
Appendix A. System Check Data

Test Laboratory: DEKRA

Date: 2024/08/05

System Performance Check_2450MHz-Head**DUT: D2450V2; Type: D2450V2**

Communication System: UID 0, CW; Frequency: 2450 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.78$ S/m; $\epsilon_r = 39.52$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

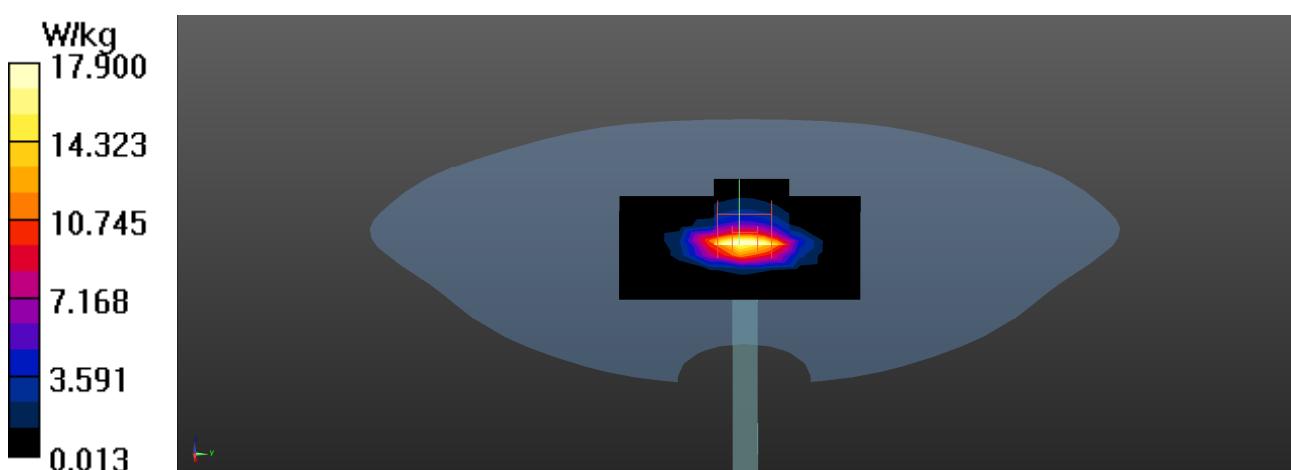
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3698; ConvF(7.15, 7.15, 7.15) @ 2450 MHz; Calibrated: 2023/11/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 2023/11/22
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/2450MHz-Head/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm
Maximum value of SAR (measured) = 17.9 W/kg**Configuration/2450MHz-Head/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 114.1 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 25.1 W/kg

SAR(1 g) = 12.8 W/kg; SAR(10 g) = 5.94 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 48.6%

Maximum value of SAR (measured) = 21.2 W/kg

Test Laboratory: DEKRA

Date: 2024/08/06

System Performance Check_5250MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5250 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.66$ S/m; $\epsilon_r = 36.51$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

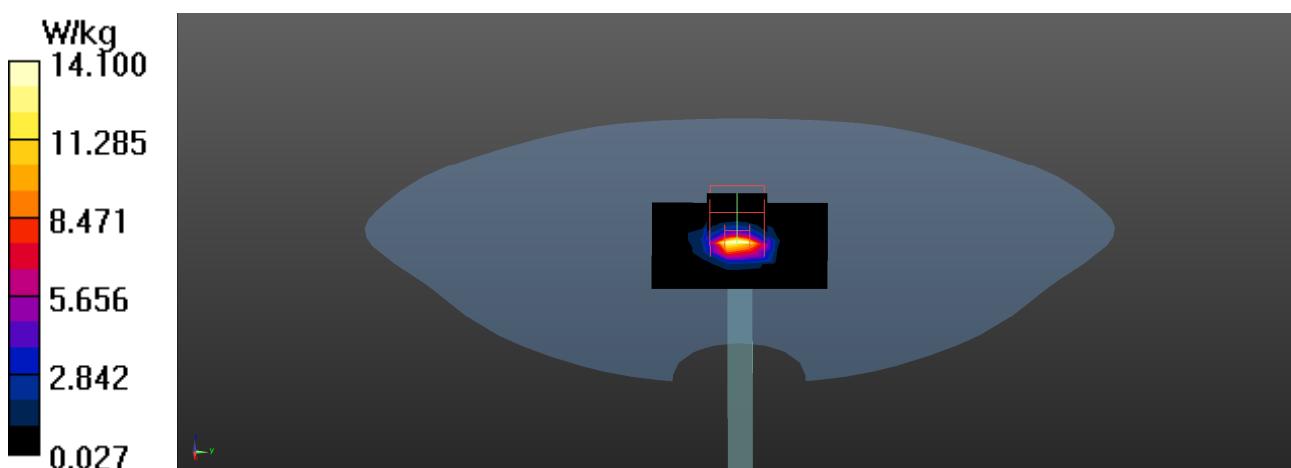
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3698; ConvF(4.71, 4.71, 4.71) @ 5250 MHz; Calibrated: 2023/11/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 2023/11/22
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5250MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 14.1 W/kg**Configuration/5250MHz-Head/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.75 V/m; Power Drift = 0.12 dB


Peak SAR (extrapolated) = 26.8 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 19.3 W/kg

