 💌	Model 	SN#	Current Cal	Cal Due
Signal Generator HP 8648C	HP	8648C	3847A04696	9/11/20	9/11/2023
Signal Generator R&S SMU-200A	Rohde & Schwarz	SMU200A	103195	4/23/18	4/22/2021
<u>Digital Multimeter</u>	Fluke	77	35053830	9/9/20	9/9/2023
Active Loop	ETS-Lindgren	6502	00062529	10/20/20	10/20/2023
Biconical 1057	Eaton	94455-1	1057	10/16/20	10/16/2023
Log-Periodic 1243	Eaton	96005	1243	4/20/18	4/19/2021
Double-Ridged Horn/ETS Horn 1	ETS-Lindgren	3117	00035923	2/25/20	2/24/2023
CHAMBER	Panashield	3M	N/A	3/12/19	3/11/2021
EMI Test Receiver R&S ESU 40	Rohde & Schwarz	ESU 40	100320	8/28/18	8/27/2021

Type <u>√</u>	Device <u>*</u>	Manufacturer <u></u>	Model <u>▼</u>	SN # <u>▼</u>	Last Verified 🔼
Attenuator	N 20dB 20W DC-4G	Narda	766-20	0605	1/6/21
Attenuator	N 20dB 2W DC-13G	Narda	757C	30201	1/6/21
Coaxial Cable	BMBM-0061-01 RG400	Pasternack	PE3582LF-24	BMBM-0061-01	1/6/21
Coaxial Cable	BMBM-0061-02 RG400	Pasternack	PE3582LF-24	BMBM-0061-02	1/6/21
Coaxial Cable	BMBM-0061-03 RG400	Pasternack	PE3582LF-24	BMBM-0061-03	1/6/21
Coaxial Cable	BMBM-0061-04 RG400	Pasternack	PE3582LF-24	BMBM-0061-04	1/6/21
Coaxial Cable	BMBM-0122-01 RG400	Pasternack	PE3582LF-48	BMBM-0122-01	1/6/21
Coaxial Cable	BMBM-0122-02 RG400	Pasternack	PE3582LF-48	BMBM-0122-02	1/6/21
Coaxial Cable	BMBM-0122-03 RG400	Pasternack	PE3582LF-48	BMBM-0122-03	1/6/21
Coaxial Cable	BMBM-0122-04 RG400	Pasternack	PE3582LF-48	BMBM-0122-04	1/6/21
Coaxial Cable	Chamber 3 cable set (backup)	Micro-Coax	Chamber 3 cable set (backup)	KMKM-0244-02 ; KMKM-0670-0	1/6/21
Combiner	Splitter/Combiner 1-1000MHz	Mini-Circuits	ZFSC-4-1-BNC+	U115700825	1/6/21
Combiner	Splitter/Combiner 1-1000MHz	Mini-Circuits	ZFSC-4-1-BNC+	U115700826	1/6/21
Noise Source	Noise Source 10MHz - 18GHz	Agilent	346B	MY44421884	1/6/21
Terminator	Terminator N 20W DC-18G	Narda	8205	#14	1/6/21
Test Equipment Adapter	Type R&S to NF			Test Equipment Adapter 04	1/6/21

Software	~	Author	T	Version	¥
ESU Firmware		Rohde & Schwarz		4.43 SP3; BIOS v5.1-24-	. 3
RSCommander		Rohde & Schwarz		1.6.4	
Field Strength		Timco		v4.10.7.0	

Timco Engineering, Inc., an IIA Company 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com

8. Test Results

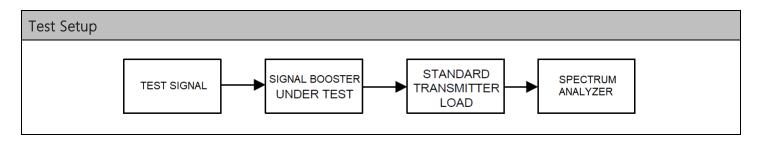
The results of the test are usually indicated in the form of tables, spectrum analyzer plots, charts, sample calculations, as appropriate for each test procedure.

A description and/or a block diagram of the test setup is usually provided.

The measurement results, along with the appropriate limits for comparison, may be presented in tabular or graphical form. In addition, any variation in the measurement environment may be reported if applicable (e.g., a significant change of temperature that could affect the cable loss and amplifier response).

Unless noted otherwise in the referenced standard, the measurements of ac power-line conducted emissions and conducted power output will be reported in units of dB μ V. Unless noted otherwise in the referenced standard, the measurements of radiated emissions will be reported in units of decibels, referenced to one microvolt per meter (dB μ V/m) for electric fields, or to one ampere per meter (dBA/m) for magnetic fields, at the distance specified in the appropriate standards or requirements. The measurements of antennaconducted power for receivers may be reported in units of dB μ V if the impedance of the measuring instrument is also reported. Otherwise, antenna-conducted power will be reported in units of decibels referenced to one milliwatt (dBm). All formulas for data conversions and conversion factors, if used, will be included in this measurement report.

