

TEST REPORT

Applicant: Acer Incorporated
Address: 8F, 88, Sec. 1, Xintai 5th Rd. Xizhi, New Taipei City
Equipment Type: Tablet PC
Model Name: A25002
Marketing Name: A11-21MN, A11-21M
Brand Name: acer
FCC ID: HLZA25002
Test Standard: ANSI/IEEE Std. C95.1-1992
Maximum SAR: Body 2.4GHz(1 g@0mm): 0.86 W/kg
Body 5GHz(1 g@0mm): 1.13 W/kg
Sample Arrival Date: May 08, 2025
Test Date: May 26, 2025 - Jun. 14, 2025
Date of Issue: Jul. 16, 2025

ISSUED BY:

Shenzhen BALUN Technology Co., Ltd.

Tested by: Xu Rui**Checked by:** Zong Liyao**Approved by:** Tolan Tu

(Testing Director)

Revision History

Version	Issue Date	Revisions Content
<u>Rev. 01</u>	<u>Jul. 16, 2025</u>	<u>Initial Issue</u>

TABLE OF CONTENTS

1	GENERAL INFORMATION	4
1.1	Test Laboratory	4
1.2	Test Location	4
1.3	Test Environment Condition	4
2	PRODUCT INFORMATION	5
2.1	Applicant Information	5
2.2	Manufacturer Information	5
2.3	General Description for Equipment under Test (EUT)	5
2.4	Ancillary Equipment	5
2.5	Technical Information	6
3	SUMMARY OF TEST RESULT	7
3.1	Test Standards	7
3.2	Device Category and SAR Limit	8
3.3	Test Result Summary	9
3.4	Test Uncertainty	10
4	MEASUREMENT SYSTEM	11
4.1	Specific Absorption Rate (SAR) Definition	11
4.2	DASY SAR System	12
5	SYSTEM VERIFICATION	19
5.1	Purpose of System Check	19
5.2	System Check Setup	19
6	TEST POSITION CONFIGURATIONS	20
6.1	Tablet Exposure Condition	20
7	MEASUREMENT PROCEDURE	21

7.1	Measurement Process Diagram.....	21
7.2	SAR Scan General Requirement	22
7.3	Measurement Procedure.....	23
7.4	Area & Zoom Scan Procedure	23
8	CONDUCTED RF OUPUT POWER.....	24
8.1	WIFI.....	24
8.2	Bluetooth	28
9	TEST EXCLUSION CONSIDERATION.....	29
9.1	Tablet Mode antenna location sketch.....	29
9.2	SAR Test Consideration Table.....	30
10	TEST RESULT	33
10.1	Bluetooth	33
10.2	WIFI 2.4GHz.....	33
10.3	WIFI 5GHz.....	34
10.4	Worse Case for Bluetooth	35
10.5	Worse Case for WIFI 2.4GHz.....	35
10.6	Worse Case for WIFI 5GHz.....	35
11	SAR Measurement Variability.....	36
12	SIMULTANEOUS TRANSMISSION.....	37
12.1	Simultaneous Transmission Mode Considerations	37
12.2	Sum SAR of Simultaneous Transmission	37
13	TEST EQUIPMENTS LIST	38
ANNEX A	SIMULATING LIQUID VERIFICATION RESULT	39
ANNEX B	SYSTEM CHECK RESULT.....	40
ANNEX C	TEST DATA.....	41
ANNEX D	EUT EXTERNAL PHOTOS.....	41
ANNEX E	SAR TEST SETUP PHOTOS.....	41
ANNEX F	CALIBRATION REPORT	41
ANNEX G	TUNE-UP PROCEDURE	41

1 GENERAL INFORMATION

1.1 Test Laboratory

Name	Shenzhen BALUN Technology Co., Ltd.
Address	Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Phone Number	+86 755 6685 0100

1.2 Test Location

Name	Shenzhen BALUN Technology Co., Ltd.
Location	<input type="checkbox"/> Block B, 1/F, Baisha Science and Technology Park, Shahe Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R. China <input checked="" type="checkbox"/> 1/F, Building B, Ganghongji High-tech Intelligent Industrial Park, No. 1008, Songbai Road, Yangguang Community, Xili Sub-district, Nanshan District, Shenzhen, Guangdong Province, P. R. China
Accreditation Certificate	The laboratory is a testing organization accredited by FCC as a accredited testing laboratory. The designation number is CN1196.

1.3 Test Environment Condition

Ambient Temperature	18°C to 25°C
Ambient Relative Humidity	30% to 70%

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Acer Incorporated
Address	8F, 88, Sec. 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan

2.2 Manufacturer Information

Manufacturer	Acer Incorporated
Address	8F, 88, Sec. 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan

2.3 General Description for Equipment under Test (EUT)

EUT Name	Tablet PC
Model Name Under Test	A25002
Marketing Name	A11-21MN, A11-21M
Series Model Name	N/A
Description of Model name differentiation	N/A
Hardware Version	BND-H60 V2.0
Software Version	Acer_AV0V0_A11-21MN_RV00RC01_EEA_GEN1
Dimensions (Approx.)	N/A
Weight (Approx.)	N/A

2.4 Ancillary Equipment

Ancillary Equipment 1	Battery	
	Brand Name	UTL
	Model No.	U287891PHV-2P
	Serial No.	N/A
	Capacity	6000mAh
	Rated Voltage	3.85V
	Limit Charge Voltage	4.4V
	Manufacturer	SHENZHEN UTILITY ENERGY CO., LTD.

2.5 Technical Information

Network and Wireless connectivity	Bluetooth (BR+EDR+BLE) WIFI 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax
-----------------------------------	--

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	2.4G WLAN, 5G WLAN, Bluetooth	
Frequency Range	802.11b/g	2412 MHz ~ 2462 MHz
	802.11n(HT20/HT40)	2412 MHz ~ 2462 MHz
	802.11ax(HE20/HE40)	2412 MHz ~ 2462 MHz
	802.11a	5150 MHz ~ 5250 MHz
		5250 MHz ~ 5350 MHz
		5470 MHz ~ 5725 MHz
		5725 MHz ~ 5850 MHz
	802.11n(HT20/HT40)	5150 MHz ~ 5250 MHz
		5250 MHz ~ 5350 MHz
		5470 MHz ~ 5725 MHz
		5725 MHz ~ 5850 MHz
	802.11 ac(VHT20/VHT40/VHT80)	5150 MHz ~ 5250 MHz
		5250 MHz ~ 5350 MHz
		5470 MHz ~ 5725 MHz
		5725 MHz ~ 5850 MHz
	802.11 ax(HE20/HE40/HE80)	5150 MHz ~ 5250 MHz
		5250 MHz ~ 5350 MHz
		5470 MHz ~ 5725 MHz
		5725 MHz ~ 5850 MHz
	Bluetooth	2402 MHz ~ 2480 MHz
Antenna Type	WLAN	PIFA Antenna
	Bluetooth	PIFA Antenna
Replaceable Antenna Model 1	AF1013-T30A537	
Replaceable Antenna Model 2	AE1013-BND-H60	
Hotspot Function	N/A	
Exposure Category	General Population/Uncontrolled exposure	
Product Type	Portable Device	
EUT Type	<input checked="" type="checkbox"/> Production unit	<input type="checkbox"/> Identical prototype

