FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of FCC Report and Order: ET Docket 93-62; FCC 47 CFR Part 2 (2.1093) IC RSS-102 Issue 4, March 2010 IEC 62209-2:2010

FCC SAR TEST REPORT

For

Product Name: Tablet Computer
Brand Name: ACER
Model No.: A1401
Series Model: N/A
Test Report Number:
C140505S02-SF

Issued for

Acer Incorporated

8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory

No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China

TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Revision	REPORT NO.	Date	Page Revised	Contents
Original	C140505S02-SF	June 4, 2014	N/A	N/A

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	4
2.	EUT DESCRIPTION	5
	2.1 MAXIMUM RF OUTPUT POWER AMONG PRODUCTION UNITS	6
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	7
4.	TEST METHODOLOGY	7
5.	TEST CONFIGURATION	7
6.	DOSIMETRIC ASSESSMENT SETUP	8
	6.1 MEASUREMENT SYSTEM DIAGRAM	ç
	6.2 SYSTEM COMPONENTS	10
7.	EVALUATION PROCEDURES	13
8.	MEASUREMENT UNCERTAINTY	17
9.	EXPOSURE LIMIT	18
10.	MEASUREMENT RESULTS	19
	10.1 TEST LIQUIDS CONFIRMATION	19
	10.2 LIQUID MEASUREMENT RESULTS	20
	10.3 SYSTEM PERFORMANCE CHECK	21
	10.4 EUT TUNE-UP PROCEDURES AND TEST MODE	23
	10.5 STANDALONE SAR TEST EXCLUSION	
	10.6 ESTIMATED SAR	
	10.7 SAR TEST CONFIGURATIONS	
	10.8 ANTENNA LOCATION	
	10.9 BODY TEST EXCLUSION THRESHOLDS	
	10.10 EUT SETUP PHOTOS	
	10.11 SAR MEASUREMENT RESULTSREPEATED SAR MEASUREMENT	
44	EUT PHOTO	
		42
	FACILITIES	
	REFERENCES	
	ATTACHMENTS	
	pendix A: Plots of Performance Check	
	pendix B: DASY Calibration Certificate	
Apr	pendix C: Plots of SAR Test Result	94

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:	Tablet Computer					
Brand Name:	ACER					
Model Name.:	A1401					
Series Model:	N/A					
Device Category:	PORTABLE DEVICES					
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE					
Date of Test:	May 19, 2014 to May 24, 2014					
Applicant:	Acer Incorporated 8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C					
Manufacturer:	Acer Incorporated 8F, 88, Sec 1, Xintai 5th Rd. Xizhi, New Taipei City 221 Taiwan, R.O.C					
Application Type:	Certification					
AF	PLICABLE STANDARDS A	ND TEST PROCEDURES				
STANDARDS AND TEST PROCEDURES TEST RESULT						
	E C95.1-1992 ssue 4: 2010	No non-compliance noted				
	Deviation from Applicable Standard					
None						

The device was tested by Compliance Certification Services Inc. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

Jeff fang

Tested by:

Jeff Fang RF Manager

Compliance Certification Services Inc.

Luck.Fu Test Engineer

1 ruck. Fr

Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product Name:	Tablet Computer	
Brand Name:	ACER	
Model Name.:	A1401	
Series Model:	N/A	
FCC ID:	HLZA1401	
IC Certification ID:	1754F-A1401	
Power reduction:	NO	
DTM Description:	N/A	
Device Category:	Production unit	
Frequency Range:	WLAN 2.4GHz Band: 2412 MHz ~ WLAN 5.2GHz Band: 5180 MHz ~ WLAN 5.3GHz Band: 5260 MHz ~ WLAN 5.5GHz Band: 5500 MHz ~ WLAN 5.8GHz Band: 5745 MHz ~ Bluetooth: 2402 MHz ~ 2480 MHz	5240 MHz 5320 MHz 5700 MHz
Max. Reported SAR(1g):	Body: WLAN 2.4GHz Band:1.184 W/kg WLAN 5150~5250 Mhz:1.360 W/kg WLAN 5250~5350 Mhz:1.226 W/kg WLAN 5470~5725 Mhz:1.411 W/kg WLAN 5725~5850 Mhz:0.740 W/kg	g g
Modulation Technique:	802.11a/b/g/n HT20 Bluetooth:4.0	
	Power supply and ADP (rating): Adapter 1: Brand:DELTA Model: ADP-10HW A INPUT: AC 100-240V,50/60Hz,0.4A OUTPUT: 5.35V 2A Adapter 2: Brand: chicony Model:W12-010N3A; INPUT: AC 100-240V,50/60Hz,0.3A OUTPUT: 5.35V 2A	Battery (rating) : Model:30107108 Capacitance:4600mAh
Antenna Specification:	WIFI: PCB Antenna Bluetooth : PCB Antenna	
Operating Mode:	Maximum continuous output	

2.1 MAXIMUM RF OUTPUT POWER AMONG PRODUCTION UNITS

Band / Mode	Average Power (dBm)				
Band / Mode	V2.1	V4.0			
2.4GHz Band	2.49	0.51			

Band / Frequency (MHz)		IEEE 802.11 Average Power (dBm)					
		Chain0	Chain1	Chain0+1			
(1711)	(IVII IZ)		11b	HT20			
	2412	14.3	13.8	14.61			
0.4011-	2422						
2.4GHz Band	2437	14.3	13.8	14.88			
	2452						
	2462	14.3	13.8	15.17			

		IEEE 802.11 Average Power (dBm)					
Band / Frequency (MHz)		Chain0	Chain1	Chain0+1			
		11a	11a	HT20			
5.2GHz	5180	12.65	11.81	15.77			
Band	5240	12.74	12.36	15.69			
5.3GHz Band	5260	12.61	12.32	15.41			
	5320	11.84	12.14	15.57			
5 50U-	5520	12.73	11.84	16.35			
5.5GHz Band	5580	12.99	12.54	16.34			
Danu	5680	11.31	12.96	15.39			
5.8GHz Band	5745	10.8	11.39	14.78			
	5785	10.65	11.04	14.7			
Dana	5825	10.78	11.15	15.11			

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/Kg for an uncontrolled environment and 8.0 W/Kg for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- ANSI/IEEE C95.1-1992
- ☐ IEEE 1528-2003
- ☐ IEEE 1528-2013
- Notice 2013-DRS0911

5. TEST CONFIGURATION

During WLAN SAR testing EUT is configured with the WLAN continuous TX tool,and the transmission duty factor was monitored on the spectrum analyzer with zero-span setting For WLAN SAR testing, WLAN engineering test software installed on the EUT can provide continuous transmitting RF signal.

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

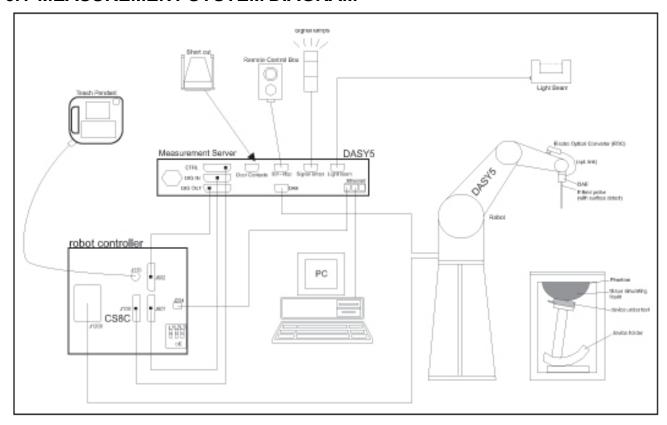
6. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than ± 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than ±0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN 62209.

The following table gives the recipes for tissue simulating liquids.

Ingredients	Frequency (MHz)									
(% by weight)	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Simulating Liquids for 5 GHz, Manufactured by SPEAG


Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

6.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal
 multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision
 detection, etc. The unit is battery powered with standard or rechargeable batteries. The
 signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical
 of the signals for the digital communication to the DAE and for the analog signal from the
 optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

FCC ID: HLZA1401

Date of Issue :June 4, 2014

6.2 SYSTEM COMPONENTS

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV celeron, 128MB chip-disk and 128 MB RAM. The necessary circuits for communication with either the DAE4(or DAE3) electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.

The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents,

e.g., DGBE)

Calibration: Basic Broad Band Calibration in air: 10-3000 MHz.

Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon

request.

Frequency: 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3

GHz)

Directivity: \pm 0.3 dB in HSL (rotation around probe axis)

± 0.5 dB in HSL (rotation normal to probe axis)

Dynamic Range: 10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB

(noise: typically $< 1 \mu W/g$)

IC Certification ID: 1754F-A1401

Date of Issue :June 4, 2014

Dimensions: Overall length: 337 mm (Tip: 9 mm)

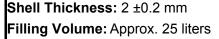
Tip diameter: 2.5 mm (Body: 10 mm)
Distance from probe tip to dipole centers:

1 mm

Application: High precision dosimetric measurements

in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%.



Interior of probe

SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Dimensions: Height: 850mm; Length: 1000mm; Width:

750mm

SAM Phantom (ELI4 v4.0)

Description Construction:

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness: $2.0 \pm 0.2 \text{ mm (sagging: } <1\%)$

Filling Volume: Approx. 25 liters

Dimensions: Major ellipse axis: 600 mm

Minor axis: 400 mm 500mm

Compliance Certification Services Inc.

Report No: C140505S02-SF

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom, the

Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

System Validation Kits for SAM Twin Phantom

Construction: Symmetrical dipole with I/4 balun Enables

measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance


holder and tripod adaptor.

Frequency: 900,1800,2450,5800 MHz

ReTune loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300mm

System Validation Kits for ELI4 phantom

Construction: Symmetrical dipole with I/4 balun Enables

measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance

holder and tripod adaptor.