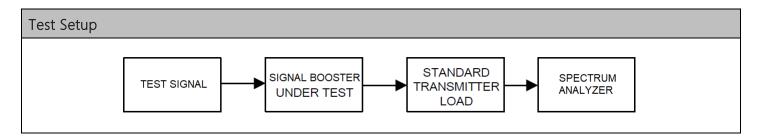
8.1 Power at the Final Amplifier


Limits from FCC Part 2.1033 (c)(8).

No method of measurement is specified. The result has been calculated based on all available information.

Test Results						
EUT Operating Voltage (V)	EUT Current (A)	Power at the Final Amplifier				
50 V DC	25 A	1250 W				

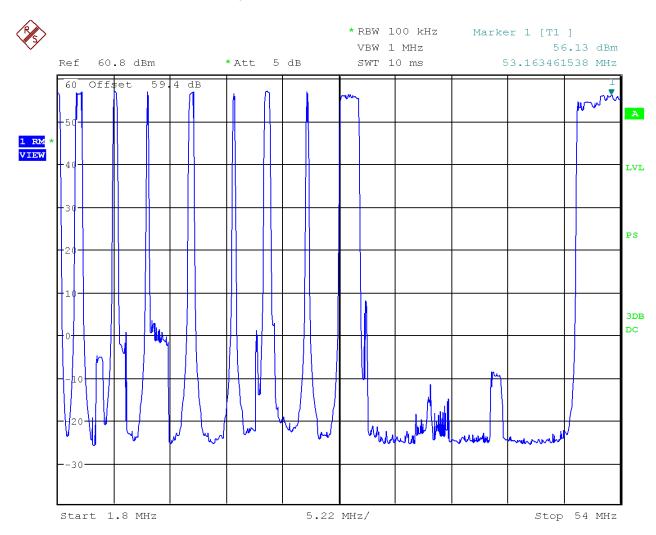
8.2 RF Output Power & Gain


Limits from FCC Parts 97.317(a)(1) and test procedure from ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

Test Results, Power Output & Gain							
Amateur Band	Power Input (dBm)	Max Power Output (dBm)	Gain (dB)				
160 m	49.36	56.70	7.34				
80 m	50.39	56.88	6.49				
40 m	50.18	56.96	6.78				
30 m	49.56	56.84	7.28				
20 m	49.54	57.02	7.48				
17 m	49.51	56.57	7.06				
15 m	49.34	57.05	7.71				
12 m	49.44	56.97	7.53				
10 m	49.29	56.20	6.91				
6 m	46.64	56.13	7.49				

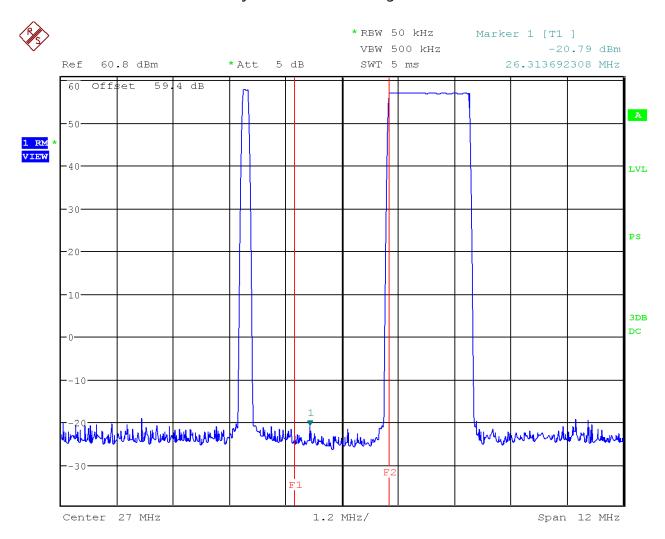
8.3 Out-of-band Rejection

Limits from FCC Part 97, test method from FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.