3 SUMMARY OF TEST RESULT

3.1 Test Standards

No.	Identity	Document Title
1 ☆	47 CFR Part 2.1093	Radiofrequency radiation exposure evaluation: portable devices
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3 ☆	KDB 447498 D04 v01	447498 D04 Interim General RF Exposure Guidance v01
4 ☆	KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
5 ☆	KDB 865664 D02 v01r02	RF Exposure Reporting
6 ☆	KDB 248227 D01 v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters
7 ☆	KDB 616217 D04v01r02	SAR for laptop and tablets

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

Body Position	SAR Value (W/Kg)	
	General Population/ Uncontrolled Exposure	Occupational/ Controlled Exposure
Whole-Body SAR (averaged over the entire body)	0.08	0.4
Partial-Body SAR (averaged over any 1 gram of tissue)	1.60	8.0
SAR for hands, wrists, feet and ankles (averaged over any 10 grams of tissue)	4.0	20.0

NOTE:

General Population/Uncontrolled Exposure: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled Exposure: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure. In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR

Equipment Class	Band	Maximum Scaled SAR (W/kg)	Maximum Report SAR (W/kg)
		Body (0mm)	Body (0mm)
		1g SAR	1g SAR
DTS	2.4G WIFI	0.86	1.13
NII	5.3G WIFI	1.13	
	5.6G WIFI	0.40	
	5.8G WIFI	0.49	
DSS	DH5	0.24	
Limit (W/kg)		1.60	1.60
Verdict		Pass	

3.3.2 Highest Simultaneous Transmission SAR Values

Equipment Class	Maximum Scaled SAR
	1g (W/kg)
	Body SAR (Separation 0mm)
NII	1.37
DSS	1.37
Limit (W/Kg)	1.60
Verdict	Pass

Note: The highest simultaneous SAR please refer section 12.2

3.4 Test Uncertainty

According to KDB 865664 D01, when the highest measured 1 g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis is not required in SAR reports submitted for equipment approval.

The maximum 1g SAR for the EUT in this report is 1.13 W/kg, which is lower than 1.5 W/kg, so the extensive SAR measurement uncertainty analysis is not required in this report.

4 MEASUREMENT SYSTEM

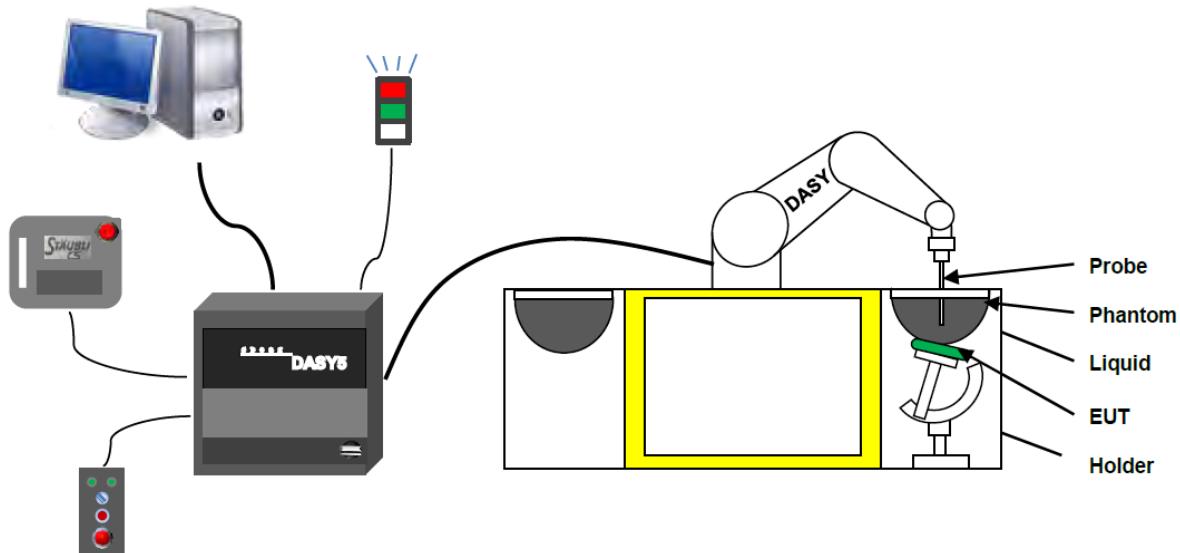
4.1 Specific Absorption Rate (SAR) Definition

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$\mathbf{SAR} = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

ρ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 DASY SAR System

4.2.1 DASY SAR System Diagram

The DASY5 system for performing compliance tests consists of the following items:

1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
3. A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
4. A unit to operate the optical surface detector which is connected to the EOC.
5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
6. The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
7. DASY5 software and SEMCAD data evaluation software.
8. Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
10. The device holder for handheld mobile phones.
11. Tissue simulating liquid mixed according to the given recipes.
12. System validation dipoles allowing to validate the proper functioning of the system.

4.2.2 Robot

The Dasy SAR system uses the high precision robots. Symmetrical design with triangular core Built-in optical fiber for surface detection system For the 6-axis controller system, Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents). The robot series have many features that are important for our application:

- High precision
(repeatability ± 0.02 mm)
- High reliability
(industrial design)
- Low maintenance costs
(virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements
(brush less synchron motors; no stepper motors)
- Low ELF interference
(motor control _elds shielded via the closed metallic construction shields)

4.2.3 E-Field Probe

The probe is specially designed and calibrated for use in liquids with high permittivities for the measurements the Specific Dosimetric E-Field Probe EX3DV4 with following specifications is used.

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection system Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., glycoether)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ; ± 0.4 dB in HSL (rotation normal to probe axis)
Dynamic range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1.0 mm
Application	General dosimetry up to 3 GHz Compliance tests of mobile phones Fast automatic scanning in arbitrary phantoms (EX3DV4)

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the EN 62209-1/2 annexe technique using reference guide at the five frequencies.

