FCC SAR Test Report

Report No.: FA780201

APPLICANT : Acer Incorporated

EQUIPMENT : WagTag **BRAND NAME** : Pawbo **MODEL NAME** : TK010

FCC ID : **HLZTK010**

STANDARD : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the procedures and had been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Approved by: Mark Qu / Manager

Mark Qu

Sporton International (Kunshan) Inc.

NVLAP LAB CODE 600155-0

No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 1 of 34

SPORTON LAB. FCC SAR Test Report

Table of Contents

1. Statement of Compliance	
2. Administration Data	
3. Guidance Applied	
4. Equipment Under Test (EUT) Information	
4.1 General Information	6
5. RF Exposure Limits	
5.1 Uncontrolled Environment	7
5.2 Controlled Environment	7
6. Specific Absorption Rate (SAR)	8
6.1 Introduction	8
6.2 SAR Definition	8
7. System Description and Setup	9
7.1 E-Field Probe	10
7.2 Data Acquisition Electronics (DAE)	10
7.3 Phantom	
7.4 Device Holder	
8. Measurement Procedures	
8.1 Spatial Peak SAR Evaluation	
8.2 Power Reference Measurement	14
8.3 Area Scan	
8.4 Zoom Scan	
8.5 Volume Scan Procedures	
8.6 Power Drift Monitoring	
9. Test Equipment List	
10. System Verification	
10.1 Tissue Simulating Liquids	
10.2 Tissue Verification	
10.3 System Performance Check Results	
11. RF Exposure Positions	
11.1 Body Position	
12. Conducted RF Output Power (Unit: dBm)	
13. Bluetooth Exclusions Applied	26
14. Antenna Location	27
15. SAR Test Results	28
15.1 Body SAR	
16. Simultaneous Transmission Analysis	30
16.1 Body Exposure Conditions	
17. Uncertainty Assessment	
18. References	34
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement	
Appendix C. DASY Calibration Certificate	
Appendix D. Test Setup Photos	

Page 2 of 34

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: HLZTK010

Report No. : FA780201

Revision History

Report No. : FA780201

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA780201	Rev. 01	Initial issue of report	Nov. 08, 2017

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version. : 170509 FCC ID: HLZTK010 Page 3 of 34

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Acer Incorporated, WagTag, TK010, are as follows.

Report No. : FA780201

Equipment Class	Frequency Band		Highest Standalone SAR Summary Body (Separation 15mm) 1g SAR (W/kg)
	GSM	GSM850	0.34
	GOIM	GSM1900	0.27
Licensed	nsed	Band V	0.11
	WCDMA	Band IV	0.25
		Band II	0.23
DTS	WLAN	WLAN 2.4GHz	<0.10
Date of Testing:			2017/8/15 ~ 2017/11/1

Equipment Class	Frequency Band		Highest Simultaneous Transmission 1g SAR (W/kg)
	CSM	GSM850	
	GSM	GSM1900	
Licensed	WCDMA	Band V	0.41
		Band IV	0.41
		Band II	
DSS	Bluetooth	2.4GHz Bluetooth	

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 4 of 34

2. Administration Data

Testing Laboratory		
Test Site Sporton International (Kunshan) Inc.		
Test Site Location	No.3-2 Ping-Xiang Rd, Kunshan Development Zone Kunshan City Jiangsu Province 215335 China TEL: +86-512-57900158 FAX: +86-512-57900958	

Report No.: FA780201

Applicant Applicant		
Company Name Acer Incorporated		
Address	8F., No. 88, Sec. 1, Xintai 5th Rd., Xizhi Dist., New Taipei City 22181, Taiwan	

Manufacturer Manufacturer			
Company Name Shanghai Sunrise Simcom Limited			
Address No.888, Shengli Road, Qingpu Industrial Park, Shanghai, P. R. China			

3. Guidance Applied

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01

Sporton International (Kunshan) Inc.

4. Equipment Under Test (EUT) Information

4.1 General Information

Product Feature & Specification		
Equipment Name	WagTag	
Brand Name	Pawbo	
Model Name	TK010	
FCC ID	HLZTK010	
IMEI Code	358919089992662	
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band IV: 1712.4 MHz ~ 1752.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2462 MHz Bluetooth: 2402 MHz ~ 2480 MHz	
Mode	GPRS/EGPRS RMC 12.2Kbps HSDPA HSUPA HSPA+ (16QAM uplink is not supported) WLAN2.4GHz: 802.11b/g/n HT20 Bluetooth v3.0+EDR, Bluetooth v4.0 LE	
HW Version	V1.01	
SW Version	V1.1.0008	
EUT Stage	Production Unit	
Remark: 1 This device does not su	nnort voice function	

Report No. : FA780201

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version. : 170509 FCC ID: HLZTK010 Page 6 of 34

This device does not support voice function.

This device supports GRPS/EGRPS mode up to multi-slot class 12.

5. RF Exposure Limits

5.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA780201

5.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Nov. 08, 2017

FCC ID : HLZTK010 Page 7 of 34 Form version. : 170509

6. Specific Absorption Rate (SAR)

6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA780201

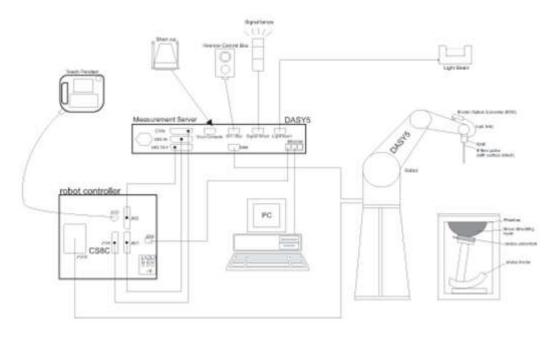
6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (p). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 8 of 34

7. System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA780201

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positionina.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps.
- The phantom, the device holder and other accessories according to the targeted measurement.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 9 of 34

7.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Erosuopov	10 MHz – >6 GHz	
Frequency	Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Discoult day	±0.3 dB in TSL (rotation around probe axis)	
Directivity	±0.5 dB in TSL (rotation normal to probe axis)	
Dimensia Banasa	10 μW/g – >100 mW/g	
Dynamic Range	Linearity: ±0.2 dB (noise: typically <1 μW/g)	
	Overall length: 337 mm (tip: 20 mm)	
Dimensions	Tip diameter: 2.5 mm (body: 12 mm)	
Dimensions	Typical distance from probe tip to dipole centers: 1	
	mm	

Report No. : FA780201

7.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 10 of 34

7.3 Phantom

<SAM Twin Phantom>

TO ANTI TWILL I HALLOTTIP		
Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	,
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	7 5
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

Report No. : FA780201

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 11 of 34

7.4 Device Holder

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Report No.: FA780201

Mounting Device for Hand-Held **Transmitters**

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 12 of 34

8. Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA780201

- (b) Read the WWAN RF power level from the base station simulator.
- For BT/WLAN power measurement, use engineering software to configure EUT BT/WLAN continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure BT/WLAN output power

<SAR measurement>

- Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT BT/WLAN continuously transmission, at maximum RF power, in the highest power
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- Find out the largest SAR result on these testing positions of each band (e)
- Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

Sporton International (Kunshan) Inc.