Test Results, Out-of-band Rejection and Class of Operation						
Operating Band Passband (kHz) Class of Operation						
1.8 – 54 MHz	> 75 kHz	Class B				

Out-of-band Rejection, Spectrum Plots


8.3.1 Out-of-band Rejection

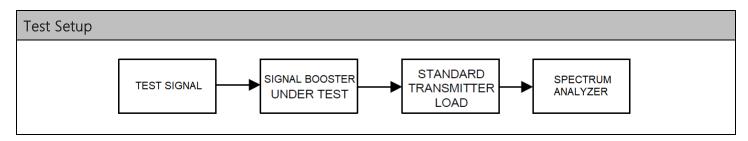
Date: 10.FEB.2021 09:49:37

8.3.1 Out-of-band Rejection 26-28 MHz Region

Date: 10.FEB.2021 09:52:48

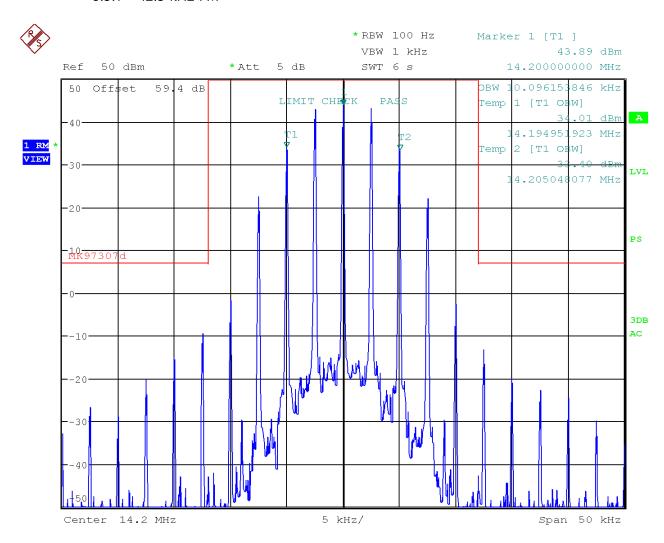
Note: The device automatically prevents transmission in the 27 MHz band.

8.4 Bandwidth & Emission

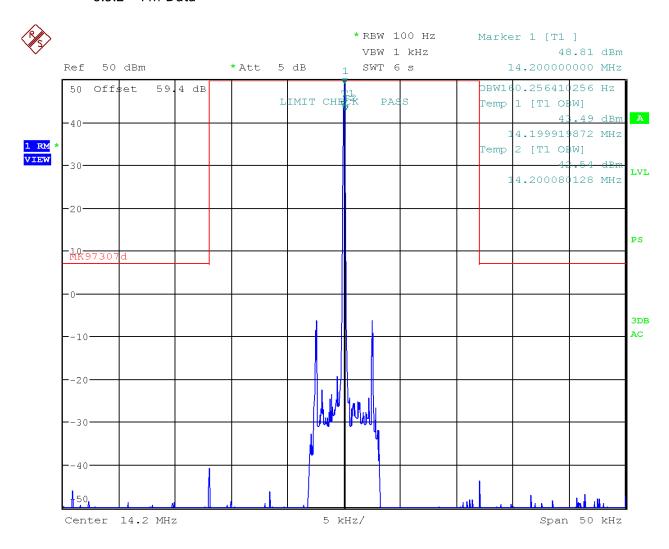

Limits from FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

Applicable Input Signals						
Signal	Occupied Bandwidth	Representative Emission Designator(s)				
CW	n/a	n/a				
12.5 kHz FM Voice	10.10 kHz	F3E				
FM Data	160 Hz	F1D				
AM	5.13 kHz	A1A, A3A, A3E				
SSB (LSB or USB) AM	240 Hz	J3E, J1D, J3C, J3E, J3F				

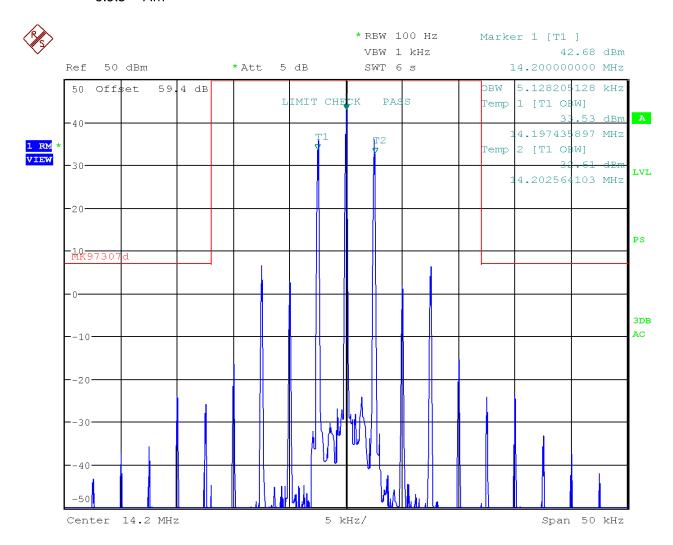
8.5 Input VS Output Signal Comparison


Limits from FCC Parts 97 and test procedure from ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