4.2.4 Data Acquisition Electronics

The data acquisition electronics (DAE) consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converte and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

- Input Impedance: 200MΩ
- The Inputs: Symmetrical and Floating
- Common Mode Rejection: Above 80dB

4.2.5 Phantoms

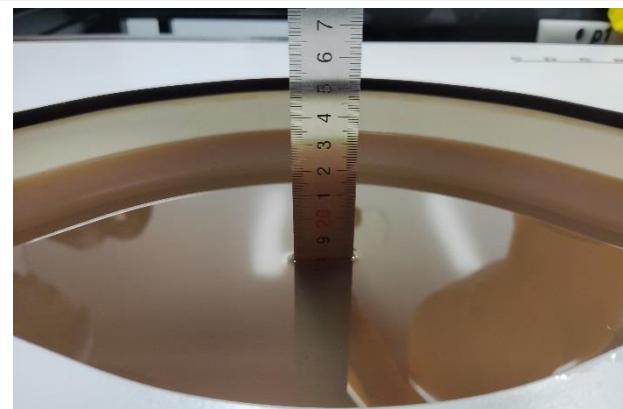
For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

- Left hand
- Right hand
- Flat phantom

Photo of Phantom SN1576

Serial Number	Material	Length	Height
SN 1576 SAM	Vinylester, glass fiber reinforced	1000	500

4.2.6 Device Holder


The DASY5 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used. Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values. Therefore those devices are normally only tested at the flat part of the SAM.

The positioning system allows obtaining cheek and tilting position with a very good accuracy. Incompliance with CENELEC, the tilt angle uncertainty is lower than 1°.

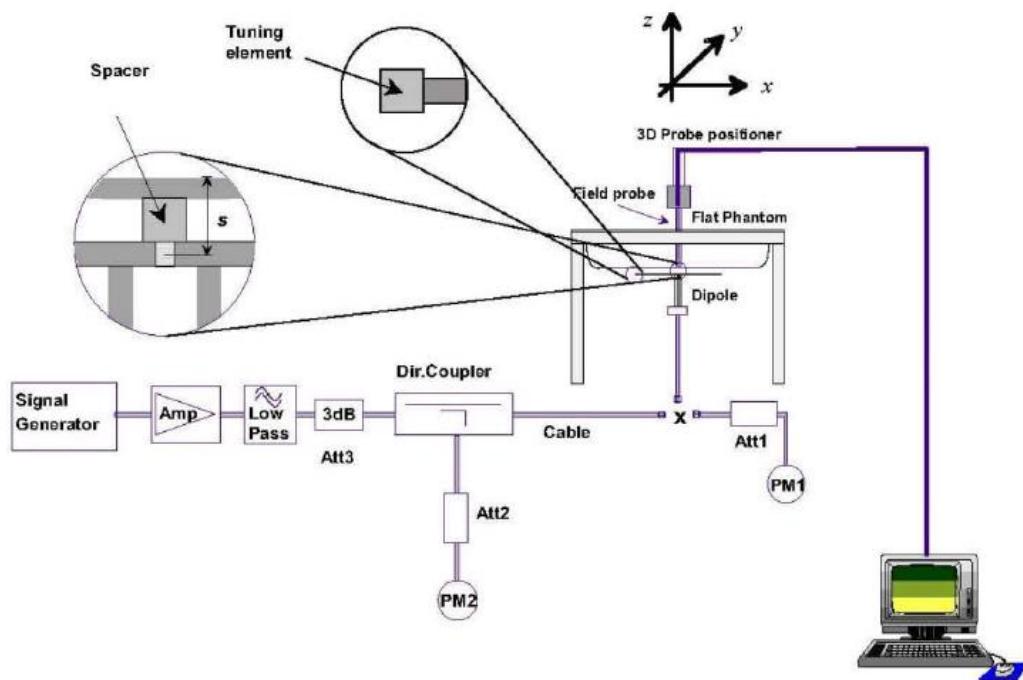
4.2.7 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

Head Liquid Depth**Body Liquid Depth**

The following table gives the recipes for tissue simulating liquid.

TSL	Manufacturer / Model	Freq Range (MHz)	Main Ingredients
Head WideBand	SPEAG HBBL600-10000V6	600-10000	Ethanediol, Sodium petroleum sulfonate, Hexylene Glycol / 2-Methyl-pentane-2,4-diol, Alkoxylated alcohol


5 SYSTEM VERIFICATION

5.1 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.2 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

6 TEST POSITION CONFIGURATIONS

6.1 Tablet Exposure Condition

This DUT was tested in four different positions. They are back side and top edge in these positions, the surface of DUT is touching with phantom 0mm.