8.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- Extraction of the measured data (grid and values) from the Zoom Scan
- Calculation of the SAR value at every measurement point based on all stored data (A/D values and (b) measurement parameters)
- Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g

Form version. : 170509 FCC ID: HI ZTK010 Page 13 of 34

8.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA780201

Issued Date: Nov. 08, 2017

8.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of measurement plane orientation the measurement resolution is x or y dimension of the test of measurement point on the test	on, is smaller than the above, must be ≤ the corresponding levice with at least one

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID : HLZTK010 Page 14 of 34 Form version. : 170509

8.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA780201

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan s	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: $\Delta z_{Z_{00m}}(n)$	≤ 5 mm	$3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	patial resolution, 1st two point to phantom		≤ 4 mm	$3 - 4 \text{ GHz: } \le 3 \text{ mm}$ $4 - 5 \text{ GHz: } \le 2.5 \text{ mm}$ $5 - 6 \text{ GHz: } \le 2 \text{ mm}$
gger-revenousfilled	grid	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δ	Z _{Zoom} (n-1)
Minimum zoom scan volume x, y, z			≥ 30 mm	$3 - 4 \text{ GHz:} \ge 28 \text{ mm}$ $4 - 5 \text{ GHz:} \ge 25 \text{ mm}$ $5 - 6 \text{ GHz:} \ge 22 \text{ mm}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

8.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

8.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Nov. 08, 2017

FCC ID : HLZTK010 Page 15 of 34 Form version. : 170509

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is $\leq 1.4 \text{ W/kg}$, $\leq 8 \text{ mm}$, $\leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9. Test Equipment List

Manufacture	Name of Equipment	T. vo a /B# a stat	Carriel Number	Calibra	ation		
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date		
SPEAG	835MHz System Validation Kit	D835V2	4d091	2016/11/22	2017/11/21		
SPEAG	1750MHz System Validation Kit	D1750V2	1069	2016/11/23	2017/11/22		
SPEAG	1900MHz System Validation Kit	D1900V2	5d118	2016/11/24	2017/11/23		
SPEAG	2450MHz System Validation Kit	D2450V2	840	2016/11/25	2017/11/24		
SPEAG	Data Acquisition Electronics	DAE4	1210	2017/5/25	2018/5/24		
SPEAG	Dosimetric E-Field Probe	EX3DV4	3857	2017/5/26	2018/5/25		
SPEAG	Phone Positioner	N/A	N/A	NCR NCR			
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1644	NCR	NCR		
SPEAG	SAM Twin Phantom	QD 000 P40 CB	TP-1542	NCR NCR			
Agilent	Wireless Communication Test Set	E5515C	MY52102706	2017/4/18 2018/4/1			
Agilent	ENA Series Network Analyzer	E5071C	MY46111157	2017/4/18	2018/4/17		
SPEAG	DAK Kit	DAK3.5	1144	2016/11/23	2017/11/22		
R&S	Signal Generator	SMR40	100455	2017/1/19	2018/1/18		
Anritsu	Power Senor	MA2411B	1644003	2016/12/23	2017/12/22		
Anritsu	Power Meter	ML2495A	1531197	2016/12/23	2017/12/22		
Anritsu	Power Senor	MA2411B	1644004	2016/12/23	2017/12/22		
Anritsu	Power Meter	ML2495A	1531198	2016/12/23	2017/12/22		
R&S	Spectrum Analyzer	FSV7	103712	2016/11/17	2017/11/16		
WISEWIND	Hygrometer	WISEWIND 0905	0905	2017/4/20	2018/4/19		
JM	DIGITAC THERMOMETER	JM222	AA1207166	2017/4/19	2018/4/18		
ARRA	Power Divider	A3200-2	N/A	Not	e		
Agilent	Dual Directional Coupler	778D	50422	Not	e		
PASTERNACK	Dual Directional Coupler	PE2214-10	N/A	Not	е		
AR	Amplifier	5S1G4	333096	Note			
mini-circuits	Amplifier	ZVE-3W-83+	162601250	Note			
MCL	Attenuation1	BW-S10W5+	N/A	Note			
MCL	Attenuation2	BW-S10W5+	N/A	Note			
MCL	Attenuation3	BW-S10W5+	N/A	Not	e		

Report No. : FA780201

Note:

Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version. : 170509 FCC ID: HLZTK010 Page 16 of 34

10. System Verification

10.1 Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 10.1.

Report No.: FA780201

Fig 10.1 Photo of Liquid Height for Body SAR

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 17 of 34

10.2 Tissue Verification

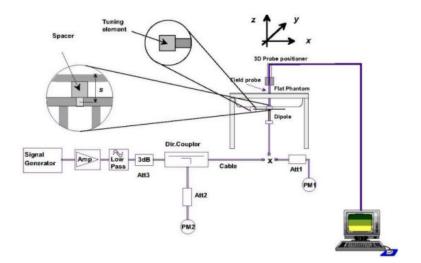
The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No. : FA780201

Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
				For Body				
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Tissue Type	Liquid Temp. (°C)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
835	Body	22.8	0.964	54.742	0.97	55.20	-0.62	-0.83	±5	2017/8/16
835	Body	22.8	0.972	56.886	0.97	55.20	0.21	3.05	±5	2017/9/25
1750	Body	22.6	1.442	53.561	1.49	53.40	-3.22	0.30	±5	2017/8/15
1900	Body	22.6	1.547	52.476	1.52	53.30	1.78	-1.55	±5	2017/8/15
2450	Body	22.5	2.024	52.385	1.95	52.70	3.79	-0.60	±5	2017/11/1


Sporton International (Kunshan) Inc.

FCC ID : HLZTK010 Page 18 of 34 Form version. : 170509

10.3 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)
2017/8/16	835	Body	250	4d091	3857	1210	2.57	9.68	10.28	6.20
2017/9/25	835	Body	250	4d091	3857	1210	2.29	9.68	9.16	-5.37
2017/8/15	1750	Body	250	1069	3857	1210	10.00	37.70	40.00	6.10
2017/8/15	1900	Body	250	5d118	3857	1210	10.50	40.80	42.00	2.94
2017/11/1	2450	Body	250	840	3857	1210	12.30	50.90	49.20	-3.34

Report No.: FA780201

Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Page 19 of 34 Form version.: 170509 FCC ID: HLZTK010

11. RF Exposure Positions

11.1 Body Position

(a) To position the device parallel to the phantom surface with front of the device.

Report No. : FA780201

- (b) To adjust the device parallel to the flat phantom.
- (c) To adjust the distance between the device and the flat phantom to 15 mm.

<EUT Setup Photos>

Please refer to Appendix D for the test setup photos.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 FCC ID: HLZTK010 Form version. : 170509

Page 20 of 34

12. Conducted RF Output Power (Unit: dBm)

<GSM Conducted Power>

Per KDB 941225 D01v03r01, for SAR test reduction for GPRS / EDGE mode is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 are considered as the primary mode.

Report No.: FA780201

2. Other configurations of GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.

GSM850	Burst Av	erage Powe	er (dBm)	Tune-up	Frame-A	verage Pow	ver (dBm)	Tune-up
Tx Channel	128	189	251	Limit	128	189	251	Limit
Frequency (MHz)	824.2	836.4	848.8	(dBm)	824.2	836.4	848.8	(dBm)
GPRS 1 Tx slot	33.08	33.02	33.20	33.50	24.08	24.02	24.20	24.50
GPRS 2 Tx slots	32.24	32.24	32.40	33.00	26.24	26.24	26.40	27.00
GPRS 3 Tx slots	30.43	30.44	30.57	31.00	26.17	26.18	26.31	26.74
GPRS 4 Tx slots	29.38	29.34	29.52	30.00	26.38	26.34	26.52	27.00
EDGE 1 Tx slot	27.05	26.99	26.91	27.50	18.05	17.99	17.91	18.50
EDGE 2 Tx slots	26.04	26.05	25.95	26.50	20.04	20.05	19.95	20.50
EDGE 3 Tx slots	23.95	23.90	23.77	24.50	19.69	19.64	19.51	20.24
EDGE 4 Tx slots	22.75	22.78	22.62	23.50	19.75	19.78	19.62	20.50
GSM1900	Burst Av	verage Powe	er (dBm)	Tune-up	Frame-A	verage Pow	ver (dBm)	Tune-up
Tx Channel	512	661	810	Limit	512	661	810	Limit
Frequency (MHz)	1850.2	1880	1909.8	(dBm)	1850.2	1880	1909.8	(dBm)
GPRS 1 Tx slot	<mark>30.13</mark>	29.99	30.00	30.50	21.13	20.99	21.00	21.50
GPRS 2 Tx slots	29.14	29.02	29.08	29.50	23.14	23.02	23.08	23.50
GPRS 3 Tx slots	27.10	26.98	27.06	27.50	22.84	22.72	22.80	23.24
GPRS 4 Tx slots	25.97	25.86	25.95	26.50	22.97	22.86	22.95	23.50
EDGE 1 Tx slot	28.21	27.55	27.28	28.50	19.21	18.55	18.28	19.50
EDGE 2 Tx slots	27.18	26.50	26.19	27.50	21.18	20.50	20.19	21.50
EDGE 3 Tx slots	25.34	24.53	24.22	25.50	21.08	20.27	19.96	21.24
EDGE 4 Tx slots	24.22	23.19	22.86	24.50	21.22	20.19	19.86	21.50

Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots.