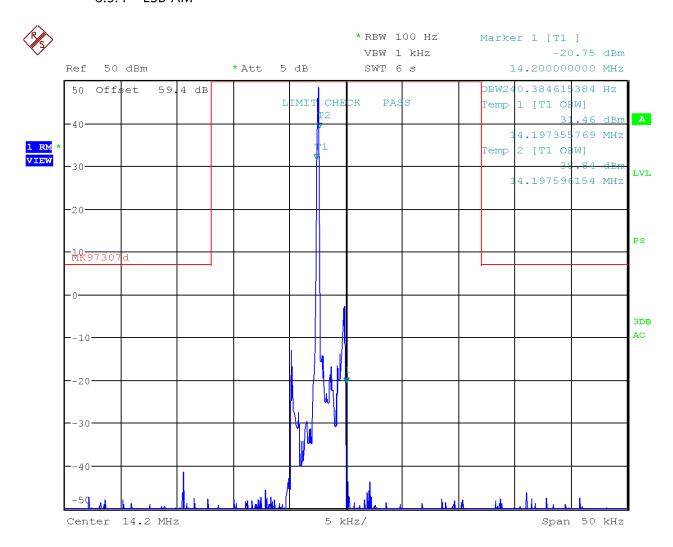
Input VS Output, Input Spectrum Plots


8.5.1 12.5 kHz FM

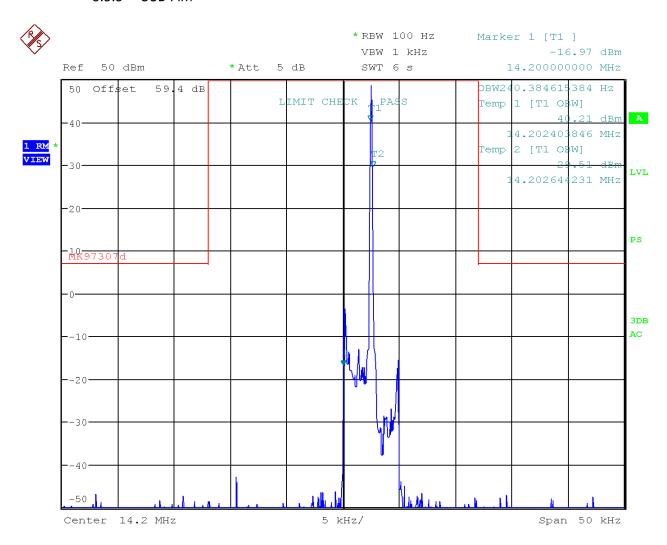
Date: 10.FEB.2021 08:38:14


8.5.2 FM Data

Date: 10.FEB.2021 08:41:24

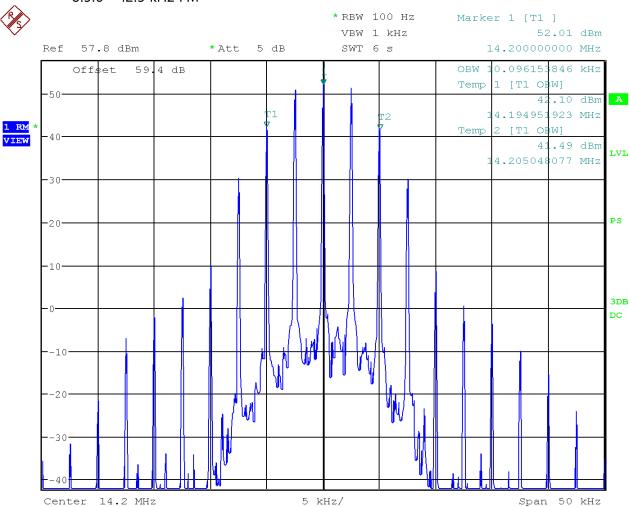

8.5.3 AM

Date: 10.FEB.2021 08:44:11


8.5.4 LSB AM

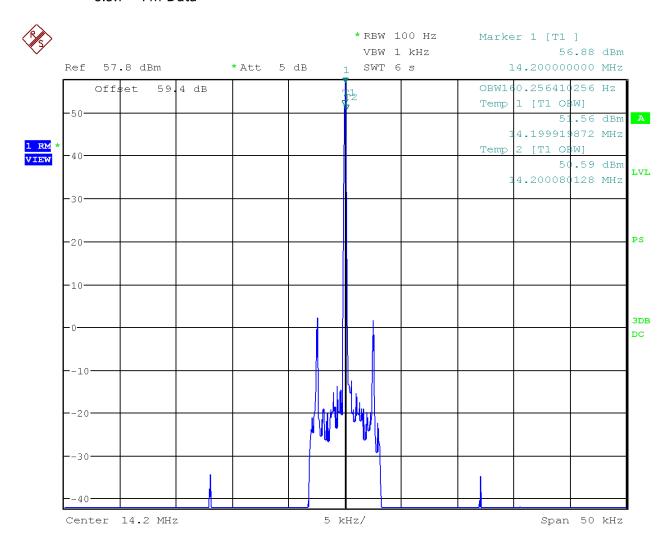
Date: 10.FEB.2021 08:43:21

8.5.5 USB AM

