

FCC ID: HLZUWA2

IC: 1754F-UWA2

12 Maximum Permissible Exposure (MPE)

12.1 Standard Applicable

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

This is a Mobile device, the MPE is required.

According to §1.1310 and §2.1093 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minute)	
Limits for General Population/Uncontrolled Exposure					
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	F/1500	30	
1500-15000	/	/	1.0	30	

F = frequency in MHz

International Standards Laboratory Report Number: ISL-13LR039FC

^{* =} Plane-wave equipment power density

FCC ID: HLZUWA2

IC: 1754F-UWA2

12.2 Maximum Permissible Exposure (MPE) Evaluation

The worst case of Average power: refer to section 6.5 for detail measurement date.

802.11b

Cable loss = 0		Output Power		Limit
СН	Frequency	Dete	(dBm)	
	(MHz)	PK	AV	
		(dBm)	(dBm)	
1	2412	19.24	16.84	
6	2437	19.83	17.53	30
11	2462	19.23	16.92	

MPE Prediction (802.11b)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 R^2

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	17.53	(dBm)
Maximum Average output power at antenna input	56.6239289	(mW)
Duty cycle:	100	(%)
Maximum Pav :	56.6239289	(mW)
Antenna gain (typical):	-5.2	(dBi)
Maximum antenna gain:	0.301995172	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	2437	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0034037	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is 0.0034037 mW/cm². This is below the uncontrolled exposure limit of 1 mW/cm² at 2437MHz.

Report Number: ISL-13LR039FC

FCC ID: HLZUWA2

IC: 1754F-UWA2

The worst case of Average power: refer to section 6.5 for detail measurement date.

802.11a_HT20(5G)

Channel		Frequency	Output Chain (dBm)		Combine Output Power	Limit(dDm)
		(MHz)	Chain A	chain B	(dBm)	Limit(dBm)
	149	5745	6.91	11.69	12.94	30
AN HT20	157	5785	7.12	10.52	12.15	30
	165	5825	7.11	9.67	11.59	30

MPE Prediction (802.11a)

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4 R^2

Where: S = Power density

P = Power input to antenna

G = Power gain of the antenna in the direction of interest relative to an isotropic radiator

R = Distance to the center of radiation of the antenna

Maximum average output power at antenna input	12.94	(dBm)
Maximum Average output power at antenna input	19.6788629	(mW)
Duty cycle:	100	(%)
Maximum Pav :	19.6788629	(mW)
Antenna gain (typical):	5.9	(dBi)
Maximum antenna gain:	3.89045145	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	5745	(MHz)
MPE limit for uncontrolled exposure at prediction	1	(mW/cm2)
Power density at predication frequency at 20 (cm)	0.0152388	(mW/cm^2)

Measurement Result

The predicted power density level at 20 cm is $0.0152388 \text{ mW/cm}^2$. This is below the uncontrolled exposure limit of 1 mW/cm^2 at 5745 MHz.

International Standards Laboratory