The calculated method are shown as below:

Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) - 6 dB

Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) - 3 dB

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page 21 of 34

<WCDMA Conducted Power>

- 1. The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification.
- 2. The procedures in KDB 941225 D01v03r01 are applied for 3GPP Rel. 6 HSPA to configure the device in the required sub-test mode(s) to determine SAR test exclusion.

Report No.: FA780201

A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements. b.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (β_c and β_d) and parameters were set according to each
 - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - Set RMC 12.2Kbps + HSDPA mode. iii.
 - Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - Set CQI Repetition Factor to 2 Χ.
 - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded. d.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βc	βd	β _d (SF)	β₀/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

- Note 1: \triangle ACK, \triangle NACK and \triangle CQI = 30/15 with β _{ts} = 30/15 * β _c.
- For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle ACK and \triangle NACK = 30/15 with β _{hs} = 30/15 * β _c, and \triangle CQI = 24/15
- with $\beta_{hs} = 24/15 * \beta_c$. CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.
- Note 4: For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15

Setup Configuration

Page 22 of 34 FCC ID: HLZTK010

Sporton International (Kunshan) Inc.

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- b. The RF path losses were compensated into the measurements.
- c. A call was established between EUT and Base Station with following setting *:
 - i. Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - ii. Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121

Report No.: FA780201

- iii. Set Cell Power = -86 dBm
- iv. Set Channel Type = 12.2k + HSPA
- v. Set UE Target Power
- vi. Power Ctrl Mode= Alternating bits
- vii. Set and observe the E-TFCI
- viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- d. The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

Sub- test	βс	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

- Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .
- Note 2: CM = 1 for β_0/β_d =12/15, β_{1s}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
- Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.
- Note 4: For subtest 5 the β_d/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.
- Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.
- Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value.

Setup Configuration

 Sporton International (Kunshan) Inc.

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Nov. 08, 2017

<WCDMA Conducted Power>

General Note:

1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".

Report No.: FA780201

2. Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

	Band	WC	DMA Baı	nd II		WC	DMA Ban	d IV		WC	DMA Bar	nd V	
Tx	Channel	9262	9400	9538	Tune-up Limit	1312	1413	1513	Tune-up Limit	4132	4182	4233	Tune-up Limit
Rx	Channel	9662	9800	9938	(dBm)	1537	1638	1738	(dBm)	4357	4407	4458	(dBm)
Freque	ency (MHz)	1852.4	1880	1907.6	, ,	1712.4	1732.6	1752.6	, ,	826.4	836.4	846.6	
3GPP Rel 99	RMC 12.2Kbps	22.16	<mark>22.22</mark>	22.17	22.50	21.11	21.10	21.15	21.50	23.10	23.44	23.05	24.00
3GPP Rel 6	HSDPA Subtest-1	21.00	21.25	21.25	21.50	19.64	19.04	18.91	20.00	22.02	22.28	21.95	22.50
3GPP Rel 6	HSDPA Subtest-2	20.95	21.25	21.26	21.50	19.64	19.03	18.87	20.00	22.03	22.26	21.89	22.50
3GPP Rel 6	HSDPA Subtest-3	20.48	20.80	20.81	21.00	19.15	18.55	18.40	19.50	21.54	21.86	21.47	22.00
3GPP Rel 6	HSDPA Subtest-4	20.45	20.76	20.77	21.00	19.12	18.53	18.39	19.50	21.54	21.85	21.46	22.00
3GPP Rel 6	HSUPA Subtest-1	15.39	14.19	14.22	15.50	17.72	17.05	16.95	18.00	20.06	20.34	20.01	20.50
3GPP Rel 6	HSUPA Subtest-2	15.29	14.14	14.12	15.50	17.72	17.08	16.94	18.00	20.07	20.33	20.03	20.50
3GPP Rel 6	HSUPA Subtest-3	16.29	15.13	15.10	16.50	18.71	18.07	17.94	19.00	21.03	21.32	20.98	21.50
3GPP Rel 6	HSUPA Subtest-4	14.73	13.53	13.59	15.50	17.16	16.57	16.42	18.00	19.49	19.75	19.43	20.50
3GPP Rel 6	HSUPA Subtest-5	17.30	16.10	16.00	17.50	19.70	19.10	18.90	20.00	22.10	22.30	21.90	22.50

FCC ID : HLZTK010 Page 24 of 34 Form version. : 170509

<WLAN Conducted Power>

General Note:

1. Per KDB 248227 D01v02r02, SAR test reduction is determined according to 802.11 transmission mode configurations and certain exposure conditions with multiple test positions. In the 2.4 GHz band, separate SAR procedures are applied to DSSS and OFDM configurations to simplify DSSS test requirements. For OFDM, in both 2.4 and 5 GHz bands, an initial test configuration must be determined for each standalone and aggregated frequency band, according to the transmission mode configuration with the highest maximum output power specified for production units to perform SAR measurements. If the same highest maximum output power applies to different combinations of channel bandwidths, modulations and data rates, additional procedures are applied to determine which test configurations require SAR measurement. When applicable, an initial test position may be applied to reduce the number of SAR measurements required for next to the ear, UMPC mini-tablet or hotspot mode configurations with multiple test positions.

Report No.: FA780201

- 2. For 2.4 GHz 802.11b DSSS, either the initial test position procedure for multiple exposure test positions or the DSSS procedure for fixed exposure position is applied; these are mutually exclusive. For 2.4 GHz and 5 GHz OFDM configurations, the initial test configuration is applied to measure SAR using either the initial test position procedure for multiple exposure test position configurations or the initial test configuration procedures for fixed exposure test conditions. Based on the reported SAR of the measured configurations and maximum output power of the transmission mode configurations that are not included in the initial test configuration, the subsequent test configuration and initial test position procedures are applied to determine if SAR measurements are required for the remaining OFDM transmission configurations. In general, the number of test channels that require SAR measurement is minimized based on maximum output power measured for the test sample(s).
- 3. For OFDM transmission configurations in the 2.4 GHz and 5 GHz bands, When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel for each frequency band.
- 4. DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures.18 The initial test position procedure is described in the following:
 - a. When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band.
 - b. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
 - c. For all positions/configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.

<2.4GHz WLAN>

	Mode	Channel	Frequency (MHz)	Data Rate	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		CH 1	2412		13.71	15.00	
	802.11b	CH 6	2437	1Mbps	<mark>14.87</mark>	15.00	100.00
2.4GHz		CH 11	2462		12.40	14.00	
WLAN		CH 1	2412		11.94	12.00	
	802.11g	CH 6	2437	6Mbps	11.55	12.00	97.20
		CH 11	2462		11.12	12.00	
		CH 1	2412		12.00	12.50	
	802.11n-HT20	CH 6	2437	MCS0	11.56	12.50	96.30
		CH 11	2462		11.16	12.50	

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Nov. 08, 2017

FCC ID : HLZTK010 Page 25 of 34 Form version. : 170509

13. Bluetooth Exclusions Applied

Mode Band	Average po	wer(dBm)
Mode Band	Bluetooth v3.0+EDR	Bluetooth v4.0 LE
2.4GHz Bluetooth	7.00	0

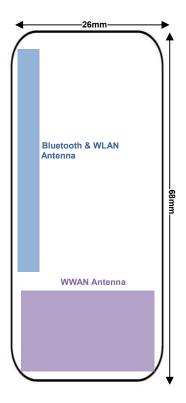
Report No. : FA780201

Note:

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
 - The result is rounded to one decimal place for comparison


Bluetooth Max Power (dBm) Separation Distance (mm)		Frequency (GHz)	Exclusion Thresholds		
7.00	15	2.48	0.5		

Note: Per KDB 447498 D01v06, a distance of 15 mm is applied to determine SAR test exclusion. The test exclusion threshold is 0.5 which is <= 3, SAR testing is not required.

Sporton International (Kunshan) Inc.