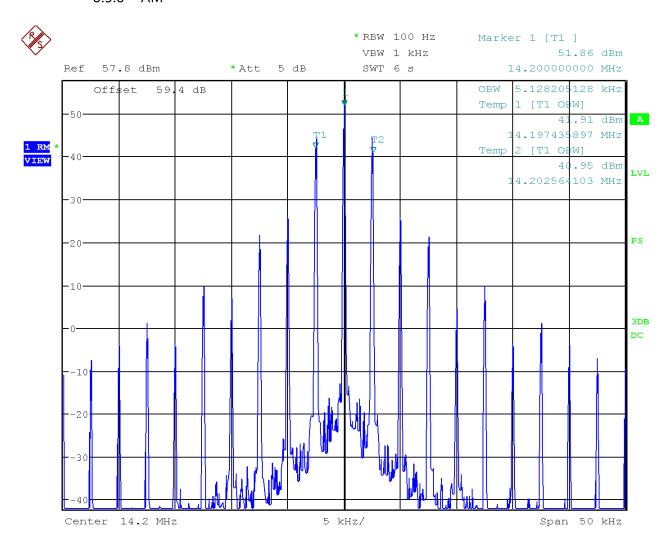


Date: 10.FEB.2021 08:42:50

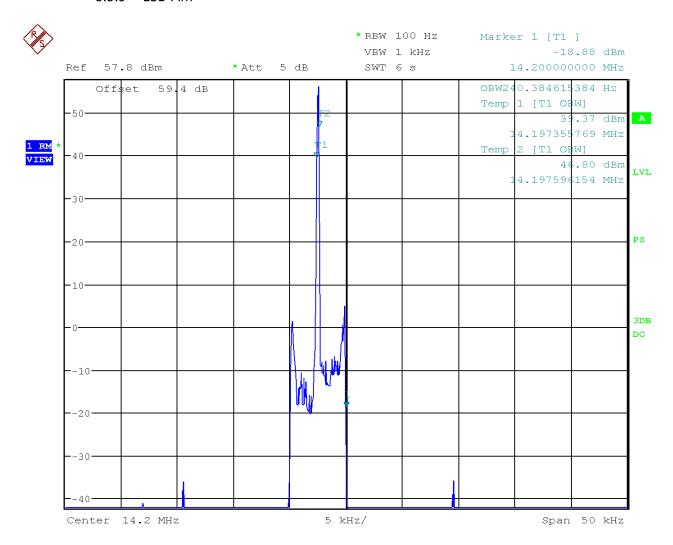
Input VS Output, Output Spectrum Plots


8.5.6 12.5 kHz FM

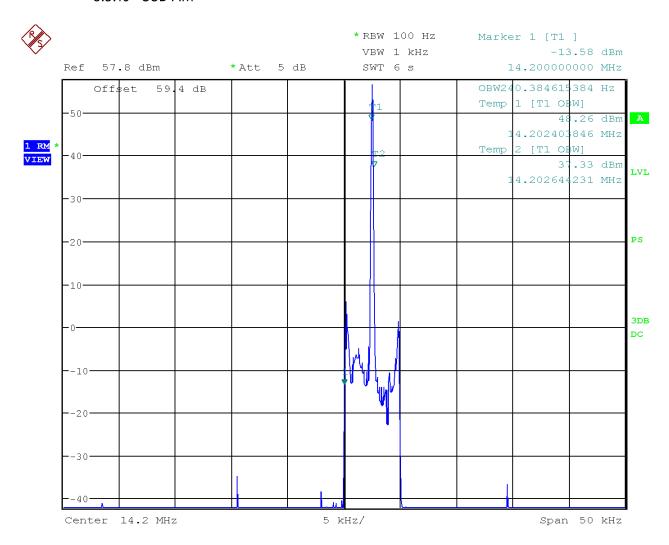
Date: 10.FEB.2021 09:59:33


8.5.7 FM Data

Date: 10.FEB.2021 10:00:24

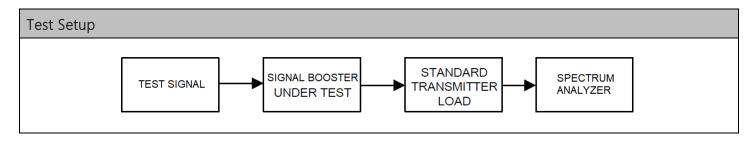

8.5.8 AM

Date: 10.FEB.2021 10:00:56


8.5.9 LSB AM

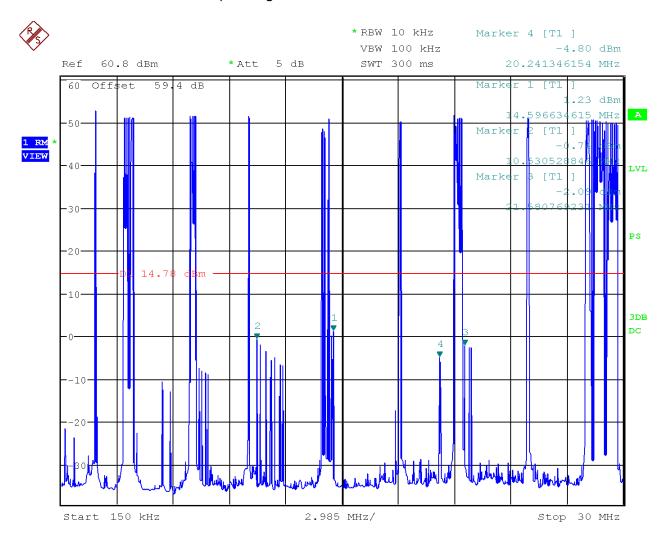