Frequency: 900, 1800, 2450, 5800 MHz

ReTune loss: > 20 dB at specified validation position **Power capability:** > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm

D5GHzV2: dipole length: 20.6 mm; overall height: 300 mm

7. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> Probe parameters: - Sensitivity Norm_i, a_{i0}, a_{i1}, a_{i2}

> > - Conversion factor ConvF_i

- Diode compression point dcpi

Device parameters: - Frequency

- Crest factor cf

Media parameters: - Conductivity σ

> - Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

 V_i = Compensated signal of channel i(i = x, y, z) with

> = Input signal of channel i (i = x, y, z)

= Crest factor of exciting field (DASY 5 parameter)

 dcp_i = Diode compression point (DASY 5 parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

 $H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f}{f}$ H-field probes:

with V_i = Compensated signal of channel i(i = x, y, z)

 $Norm_i$ = Sensor sensitivity of channel i (i = x, y, z)

 $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

= Sensor sensitivity factors for H-field probes aii

= Carrier frequency (GHz) f

Εi = Electric field strength of channel i in V/m

= Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_{x}^{2} + E_{y}^{2} + E_{z}^{2}}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

= total magnetic field strength in A/m H_{tot}

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- · maximum search
- extrapolation
- · boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes (a<< λ), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY 5 software) and a (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30_ to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

8. MEASUREMENT UNCERTAINTY

UNCERTAINTY BUDGE ACCORDING TO IEEE 1528-2003						
Error Description	Uncertainty Value ±%	Probability distribution		C₁1g	Standard unc.(1g) ±%	V ₁ or V _{eff}
Measurement System						
Probe calibration	±5.5	normal	1	1	±5.5	∞
Axial isotropy of probe	±4.7	rectangular	√3	0.7	±1.9	∞
Hemispherical Isotropy of probe	±9.6	rectangular	√3	0.7	±3.9	∞
Probe linearity	±4.7	rectangular	√3	1	±2.7	∞
Detection Limit	±1.0	rectangular	√3	1	±0.6	∞
Boundary effects	±1.0	rectangular	√3	1	±0.6	∞
Readout electronics	±0.3	normal	1	1	±0.3	∞
Response time	±0.8	rectangular	√3	1	±0.5	∞
Integration time	±2.6	rectangular	√3	1	±1.5	∞
Probe positioning	±2.9	rectangular	√3	1	±1.7	∞
Probe positioner	±0.4	rectangular	√3	1	±0.2	∞
RF ambient Noise	±3.0	rectangular	√3	1	±1.7	∞
RF ambient Reflections	±3.0	rectangular	√3	1	±1.7	∞
Max.SAR Eval	±1.0	rectangular	√3	1	±0.6	∞
Test Sample Related						
Device positioning	±2.9	normal	1	1	±2.9	145
Device holder uncertainty	±3.6	normal	1	1	±3.6	5
Power drift	±5.0	rectangular	√3	1	±2.9	∞
Phantom and Set up						
Phantom uncertainty	±4.0	rectangular	√3	1	±2.3	∞
Liquid conductivity(target)	±5.0	rectangular	√3	0.64	±1.8	∞
Liquid conductivity(meas.)	±2.5	rectangular	1	0.64	±1.6	∞
Liquid permittivity(target)	±5.0	rectangular	√3	0.6	±1.7	∞
Liquid permittivity(meas.)	±2.5	rectangular	1	0.6	±1.5	∞
Combined Standard Uncertainty	,				±10.7	387
Coverage Factor for 95%		kp=2				
Expanded Standard Uncertainty					±21.4	

Table: Worst-case uncertainty for DASY5

The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

9. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 1 grams of tissue defined as a tissue volume in the shape of a cube.

<u>Population/Uncontrolled Environments</u> are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

<u>Occupational/Controlled Environments</u> are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE
GENERAL POPULATION/UNCONTROLLED EXPOSURE
PARTIAL BODY LIMIT
1.6 W/kg

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A140

10. MEASUREMENT RESULTS

10.1 TEST LIQUIDS CONFIRMATION

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the SPEAG DAK3.5 dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

IEEE SCC-34/SC-2 P1528 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in P1528

Target Frequency	He			Body		
(MHz)	ϵ_{r}	σ (S/m)	ϵ_{r}	σ (S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800-2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5800	35.3	5.27	48.2	6.00		

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

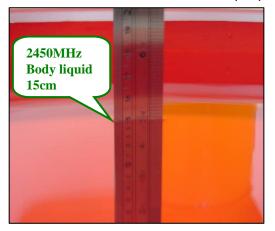
LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:

Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date
Body2412	21.5	Permitivity(ε)	52.75	50.16	-4.91	± 5	
Dodyz+12	21.0	$Conductivity(\sigma)$	1.90	1.97	3.38	± 5	
Body2437	21.5	Permitivity(ε)	52.72	50.80	-3.64	± 5	2014-5-19
Dody2407	21.0	Conductivity(σ)	1.93	2.01	3.99	± 5	2014-3-13
Body2462	21.5	Permitivity(ε)	52.68	51.02	-3.16	± 5	
B00y2402	21.5	$Conductivity(\sigma)$	1.97	2.00	1.88	± 5	
Body5180	21.5	Permitivity(ε)	49.06	49.21	0.31	± 5	
B00y3100	21.5	Conductivity(σ)	5.33	5.14	-3.65	± 5	2014-5-21
Body5240	21.5	Permitivity(ε)	48.98	49.07	0.17	± 5	2014-3-21
B00y3240	21.5	Conductivity(σ)	5.40	5.21	-3.57	± 5	
Body5260	21.5	Permitivity(ε)	48.95	49.00	0.11	± 5	
B00y3200	21.5	Conductivity(σ)	5.42	5.24	-3.37	± 5	2014-5-22
Body5320	21.5	Permitivity(ε)	48.87	48.96	0.18	± 5	2014-3-22
B00y5320	21.5	Conductivity(σ)	5.49	5.31	-3.20	± 5	
Body5520	21.5	Permitivity(ε)	48.59	48.55	-0.08	± 5	
B00y3320	21.5	Conductivity(σ)	5.70	5.56	-2.52	± 5	
Body5580	21.5	Permitivity(ε)	48.51	48.47	-0.08	± 5	2014-5-22
Бойуээво	21.5	Conductivity(σ)	5.77	5.65	-1.97	± 5	2014-5-22
Body5680	21.5	Permitivity(ε)	48.37	48.25	-0.25	± 5	
Бойузово	21.5	Conductivity(σ)	5.87	5.79	-1.46	± 5	
Body5745	21.5	Permitivity(ε)	48.28	48.17	-0.23	± 5	
Бойу5745	21.5	Conductivity(σ)	5.94	5.87	-1.20	± 5	
Body5785	21.5	Permitivity(ε)	48.22	48.07	-0.31	± 5	2014-5-23
Bouy3763	21.5	Conductivity(σ)	5.98	5.94	-0.82	± 5	201 4 -9-23
Body5825	21.5	Permitivity(ε)	47.85	48.03	0.38	± 5	
500y3023	21.5	Conductivity(σ)	6.02	5.99	-0.55	± 5	

FCC ID: HLZA1401

Date of Issue :June 4, 2014


IC Certification ID: 1754F-A1401

10.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3798 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm).
- Distance between probe sensors and phantom surface was set to 2 mm.
- The dipole less than 3G input power was 250mW±3%.
- The dipole above than 3G input power was 100mW±3%.
- The results are normalized to 1 W input power.

- Note: For SAR testing, less than 3G the liquid depth is 15cm shown above
- Note: For SAR testing, above than 3G the liquid depth is 10cm shown above

SYSTEM PERFORMANCE CHECK RESULTS

Liquid Type	Ambient Temp. (° C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR _{1g} (W/Kg)	1W Normalized SAR _{1g} (W/Kg)	Deviatio n (%)	Limited (%)	Date
Body2450	22	21.5	0.25	12.50	49.20	50.00	1.63	± 10	2014-4-19
Body5200	22	21.5	0.1	7.79	74.60	77.9	4.42	± 10	2014-4-21
Body5300	22	21.5	0.1	7.69	76.00	76.9	1.18	± 10	2014-4-22
Body5500	22	21.5	0.1	8.12	79.10	81.2	2.65	± 10	2014-5-23
Body5600	22	21.5	0.1	8.09	77.80	80.9	3.98	± 10	2014-5-23
Body5800	22	21.5	0.1	7.53	75.00	75.3	0.40	± 10	2014-5-24

10.4 EUT TUNE-UP PROCEDURES AND TEST MODE

Conducted output power(dBm):

WLAN 2.4G Antenna0

Mode	Channel	Frequence	Antenna 0 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	1	2412 MHZ	13.07	12.5 +1/-2	13.5
802.11 b	6	2437 MHZ	13.02	12.5 +1/-2	13.5
	11	2462 MHZ	13.23	12.5 +1/-2	13.5
	1	2412 MHZ	10.17	9.5+1/-2	10.5
802.11 g	6	2437 MHZ	10.22	9.5+1/-2	10.5
	11	2462 MHZ	10.18	9.5+1/-2	10.5
802.11 n HT20	1	2412 MHZ	10.06	9.5+1/-2	10.5
	6	2437 MHZ	10.04	9.5+1/-2	10.5
20	11	2462 MHZ	10.13	9.5+1/-2	10.5

WLAN 2.4G Antenna 1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	1	2412 MHZ	12.06	12.5+1/-2	13.5
802.11 b	6	2437 MHZ	13.24	12.5+1/-2	13.5
	11	2462 MHZ	12.61	12.5+1/-2	13.5
	1	2412 MHZ	9.33	9.5+1/-2	10.5
802.11 g	6	2437 MHZ	9.67	9.5+1/-2	10.5
	11	2462 MHZ	10.13	9.5+1/-2	10.5
802.11 n HT20	1	2412 MHZ	9.18	9.5+1/-2	10.5
	6	2437 MHZ	9.76	9.5+1/-2	10.5
20	11	2462 MHZ	9.97	9.5+1/-2	10.5

WLAN 2.4G Antenna 0+1

Mode	Channel	Frequence	Antenna 0+1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
000 44	1	2412 MHZ	14.61	14.5+1/-2	15.5
802.11 n HT20	6	2437 MHZ	14.88	14.5+1/-2	15.5
11120	11	2462 MHZ	15.17	14.5+1/-2	15.5

WLAN Conducted output power(dBm): Band 5150~5250 Mhz Antenna 0

Mode	Channel	Frequence	Antenna 0 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	36	5180 MHZ	12.65	12+1/-2	13
802.11 a	40	5200 MHZ	12.63	12+1/-2	13
002.11 a	44	5220 MHZ	12.72	12+1/-2	13
	48	5240 MHZ	12.74	12+1/-2	13
	36	5180 MHZ	10.54	10+1/-2	11
802.11 n (HT20)	40	5200 MHZ	10.52	10+1/-2	11
	44	5220 MHZ	10.74	10+1/-2	11
	48	5240 MHZ	10.69	10+1/-2	11