FCC ID : HLZTK010 Page 26 of 34 Form version. : 170509

14. Antenna Location

Front View

Report No. : FA780201

TEL: +86-512-57900158 / FAX: +86-512-57900958

FCC ID: HLZTK010

 $\begin{tabular}{ll} Issued Date: Nov. 08, 2017 \\ Page 27 of 34 & Form version. : 170509 \end{tabular}$

15. SAR Test Results

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No. : FA780201

- b. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is not required when the measured SAR is < 0.8W/kg.

GSM Note:

- 1. Per KDB 941225 D01v03r01, for SAR test reduction for GPRS / EDGE mode is determined by the source-based time-averaged output power including tune-up tolerance. The mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested. Therefore, the GPRS (4Tx slots) for GSM850/GSM1900 are considered as the primary mode.
- 2. Other configurations of GPRS / EDGE are considered as secondary modes. The 3G SAR test reduction procedure is applied, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode, SAR measurement is not required for the secondary mode.

WCDMA Note:

- 1. Per KDB 941225 D01v03r01, for SAR testing is measured using a 12.2 kbps RMC with TPC bits configured to all "1's".
- Per KDB 941225 D01v03r01, RMC 12.2kbps setting is used to evaluate SAR. If the maximum output power and tune-up tolerance specified for production units in HSDPA / HSUPA is ≤ ¼ dB higher than RMC 12.2Kbps or when the highest reported SAR of the RMC12.2Kbps is scaled by the ratio of specified maximum output power and tune-up tolerance of HSDPA / HSUPA to RMC12.2Kbps and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for HSDPA / HSUPA.

WLAN Note:

- 1. Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.
- 2. When the reported SAR of the test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position to measure the subsequent next closet/smallest test separation distance and maximum coupling test position on the highest maximum output power channel, until the report SAR is ≤ 0.8 W/kg or all required test position are tested.
- 3. For all positions / configurations, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions / configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested.
- 4. During SAR testing the WLAN transmission was verified using a spectrum analyzer.

 Sporton International (Kunshan) Inc.

 TEL: +86-512-57900158 / FAX: +86-512-57900958
 Issued Date: Nov. 08, 2017

FCC ID : HLZTK010 Page 28 of 34 Form version. : 170509

15.1 **Body SAR**

<GSM SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
#01	GSM850	GPRS 4 Tx slots	Front	15	251	848.8	29.52	30.00	1.117	0.19	0.303	<mark>0.338</mark>
#02	GSM1900	GPRS 4 Tx slots	Front	15	512	1850.2	25.97	26.50	1.130	-0.16	0.235	0.266

Report No. : FA780201

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
#03	WCDMA Band V	RMC 12.2Kbps	Front	15	4182	836.4	23.44	24.00	1.138	0.04	0.096	<mark>0.109</mark>
#04	WCDMA Band IV	RMC 12.2Kbps	Front	15	1513	1752.6	21.15	21.50	1.084	-0.16	0.233	0.253
#05	WCDMA Band II	RMC 12.2Kbps	Front	15	9400	1880	22.22	22.50	1.067	-0.11	0.214	0.228

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
#06	WLAN2.4GHz	802.11b 1Mbps	Front	15	6	2437	14.87	15.00	1.030	100.00	1.000	-0.09	0.073	0.075

Sporton International (Kunshan) Inc.

16. Simultaneous Transmission Analysis

NO.	Simultaneous Transmission Configurations	Body
1.	GPRS/EDGE + Bluetooth	Yes
2.	WCDMA + Bluetooth	Yes

Report No.: FA780201

General Note:

- Bluetooth and WLAN share the same antenna so can't transmit simultaneously. 1.
- EUT will choose either GSM or WCDMA according to the network signal condition; therefore, they will not operate 2. simultaneously at any moment.
- 3. EUT can't support WWAN and WLAN transmit simultaneously.
- The reported SAR summation is calculated based on the same configuration and test position. 4.
- Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - ii) SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR ≤ 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.
- For simultaneous transmission analysis. Bluetooth SAR is estimated per KDB 447498 D01v06 based on the formula
 - (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[√f(GHz)/x] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.
 - ii) When the minimum separation distance is < 5mm, the distance is used 5mm to determine SAR test exclusion.
 - iii) 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

Bluetooth	Exposure Position	Body		
Max Power	Test separation	15 mm		
7.00 dBm	Estimated 1g SAR (W/kg)	0.070 W/kg		

TEL: +86-512-57900158 / FAX: +86-512-57900958 Issued Date: Nov. 08, 2017 Form version.: 170509 Page 30 of 34

Sporton International (Kunshan) Inc.

16.1 Body Exposure Conditions

			1	2		
V	\(\(\(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Francisco Decision	WWAN	Bluetooth	1+2	
V	VWAN Band	Exposure Position	1g SAR (W/kg)	Estimated 1g SAR (W/kg)	Summed 1g SAR (W/kg)	
GSM	GSM850	Front	0.338	0.070	<mark>0.41</mark>	
GSIVI	GSM1900	Front	0.266	0.070	0.34	
	Band V	Front	0.109	0.070	0.18	
WCDMA	Band IV	Front	0.253	0.070	0.32	
	Band II	Front	0.228	0.070	0.30	

Report No. : FA780201

Test Engineer: Nick Hu

Sporton International (Kunshan) Inc.

17. Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA780201

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in table below.

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Table 17.1. Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID : HI 7TK010 Page 32 of 34

Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)			
Measurement System										
Probe Calibration	6.0	N	1	1	1	6.0	6.0			
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9			
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9			
Boundary Effects	1.0	R	1.732	1	1	0.6	0.6			
Linearity	4.7	R	1.732	1	1	2.7	2.7			
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6			
Modulation Response	3.2	R	1.732	1	1	1.8	1.8			
Readout Electronics	0.3	N	1	1	1	0.3	0.3			
Response Time	0.0	R	1.732	1	1	0.0	0.0			
Integration Time	2.6	R	1.732	1	1	1.5	1.5			
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7			
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7			
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2			
Probe Positioning	2.9	R	1.732	1	1	1.7	1.7			
Max. SAR Eval.	2.0	R	1.732	1	1	1.2	1.2			
Test Sample Related										
Device Positioning	3.0	N	1	1	1	3.0	3.0			
Device Holder	3.6	N	1	1	1	3.6	3.6			
Power Drift	5.0	R	1.732	1	1	2.9	2.9			
Power Scaling	0.0	R	1.732	1	1	0.0	0.0			
Phantom and Setup										
Phantom Uncertainty	6.1	R	1.732	1	1	3.5	3.5			
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0			
Liquid Conductivity Repeatability	0.2	N	1	0.78	0.71	0.1	0.1			
Liquid Conductivity (target)	5.0	R	1.732	0.78	0.71	2.3	2.0			
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0			
Temp. unc Conductivity	3.4	R	1.732	0.78	0.71	1.5	1.4			
Liquid Permittivity Repeatability	0.15	N	1	0.23	0.26	0.0	0.0			
Liquid Permittivity (target)	5.0	R	1.732	0.23	0.26	0.7	0.8			
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4			
Temp. unc Permittivity	0.83	R	1.732	0.23	0.26	0.1	0.1			
Cor	11.4%	11.4% K=2								
	Coverage Factor for 95 %									
Exp	Expanded STD Uncertainty									

Report No. : FA780201

Table 17.2. Uncertainty Budget for frequency range 300 MHz to 3 GHz

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version. : 170509 FCC ID: HLZTK010 Page 33 of 34

18. References

[1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"

Report No. : FA780201

- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015
- [6] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015
- [7] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [8] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015
- [9] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015

Sporton International (Kunshan) Inc.

Appendix A. Plots of System Performance Check

Report No.: FA780201

The plots are shown as follows.

Sporton International (Kunshan) Inc.