Date: 10.FEB.2021 10:02:13

8.5.10 USB AM

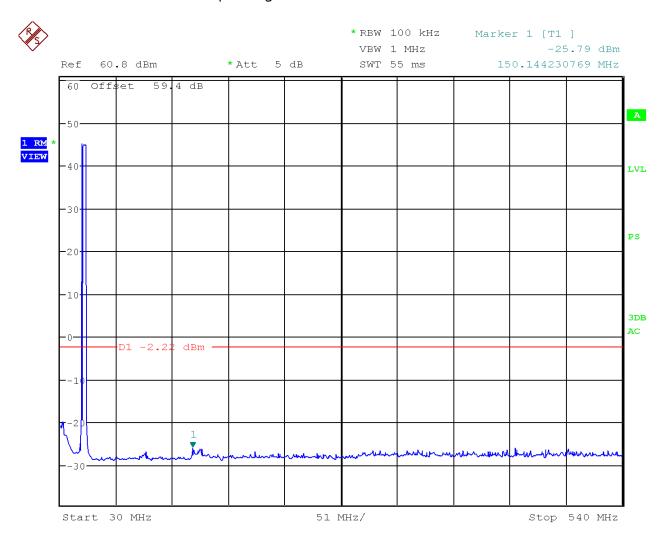


Date: 10.FEB.2021 10:01:38

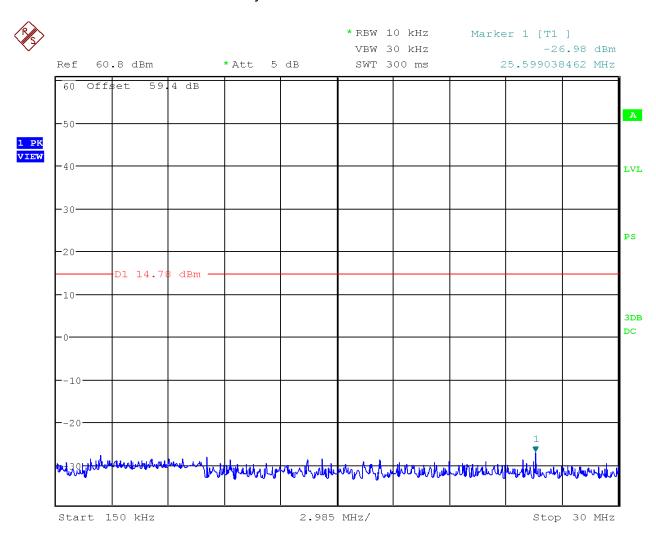
8.6 Conducted Spurious Emissions


Limits from FCC Parts 2.1051, 97.307 and test procedure from ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

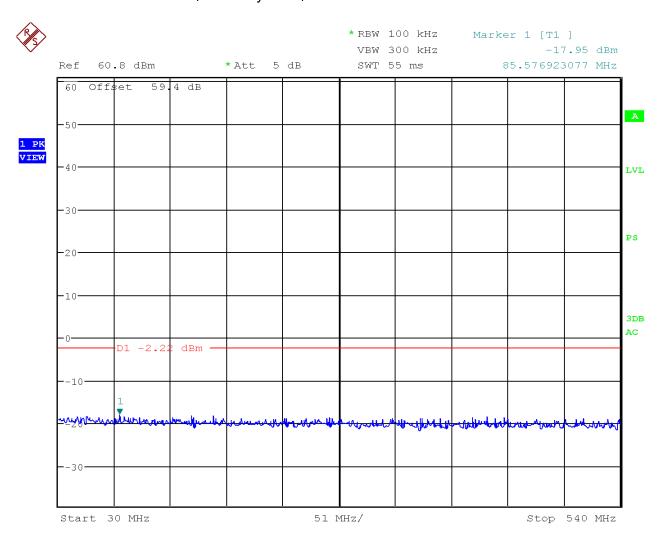
Conducted Spurious Emissions Spectrum Plots