Band 5150~5250 Mhz Antenna 1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	36	5180 MHZ	11.81	11.5+1/-2	12.5
802.11 a	40	5200 MHZ	11.78	11.5+1/-2	12.5
002.11 a	44	5220 MHZ	12.22	11.5+1/-2	12.5
	48	5240 MHZ	12.36	11.5+1/-2	12.5
	36	5180 MHZ	10.27	10+1/-2	11
802.11 n (HT20)	40	5200 MHZ	10.21	10+1/-2	11
	44	5220 MHZ	10.53	10+1/-2	11
	48	5240 MHZ	10.64	10+1/-2	11

Band 5150~5250 Mhz Antenna 0+1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	36	5180 MHZ	15.77	15+1/-2	16
802.11 n	40	5200 MHZ	15.58	15+1/-2	16
(HT20)	44	5220 MHZ	15.65	15+1/-2	16
	48	5240 MHZ	15.69	15+1/-2	16

Band 5250~5350Mhz Antenna 0

Mode	Channel	Frequence	Antenna 0 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	52	5260 MHZ	12.61	12+1/-2	13
802.11 a	56	5280MHZ	12.13	12+1/-2	13
002.11 a	60	5300 MHZ	11.82	12+1/-2	13
	64	5320 MHZ	11.84	12+1/-2	13
	52	5260 MHZ	10.42	9.5+1/-2	10.5
802.11 n (HT20)	56	5280MHZ	9.99	9.5+1/-2	10.5
	60	5300 MHZ	9.87	9.5+1/-2	10.5
	64	5320 MHZ	9.27	9.5+1/-2	10.5

Band 5250~5350Mhz Antenna 1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	52	5260 MHZ	12.32	11.5+1/-2	12.5
802.11 a	56	5280MHZ	12.23	11.5+1/-2	12.5
002.11 a	60	5300 MHZ	12.11	11.5+1/-2	12.5
	64	5320 MHZ	12.14	11.5+1/-2	12.5
	52	5260 MHZ	10.67	10+1/-2	11
802.11 n (HT20)	56	5280MHZ	10.58	10+1/-2	11
	60	5300 MHZ	10.34	10+1/-2	11
	64	5320 MHZ	10.45	10+1/-2	11

Band 5250~5350Mhz Antenna 0+1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	52	5260 MHZ	15.77	15+1/-2	16
802.11 n	56	5280MHZ	15.58	15+1/-2	16
(HT20)	60	5300 MHZ	15.65	15+1/-2	16
	64	5320 MHZ	15.69	15+1/-2	16

Band 5470~5725Mhz Antenna 0

Mode	Channel	Frequence MHZ	Antenna 0 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
802.11 a	100	5500	12.69	12+1/-2	13
	104	5520	12.73	12+1/-2	13
	108	5540	12.67	12+1/-2	13
	112	5560	12.81	12+1/-2	13
	116	5580	12.99	12+1/-2	13
	120	5600	12.97	12+1/-2	13
	124	5620	12.98	12+1/-2	13
	128	5640	12.84	12+1/-2	13

Compliance Certification Services Inc. Report No: C140505S02-SF FCC ID: HLZA1401 Date of Issue :Julia IC Certification ID: 1754F-A1401

Date of Issue :June 4, 2014

	132	5660	12.81	12+1/-2	13
	136	5680	11.31	12+1/-2	13
	140	5700	11.27	12+1/-2	13
	100	5500	10.68	10+1/-2	11
	104	5520	10.62	10+1/-2	11
	108	5540	10.64	10+1/-2	11
	112	5560	10.59	10+1/-2	11
000 44	116	5580	10.61	10+1/-2	11
802.11 n (HT20)	120	5600	10.75	10+1/-2	11
(11120)	124	5620	10.81	10+1/-2	11
	128	5640	10.53	10+1/-2	11
	132	5660	9.87	10+1/-2	11
	136	5680	9.45	10+1/-2	11
	140	5700	9.24	10+1/-2	11

Band 5470~5725Mhz Antenna 1

Mode	Channel	Frequence MHZ	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	100	5500	11.8	12+1/-2	13
	104	5520	11.84	12+1/-2	13
	108	5540	11.79	12+1/-2	13
	112	5560	12.49	12+1/-2	13
	116	5580	12.54	12+1/-2	13
802.11 a	120	5600	12.5	12+1/-2	13
	124	5620	12.47	12+1/-2	13
	128	5640	12.41	12+1/-2	13
	132	5660	12.38	12+1/-2	13
	136	5680	12.96	12+1/-2	13
	140	5700	12.95	12+1/-2	13
	100	5500	11.02	10.5+1/-2	11.5
	104	5520	10.95	10.5+1/-2	11.5
	108	5540	10.92	10.5+1/-2	11.5
	112	5560	10.91	10.5+1/-2	11.5
200.44	116	5580	10.89	10.5+1/-2	11.5
802.11 n (HT20)	120	5600	10.85	10.5+1/-2	11.5
(11120)	124	5620	10.72	10.5+1/-2	11.5
	128	5640	10.68	10.5+1/-2	11.5
	132	5660	10.59	10.5+1/-2	11.5
	136	5680	10.64	10.5+1/-2	11.5
	140	5700	10.51	10.5+1/-2	11.5

Band 5470~5725Mhz Antenna 0+1

Mode	Channel	Frequence MHZ	Antenna 0+1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	100	5500	16.32	15.5+1/-2	16.5
	104	5520	16.35	15.5+1/-2	16.5
	108	5540	16.18	15.5+1/-2	16.5
	112	5560	16.24	15.5+1/-2	16.5
000 44	116	5580	16.34	15.5+1/-2	16.5
802.11 n (HT20)	120	5600	15.78	15.5+1/-2	16.5
(11120)	124	5620	15.71	15.5+1/-2	16.5
	128	5640	15.68	15.5+1/-2	16.5
	132	5660	15.43	15.5+1/-2	16.5
	136	5680	15.39	15.5+1/-2	16.5
	140	5700	15.36	15.5+1/-2	16.5

Band 5725~5850 Mhz Antenna 0

Mode	Channel	Frequence	Antenna 0 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	149	5745	10.80	10+1/-2	11
	153	5765	10.74	10+1/-2	11
802.11 a	157	5785	10.65	10+1/-2	11
	161	5805	10.78	10+1/-2	11
	165	5825	10.80	10+1/-2	11
	149	5745	9.16	8.5+1/-2	9.5
000 44	153	5765	8.71	8.5+1/-2	9.5
802.11 n (HT20)	157	5785	8.69	8.5+1/-2	9.5
	161	5805	8.51	8.5+1/-2	9.5
	165	5825	8.48	8.5+1/-2	9.5

Band 5725~5850 Mhz Antenna 1

Mode	Channel	Frequence	Antenna 1 Average power(dBm)	Turn up tolerance (dBm)	Maximum Turn up power (dBm)
	149	5745	11.39	10.5+1/-2	11.5
	153	5765	11.32	10.5+1/-2	11.5
802.11 a	157	5785	11.04	10.5+1/-2	11.5
	161	5805	11.13	10.5+1/-2	11.5
	165	5825	11.15	10.5+1/-2	11.5
	149	5745	10.44	9.5+1/-2	10.5
000 44	153	5765	9.63	9.5+1/-2	10.5
802.11 n (HT20)	157	5785	9.48	9.5+1/-2	10.5
	161	5805	9.28	9.5+1/-2	10.5
	165	5825	9.37	9.5+1/-2	10.5

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Band 5725~5850 Mhz Antenna 0+1

Mode	Channel	Frequence	Antenna 0+1 Average power(dBm)	Target power (dBm)	Target power (dBm)
	149	5745	14.78	10.5+1/-2	11.5
000.44	153	5765	14.72	10.5+1/-2	11.5
802.11 n (HT20)	157	5785	14.7	10.5+1/-2	11.5
(11120)	161	5805	15.06	10.5+1/-2	11.5
	165	5825	15.11	10.5+1/-2	11.5

Bluetooth 2.1 Conducted output power(dBm):

Mode	CH		Average p	ower(dBm)
Mode	СН	Frequency	dBm	mW
	CH00	2402MHZ	1.31	1.352
GFSK	CH39	2441MHZ	2.02	1.592
	CH78	2480MHZ	2.49	1.774
	CH00	2402MHZ	1.16	1.306
8-DPSK	CH39	2441MHZ	1.95	1.567
	CH78	2480MHZ	2.22	1.667

Bluetooth 4.0 Conducted output power(dBm):

Mada	CII	CII	Average power(dBm)		
Mode	СН	Frequency	dBm	mW	
	CH00	2402MHZ	-0.54	0.883	
GFSK	CH19	2440MHZ	-0.12	0.973	
	CH39	2480MHZ	0.51	1.125	

10.5 STANDALONE SAR TEST EXCLUSION

SAR evaluation for this device was performed with a separation distance of 5 mm. Observing the SAR evaluation exemption limit table (Table 1, see below) found in § 2.5.1 of IC Notice 2013-DDRS0911, it was determined that the SAR exemption limit for this device is 4 mW for 2.4 GHz transmission, and 1 mW for 5 GHz transmission.

No Wi-Fi mode qualified for test exemption as all power levels were above the stated thresholds. On the contrary, Bluetooth, with a frequency of 2402 MHz and a maximum output power of 3.32 mW (5.2 dBm, tune-up tolerance accounted for), is below the exemption threshold and therefore exempt from SAR evaluation for either the intended user or bystanders.

Table 1: SAR evaluation- exemption limits for routine evaluation based on frequency and separation distance

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation	At separation	At separation	At separation		
	distance of	distance of	distance of	distance of	distance of		
	≤ 5 mm	10 mm	15 mm	20 mm	25 mm		
≤ 300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	7 mW	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	16 mW	27 mW	41 mW		
Frequency			emption Limits (m				
Frequency (MHz)	At separation		emption Limits (m At separation		At separation		
		Ex		W)	At separation distance of		
	At separation	Ex At separation	At separation	W) At separation			
	At separation distance of	Ex At separation distance of	At separation distance of	W) At separation distance of	distance of		
(MHz)	At separation distance of 30 mm	Ex At separation distance of 35 mm	At separation distance of 40 mm	W) At separation distance of 45 mm	distance of ≥ 50 mm		
(MHz) ≤ 300	At separation distance of 30 mm 71 mW	Ex At separation distance of 35 mm 101 mW	At separation distance of 40 mm 132 mW	W) At separation distance of 45 mm 162 mW	distance of ≥ 50 mm 193 mW		
(MHz) ≤ 300 450	At separation distance of 30 mm 71 mW 52 mW	Ex At separation distance of 35 mm 101 mW 70 mW	At separation distance of 40 mm 132 mW 88 mW	W) At separation distance of 45 mm 162 mW 106 mW	distance of ≥ 50 mm 193 mW 123 mW		
(MHz) ≤ 300 450 835	At separation distance of 30 mm 71 mW 52 mW 17 mW	Ex At separation distance of 35 mm 101 mW 70 mW 30 mW	At separation distance of 40 mm 132 mW 88 mW 42 mW	W) At separation distance of 45 mm 162 mW 106 mW 55 mW	distance of ≥ 50 mm 193 mW 123 mW 67 mW		
(MHz) ≤ 300 450 835 1900	At separation distance of 30 mm 71 mW 52 mW 17 mW 7 mW	Ex At separation distance of 35 mm 101 mW 70 mW 30 mW	At separation distance of 40 mm 132 mW 88 mW 42 mW 18 mW	W) At separation distance of 45 mm 162 mW 106 mW 55 mW 34 mW	distance of ≥ 50 mm 193 mW 123 mW 67 mW 60 mW		

According to KDB447498 D01:The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] $\cdot [\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,24 where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation25
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below
- If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

	Wireless Interface	Bluetooth
Tı	3	
Tun	e-up Maximum rated power (mW)	1.995
	Antenna to user (mm)	5
Body	Frequency(GHz)	2.480
	SAR exclusion threshold	0.628

Per KDB 447498 D01 exclusion thresholds is 0.628 < 3, Bluetooth RF exposure evaluation is not required.