System Check_Body_835MHz

DUT: D835V2 - SN:4d091

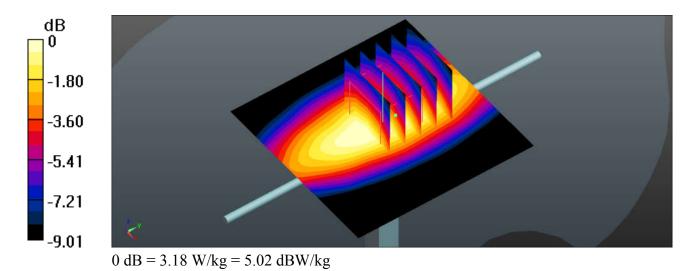
Communication System: UID 0, CW (0); Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.964$ S/m; $\varepsilon_r = 54.742$; $\rho = 1000$

Date: 2017.8.16

 kg/m^3

Ambient Temperature: 23.6 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.72, 9.72, 9.72); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM2; Type: SAM; Serial: TP-1644
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 3.17 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 53.29 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.71 W/kg

SAR(1 g) = 2.57 W/kg; SAR(10 g) = 1.64 W/kgMaximum value of SAR (measured) = 3.18 W/kg

System Check_Body_835MHz

DUT: D835V2 - SN:4d091

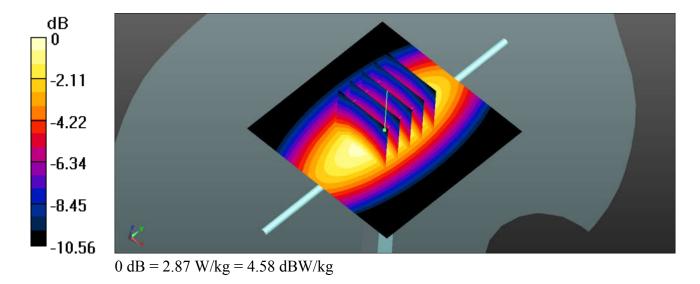
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 835 MHz; $\sigma = 0.972$ S/m; $\varepsilon_r = 56.886$; $\rho = 1000$

Date: 2017.9.25

 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.72, 9.72, 9.72); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 2.87 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 50.19 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.37 W/kg

SAR(1 g) = 2.29 W/kg; SAR(10 g) = 1.52 W/kg Maximum value of SAR (measured) = 2.87 W/kg

System Check Body 1750MHz

DUT: D1750V2 - SN:1069

Communication System: UID 0, CW (0); Frequency: 1750 MHz; Duty Cycle: 1:1

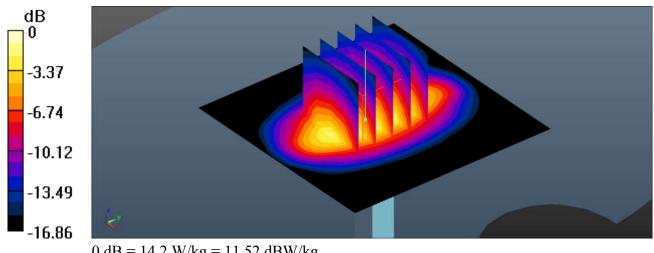
Medium: MSL_1750 Medium parameters used: f = 1750 MHz; $\sigma = 1.442$ S/m; $\varepsilon_r = 53.561$; $\rho = 1000$

Date: 2017.8.15

 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3857; ConvF(8.29, 8.29, 8.29); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.2 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 87.31 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 10 W/kg; SAR(10 g) = 5.34 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

0 dB = 14.2 W/kg = 11.52 dBW/kg

System Check_Body_1900MHz

DUT: D1900V2 - SN:5d118

Communication System: UID 0, CW (0); Frequency: 1900 MHz; Duty Cycle: 1:1

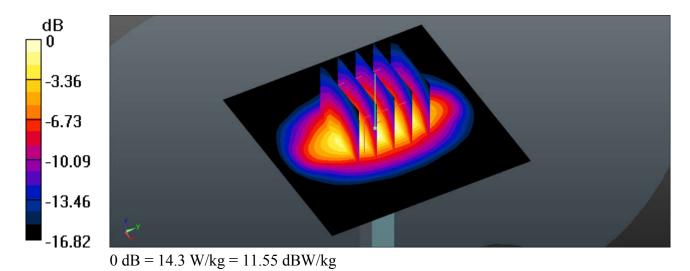
Medium: MSL_1900 Medium parameters used: f = 1900 MHz; $\sigma = 1.547$ S/m; $\varepsilon_r = 52.476$; $\rho = 1000$

Date: 2017.8.15

 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3857; ConvF(8.08, 8.08, 8.08); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 14.2 W/kg

Pin=250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 90.60 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 10.5 W/kg; SAR(10 g) = 5.54 W/kgMaximum value of SAR (measured) = 14.3 W/kg

System Check_Body_2450MHz

DUT: D2450V2 - SN:840

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1

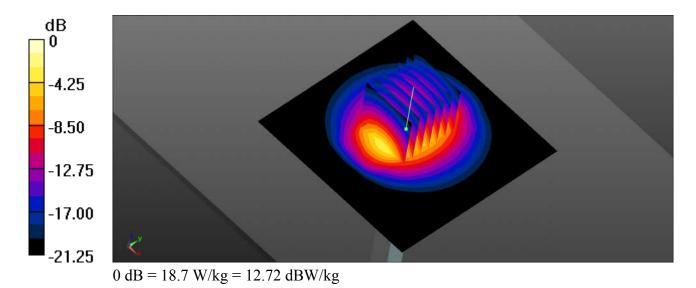
Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.024$ S/m; $\varepsilon_r = 52.385$; $\rho = 1000$

Date: 2017.11.1

 kg/m^3

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3857; ConvF(7.7, 7.7, 7.7); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 18.5 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 68.78 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 24.9 W/kg

SAR(1 g) = 12.3 W/kg; SAR(10 g) = 5.8 W/kgMaximum value of SAR (measured) = 18.7 W/kg

Appendix B. Plots of High SAR Measurement

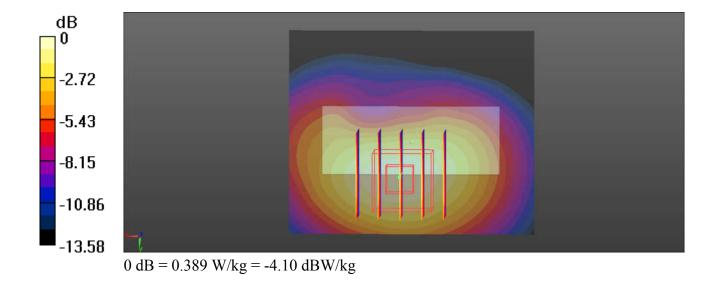
Report No.: FA780201

The plots are shown as follows.

Sporton International (Kunshan) Inc.

#01_GSM850_GPRS 4 Tx slots_Front_15mm_Ch251

Communication System: UID 0, GPRS/EDGE (2 Tx slots) (0); Frequency: 848.8 MHz; Duty Cycle:1:2.08 Medium: MSL_850 Medium parameters used: f = 848.8 MHz; $\sigma = 0.985$ S/m; $\epsilon_r = 56.767$; $\rho = 1000 kg/m^3$ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.8 °C


Date: 2017.9.25

DASY5 Configuration:

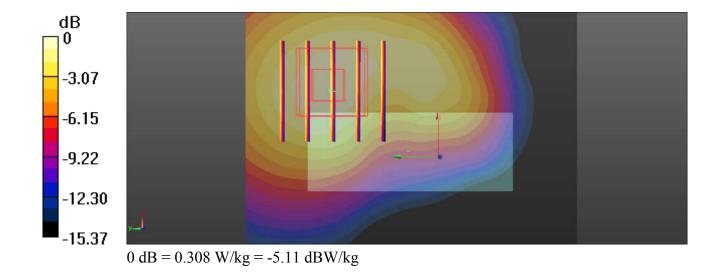
- Probe: EX3DV4 SN3857; ConvF(9.72, 9.72, 9.72); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch251/Area Scan (61x51x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.393 W/kg

Ch251/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.114 V/m; Power Drift = 0.19 dB Peak SAR (extrapolated) = 0.462 W/kg SAR(1 g) = 0.303 W/kg; SAR(10 g) = 0.192 W/kg Maximum value of SAR (measured) = 0.389 W/kg

#02_GSM1900_GPRS 4 Tx slots_Front_15mm_Ch512

Communication System: UID 0, GPRS/EDGE (4 Tx slots) (0); Frequency: 1850.2 MHz; Duty Cycle:1:2.08 Medium: MSL_1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.492$ S/m; $\epsilon_r = 52.629$; $\rho = 1000$ kg/m³ Ambient Temperature: 23.5 °C; Liquid Temperature: 22.6 °C


