VERITAS Curtis-Straus LLC, a wholly owned subsidiary of BV CPS

Report No EM2102-17

Client Balluff, Inc. Jim Ramler

Address 8125 Holton Drive

Florence, KY 41042

Phone (859) 727 - 2200

Items tested BIS L-40x Series 4

Standards 47 CFR FCC Part 15.207, 47 CFR FCC Part 15.209, RSS-Gen Issue 4

Test Dates June 12, July 15 and August 2 and 5, 2013

Results As detailed within this report

Prepared by

Tuyen Truong A. - Test Engineer

wydrang

Authorized by

Arik Zwirner – EMC Senior Engineer

Issue Date

December 21, 2015

Conditions of Issue

This Test Report is issued subject to the conditions stated in the 'Conditions of Testing' section on page 22 of this report.

Curtis-Straus LLC is accredited by the American Association for Laboratory Accreditation for the specific scope of accreditation under Certificate Number 1627-01. This report may contain data which is not covered by the A2LA accreditation.





# **Contents**

| Contents                              | 2 |
|---------------------------------------|---|
| Regulatory Information                |   |
| Summary                               |   |
| Product Tested                        |   |
| Configuration Documentation           |   |
| Compliance Statement                  |   |
| Modifications Required for Compliance |   |
| RADIATED EMISSIONS                    |   |
| CONDUCTED EMISSIONS                   |   |
| OCCUPIED BANDWIDTH                    |   |
| Measurement Uncertainty               |   |
| Conditions Of Testing                 |   |
| Appendix A: Non-Evaluated Data        |   |
|                                       |   |

REV 14-AUG-13 (SC)



Regulatory Information

| FRN number | 0006334478     |
|------------|----------------|
| FCC ID     | HLH-BISL409    |
| IC         | 12121A-BISL409 |

Issue No.

Reason for change Original Release Date Issued

December 21, 2015





page 3 of 24

Summary

On June 12, July 15 and August 2 and 5, 2013 we tested the BIS L-40x Series 4 for compliance with the following requirements:

#### **EMC Emissions:**

- CFR 47 FCC Part 15.207 Conducted limits
- CFR 47 FCC Part 15.209 Radiated emission limits; general requirements
- RSS-Gen Issue 4 General Requirements and Information for the Certification of Radio Apparatus

Product is an RFID system which operates at 125 KHz.

EUT emissions were maximized by rotating product around its axis and around 3 orthogonal axes. EUT antenna could not be maximized separately.

AC Mains conducted emissions was performed on AC side of AC/DC power supply (support equipment) power supply using a  $50\Omega/50\mu H$  LISN.

Spectrum analyzer settings for conducted and radiated emissions tests were 120kHz RBW & 1MHz VBW for 30-1000MHz, 9kHz RBW & 30kHz VBW for 150kHz-30MHz, and 1kHz RBW (in lieu of 200Hz RBW) & 3kHz RBW below 150kHz.

Test methods are compliant with ANSI C63.10-2009 and ANSI C63.10-2013.

We found that the product met the above requirements without modification. The test sample was received in good condition. The sample was received on June 12, 2013.

Issue No.

Reason for change Original Release

Date Issued December 21, 2015



# **Product Tested**

# **Configuration Documentation**

|                                                                            |                                                                                                |                                       | EUT              | Configurat | tion     |          |        |                    |                     |                    |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------|------------------|------------|----------|----------|--------|--------------------|---------------------|--------------------|
| Company Addres                                                             | er: M2102<br>y: Balluff, Inc.<br>ss: 8125 Holton Drive<br>Florence, KY 41042<br>ct: Jim Ramler |                                       |                  |            |          |          |        |                    |                     |                    |
|                                                                            |                                                                                                | MN                                    |                  |            |          |          |        | SN                 |                     |                    |
| EUT Descriptio<br>EUT Descriptio<br>EUT Max Frequenc<br>EUT TX Frequenc    |                                                                                                |                                       |                  |            | Sample 1 |          |        |                    |                     |                    |
| Support Equipment:                                                         |                                                                                                | MN                                    |                  |            |          |          |        | SN                 |                     |                    |
| Balluff BNI<br>Sunny Power Adapter<br>Tag                                  | S                                                                                              | 3-901000-/<br>YS1308-24<br>S C-150-32 | 24               |            |          |          | G      | <br>1203020621<br> | 64                  |                    |
| EUT Ports:                                                                 |                                                                                                |                                       |                  |            |          |          |        |                    |                     |                    |
| Port Label                                                                 | Port Type                                                                                      | No. of ports                          | No.<br>Populated | Cable Type | Shielded | Ferrites | Length | Max<br>Length      | In/Out<br>NEBS Type | Unpopulated Reason |
| Power/COM                                                                  | 4-pin Power/COM                                                                                | 1                                     | 1                | 4-wires    | yes      | None     | 1m     | na                 | indoor              |                    |
| tware / Operating Mode Description<br>rered on at 24VDC and transmits in 1 |                                                                                                |                                       |                  |            |          |          |        |                    |                     |                    |