8.6.1 All bands, Operating State, Scanned Below 30 MHz

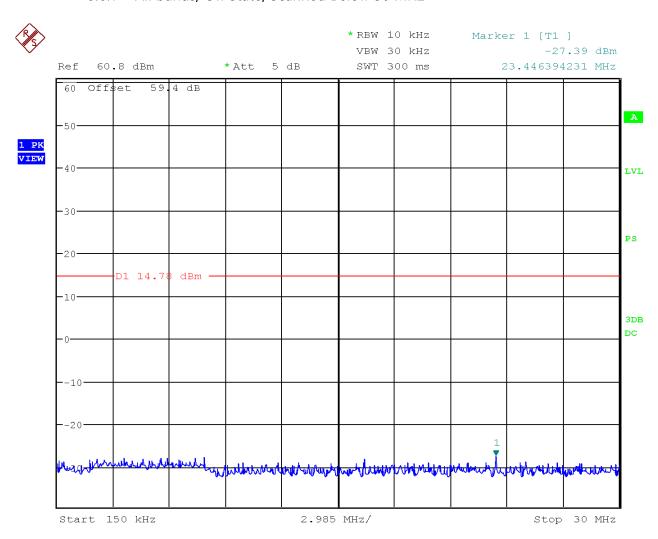
Date: 10.FEB.2021 09:34:39


8.6.2 All bands, Operating State, Scanned Above 30 MHz

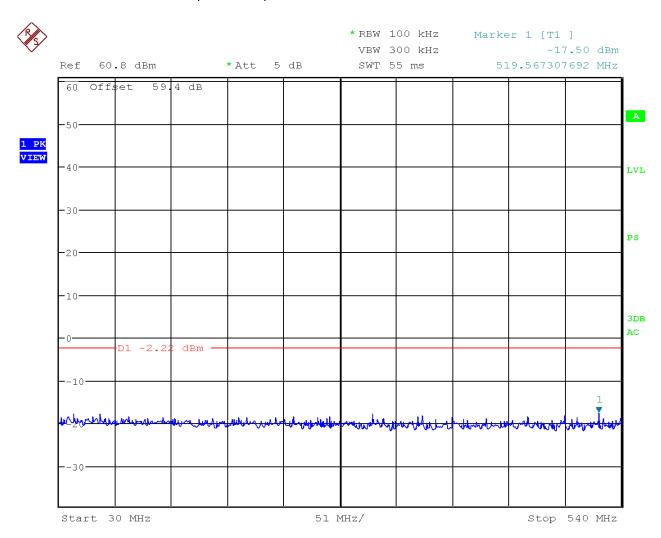
Date: 10.FEB.2021 09:25:47


8.6.3 All bands, Stand-By State, Scanned Below 30 MHz

Date: 10.FEB.2021 09:21:44

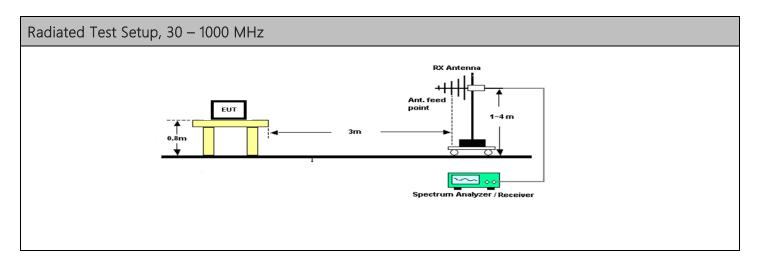

8.6.4 All bands, Stand-By State, Scanned Above 30 MHz

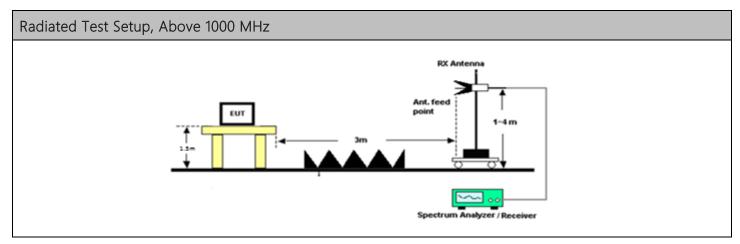
Date: 10.FEB.2021 09:22:26


8.6.1 All bands, Off State, Scanned Below 30 MHz

Date: 10.FEB.2021 09:20:18

8.6.2 All bands, Off State, Scanned Above 30 MHz

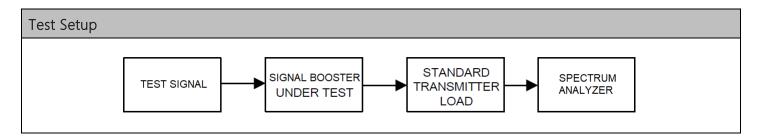



Date: 10.FEB.2021 09:18:57

8.7 Spurious Radiated Emissions

Limits from FCC Parts 2.1053, 97.307 and test procedure from ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

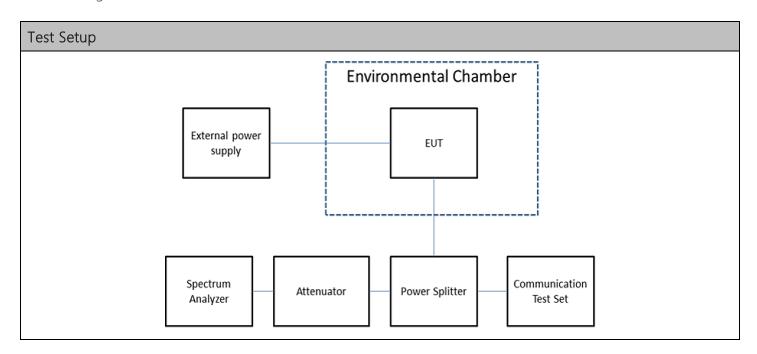
Timco Engineering, Inc., an IIA Company 849 NW State Road 45, Newberry, Florida 32669 (352) 472-5500 / testing@timcoengr.com


Radiated Emissions

8.7.1 Peak Radiated Emissions from Each Band

Tuned Frequency (MHz)	Emission Frequency (MHz)	Detector	Meter Reading (dBm)	Antenna Polarity	Coax Loss (dB)	Antenna Correction Factor (dB)	Distance (m)	Field Strength (dBµV/m)	ERP (dBm)	Spurious Limit (dBm)	Margin (dB)
1.80	0.54	PK	28.00	V	1.00	10.00	3.00	39.00	-58.38	14.78	73.16
3.80	2.84	PK	29.50	V	1.00	10.00	3.00	40.50	-56.88	14.78	71.66
7.10	71.00	PK	35.07	V	1.00	6.10	3.00	42.17	-55.21	14.78	69.99