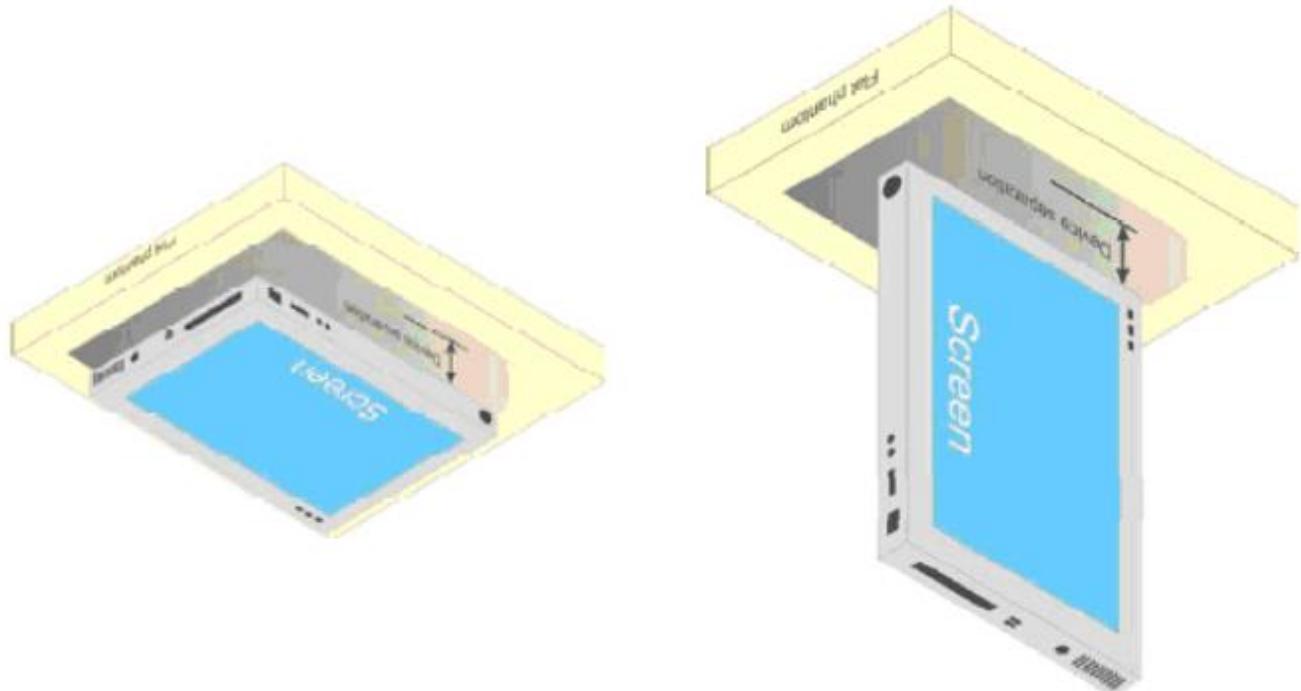
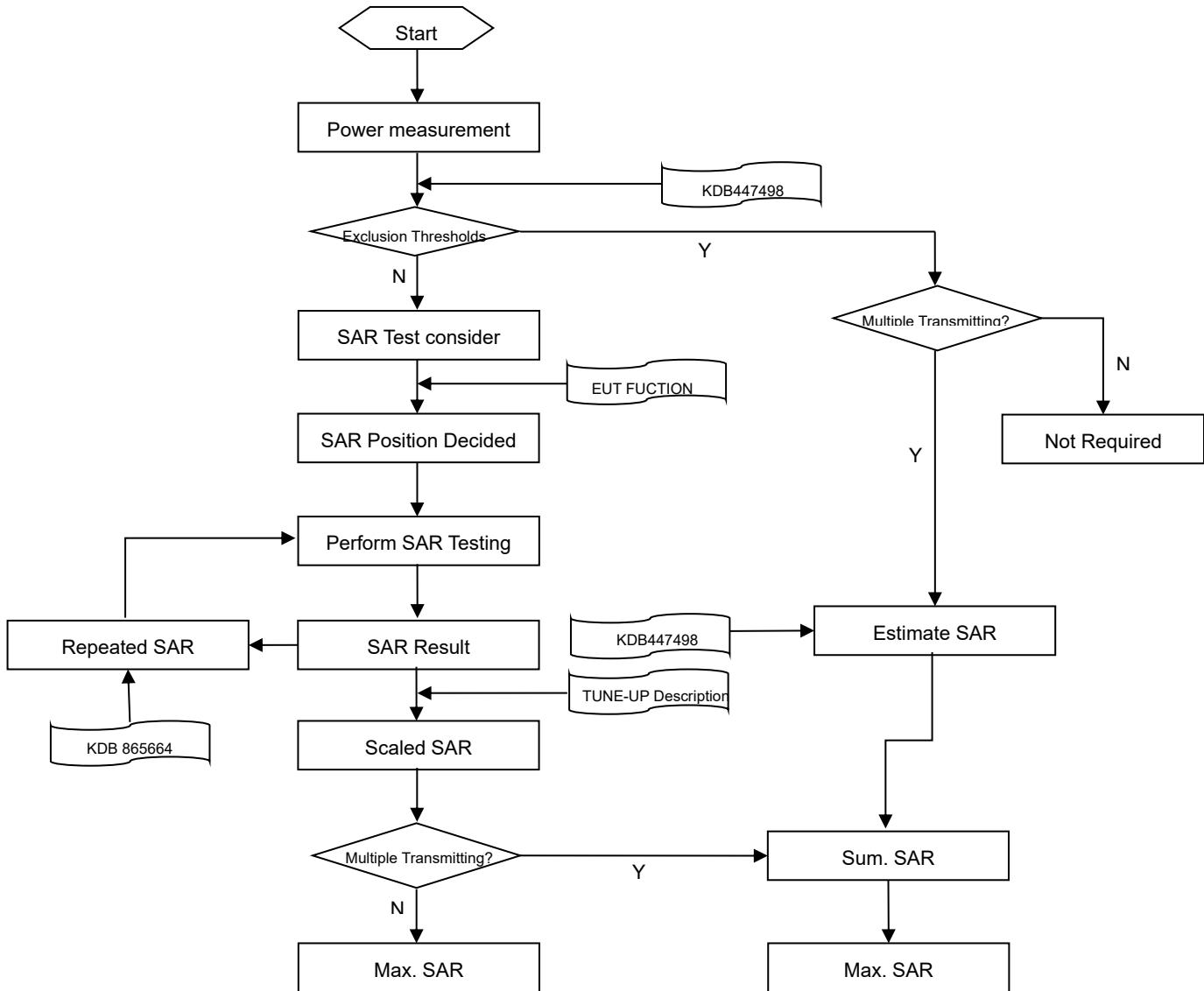



Fig Illustration for Lap-touching Position

7 MEASUREMENT PROCEDURE

7.1 Measurement Process Diagram

7.2 SAR Scan General Requirement

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1 g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

		≤3GHz	>3GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5±1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5$ mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$	
		≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3–4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx Area , Δy Area			When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: Δx Zoom , Δy Zoom		≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3–4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*	
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: Δz Zoom (n)		3–4 GHz: ≤ 4 mm	
			4–5 GHz: ≤ 3 mm	
			5–6 GHz: ≤ 2 mm	
	graded grid	≤ 5 mm	3–4 GHz: ≤ 3 mm	
			4–5 GHz: ≤ 2.5 mm	
			5–6 GHz: ≤ 2 mm	
Minimum zoom scan volume	x, y, z		$\leq 1.5 \cdot \Delta z$ Zoom (n-1)	
			3–4 GHz: ≥ 28 mm	
			4–5 GHz: ≥ 25 mm	
			5–6 GHz: ≥ 22 mm	

Note:

1. δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
2. * When zoom scan is required and the reported SAR from the area scan based 1 g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 Measurement Procedure

The following steps are used for each test position

- a. Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- b. Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- c. Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- d. Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8 * 4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r04 quoted below.

When the 1 g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUTPUT POWER

8.1 WIFI

8.1.1 2.4G WIFI

Band (GHz)	Mode	Channel	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	SAR Test Require.
2.4	802.11b	1	2412	12.53	14.00	Yes
		6	2437	13.79	14.00	Yes
		11	2462	14.78	15.00	Yes
	802.11g	1	2412	13.62	14.00	No
		6	2437	12.94	14.00	No
		11	2462	13.45	14.00	No
	802.11n(HT20)	1	2412	13.85	14.00	No
		6	2437	13.41	14.00	No
		11	2462	13.65	14.00	No
	802.11n(HT40)	3	2422	12.37	14.00	No
		6	2437	13.39	14.00	No
		9	2452	12.48	14.00	No
	802.11ax(HE20)	1	2412	13.75	14.00	No
		6	2437	13.36	14.00	No
		11	2462	13.56	14.00	No
	802.11ax(HE40)	3	2422	12.89	14.00	No
		6	2437	13.39	14.00	No
		9	2452	13.46	14.00	No
<p>Note: According KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.</p> <p>Adjusted SAR = Report SAR * (max power (OFDM)/ max power (DSSS)) = 0.856 * (25.12mW/31.62mW) = 0.680 W/Kg, so the 2.4G OFDM SAR test is not required.</p>						