10.6 ESTIMATED SAR

Antenna	TX Interface	Frequency	Output power(dBm)	Separation Distances (mm) (All configuration)	Estimated 1-g SAR Value (W/kg) (All Configurations)
0	Bluetooth	2480	3	5	0.084

Notes:

- 1. Power and distance are rounded to the nearest mW and mm before calculation
- 2. If the minimum test separation distance is <5mm then 5mm is used in the calculation

IC Certification ID: 1754F-A1401

10.7 SAR TEST CONFIGURATIONS

This EUT was tested in Four different positions. They are reverse side of tablet, Edge 1, Edge 3 and Edge 4.In these positions, the surface of EUT is touching with phantom 0cm.

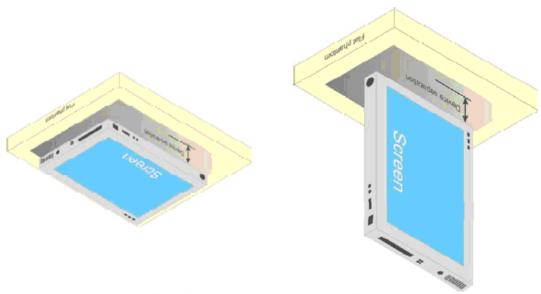
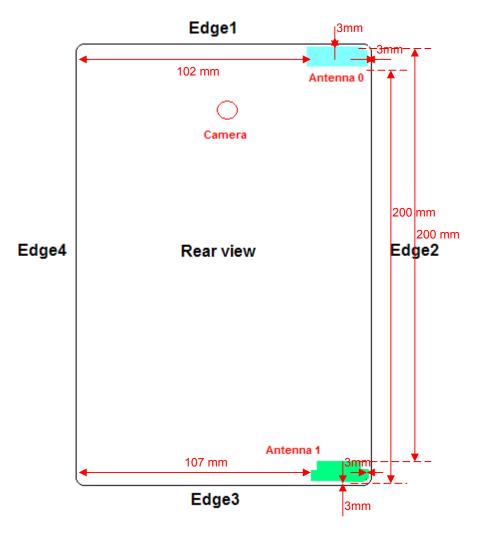



Fig Illustration for Lap-touching Position

10.8 ANTENNA LOCATION

IC Certification ID: 1754F-A1401

Device dimensions (H x W): 330 x 220 mm

Antennas	Wireless Interface					
Bluetooth &WLAN Antenna	WLAN 2.4GHz WLAN 5.2GHz WLAN 5.3GHz WLAN 5.5GHz WLAN 5.8GHz Bluetooth					
Antenna0	WLAN+ Bluetooth					
Antenna1	WLAN					

Test Mode

IEEE 802.11	Data transmission mode(802.11a;b;HT20)
-------------	--

10.9 BODY TEST EXCLUSION THRESHOLDS

The following SAR test exclusion Thresholds based on KDB 447498 D01 General RF Exposure Guidance v05r02) 4.3.1)

		WLAN	WLAN	WLAN	WLAN		
Exposure	Wireless Interface	802.11 b	802.11 b	802.11 a	802.11 a		
		Antenna0	Antenna1	Antenna0	Antenna1		
Position	Maximum power	14.30	13.80	14	14		
	Maximum rated power(mW)	22.39	22.36	19.95	19.95		
	Antenna to user (mm)	5	5	5	5		
Rear view	SAR exclusion threshold	9.58	9.58	6.23	6.23		
	SAR testing required?	Yes	Yes	Yes	Yes		
	Antenna to user (mm)	5	200	5	200		
Edge1	SAR exclusion threshold	9.58	1596	6.23	1562.28		
	SAR testing required?	Yes	No	Yes	No		
	Antenna to user (mm)	5	5	5	5		
Edge2	SAR exclusion threshold	9.58	9.58	6.23	6.23		
	SAR testing required?	Yes	Yes	Yes	Yes		
Edge3	Antenna to user (mm)	200	5	200	5		
	SAR exclusion threshold	1596	9.58	1562.28	6.23		
	SAR testing required?	No	Yes	No	Yes		
	Antenna to user (mm)	102	107	102	107		
Edge4	SAR exclusion threshold	616	666	582.28	632.28		
	SAR testing required?	No	No	No	No		

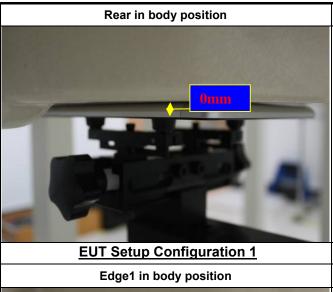
Note:

- 1. Maximum power is the source-based time-average power and represents the maximum RF output power among production units
- 2. Per KDB 447498 D01v05r02, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D01v05r02, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is < 5mm, 5mm is used to determine SAR exclusion threshold
- 4. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

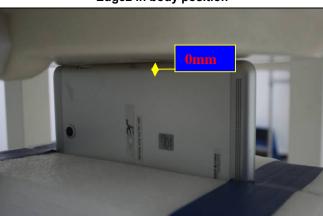
[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

f(GHz) is the RF channel transmit frequency in GHz

Power and distance are rounded to the nearest mW and mm before calculation

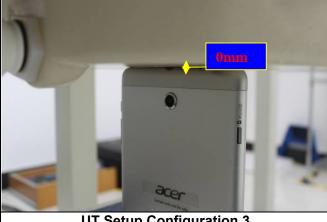

IC Certification ID: 1754F-A1401

The result is rounded to one decimal place for comparison


For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare. This formula is [3.0] / $[\sqrt{f(GHz)}] \cdot [(min. test separation distance, mm)] = exclusion threshold of mW.$

- 5. Per KDB 447498 D01v05r02, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following
 - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm) 10] mW at > 1500 MHz and ≤ 6 GHz
- 6. When the minimum test separation distance is < 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

10.10 EUT SETUP PHOTOS



Edge2 in body position

EUT Setup Configuration 2

Edge3 in body position

UT Setup Configuration 3

EUT Setup Configuration 4

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

10.11 SAR MEASUREMENT RESULTS

Note:

- 1. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
- 2. Per KDB 447498 D01, for each exposure position, if the highest output channel reported SAR ≤0.8W/kg, other channels SAR testing is not necessary.
- 3. Per KDB 447498 D01, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - · ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

SAR Results for Test Records

Band	Mode	Test Positio n	Dist. (mm)	Ch ·	Antenn a	Freq. (MHZ)	max Powe r (dBm)	Tune- Up Limit (dBm	Scalin g Factor	Power Drift (dB)	SAR1g (mW/g)	Scale d SAR1 g (mW/g)
WLAN 2.4Ghz	802.11b	Rear	0	1	0	2412	13.07	13.5	1.104	0.00	0.540	0.596
`WLAN 2.4Ghz	802.11b	Rear	0	6	0	2437	13.02	13.5	1.117	0.00	0.576	0.643
WLAN 2.4Ghz	802.11b	Rear	0	11	0	2462	13.23	13.5	1.064	-0.18	0.618	0.658
WLAN 2.4Ghz	802.11b	Edge1	0	11	0	2462	13.23	13.5	1.064	0.05	0.267	0.284
WLAN 2.4Ghz	802.11b	Edge2	0	11	0	2462	13.23	13.5	1.064	0.07	0.472	0.502
WLAN 2.4Ghz	802.11b	Rear	0	1	1	2412	12.06	13.5	1.393	0.14	0.850	1.184
WLAN 2.4Ghz	802.11b	Rear	0	6	1	2437	13.24	13.5	1.062	-0.18	0.843	0.895
WLAN 2.4Ghz	802.11b	Rear	0	11	1	2462	12.61	13.5	1.227	0.13	0.856	1.051
WLAN 2.4Ghz	802.11b	Edge2	0	6	1	2437	13.24	13.5	1.062	0.15	0.501	0.532
WLAN 2.4Ghz	802.11b	Edge3	0	6	1	2437	13.24	13.5	1.062	0.02	0.079	0.084
WLAN 2.4Ghz	802.11b	Rear	0	11	1	2462	12.06	13.5	1.227	0.11	0.859	1.054
WLAN 2.4Ghz	802.11n HT20	Rear	0	1	0+1	2412	14.61	15.5	1.227	0.00	0.900	1.105
WLAN 2.4Ghz	802.11n HT20	Rear	0	6	0+1	2437	14.88	15.5	1.153	0.17	0.447	0.516
WLAN 2.4Ghz	802.11n HT20	Rear	0	11	0+1	2462	15.17	15.5	1.079	0.00	0.958	1.034
WLAN 2.4Ghz	802.11n HT20b	Edge2	0	6	0+1	2437	14.88	15	1.028	0.00	0.578	0.594
WLAN 2.4Ghz	802.11n HT20	Rear	0	11	0+1	2462	14.61	15.5	1.079	0.00	0.962	1.038
WLAN 5Ghz	802.11a	Rear	0	36	0	5180	12.65	13	1.084	0.00	0.527	0.571
WLAN 5Ghz	802.11a	Rear	0	48	0	5240	12.74	13	1.062	0.00	0.714	0.758
WLAN 5Ghz	802.11a	Edge1	0	48	0	5240	12.74	13	1.062	-0.19	0.175	0.186
WLAN 5Ghz	802.11a	Edge2	0	48	0	5240	12.74	13	1.062	0.00	0.189	0.201
WLAN 5Ghz	802.11a	Rear	0	36	1	5180	11.81	12.5	1.172	0.00	1.16	1.360
WLAN 5Ghz	802.11a	Rear	0	48	1	5240	12.36	12.5	1.033	0.00	1.29	1.332
WLAN 5Ghz	802.11a	Edge2	0	48	1	5240	12.36	12.5	1.033	0.00	0.067	0.069
WLAN 5Ghz	802.11a	Edge3	0	48	1	5240	12.36	12.5	1.033	-0.09	0.692	0.715
WLAN 5Ghz	802.11a	Rear	0	48	1	5240	12.36	12.5	1.033	0.00	1.27	1.312
WLAN 5Ghz	802.11a	Rear	0	36	0+1	5180	15.78	16	1.052	0.00	0.809	0.851
WLAN 5Ghz	802.11a	Rear	0	48	0+1	5240	15.69	16	1.074	0.00	0.805	0.865
WLAN 5Ghz	802.11a	Edge2	0	36	0+1	5180	15.78	16	1.052	-0.12	0.680	0.715
WLAN 5Ghz	802.11a	Rear	0	36	0+1	5180	15.78	16	1.052	0.19	0.783	0.824