10.13	91.17	PK	33.68	V	1.14	10.62	3.00	45.44	-51.94	14.78	66.72
14.20	2.92	PK	28.19	V	1.00	10.00	3.00	39.19	-58.19	14.78	72.97
18.10	2.92	PK	28.19	V	1.00	10.00	3.00	39.19	-58.19	14.78	72.97
21.25	2.92	PK	28.19	V	1.00	10.00	3.00	39.19	-58.19	14.78	72.97
24.90	224.10	PK	40.98	Н	1.72	10.30	3.00	53.00	-44.38	14.78	59.16
29.00	232.00	PK	35.61	Н	1.75	10.34	3.00	47.70	-49.68	14.78	64.46
52.00	364.00	PK	46.49	Н	2.18	14.34	3.00	63.01	-34.37	-2.22	32.15

8.8 Modulation Characteristics


Limits from FCC Parts 2.1047, and test procedure from ANSI C63.26-2015.

N/A. The EUT does not have any means to modulate the incoming signal.

8.9 Frequency Stability

Limits from FCC Parts 2.1055, and test procedure from ANSI C63.26-2015 and FCC KDB 935210 D05 v01r04 Industrial Signal Boosters.

Test Results, Mode 1						
Tuned Frequency (MHz) Max Deviation (ppm) Limit (ppm)						
n/a	n/a	n/a				

N/A. The EUT is not subject to Frequency Stability per the rationale in KDB 935210

9. Photographs of the EUT

Photographs of the EUT and any manufacturer supplied accessories to be used with the EUT are in separate supplementary documents labelled EXTERNAL PHOTOS and INTERNAL PHOTOS.

10. Test Setup Photographs

Test setup photographs are located in a separate supplementary document.

11. History of Test Report Changes

Test Report #	Revision #	Description	Date of Issue
TR_0333-21_FCC_PT97_Booster Class B_1	1	Initial release	February 12, 2021
TR_0333-21_FCC_PT97_Booster Class B_2	2	Changed references.	March 24, 2021

END OF TEST REPORT