8.1.2 5G WIFI

Band (GHz)	Mode	Channel	Freq. (MHz)	Average Power (dBm)	Tune-up Limit (dBm)	SAR Test Require.
5.2	802.11a	36	5180	12.71	13.50	No
		44	5220	13.04	13.50	No
		48	5240	12.74	13.50	No
	802.11n(HT20)	36	5180	13.05	13.50	No
		44	5220	13.37	13.50	No
		48	5240	12.82	13.50	No
	802.11n(HT40)	38	5190	12.89	13.50	No
		46	5230	13.15	13.50	No
	802.11ac(VHT20)	36	5180	13.00	13.50	No
		44	5220	13.38	13.50	No
		48	5240	12.76	13.50	No
	802.11ac(VHT40)	38	5190	13.06	13.50	No
		46	5230	13.09	13.50	No
	802.11ac(VHT80)	42	5210	12.45	13.50	No
	802.11ax(HE20)	36	5180	13.09	13.50	No
		44	5220	13.20	13.50	No
		48	5240	12.62	13.50	No
	802.11ax(HE40)	38	5190	12.75	13.50	No
		46	5230	13.00	13.50	No
	802.11ax(HE80)	42	5210	13.41	13.50	No
5.3	802.11a	52	5260	13.37	13.50	No
		60	5300	12.64	13.50	No
		64	5320	13.34	13.50	No
	802.11n(HT20)	52	5260	12.43	13.50	No
		60	5300	12.86	13.50	No
		64	5320	12.97	13.50	No
	802.11n(HT40)	54	5270	13.18	13.50	No
		62	5310	12.56	13.50	No
	802.11ac(VHT20)	52	5260	12.58	13.50	No
		60	5300	12.88	13.50	No
		64	5320	12.55	13.50	No
	802.11ac(VHT40)	54	5270	13.22	13.50	No
		62	5310	12.64	13.50	No
	802.11ac(VHT80)	58	5290	12.91	13.50	Yes
	802.11ax(HE20)	52	5260	12.44	13.50	No
		60	5300	13.11	13.50	No

		64	5320	12.82	13.50	No
		54	5270	13.27	13.50	No
		62	5310	12.62	13.50	No
		58	5290	12.11	13.50	No
5.6	802.11ax(HE40)	100	5500	13.46	14.00	No
		116	5580	12.45	14.00	No
		140	5700	11.44	13.00	No
	802.11n(HT20)	100	5500	12.15	14.00	No
		116	5580	11.36	13.00	No
		140	5700	11.42	13.00	No
	802.11n(HT40)	102	5510	12.17	14.00	No
		118	5590	12.48	14.00	No
		134	5670	11.65	13.00	No
	802.11ac(VHT20)	100	5500	13.50	14.00	No
		116	5580	12.33	14.00	No
		140	5700	11.37	13.00	No
	802.11ac(VHT40)	102	5510	13.42	14.00	No
		118	5590	12.32	14.00	No
		134	5670	11.53	13.00	No
	802.11ac(VHT80)	106	5530	13.15	14.00	Yes
		122	5610	11.82	13.00	Yes
	802.11ax(HE20)	100	5500	12.11	14.00	No
		116	5580	12.47	14.00	No
		140	5700	11.56	13.00	No
	802.11ax(HE40)	102	5510	13.45	14.00	No
		118	5590	12.31	14.00	No
		134	5670	11.57	13.00	No
	802.11ax(HE80)	106	5530	13.37	14.00	No
		122	5610	12.28	14.00	No
5.8	802.11a	149	5745	10.04	10.50	No
		157	5785	10.04	10.50	No
		165	5825	9.91	10.50	No
	802.11n(HT20)	149	5745	10.02	10.50	No
		157	5785	9.98	10.50	No
		165	5825	10.04	10.50	No
	802.11n(HT40)	151	5755	10.06	10.50	No
		159	5795	9.98	10.50	No
	802.11ac(VHT20)	149	5745	10.01	10.50	No
		157	5785	9.92	10.50	No

	165	5825	9.97	10.50	No
802.11ac(VHT40)	151	5755	9.98	10.50	No
	159	5795	9.93	10.50	No
802.11ac(VHT80)	155	5775	10.05	10.50	Yes
802.11ax(HE20)	149	5745	10.09	10.50	No
	157	5785	9.97	10.50	No
	165	5825	9.91	10.50	No
802.11ax(HE40)	151	5755	10.04	10.50	No
	159	5795	10.01	10.50	No
802.11ax(HE80)	155	5775	10.05	10.50	No
Note: When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.					