Band	Mode	Test Position	Dist. (mm)	Ch.	Antenna	Freq. (MHZ)	max Power (dBm)	Tune- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
WLAN 5Ghz	802.11a	Rear	0	52	0	5260	12.61	13	1.094	0.00	0.622	0.680
WLAN 5Ghz	802.11a	Rear	0	64	0	5320	11.84	13	1.306	0.12	0.543	0.709
WLAN 5Ghz	802.11a	Edge1	0	52	0	5260	12.61	13	1.094	0.14	0.385	0.421
WLAN 5Ghz	802.11a	Edge2	0	52	0	5260	12.61	13	1.094	-0.18	0.609	0.666
WLAN 5Ghz	802.11a	Rear	0	52	1	5260	12.32	12.5	1.042	0.00	1.15	1.199
WLAN 5Ghz	802.11a	Rear	0	64	1	5320	12.14	12.5	1.086	0.00	0.965	1.048
WLAN 5Ghz	802.11a	Edge2	0	52	1	5260	12.32	12.5	1.042	0.00	0.070	0.073
WLAN 5Ghz	802.11a	Edge3	0	52	1	5260	12.32	12.5	1.042	-0.20	0.387	0.403
WLAN 5Ghz	802.11a	Rear	0	52	1	5260	12.32	12.5	1.042	0.00	1.12	1.167
WLAN 5Ghz	802.11a	Rear	0	52	0+1	5260	15.41	16	1.146	0.00	0.836	0.958
WLAN 5Ghz	802.11a	Rear	0	64	0+1	5320	15.57	16	1.104	0.00	1.11	1.226
WLAN 5Ghz	802.11a	Edge2	0	64	0+1	5320	15.57	16	1.104	0.00	0.286	0.316
WLAN 5Ghz	802.11a	Rear	0	64	0+1	5320	15.57	16	1.104	0.00	1	1.104
WLAN 5Ghz	802.11a	Rear	0	104	0	5520	12.73	13	1.064	0.00	0.683	0.727
WLAN 5Ghz	802.11a	Rear	0	116	0	5580	12.99	13	1.002	0.12	0.623	0.624
WLAN 5Ghz	802.11a	Rear	0	136	0	5680	11.31	13	1.476	0.00	0.677	0.999
WLAN 5Ghz	802.11a	Edge1	0	116	0	5580	12.99	13	1.002	0.14	0.457	0.458
WLAN 5Ghz	802.11a	Edge2	0	116	0	5580	12.99	13	1.002	-0.18	0.578	0.579
WLAN 5Ghz	802.11a	Rear	0	104	1	5520	11.84	13	1.306	0.00	1.01	1.319
WLAN 5Ghz	802.11a	Rear	0	116	1	5580	12.54	13	1.112	0.00	0.912	1.014
WLAN 5Ghz	802.11a	Rear	0	136	1	5680	12.96	13	1.009	0.00	0.910	0.918
WLAN 5Ghz	802.11a	Edge2	0	116	1	5580	12.96	13	1.009	0.00	0.083	0.084
WLAN 5Ghz	802.11a	Edge3	0	116	1	5580	12.96	13	1.009	-0.20	0.459	0.463
WLAN 5Ghz	802.11a	Rear	0	104	1	5520	11.84	13	1.306	0.00	1.08	1.411
WLAN 5Ghz	802.11a	Rear	0	104	0+1	5520	16.35	16.5	1.035	0.00	0.949	0.982
WLAN 5Ghz	802.11a	Rear	0	116	0+1	5580	16.34	16.5	1.038	0.00	1.17	1.214
WLAN 5Ghz	802.11a	Rear	0	136	0+1	5680	15.39	16.5	1.291	0.00	1.12	1.446
WLAN 5Ghz	802.11a	Edge2	0	104	0+1	5520	16.35	16.5	1.035	-0.11	0.620	0.642
WLAN 5Ghz	802.11a	Rear	0	116	0+1	5580	16.34	16.5	1.038	0.00	1.12	1.162
WLAN 5Ghz	802.11a	Rear	0	149	0	5745	10.8	11	1.047	0.00	0.669	0.701
WLAN 5Ghz	802.11a	Rear	0	157	0	5785	10.65	11	1.084	0.00	0.571	0.619
WLAN 5Ghz	802.11a	Rear	0	165	0	5825	10.8	11	1.047	0.00	0.442	0.463
WLAN 5Ghz	802.11a	Edge1	0	149	0	5745	10.8	11	1.047	0.00	0.286	0.299
WLAN 5Ghz	802.11a	Edge2	0	149	0	5745	10.8	11	1.047	-0.15	0.431	0.451
WLAN 5Ghz	802.11a	Rear	0	149	1	5745	11.39	11.5	1.026	0.00	0.524	0.537
WLAN 5Ghz	802.11a	Rear	0	157	1	5785	11.04	11.5	1.112	0.00	0.397	0.441
WLAN 5Ghz	802.11a	Rear	0	165	1	5825	11.15	11.5	1.084	0.00	0.338	0.366
WLAN 5Ghz	802.11a	Edge2	0	149	1	5745	11.39	11.5	1.026	0.00	0.073	0.075
WLAN 5Ghz	802.11a	Edge3	0	149	1	5745	11.39	11.5	1.026	0.11	0.229	0.235
WLAN 5Ghz	802.11a	Rear	0	149	0+1	5745	14.78	15.5	1.180	0.00	0.627	0.740

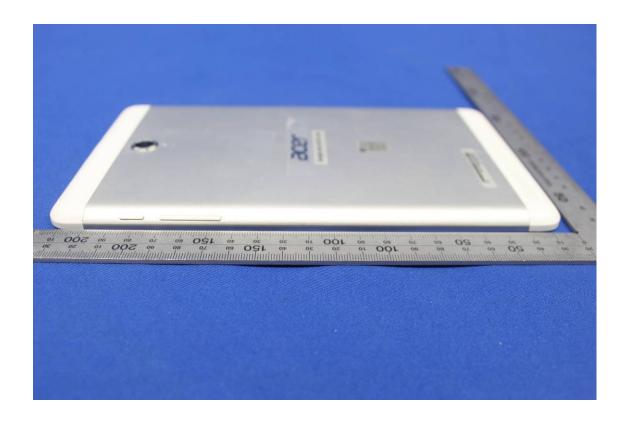
IC Certification ID: 1754F-A1401

WLAN 5Ghz	802.11a	Rear	0	157	0+1	5785	14.7	15.5	1.202	0.00	0.658	0.791
WLAN 5Ghz	802.11a	Rear	0	165	0+1	5825	15.11	15.5	1.094	0.00	0.593	0.649
WLAN 5Ghz	802.11a	Edge2	0	165	0+1	5825	15.11	15.5	1.094	-0.12	0.471	0.515

REPEATED SAR MEASUREMENT

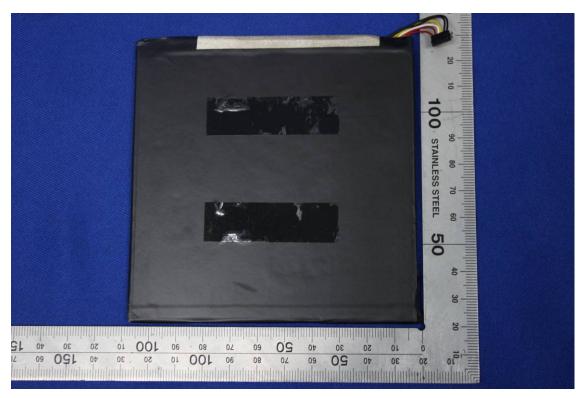
Band	Mode	Test Position	Dist. (mm)	Ch.	Antenna	Original Measured SAR1g (mW/g)	1st Repeated SAR1g (mW/g)	Ratio	Original Measured SAR1g (mW/g)	2nd Repeated SAR1g (mW/g)	Ratio
WLAN 2.4Ghz	802.11b	Rear	0	11	1	0.856	0.859	1.004	-		
WLAN 2.4Ghz	802.11n HT20	Rear	0	11	0+1	0.958	0.962	1.004	1	-	
WLAN 5Ghz	802.11a	Rear	0	48	1	1.29	1.27	1.016	1	-	
WLAN 5Ghz	802.11a	Rear	0	36	0+1	0.809	0.783	1.033			-
WLAN 5Ghz	802.11a	Rear	0	52	1	1.15	1.12	1.027	-		
WLAN 5Ghz	802.11a	Rear	0	64	0+1	1.11	1	1.11	-	-	
WLAN 5Ghz	802.11a	Rear	0	104	1	1.01	1.08	1.069	1	-	
WLAN 5Ghz	802.11a	Rear	0	116	0+1	1.17	1.12	1.045			

Note:


- 1. Per KDB 865664 D01v01, for each frequence band, repeated SAR measurement is required only when the measured SAR is ≥ 0.8W/Kg
- 2. Per KDB 865664 D01v01,if the ratio of largest to smallest SAR for the original and first repeated measurement is ≤1.2 and the measured SAR <1.45W/Kg,only one repeated measurement is required.
- 3. The ratio is the difference in percentage between original and repeated measured SAR.