Date: 2017.8.15

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.08, 8.08, 8.08); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch512/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.300 W/kg

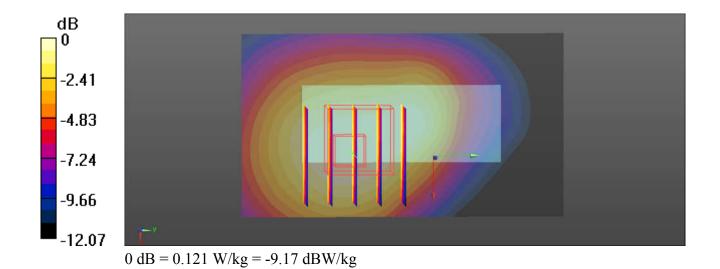
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.429 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 0.372 W/kg SAR(1 g) = 0.235 W/kg; SAR(10 g) = 0.148 W/kg Maximum value of SAR (measured) = 0.308 W/kg

#03_WCDMA Band V_RMC 12.2Kbps_Front_15mm_Ch4182

Communication System: UID 0, UMTS (0); Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: f = 836.4 MHz; $\sigma = 0.966$ S/m; $\varepsilon_r = 54.732$; $\rho = 1000_{kg/m}^3$

Date: 2017.8.16


Ambient Temperature : 23.6 °C; Liquid Temperature : 22.8 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(9.72, 9.72, 9.72); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM2; Type: SAM; Serial: TP-1644
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch4182/Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.126 W/kg

Ch4182/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.02 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 0.145 W/kg SAR(1 g) = 0.096 W/kg; SAR(10 g) = 0.066 W/kg Maximum value of SAR (measured) = 0.121 W/kg

#04_WCDMA Band IV_RMC 12.2Kbps_Front_15mm_Ch1513

Communication System: UID 0, UMTS (0); Frequency: 1752.6 MHz; Duty Cycle: 1:1

Medium: MSL_1750 Medium parameters used: \hat{f} = 1752.6 MHz; σ = 1.446 S/m; ϵ_r = 53.556; ρ = 1000 kg/m^3

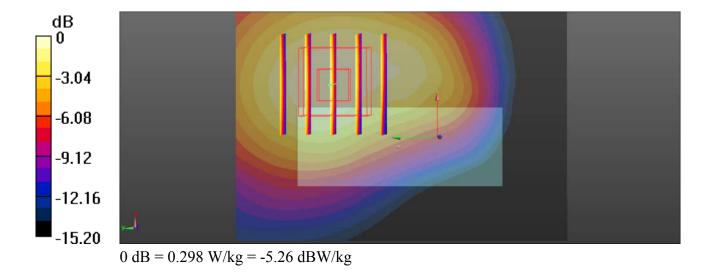
Date: 2017.8.15

Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.29, 8.29, 8.29); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch1513/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.304 W/kg


Ch1513/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.474 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.353 W/kg

SAR(1 g) = 0.233 W/kg; SAR(10 g) = 0.150 W/kg

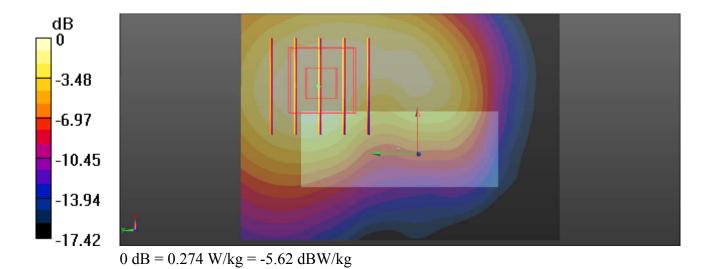
Maximum value of SAR (measured) = 0.298 W/kg

#05_WCDMA Band II_RMC 12.2Kbps_Front_15mm_Ch9400

Communication System: UID 0, UMTS (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.524$ S/m; $\varepsilon_r = 52.533$; $\rho = 1000_{kg/m}^3$

Date: 2017.8.15


Ambient Temperature : 23.5 °C; Liquid Temperature : 22.6 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(8.08, 8.08, 8.08); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM3; Type: SAM; Serial: TP-1542
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch9400/Area Scan (51x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.285 W/kg

Ch9400/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 5.308 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.327 W/kg SAR(1 g) = 0.214 W/kg; SAR(10 g) = 0.136 W/kg Maximum value of SAR (measured) = 0.274 W/kg

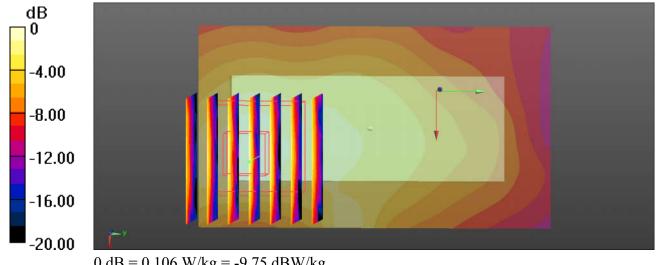
#06 WLAN2.4GHz 802.11b 1Mbps Front 15mm Ch6

Communication System: UID 0, WIFI (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 2.007$ S/m; $\varepsilon_r = 52.435$; $\rho = 1000_{kg/m}^3$

Date: 2017.11.1

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3857; ConvF(7.7, 7.7, 7.7); Calibrated: 2017.5.26;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1210; Calibrated: 2017.5.25
- Phantom: SAM1; Type: SAM; Serial: TP-1164
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch6/Area Scan (41x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.109 W/kg

Ch6/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.567 V/m; Power Drift = -0.09 dBPeak SAR (extrapolated) = 0.145 W/kgSAR(1 g) = 0.073 W/kg; SAR(10 g) = 0.035 W/kg

Maximum value of SAR (measured) = 0.106 W/kg

0 dB = 0.106 W/kg = -9.75 dBW/kg

Appendix C. **DASY Calibration Certificate**

Report No.: FA780201

The DASY calibration certificates are shown as follows.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 / FAX: +86-512-57900958

Issued Date: Nov. 08, 2017 Form version.: 170509 FCC ID: HLZTK010 Page C1 of C1

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton-CN

Certificate No:

Z16-97223

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d091

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 22, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Name **Function** Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Qi Dianyuan SAR Project Leader

> Lu Bingsong Deputy Director of the laboratory

> > Issued: November 26, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97223

Approved by:

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.4 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.31 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.54 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.09 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.2 ± 6 %	0.95 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.40 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.68 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.60 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.45 mW /g ± 20.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.0Ω- 3.20jΩ
Return Loss	- 29.9dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8Ω- 1.59jΩ	
Return Loss	- 28.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.282 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

1901	
Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.916$ S/m; $\varepsilon_r = 41.41$; $\rho = 1000$ kg/m³

Phantom section: Center Section

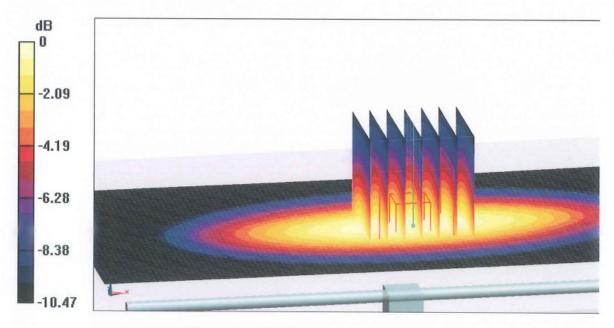
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(9.82, 9.82, 9.82); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Date: 11.21.2016