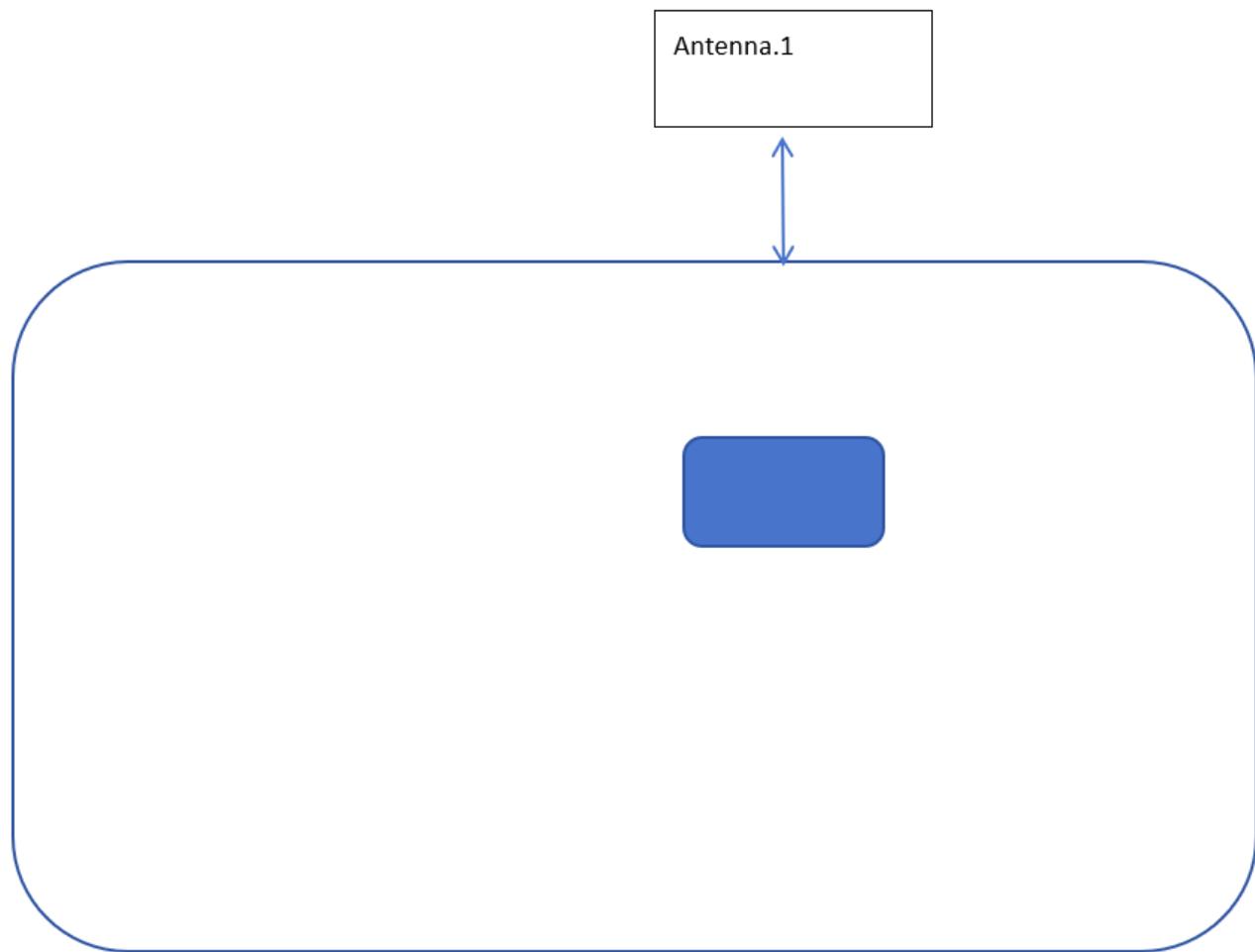
8.2 Bluetooth

Mode	GFSK			$\pi/4$ -DQPSK		
Channel	0	39	78	0	39	78
Frequency (MHz)	2402	2441	2480	2402	2441	2480
Average Power (dBm)	11.07	10.82	10.68	7.05	6.89	6.86
Tune-Up Limit (dBm)	11.50	11.50	11.50	8.00	8.00	8.00
SAR Test Require	Yes	Yes	Yes	No	No	No
Mode	8-DPSK			/		
Channel	0	39	78	/	/	/
Frequency (MHz)	2402	2441	2480	/	/	/
Average Power (dBm)	7.02	6.87	6.84	/	/	/
Tune-Up Limit (dBm)	8.00	8.00	8.00	/	/	/
SAR Test Require	No	No	No	/	/	/
Mode	BLE-1Mbps			BLE-2Mbps		
Channel	0	19	39	1	19	38
Frequency (MHz)	2402	2440	2480	2404	2440	2478
Average Power (dBm)	11.19	11.09	10.86	11.25	11.13	10.89
Tune-Up Limit (dBm)	11.50	11.50	11.50	11.50	11.50	11.50
SAR Test Require	Yes	Yes	Yes	No	No	No

Note: Since Bluetooth BR and BLE-1Mbps mode is the maximum output power mode, SAR measurements were performed with test software using DH5 and BLE-1Mbps modulation, and SAR measurement is not required for the EDR and BLE-2Mbps. When the secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode.

Note: The Bluetooth BT DH5 duty cycle is 76.61%, BLE-1Mbps duty cycle is 84.96% as following figure, according to 2016 Oct. TCB workshop for Bluetooth SAR scaling need further consideration and the maximum duty cycle is 100%, therefore the actual duty cycle will be scaled up to 100% for Bluetooth reported SAR calculation.

Duty Cycle


Bluetooth-GFSK

Bluetooth-BLE-1Mbps

9 TEST EXCLUSION CONSIDERATION

9.1 Tablet Mode antenna location sketch

Antenna	Support Bands
Antenna.1	WIFI2.4/5G, Bluetooth

9.2 SAR Test Consideration Table

According with FCC KDB 447498 D04, Appendix B, The SAR-based exemption formula applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold P_{th} (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). The following table shows the power threshold from 5mm to 50mm.

Power Thresholds (mW)					
Frequency (MHz)	At separation distance of ≤ 5 mm	At separation distance of 10 mm	At separation distance of 15 mm	At separation distance of 20 mm	At separation distance of 25 mm
300	39 mW	65 mW	88 mW	110 mW	129 mW
450	22 mW	44 mW	67 mW	89 mW	112 mW
835	9 mW	25 mW	44 mW	66 mW	90 mW
1900	3 mW	12 mW	26 mW	44 mW	66 mW
2450	3 mW	10 mW	22 mW	38 mW	59 mW
3600	2 mW	8 mW	18 mW	32 mW	49 mW
5800	1 mW	6 mW	14 mW	25 mW	40 mW
Frequency (MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of 50 mm
300	148 mW	166 mW	184 mW	201 mW	217 mW
450	135 mW	158 mW	180 mW	203 mW	226 mW
835	116 mW	145 mW	175 mW	207 mW	240 mW
1900	92 mW	122 mW	157 mW	195 mW	236 mW
2450	83 mW	111 mW	143 mW	179 mW	219 mW
3600	71 mW	96 mW	125 mW	158 mW	195 mW
5800	58 mW	80 mW	106 mW	136 mW	169 mW

9.2.1 SAR Test Consideration

This host is a Tablet PC, under normal use the RF exposure scenarios are shown in the table below:

RF exposure Position	RF exposure scenarios
Back Side	Body
Left Edge	Body
Right Edge	Body
Top Edge	Body
Bottom Edge	Body

Body RF exposure scenarios

Test Position Configurations	Mode	Bluetooth	WIFI2.4G	U-NII-1& U-NII-2A	U-NII-2C	U-NII-3
Calculated Frequency(MHz)	2480	2462	5320	5700	5825	
Back Side	Distance to User (mm)	2				
	Max. Peak Power (dBm)	11.50	15.00	13.50	14.00	10.50
	Max. Peak Power (mW)	14.13	31.62	22.39	25.12	11.22
	Exclusion Threshold (mW)	0.47	0.48	0.22	0.21	0.20
	SAR Test Required	Yes	Yes	Yes	Yes	Yes
Left Edge	Distance to User (mm)	145				
	Max. Peak Power (dBm)	11.50	15.00	13.50	14.00	10.50
	Max. Peak Power (mW)	14.13	31.62	22.39	25.12	11.22
	Exclusion Threshold (mW)	1658.42	1659.26	1572.34	1564.60	1562.42
	SAR Test Required	No	No	No	No	No
Right Edge	Distance to User (mm)	75				
	Max. Peak Power (dBm)	11.50	15.00	13.50	14.00	10.50
	Max. Peak Power (mW)	14.13	31.62	22.39	25.12	11.22
	Exclusion Threshold (mW)	472.43	473.16	401.55	395.55	393.87
	SAR Test Required	No	No	No	No	No
Top Edge	Distance to User (mm)	0				
	Max. Peak Power (dBm)	11.50	15.00	13.50	14.00	10.50
	Max. Peak Power (mW)	14.13	31.62	22.39	25.12	11.22
	Exclusion Threshold (mW)	0.00	0.00	0.00	0.00	0.00
	SAR Test Required	Yes	Yes	Yes	Yes	Yes
Bottom Edge	Distance to User (mm)	147				
	Max. Peak Power (dBm)	11.50	15.00	13.50	14.00	10.50
	Max. Peak Power (mW)	14.13	31.62	22.39	25.12	11.22
	Exclusion Threshold (mW)	1702.26	1703.09	1617.58	1609.95	1607.80
	SAR Test Required	No	No	No	No	No

Note:

1. Maximum power is the source-based time-average power and represents the maximum RF output power including tune-up tolerance among production units
2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by

the closest separation between the antenna and the user.