# **Compliance Statement**

| TEST                               | RESULT | STANDARD                              | TEST LEVEL | Margin              | Comments                                           |
|------------------------------------|--------|---------------------------------------|------------|---------------------|----------------------------------------------------|
| Radiated<br>Emissions              | PASS   | 47 CFR FCC Part<br>15.209,<br>RSS GEN | FCC 15.209 | -4.3dB @<br>37.3MHz |                                                    |
| AC Mains<br>Conducted<br>Emissions | PASS   | 47 CFR FCC Part<br>15.207,<br>RSS GEN | FCC 15.207 | -7.6dB @<br>3.67MHz | AC side of<br>support DC<br>Power Supply<br>tested |
| Occupied<br>Bandwidth              | DONE   | Industry Canada                       | RSS 210    |                     |                                                    |

# Modifications Required for Compliance

There were no modifications required for compliance.



### RADIATED EMISSIONS

### **Test Method:**

In accordance with the following:

- CFR 47 FCC Part 15.209
- RSS-Gen Issue 4

### Results:

| TEST                  | RESULT | TEST LEVEL | MARGIN              | COMMENTS |
|-----------------------|--------|------------|---------------------|----------|
| Radiated<br>Emissions | PASS   | FCC 15.209 | -4.3dB @<br>37.3MHz |          |



# Radiated Emissions Data Table(s):

| Date:        | 02-Aug-13                 |         | Company:                          | Balluff, Inc              |        |          |                           |                                        |             | W          | ork Order:        | M2102       |
|--------------|---------------------------|---------|-----------------------------------|---------------------------|--------|----------|---------------------------|----------------------------------------|-------------|------------|-------------------|-------------|
| Engineer:    | Arik Zwirner              |         | EUT Desc: BIS L-409-045-001-07-S4 |                           |        |          |                           | EUT Operating Voltage/Frequency: 24VDC |             |            |                   |             |
| Temp:        | 24°C                      |         | Humidity:                         | Humidity: 42% Pressure: 1 |        |          |                           | nBar                                   |             |            |                   |             |
|              | Frequency Range: 125kHz   |         |                                   |                           |        |          | Measurement Distance: 1 m |                                        |             |            |                   |             |
| Notes        |                           |         |                                   |                           |        |          |                           |                                        |             |            |                   |             |
| Antenna      |                           |         | Preamp                            | Antenna                   | Cable  | Adjusted |                           | FCC 15.209                             |             |            |                   | ı           |
| Polarization | Frequency                 | Reading | Factor                            | Factor                    | Factor | Reading  | Limit                     | Margin                                 | Result      | Limit      | Margin            | Result      |
| (0° - 90°)   | (MHz)                     | (dBµV)  | (dB)                              | (dB/m)                    | (dB)   | (dBµV/m) | (dBµV/m)                  | (dB)                                   | (Pass/Fail) | (dBµV/m)   | (dB)              | (Pass/Fail) |
|              | 0.125                     | 44.0    | 0.0                               | 50.0                      | 0.1    | 94.1     |                           |                                        |             | 124.7      | -30.6             | Pass        |
| 0            |                           |         | 0.0                               | 50.0                      | 0.1    | 89.0     |                           |                                        |             | 124.7      | -35.7             | Pass        |
| 0<br>90      | 0.125                     | 38.9    | 0.0                               |                           |        |          |                           |                                        |             |            |                   |             |
| 90           | 0.125<br>e <b>Result:</b> | Pass    | by                                | -30.6                     | dB     |          |                           |                                        | Wo          | orst Freq: | 0.125             | MHz         |
| 90<br>Tabl   |                           | Pass    | by                                |                           | dB     |          |                           | Cable 2:                               |             | orst Freq: | 0.125<br>Cable 3: |             |

| Rev.7/25/2013                                 |                |                    |           |            |       |     |                        |
|-----------------------------------------------|----------------|--------------------|-----------|------------|-------|-----|------------------------|
| Spectrum Analyzers / Receivers / Preselectors | Range          | MN                 | Mfr       | SN         | Asset | Cat | <b>Calibration Due</b> |
| Gold                                          | 100Hz-26.5 GHz | E4407B             | Agilent   | MY45113816 | 1284  | I   | 3/18/2014              |
| Radiated Emissions Sites                      | FCC Code       | IC Code            | VCCI Code | Range      |       | Cat | Calibration Due        |
| 1DCC-OATS-3M-II                               | 719150         | 2762A-10           | A-0015    | 30-1000MHz |       | II  | 5/11/2015              |
| Antennas                                      | Range          | MN                 | Mfr       | SN         | Asset | Cat | Calibration Due        |
| Large Loop                                    | 20Hz-5MHz      | 6511               | EMCO      | 9704-1154  | 67    | I   | 4/27/2014              |
| Cables                                        | Range          |                    | Mfr       |            |       | Cat | Calibration Due        |
| REMI-13                                       | 9kHz - 2GHz    |                    | C-S       |            |       | II  | 10/15/2013             |
| Meteorological Meters                         |                | MN                 | Mfr       | SN         | Asset | Cat | Calibration Due        |
| Temp./Humidity/Atm. Pressure Gauge            |                | 7400 Perception II | Davis     | N/A        | 965   | - 1 | 5/29/2014              |