FCC ID: HLZA1401 IC Certification ID: 1754F-A1401

11. **EUT PHOTO**



FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

EQUIPMENT LIST & CALIBRATION STATUS

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
PC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	83732B	US37101915	06/04/2013	06/03/2014
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	03/17/2014	03/16/2015
Wireless Communication Test Set	R&S	CMU200	SN:109525	01/24/2014	01/23/2015
Power Meter	Agilent	E4416A	GB41292714	3/18/2014	3/17/2015
Peak & Average sensor	Agilent	E9327A	us40441788	3/18/2014	3/17/2015
E-field PROBE	SPEAG	EX3DV4	3798	07/26/2013	07/25/2014
DAE	SD000D04BJ	DEA4	1245	07/25/2013	07/24/2014
DIPOLE 2450MHZ ANTENNA	SPEAG	D2450V2	817	07/31/2013	07/30/2014
DIPOLE 5GHZ ANTENNA	SPEAG	D5GHzV2	1095	05/31/2013	05/30/2014
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

13. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

14. REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992.. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

ATTACHMENTS

Exhibit	Content
1	System Performance Check Plots
2	Dipole calibration report D2450V2 SN: 817
3	Dipole calibration report D5GHzV2 SN: 1095
4	Probe calibration report EX3DV4 SN3798
5	DAE calibration report DEA4 SD000D04BJ SN:1245
6	SAR Test Plots

APPENDIX A: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Test Laboratory: Compliance Certification Services Inc. Date: 5/19/2014

System Performance Check-Body D2450

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 869

Communication System: CW; Communication System Band: D2450 (2450.0 MHz); Frequency:

2450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 2450 MHz; $\sigma = 2.008 \text{ S/m}$; $\varepsilon_r = 51.032$; $\rho = 1000 \text{ kg/m}^3$

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

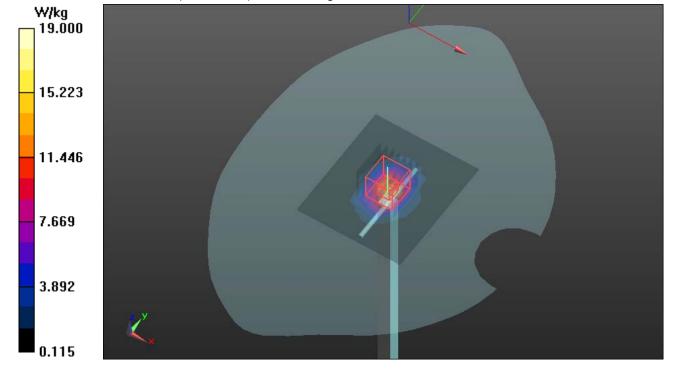
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(7.08, 7.08, 7.08); Calibrated: 7/26/2013;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 15.2 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.3 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 25.7 W/kg

SAR(1 g) = 12.5 W/kg; SAR(10 g) = 5.83 W/kg Maximum value of SAR (measured) = 19.0 W/kg

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A140

Test Laboratory: Compliance Certification Services Inc. Date: 5/21/2014

System Performance Check- Body D5200

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5200 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5200 MHz; $\sigma = 5.154 \text{ S/m}$; $\varepsilon_r = 49.194$; $\rho = 1000 \text{ kg/m}^3$

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

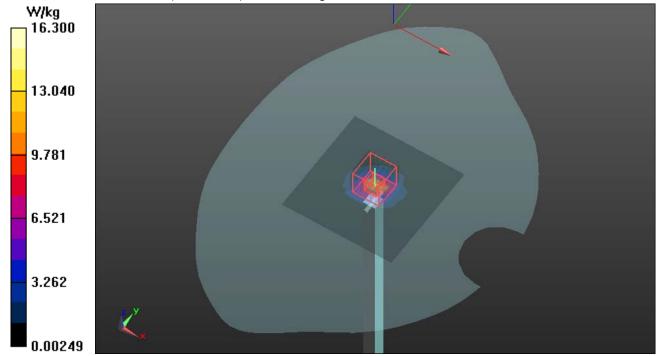
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(4.38, 4.38, 4.38); Calibrated: 7/26/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.4 W/kg


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5200 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x6)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 64.973 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 7.79 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 16.3 W/kg

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Test Laboratory: Compliance Certification Services Inc. Date: 5/22/2014

System Performance Check- Body D5300

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.29 \text{ S/m}$; $\varepsilon_r = 48.99$; $\rho = 1000 \text{ kg/m}^3$

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

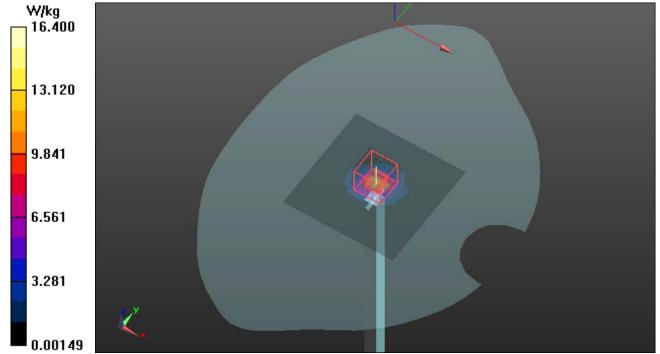
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(4.22, 4.22, 4.22); Calibrated: 7/26/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom: Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 13.8 W/kg


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (7x7x6)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 67.186 V/m: Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.5 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 16.4 W/kg

FCC ID: HLZA1401

Date of Issue :June 4, 2014

Test Laboratory: Compliance Certification Services Inc. Date: 5/23/2014

System Performance Check- Body D5500

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5500 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5500 MHz; σ = 5.535 S/m; ε_r = 48.611; ρ = 1000 kg/m³

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

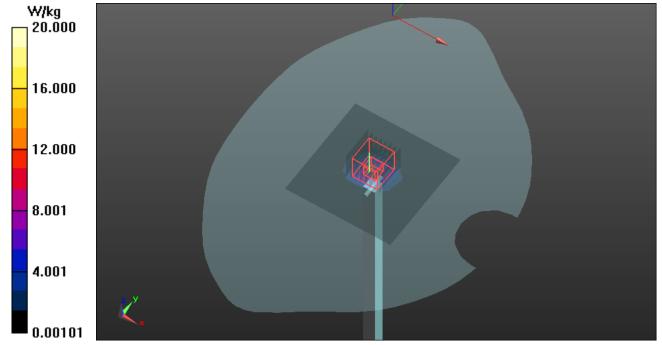
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(3.93, 3.93, 3.93); Calibrated: 7/26/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom: Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz 2/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.3 W/kg


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5500 MHz 2/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement

grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.528 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 36.4 W/kg

SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.36 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Report No. C 140505502-SF FCC ID. FLZA140

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Test Laboratory: Compliance Certification Services Inc. Date: 5/23/2014

System Performance Check- Body D5600

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.676 \text{ S/m}$; $\epsilon_r = 48.453$; $\rho = 1000 \text{ kg/m}^3$

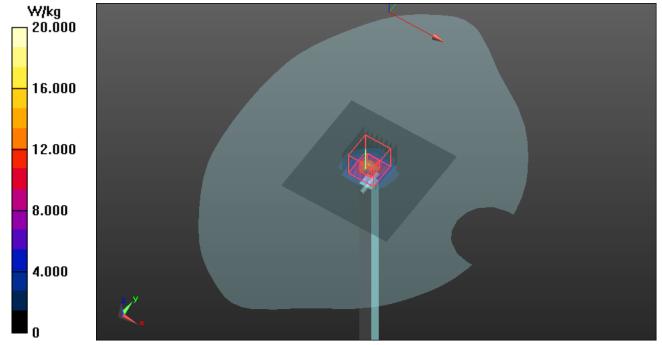
Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(3.92, 3.92, 3.92); Calibrated: 7/26/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom: Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 16.2 W/kg

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 67.165 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 39.4 W/kg

SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 20.0 W/kg

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Test Laboratory: Compliance Certification Services Inc. Date: 5/24/2014

System Performance Check- Body D5800

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1095

Communication System: CW; Communication System Band: D5GHz (5000.0 - 6000.0 MHz);

Frequency: 5800 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5800 MHz; $\sigma = 5.954 \text{ S/m}$; $\varepsilon_r = 48.066$; $\rho = 1000 \text{ kg/m}^3$

Room Ambient Temperature: 22°C; Liquid Temperature: 21.5°C

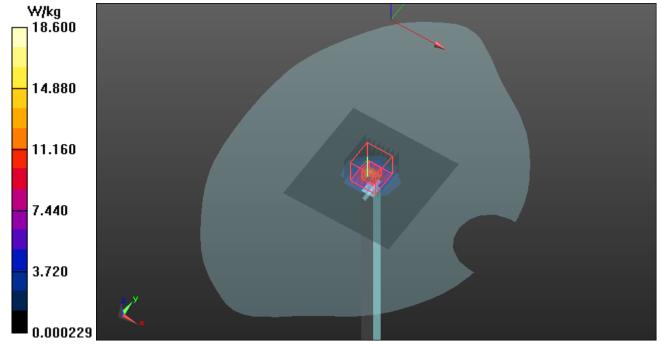
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY Configuration:

- Probe: EX3DV4 SN3798; ConvF(4.24, 4.24, 4.24); Calibrated: 7/26/2013;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom: Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Area Scan (10x10x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.6 W/kg


System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5800 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm (8x8x7)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.005 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 35.8 W/kg

SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 18.6 W/kg

APPENDIX	B: DASY	CALIBRATION	CERTIFICATE
	\mathbf{D} . \mathbf{D}		

The DASY Calibration Certificates are showing as followings .

Date of Issue :June 4, 2014

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS). The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CCS-CN (Auden)

Accreditation No.: SCS 108

C

Certificate No: D2450V2-817_Jul13

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 817

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

July 31, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	28-Dec-12 (No. ES3-3205_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Colleged of to	44.44	40.000	

Calibrated by:

Israe El-Naoug

Laboratory Technician

Approved by:

Katja Pokovic

Technical Manager

Issued: July 31, 2013

This calibration contificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-817_Jul13

Page 1 of 8

IC Certification ID: 1754F-A1401

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerlacher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di tareture
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-817_Jul13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.8 ± 6 %	1.81 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.6 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

e following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.5 ± 6 %	2.01 mho/m ± 8 %
Body TSL temperature change during test	< 0.5 °C	****	Onto.