3. Per KDB 447498 D04, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is $< 5\text{mm}$, 5mm is used to determine SAR exclusion threshold
4. Per KDB 447498 D04, for separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive), the threshold P_{th} (mW) is given by Following:

$$P_{th} (\text{mW}) = \begin{cases} ERP_{20cm} (d/20cm)^x & d \leq 20\text{cm} \\ ERP_{20cm} & 20\text{cm} < d \leq 40\text{cm} \end{cases}$$

where

$$x = -\log_{10} \left(\frac{60}{ERP_{20cm} \sqrt{f}} \right)$$

- a. $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- b. d is the separation distance (cm), The result is rounded to one decimal place for comparison
- c. ERP_{20cm} are determined by:

$$ERP_{20cm} (\text{mW}) = f(x) = \begin{cases} 2040f & 0.3\text{GHz} \leq f < 1.5\text{GHz} \\ 3060 & 1.5\text{GHz} \leq f \leq 6\text{GHz} \end{cases}$$

5. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion.8. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than $1/4\text{dB}$ higher than those measured at the lowest data rate
6. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D04 SAR test exclusion applies to the OFDM configuration.
 - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is $\leq 1.2 \text{ W/kg}$.
7. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is $\leq 1.2 \text{ W/kg}$, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
 - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is $\leq 1.2 \text{ W/kg}$, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.

10 TEST RESULT

Replaceable Antenna Model 1: AF1013-T30A537

10.1 Bluetooth

Mode	Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
DH5	Antenna.1	Back Side	0	0	2402	-0.19	0.108	11.07	11.50	1.104	76.61	1.305	0.156	/
		Top Edge	0	0	2402	-0.09	0.151	11.07	11.50	1.104	76.61	1.305	0.218	/
		Top Edge	0	39	2441	0.10	0.155	10.82	11.50	1.169	76.61	1.305	0.236	/
		Top Edge	0	78	2480	0.17	0.153	10.68	11.50	1.208	76.61	1.305	0.241	/
BLE-1M	Antenna.1	Back Side	0	0	2402	-0.08	0.125	11.19	11.50	1.074	84.96	1.177	0.158	/
		Top Edge	0	0	2402	0.03	0.172	11.19	11.50	1.074	84.96	1.177	0.217	/
		Top Edge	0	19	2441	-0.15	0.175	11.09	11.50	1.100	84.96	1.177	0.227	/
		Top Edge	0	39	2480	0.14	0.178	10.86	11.50	1.159	84.96	1.177	0.243	1#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

10.2 WIFI 2.4GHz

Mode	Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
802.11 b	Antenna.1	Back Side	0	11	2462	-0.10	0.523	14.78	15.00	1.052	98.66	1.014	0.558	/
		Top Edge	0	11	2462	-0.11	0.611	14.78	15.00	1.052	98.66	1.014	0.652	/
		Top Edge	0	1	2412	-0.06	0.588	12.53	14.00	1.403	98.66	1.014	0.837	/
		Top Edge	0	6	2437	0.05	0.639	13.79	15.00	1.321	98.66	1.014	0.856	2#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

10.3WIFI 5GHz

Mode		Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas. SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body															
5.3G	802.11 ac80	Antenna.1	Back Side	0	58	5290	0.17	0.231	12.91	13.50	1.146	95.32	1.049	0.278	/
			Top Edge	0	58	5290	0.17	0.941	12.91	13.50	1.146	95.32	1.049	1.131	3#
5.6G	802.11 ac80	Antenna.1	Back Side	0	106	5530	0.13	0.081	13.15	14.00	1.216	95.32	1.049	0.103	/
			Top Edge	0	106	5530	0.06	0.317	13.15	14.00	1.216	95.32	1.049	0.404	4#
			Top Edge	0	122	5610	0.11	0.288	11.82	13.00	1.312	95.32	1.049	0.396	/
5.8G	802.11 ac80	Antenna.1	Back Side	0	155	5775	0.02	0.185	10.05	10.50	1.109	95.32	1.049	0.215	/
			Top Edge	0	155	5775	0.01	0.424	10.05	10.50	1.109	95.32	1.049	0.493	5#
Note: Refer to ANNEX C for the detailed test data for each test configuration.															

Replaceable Antenna Model 2: AE1013-BND-H60**10.4 Worse Case for Bluetooth**

Mode	Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
BLE- 1M	Antenna.1	Top Edge	0	39	2480	0.04	0.007	10.86	11.50	1.159	84.96	1.177	0.010	6#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

10.5 Worse Case for WIFI 2.4GHz

Mode	Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
802.11 b	Antenna.1	Top Edge	0	6	2437	-0.16	0.086	13.79	15.00	1.321	98.66	1.014	0.115	7#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

10.6 Worse Case for WIFI 5GHz

Mode	Antenna	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (dB)	1g Meas SAR (W/kg)	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	Duty cycle (%)	Duty cycle Factor	1g Scaled SAR (W/kg)	Meas. No.	
Body															
5.3G	802.11 ac80	Antenna.1	Top Edge	0	58	5290	-0.11	0.103	12.91	13.50	1.146	95.32	1.049	0.124	8#
5.6G	802.11 ac80	Antenna.1	Top Edge	0	106	5530	-0.08	0.219	13.15	14.00	1.216	95.32	1.049	0.279	9#
5.8G	802.11 ac80	Antenna.1	Top Edge	0	155	5775	0.16	0.321	10.05	10.50	1.109	95.32	1.049	0.373	10#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
2. When the highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 , or when the original or repeated measurement is ≥ 1.45 W/kg, perform a second repeated measurement.
4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 , and the original, first or second repeated measurement is ≥ 1.5 W/kg, perform a third repeated measurement.

Frequency Band (MHz)	Wireless Band	RF Exposure Conditions	Test Position	Highest Measured SAR (W/kg)	Repeated SAR (Yes/No)	Repeated Measured SAR (W/kg)	Largest to Smallest SAR Radio
5290	802.11ac 80	Body	Top Edge	0.941	Yes	0.932	1.01

Note: The ratio of largest to smallest SAR for the original and first repeated measurements is < 1.20 , the second repeated measurement. is not required.