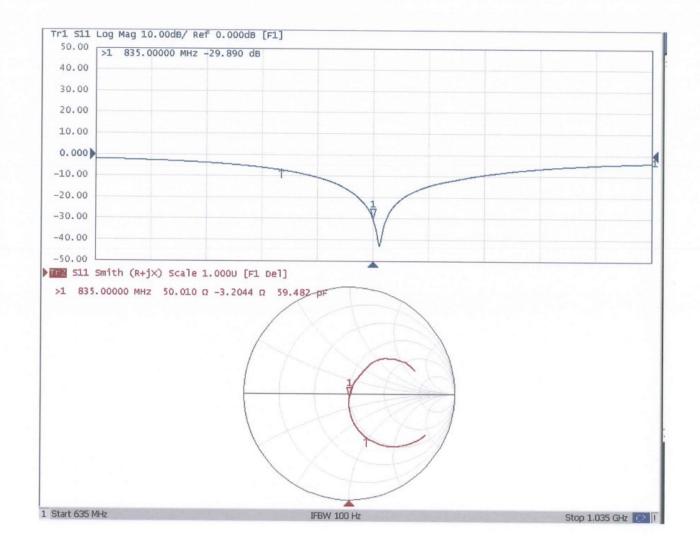
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 58.29V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.54 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.54 W/kg


Maximum value of SAR (measured) = 3.01 W/kg

0 dB = 3.01 W/kg = 4.79 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 11.22.2016

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d091

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.954$ S/m; $\epsilon_r = 54.22$; $\rho = 1000$ kg/m³

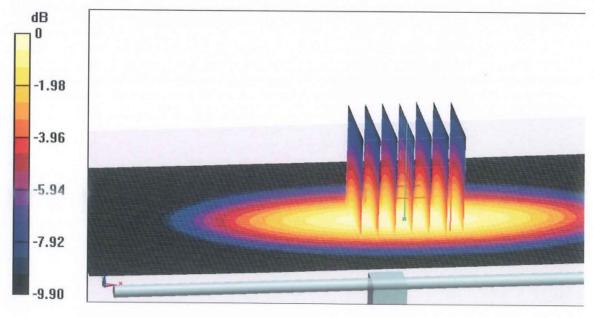
Phantom section: Left Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

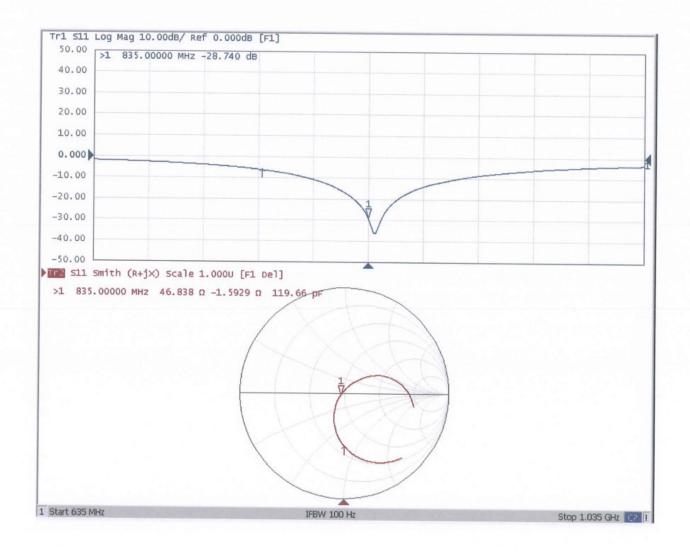
- Probe: EX3DV4 SN7433; ConvF(9.5,9.5, 9.5); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,


dy=5mm, dz=5mm

Reference Value = 55.98 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.49 W/kg


SAR(1 g) = 2.4 W/kg; SAR(10 g) = 1.6 W/kg

Maximum value of SAR (measured) = 3.01 W/kg

0 dB = 3.01 W/kg = 4.79 dBW/kg

Impedance Measurement Plot for Body TSL

n Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton-CN

Certificate No:

Z16-97226

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object

D1750V2 - SN: 1069

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 23, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) of and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

Name Function Calibrated by: Zhao Jing SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: November 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97226

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		S===3

SAR result with Head TSL

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.34 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	37.5 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.01 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	20.1 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.5 ± 6 %	1.51 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		SWHW.

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.55 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	37.7 mW /g ± 20.8 % (k=2)
SAR averaged over 10 ${\it cm}^3$ (10 g) of Body TSL	Condition	11 - 141 -
SAR measured	250 mW input power	5.13 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.3 mW /g ± 20.4 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.1Ω+ 0.48jΩ	
Return Loss	- 39.9dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	45.5Ω+ 0.42jΩ	
Return Loss	- 26.5dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.101 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.357 \text{ S/m}$; $\epsilon r = 39.79$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Center Section

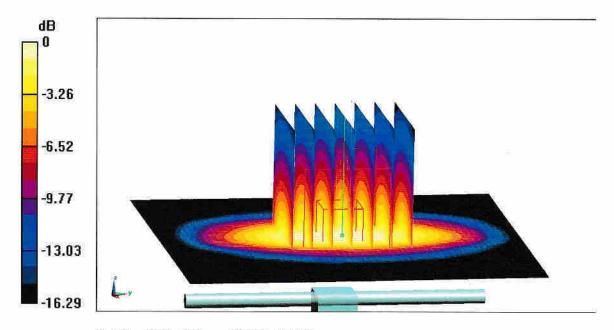
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(8.25, 8.25, 8.25); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

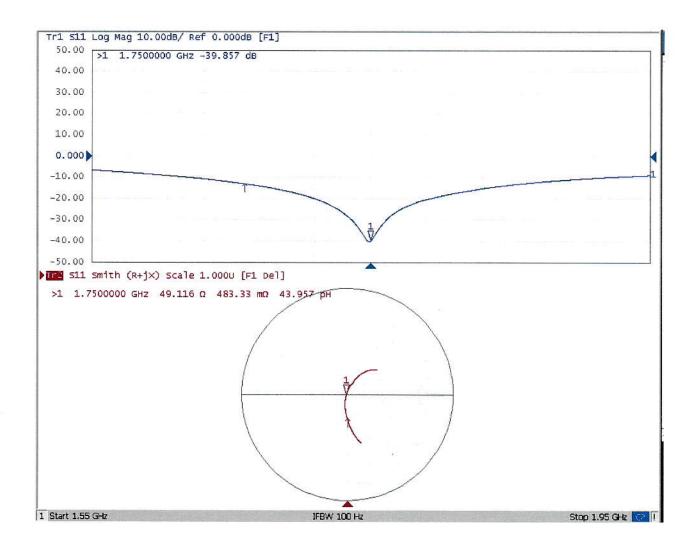
Date: 11.23.2016

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.3 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 16.7W/kg


SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.01 W/kg

Maximum value of SAR (measured) = 13.2 W/kg

0 dB = 13.2 W/kg = 11.21 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1069

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1750 MHz; $\sigma = 1.514 \text{ S/m}$; $\varepsilon_r = 52.45$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

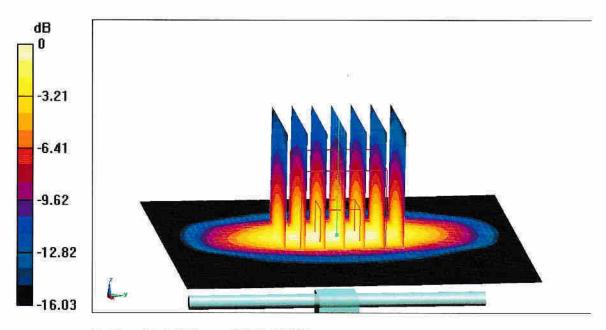
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.92, 7.92, 7.92); Calibrated: 9/26/2016;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

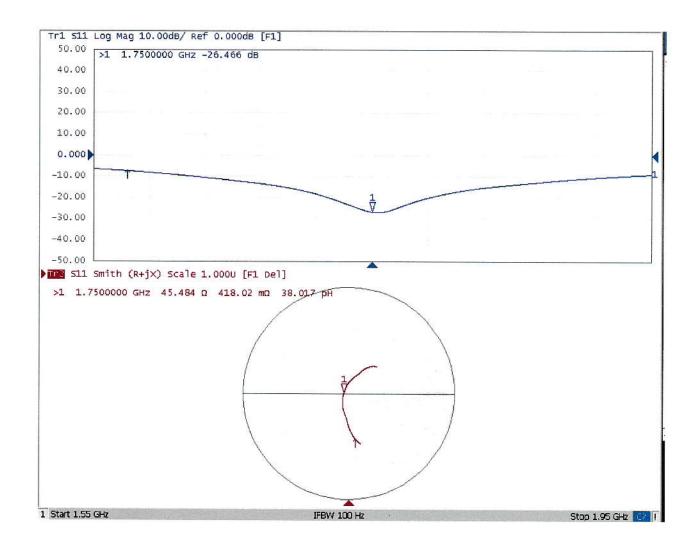
Date: 11.23.2016

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.60 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 16.8 W/kg