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.6 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	49.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.87 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.1 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-817_Jul13

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω + 2.9 jΩ	
Return Loss	- 27.1 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.7 \Omega + 4.5 \Omega$
Return Loss	- 27.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.159 ns
Electrical Delay (one direction)	1.138118

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the 'Measurement Conditions' paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 23, 2007

Certificate No: D2450V2-817_Jul13

DASY5 Validation Report for Head TSL

Date: 31.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

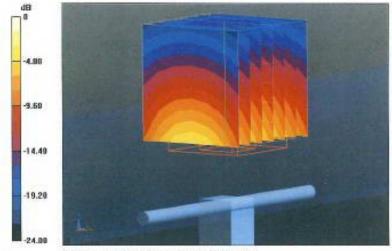
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.81 \text{ S/m}$; $\epsilon_r = 37.8$; $\rho = 1000 \text{ kg/m}^3$

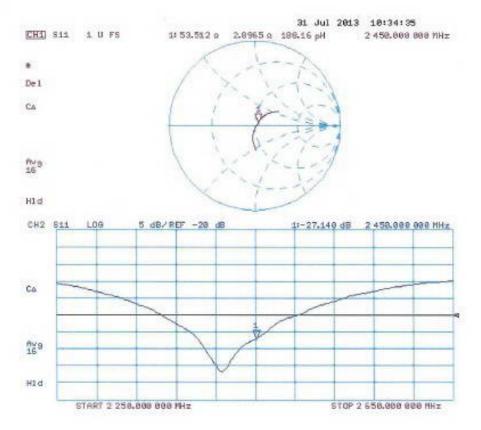
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)


DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.52, 4.52, 4.52); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.781 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 16.8 W/kg

0 dB = 16.8 W/kg = 12.25 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 31.07.2013

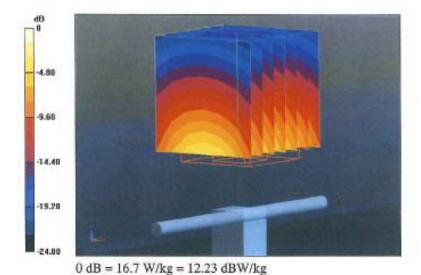
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 817

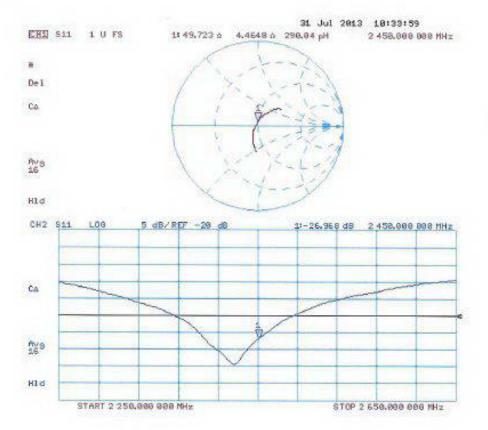
Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.01 \text{ S/m}$; $\varepsilon_r = 50.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section


Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:


- Probe: ES3DV3 SN3205; ConvF(4.42, 4.42, 4.42); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52.52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 94.151 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 26.3 W/kg SAR(1 g) = 12.6 W/kg; SAR(10 g) = 5.87 W/kg Maximum value of SAR (measured) = 16.7 W/kg

Impedance Measurement Plot for Body TSL

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CCS-CN (Auden)

Accreditation No.: SCS 108

Certificate No: D5GHzV2-1095_May13

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN: 1095

Calibration procedure(s)

QA CAL-22.v2

Calibration procedure for dipole validation kits between 3-6 GHz

Calibration date:

May 31, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Name Jeton Kastrati	Function Laboratory Technician	Signature

Issued: May 31, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: D5GHzV2-1095_May13

Page 1 of 16

IC Certification ID: 1754F-A1401

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

C Service suisse d etalonnage Servizio svizzero di taratura

Accreditation No.: SCS 108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1095_May13

Page 2 of 16

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	· V

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.5 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 3 of 16

IC Certification ID: 1754F-A1401

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.3 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.1 W / kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	4.79 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	84.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.0 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 4 of 16

IC Certification ID: 1754F-A1401

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.24 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	82.5 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.7 ± 6 %	5.11 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.86 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 5 of 16

IC Certification ID: 1754F-A1401

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.6 ± 6 %	5.41 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.08 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.4 ± 6 %	5.53 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.58 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	76.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.3 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 6 of 16

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.1 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.89 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.0 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	49.0 ± 6 %	5.80 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	77.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	+
SAR measured	100 mW input power	2.15 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 7 of 16

Body TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	48.6 ± 6 %	6.24 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.47 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.0 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1095_May13

Page 8 of 16

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.2 Ω - 6.4 jΩ
Return Loss	- 23.9 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50.2 Ω - 3.3 jΩ	
Return Loss	- 29.6 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	53.2 Ω - 2.2 jΩ	
Return Loss	28.5 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	56.0 Ω - 1.1 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	55.4 Ω - 2.8 jΩ	
Return Loss	- 24.8 dB	

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.7 Ω - 5.3 jΩ	
Return Loss	- 25.5 dB	

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	50.8 Ω - 1.5 jΩ	
Return Loss	- 35.5 dB	

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	53.8 Ω - 1.2 jΩ	
Return Loss	- 28.4 dB	

Certificate No: D5GHzV2-1095_May13

Page 9 of 16

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	56.2 Ω + 1.1 jΩ	
Return Loss	- 24.5 dB	

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	55.6 Ω + 0.3 j Ω	
Return Loss	- 25.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.208 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 24, 2010

Certificate No: D5GHzV2-1095_May13

Page 10 of 16

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

DASY5 Validation Report for Head TSL

Date: 30.05.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ S/m; $\varepsilon_r = 36.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 4.6$ S/m; $\varepsilon_r = 36.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.79$ S/m; $\varepsilon_r = 36.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.89$ S/m; $\varepsilon_r = 36$; $\rho = 1000$ kg/m³. Medium parameters used: $\sigma = 4.89$ S/m; $\sigma = 4.89$ S/m;

kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.11$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1);
 Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76);
 Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.153 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 29.3 W/kg

SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.27 W/kg

Maximum value of SAR (measured) = 18.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.596 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 8.3 W/kg; SAR(10 g) = 2.37 W/kg

Maximum value of SAR (measured) = 19.3 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 65.084 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 20.0 W/kg

Certificate No: D5GHzV2-1095_May13

Page 11 of 16

IC Certification ID: 1754F-A1401

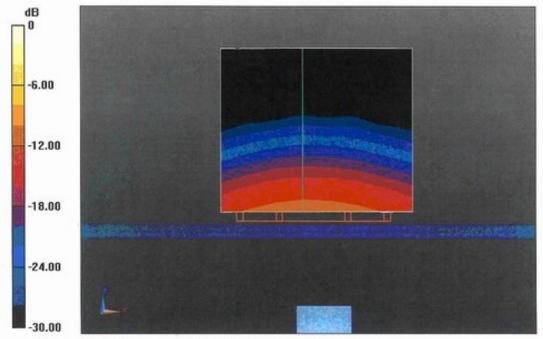
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.341 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 32.9 W/kg

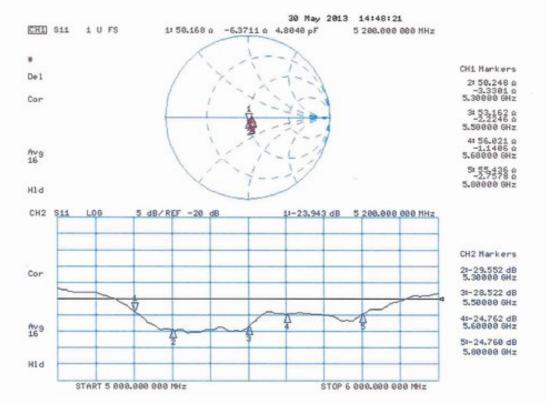
SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.34 W/kg Maximum value of SAR (measured) = 19.9 W/kg


Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 61.473 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 32.8 W/kg


SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.23 W/kg Maximum value of SAR (measured) = 19.2 W/kg

0 dB = 19.2 W/kg = 12.83 dBW/kg

IC Certification ID: 1754F-A1401

Impedance Measurement Plot for Head TSL

Report No: C140505S02-SF

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

DASY5 Validation Report for Body TSL

Date: 31.05.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1095

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.41$ S/m; $\epsilon_r = 49.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.53$ S/m; $\epsilon_r = 49.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.8$ S/m; $\epsilon_r = 49.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.8$ S/m; $\epsilon_r = 49$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.24$ S/m; $\epsilon_r = 48.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.6(1115); SEMCAD X 14.6.9(7117)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.744 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 29.0 W/kg

SAR(1 g) = 7.44 W/kg; SAR(10 g) = 2.08 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.871 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 30.4 W/kg

SAR(1 g) = 7.58 W/kg; SAR(10 g) = 2.12 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.666 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.6 W/kg

SAR(1 g) = 7.89 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

Certificate No: D5GHzV2-1095_May13

Page 14 of 16

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

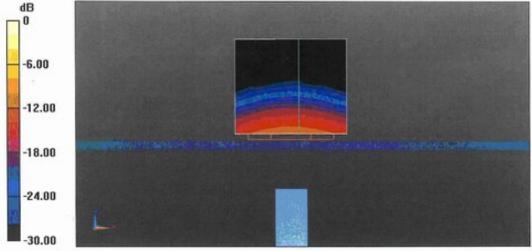
dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 58.108 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 34.2 W/kg

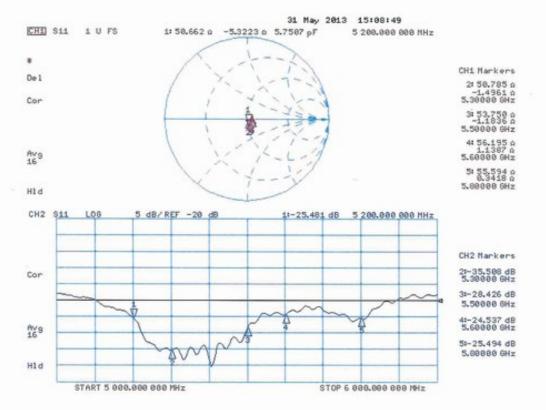
SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.15 W/kg

Maximum value of SAR (measured) = 18.5 W/kg


Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.451 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 34.6 W/kg

SAR(1 g) = 7.47 W/kg; SAR(10 g) = 2.06 W/kgMaximum value of SAR (measured) = 18.2 W/kg

0 dB = 18.2 W/kg = 12.60 dBW/kg

Impedance Measurement Plot for Body TSL

Report No: C140505S02-SF

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

1245

IMPORTANT NOTICE

USAGE OF THE DAE 4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CCS-CN (Auden)