12 SIMULTANEOUS TRANSMISSION

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SAR to Peak Location Ratio (SPLSR).

According KDB 447498 D04, simultaneous transmission:

- SPLSR = $(\text{SAR1} + \text{SAR2})^{1.5} / R_i$ (min. separation distance, mm), and the peak separation distance is determined from the square root of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$, where (x_1, y_1, z_1) and (x_2, y_2, z_2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
SAR1 is the highest reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition.
SAR2 is the highest reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition as the first.
- If SPLSR ≤ 0.04 , simultaneously transmission SAR measurement is not necessary.
- Simultaneously transmission SAR measurement, and the reported multi-band SAR $< 1.6\text{W/kg}$.

12.1 Simultaneous Transmission Mode Considerations

No.	Simultaneous Tx Combination	Body
1	WIFI5G+BT	Yes

Note:

1. WiFi 2.4G and Bluetooth share the same antenna, and can't transmit simultaneously.
2. The maximum SAR summation is calculated based on the same configuration and test position.

12.2 Sum SAR of Simultaneous Transmission

12.2.1 Body Simultaneous Transmission SAR Evaluation for WLAN Antenna with Bluetooth

Position	Stand alone SAR		SUM SAR
	1	2	
	Max.5GWIFI	BT	
Back Side 0mm	0.278	0.158	0.436
Top Edge 0mm	1.131	0.243	1.374

Note:

1: The highest Summed 1g SAR is 1.374 W/Kg < 1.6 W/kg, so Simultaneous Transmission SAR test is not required.

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
PC	Dell	N/A	N/A	N/A	N/A
Test Software	Speag	DASY5	52.8.8.1222	N/A	N/A
2450MHz Validation Dipole	Speag	D2450V2	SN: 952	2024/05/07	2027/05/06
5GHz Validation Dipole	Speag	D5GHzV2	SN: 1200	2024/05/09	2027/05/08
Data Acquisition Electronics	Speag	DAE4	SN: 878	2025/03/05	2026/03/04
E-Field Probe	Speag	EX3DV4	SN: 7893	2024/09/05	2025/09/04
Data Acquisition Electronics	Speag	DAE4	SN: 1710	2025/01/20	2026/01/19
E-Field Probe	Speag	EX3DV4	SN: 7510	2024/06/25	2025/06/24
Signal Generator	Keysight	N5173B	MY62150163	2024/08/12	2025/08/11
Power Meter	R&S	NRVD-B2	835843/014	2024/08/08	2025/08/07
Power Sensor	R&S	NRV-Z4	100381	2024/08/08	2025/08/07
Power Sensor	R&S	NRV-Z2	100211	2024/08/08	2025/08/07
Network Analyzer	Agilent	E5071C	MY46103472	2024/09/11	2025/09/10
Thermometer	Elitech	RC-4HC	EF7216002985	2024/10/31	2025/10/30
Thermometer	Elitech	RC-4HC	EF720B004811	2024/10/31	2025/10/30
Power Amplifier	Mini-Circuits	ZVA-183W-S+	932502132	N/A	N/A
Dielectric Probe Kit	Speag	DAK3.5	SN: 1312	N/A	N/A
Phantom	Speag	SAM	SN: 1576	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

Note: For dipole antennas, BALUN has adopted 3 years as calibration intervals, and on annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

1. There is no physical damage on the dipole;
2. System validation with specific dipole is within 10% of calibrated value;
3. Return-loss is within 20% of calibrated measurement.
4. Impedance (real or imaginary parts) is within 5 Ohms of calibrated measurement.

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using a DAK3.5 Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp. (°C)	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ϵ)	Target Conductivity(σ) (S/m)	Target Permittivity (ϵ)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2025.05.26	Head	2450	21.6	1.84	38.63	1.80	39.20	2.22	-1.45
2025.05.26	Head	5250	21.6	4.61	35.52	4.71	35.93	-2.12	-1.14
2025.05.26	Head	5600	21.6	5.15	35.60	5.07	35.53	1.58	0.20
2025.05.26	Head	5750	21.6	5.17	35.75	5.22	35.36	-0.96	1.10
2025.06.14	Head	2450	21.2	1.81	38.47	1.80	39.20	0.56	-1.86
2025.06.14	Head	5250	21.2	4.73	36.04	4.71	35.93	0.42	0.31
2025.06.14	Head	5600	21.2	5.03	34.76	5.07	35.53	-0.79	-2.17
2025.06.14	Head	5750	21.2	5.32	35.22	5.22	35.36	1.92	-0.40

Note: The tolerance limit of Conductivity and Permittivity is $\pm 5\%$.

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 % (for 1 g).

Date	Liquid Type	Freq. (MHz)	Power (mW)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Dipole SAR (W/kg)	Tolerance (%)
2025.05.26	Head	2450	100	5.020	50.20	52.60	-4.56
2025.05.26	Head	5250	100	7.490	74.90	77.70	-3.60
2025.05.26	Head	5600	100	8.470	84.70	81.30	4.18
2025.05.26	Head	5750	100	8.270	82.70	77.60	6.57
2025.06.14	Head	2450	100	4.850	48.50	52.60	-7.79
2025.06.14	Head	5250	100	7.800	78.00	77.70	0.39
2025.06.14	Head	5600	100	8.770	87.70	81.30	7.87
2025.06.14	Head	5750	100	8.260	82.60	77.60	6.44

Note 1: The tolerance limit of System validation $\pm 10\%$.

Note 2: Please refer the document "BL-SZ2541704-ATD.pdf".

ANNEX C TEST DATA

Please refer the document "BL-SZ2541704-ATD.pdf".

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2541704-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ2541704-AS.pdf".

ANNEX F CALIBRATION REPORT

Please refer the document "BL-SZ2541704-AC.pdf".

ANNEX G TUNE-UP PROCEDURE

Please refer the document "BL-SZ2541704-AT.pdf".

Statement

1. The laboratory guarantees the scientificity, accuracy and impartiality of the test, and is responsible for all the information in the report, except the information provided by the customer. The customer is responsible for the impact of the information provided on the validity of the results.
2. The report without China inspection body and laboratory Mandatory Approval (CMA) mark has no effect of proving to the society.
3. For the report with CNAS mark or A2LA mark, the items marked with "☆" are not within the accredited scope.
4. This report is invalid if it is altered, without the signature of the testing and approval personnel, or without the "inspection and testing dedicated stamp" or test report stamp.
5. The test data and results are only valid for the tested samples provided by the customer.
6. This report shall not be partially reproduced without the written permission of the laboratory.
7. Any objection shall be raised to the laboratory within 30 days after receiving the report.

--END OF REPORT--