SAR(1 g) = 9.55 W/kg; SAR(10 g) = 5.13 W/kg

Maximum value of SAR (measured) = 13.4 W/kg

0 dB = 13.4 W/kg = 11.27 dBW/kg

Impedance Measurement Plot for Body TSL

In Collaboration with

CALIBRATION LABORATORY

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton-CN

Certificate No:

Z16-97229

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object

D1900V2 - SN: 5d118

Calibration Procedure(s)

FD-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

November 24, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Power sensor NRP-Z91	101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
Reference Probe EX3DV4	SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
DAE4	SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
Network Analyzer E5071C	MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17

S 45 17	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	41
Reviewed by:	Qi Dianyuan	SAR Project Leader	200
Approved by:	Lu Bingsong	Deputy Director of the laboratory	mants

Issued: November 27, 2016

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z16-97229

Page 1 of 8

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z16-97229 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.8.1258
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	40.4 ± 6 %	1.43 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	*****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.4 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.29 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW /g ± 20.4 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.6 ± 6 %	1.53 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.8 mW /g ± 20.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	5.32 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.3 mW /g ± 20.4 % (k=2)

Certificate No: Z16-97229 Page 3 of 8

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	50.4Ω+ 6.22jΩ	
Return Loss	- 24.2dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.5Ω+ 7.79jΩ	
Return Loss	- 21.6dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.086 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z16-97229 Page 4 of 8

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.426 \text{ S/m}$; $\epsilon r = 40.35$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Center Section

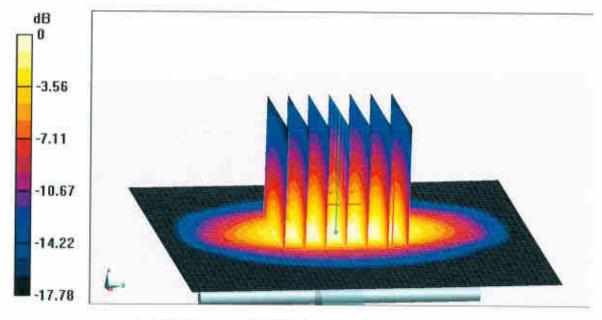
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.98, 7.98, 7.98); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Date: 11.24.2016

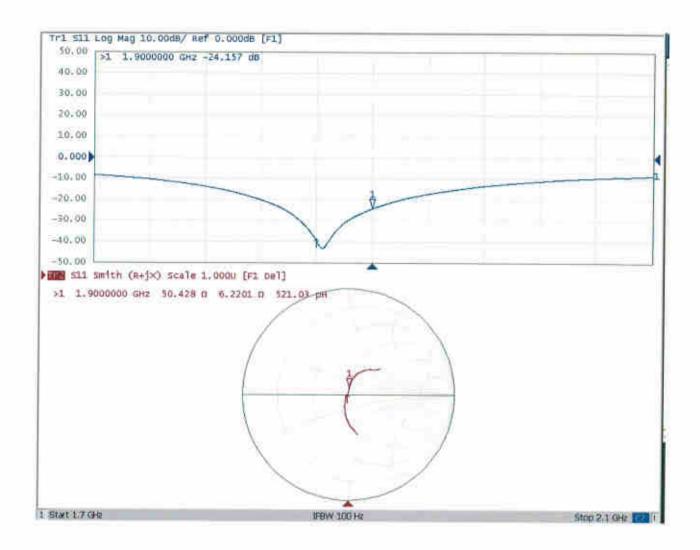
System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.5 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.29 W/kg


Maximum value of SAR (measured) = 14.7 W/kg

0 dB = 14.7 W/kg = 11.67 dBW/kg

Certificate No: Z16-97229 Page 5 of 8

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d118

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.531$ S/m; $\varepsilon_r = 54.57$; $\rho = 1000$ kg/m³

Phantom section: Right Section

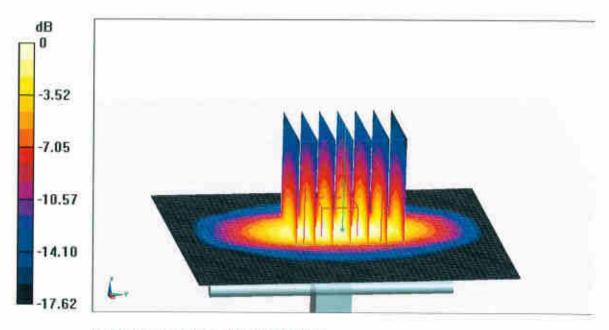
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN7433; ConvF(7.7, 7.7, 7.7); Calibrated: 9/26/2016;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn771; Calibrated: 2/2/2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1161/1
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7372)

Date: 11.23.2016

System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:

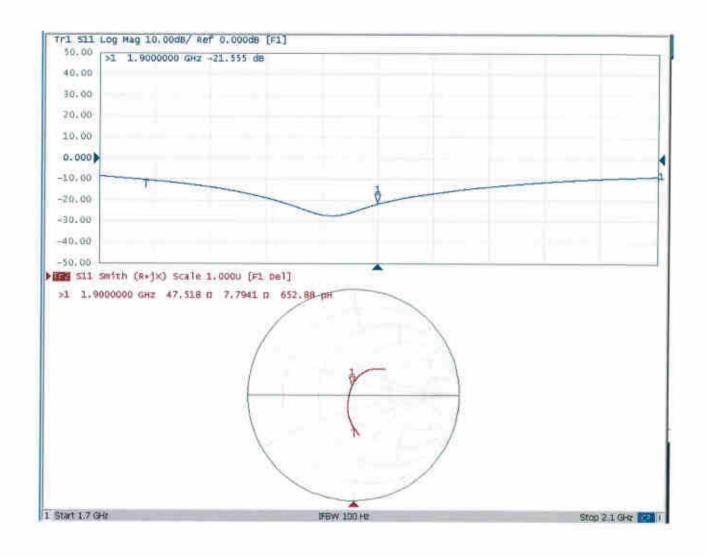

dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.23 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 10.2 W/kg; SAR(10 g) = 5.32 W/kg

Maximum value of SAR (measured) = 14.6 W/kg



0 dB = 14.6 W/kg = 11.64 dBW/kg

Certificate No: Z16-97229 Page 7 of 8

Impedance Measurement Plot for Body TSL

in Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

Sporton-CN

Certificate No:

Z16-97231

CALIBRATION CERTIFICATE

Tel: +86-10-62304633-2079

E-mail: cttl@chinattl.com

Object D2450V2 - SN: 840

Calibration Procedure(s) FD-Z11-003-01

Calibration Procedures for dipole validation kits.

Calibration date: November 25, 2016

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Name

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
101919	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
101547	27-Jun-16 (CTTL, No.J16X04777)	Jun-17
SN 7433	26-Sep-16(SPEAG,No.EX3-7433_Sep16)	Sep-17
SN 771	02-Feb-16(CTTL-SPEAG,No.Z16-97011)	Feb-17
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
MY49071430	01-Feb-16 (CTTL, No.J16X00893)	Jan-17
MY46110673	26-Jan-16 (CTTL, No.J16X00894)	Jan-17
	101919 101547 SN 7433 SN 771 ID # MY49071430	101919 27-Jun-16 (CTTL, No.J16X04777) 101547 27-Jun-16 (CTTL, No.J16X04777) SN 7433 26-Sep-16(SPEAG,No.EX3-7433_Sep16) SN 771 02-Feb-16(CTTL-SPEAG,No.Z16-97011) ID # Cal Date(Calibrated by, Certificate No.) MY49071430 01-Feb-16 (CTTL, No.J16X00893)

Function

CONTRACT NO DOCUMENT	THE PARTY OF	1 dilotott	olgriature
Calibrated by:	Zhao Jing	SAR Test Engineer	&
Reviewed by:	Qi Dianyuan	SAR Project Leader	26
Approved by:	Lu Bingsong	Deputy Director of the laboratory	missign

Issued: November 27, 2016

Signature

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.