Accreditation No.: SCS 108

Certificate No: DAE4-1245 Jul 13

CALIBRATION CERTIFICATE

Object

DAE4 - SD 000 D04 BM - SN: 1245

Calibration procedure(s)

QA CAL-06.v26

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

July 25, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (\$1). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0610278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

Calibrated by:

Name Dominique Steffen Function Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: July 25, 2013

This calibration cartificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: DAE4-1245 Jul13

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with Inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245_Jul13

Page 2 of 5

IC Certification ID: 1754F-A1401

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: Low Range:

1LSB =

6.1µV.

full range = -100...+300 mV full range = -1......+3mV

1LSB = 61nV,

DASY measurement parameters; Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Y	Z
High Range	405.940 ± 0.02% (k=2)	404.664 ± 0.02% (k=2)	405.801 ± 0.02% (k=2)
Low Range	4.00386 ± 1.50% (k=2)	3.98278 ± 1.50% (k=2)	4.02487 ± 1.50% (k=2)

Connector Angle

nector Angle to be used in DASY system	30.5°±1°	
nector Angle to be used in DASY system	30.5)°±1°

Certificate No: DAE4-1245 Jul 13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.97	-4.47	-0.00
Channel X + Input	20001.91	0.89	0.00
Channel X - Input	-19999.11	1.66	-0.01
Channel Y + Input	199994.30	-3.32	-0.00
Channel Y + Input	20001.64	0.75	0.00
Channel Y - Input	-20000.51	0.28	-0.00
Channel Z + Input	199995.90	-1.30	-0.00
Channel Z + Input	20000.30	-0.60	-0.00
Channel Z - Input	-19999.90	0.89	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.51	0.38	0.02
Channel X + Input	201.72	0.21	0.11
Channel X - Input	-198.76	-0.28	0.14
Channel Y + Input	2000.72	-0.41	-0.02
Channel Y + Input	199.98	-1.50	-0.74
Channel Y - Input	-198.85	-0.28	0.14
Channel Z + Input	2000.21	-0.84	-0.04
Channel Z + Input	200.77	-0.56	-0.28
Channel Z - Input	-199.95	-1.29	0.65
		1	

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-8.24	-10.01
3	- 200	10.27	8.63
Channel Y	200	-7.32	-7.74
	- 200	6.53	6.34
Channel Z	200	-5.94	-6.42
	- 200	- 5.13	4.65

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200	-	4.16	-2.61
Channel Y	200	8.79		3.99
Channel Z	200	9.96	7.22	-

Certificate No: DAE4-1245_Jul13

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15874	16183
Channel Y	16451	15694
Channel Z	15932	15717

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.94	-0.24	2.04	0.48
Channel Y	-0.42	-1.91	0.54	0.47
Channel Z	-0.83	-2.62	0.57	0.60

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

FCC ID: HLZA1401

Date of Issue :June 4, 2014

IC Certification ID: 1754F-A1401

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstresse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CCS-CN (Auden)

Accreditation No.: SCS 108

Certificate No: EX3-3798_Jul13

C

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3798

Calibration procedure(s)

QA CAL-01.v8, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v4

Calibration procedure for dosimetric E-field probes

Calibration date:

July 26, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	04-Apr-13 (No. 217-01733)	Apr-14
Power sensor E4412A	MY41498087	04-Apr-13 (No. 217-01733)	Apr-14
Reference 3 dB Attenuator	SN: S5054 (3c)	04-Apr-13 (No. 217-01737)	Apr-14
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-13 (No. 217-01735)	Apr-14
Reference 30 dB Attenuator	SN: S5129 (30b)	04-Apr-13 (No. 217-01738)	Apr-14
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-15
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:

Name
Function
Signature
Laboratory Technician

Pull

Approved by:

Katja Pokovic
Technical Manager

Issued: July 26, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3798_Jul13

Page 1 of 11

Calibration Laboratory of Schmid & Partner Engineering AG

Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z

ConvF DCP

tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

CF A. B. C. D

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

φ rotation around probe axis

Polarization @ Polarization &

9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
- Techniques", December 2003
 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3798 Jul 13

Page 2 of 11

EX3DV4 - SN:3798

July 26, 2013

Probe EX3DV4

SN:3798

Manufactured: April 5, 2011

Calibrated: July 26, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3798_Jul13

Page 3 of 11

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m) ²) ^A	0.54	0.51	0.59	± 10.1 %
DCP (mV) ⁸	95.9	98.8	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	164.4	±3.0 %
		Y	0.0	0.0	1.0		168.1	-
		Z	0.0	0.0	1.0		130.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3798_Jul13

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

<sup>Numerical linearization parameter: uncortainty not required.

Uncortainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the</sup>

IC Certification ID: 1754F-A1401

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^G	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	9.16	9.16	9.16	0.35	0.94	± 12.0 %
900	41.5	0.97	9.01	9.01	9.01	0.35	0.93	± 12.0 %
1810	40.0	1.40	7.79	7.79	7.79	0.73	0.59	± 12.0 %
1900	40.0	1.40	7.73	7.73	7.73	0.68	0.62	± 12.0 %
2000	40.0	1.40	7.73	7.73	7.73	0.80	0.58	± 12.0 %
2450	39.2	1.80	7.08	7.08	7.08	0.66	0.62	± 12.0 %
5200	36.0	4.66	4.85	4.85	4.85	0.37	1.80	± 13.1 %
5300	35.9	4.76	4.71	4.71	4.71	0.38	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.36	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.42	1.80	± 13.1 %
5800	35.3	5.27	4.48	4.48	4.48	0.40	1.80	± 13.1 %

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

Certificate No: EX3-3798_Jul13

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3798

July 26, 2013

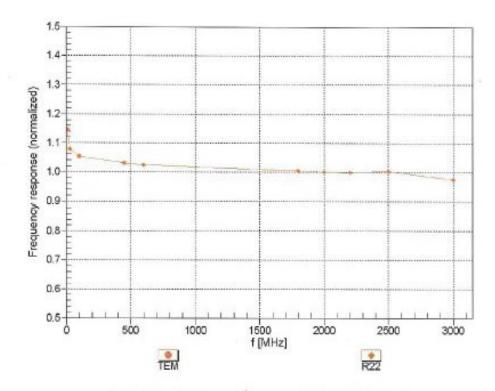
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	9.27	9.27	9.27	0.49	0.84	± 12.0 %
900	55.0	1.05	9.11	9.11	9.11	0.80	0.62	± 12.0 %
1810	53.3	1.52	7.45	7.45	7.45	0.37	0.88	± 12.0 %
1900	53.3	1.52	7.32	7.32	7.32	0.37	0.86	± 12.0 %
2000	53.3	1.52	7.54	7.54	7.54	0.29	1.01	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.80	0.57	± 12.0 %
5200	49.0	5.30	4.38	4.38	4.38	0.41	1.90	± 13.1 %
5300	48.9	5.42	4.22	4.22	4.22	0.41	1.90	± 13.1 %
5500	48.6	5.65	3.93	3.93	3.93	0.46	1.90	± 13.1 %
5600	48.5	5.77	3.92	3.92	3.92	0.38	1.90	± 13.1 %
5800	48.2	6.00	4.24	4.24	4.24	0.46	1.90	± 13.1 %

Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

Certificate No: EX3-3798_Jul13


of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies below 3 GHz, the validity of tissue parameters (c and o) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and o) is restricted to ± 5%. The uncertainty is the RSS of the CorwF uncertainty for indicated target tissue parameters.

EX3DV4-SN:3798

July 26, 2013

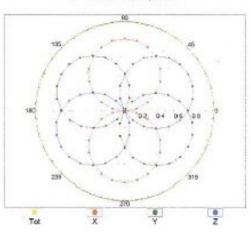
Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

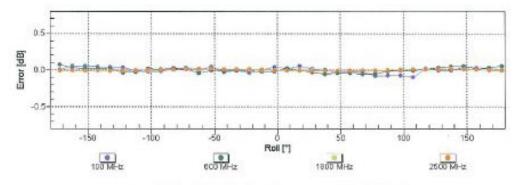
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3798_Jul13

Page 7 of 11

EX3DV4-SN:3798

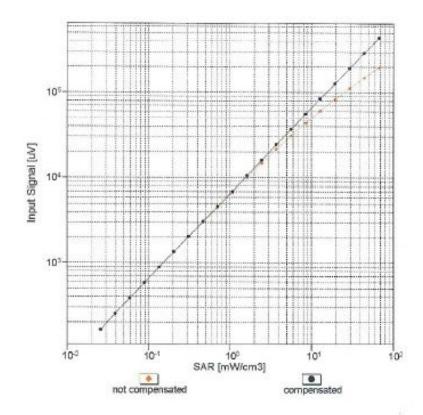

July 26, 2013

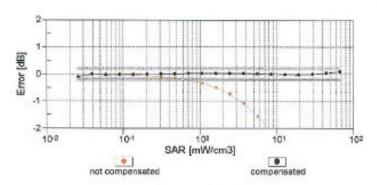

Receiving Pattern (\$\phi\$), 9 = 0°

f=600 MHz,TEM

Tot

f=1800 MHz,R22



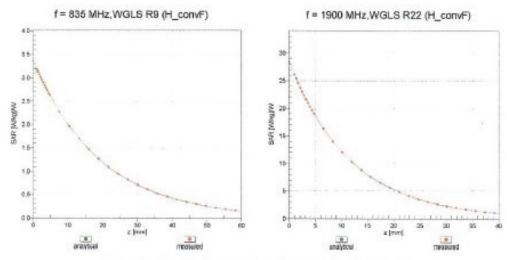

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

EX3DV4-SN:3798

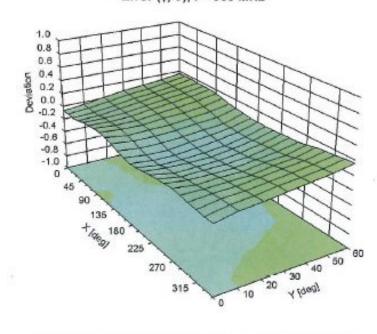
July 26, 2013

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: EX3-3798_Jul13

Page 9 of 11


EX3DV4-SN:3798

July 26, 2013

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (¢, 9), f = 900 MHz

Certificate No: EX3-3798_Jul13

Page 10 of 11

EX3DV4-SN:3798

July 26, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-42,4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3798_Jul13

Page 11 of 11

APPENDIX C: PLOT	S OF SAR	TEST RESULT
------------------	----------	-------------

The plots are showing in the file named Appendix C Plots of SAR Test Result

END REPORT