Test Laboratory: DEKRA

Date: 2024/08/06

System Performance Check_5600MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5600 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5600$ MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 35.55$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

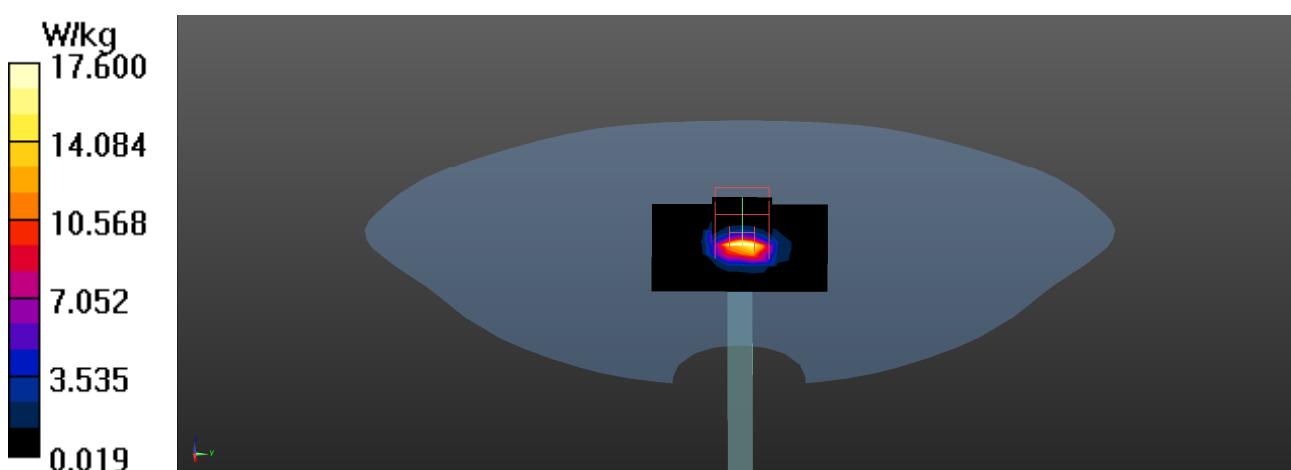
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3698; ConvF(4.41, 4.41, 4.41) @ 5600 MHz; Calibrated: 2023/11/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 2023/11/22
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5600MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 17.6 W/kg**Configuration/5600MHz-Head/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.12 V/m; Power Drift = 0.13 dB


Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.31 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 61.5%

Maximum value of SAR (measured) = 24.3 W/kg

Test Laboratory: DEKRA

Date: 2024/08/06

System Performance Check_5800MHz-Head**DUT: D5GHzV2; Type: D5GHzV2**

Communication System: UID 0, CW; Frequency: 5800 MHz

Communication System PAR: 0 dB

Medium parameters used: $f = 5800$ MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 35.01$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

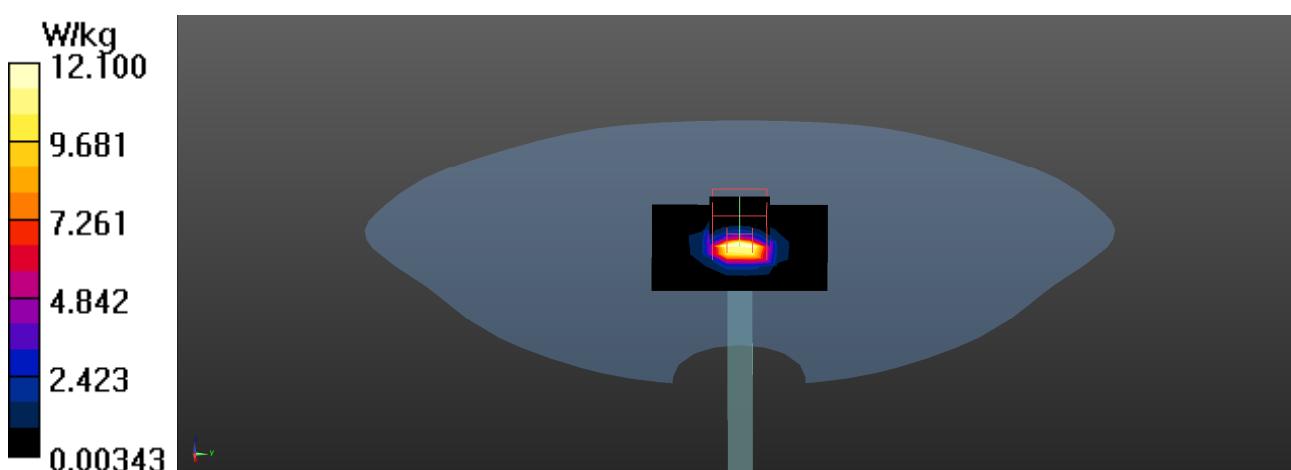
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY Configuration:

- Probe: EX3DV4 - SN3698; ConvF(4.6, 4.6, 4.6) @ 5800 MHz; Calibrated: 2023/11/21
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1207; Calibrated: 2023/11/22
- Phantom: SAM with right table; Type: SAM;
- Measurement SW: DASY52, Version 52.10 (4);

Configuration/5800MHz-Head/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (measured) = 12.1 W/kg**Configuration/5800MHz-Head/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 68.89 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 30.9 W/kg

SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.21 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 60.4%

Maximum value of SAR (measured) = 20.9 W/kg