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

| Engineer: N                |                    |                   | company:       | Balluff Inc               |                                        |                     |                   |                |                                       | W                 | Vork Order:    | M2102                 |
|----------------------------|--------------------|-------------------|----------------|---------------------------|----------------------------------------|---------------------|-------------------|----------------|---------------------------------------|-------------------|----------------|-----------------------|
|                            | Nirak So           |                   | EUT Desc:      | BIS L-409-                | -045-001-07-S4 EUT Operating Voltage/F |                     |                   |                | EUT Operating Voltage/Frequency: 24VD |                   |                |                       |
| Temp: 2                    | Temp: 24.5°C       |                   |                | 38%                       |                                        | Pressure:           | 1009mBar          |                |                                       |                   |                |                       |
|                            | Freque             | ncy Range:        | 9KHz to 1      | ИHz                       |                                        |                     |                   |                | Measureme                             | nt Distance:      | 3 m            |                       |
| Notes:                     |                    |                   |                |                           |                                        |                     |                   |                | EU                                    | Г Max Freq:       | 18.432 MHz     |                       |
| Antenna                    |                    |                   | Preamp         | np Antenna Cable Adjusted |                                        |                     |                   |                |                                       | FCC 15.209        | ,              |                       |
| Polarization<br>(0° - 90°) | Frequency<br>(MHz) | Reading<br>(dBµV) | Factor<br>(dB) | Factor<br>(dB/m)          | Factor<br>(dB)                         | Reading<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result<br>(Pass/Fail)                 | Limit<br>(dBµV/m) | Margin<br>(dB) | Result<br>(Pass/Fail) |
| 90<br>0                    | 0.125<br>0.126     | 51.0<br>50.0      | 22.5<br>22.5   | 50.0<br>50.0              | 0.0<br>0.0                             | 78.5<br>77.5        |                   |                |                                       | 105.7<br>105.7    | -27.2<br>-28.2 | pass<br>pass          |
| Table                      | Result:            | Pass              | by             | -27.2                     | dB                                     |                     |                   |                | Wo                                    | orst Freq:        | 0.125          | MHz                   |



| Rev.7/12/2013 Spectrum Analyzers / Receivers / Preselectors SA EMI Chamber (1327)   | <b>Range</b><br>9kHz-13.2 GHz | <b>MN</b><br>E4405B             | <b>Mfr</b><br>Agilent                       | <b>SN</b><br>MY45103416          | <b>Asset</b> 1327     | Cat<br>I     | Calibration Due<br>5/30/2014               |
|-------------------------------------------------------------------------------------|-------------------------------|---------------------------------|---------------------------------------------|----------------------------------|-----------------------|--------------|--------------------------------------------|
| Radiated Emissions Sites<br>1DCC-OATS-3M-I                                          | <b>FCC Code</b> 719150        | IC Code<br>2762A-8              | VCCI Code<br>A-0015                         | Range<br>30-1000MHz              |                       | Cat<br>II    | Calibration Due<br>5/17/2015               |
| Preamps/Couplers Attenuators / Filters<br>Blue                                      | <b>Range</b> 0.009-2000MHz    | MN<br>ZFL-1000-LN               | Mfr<br>CS                                   | SN<br>N/A                        | Asset<br>759          | Cat<br>II    | Calibration Due<br>5/31/2014               |
| Antennas<br>Large Loop                                                              | <b>Range</b><br>20Hz-5MHz     | <b>MN</b><br>6511               | Mfr<br>EMCO                                 | <b>SN</b><br>9704-1154           | Asset<br>67           | Cat<br>I     | Calibration Due<br>4/27/2014               |
| Cables<br>REMI-05                                                                   | <b>Range</b><br>9kHz - 2GHz   |                                 | Mfr<br>C-S                                  |                                  |                       | Cat<br>II    | Calibration Due<br>10/15/2013              |
| Meteorological Meters Weather Clock (Pressure Only) 1DCC-OATS-3M-I Thermohygrometer |                               | <b>MN</b><br>BA928<br>35519-044 | Mfr<br>Oregon Scientific<br>Control Company | <b>SN</b><br>C3166-1<br>72457635 | <b>Asset</b> 831 1334 | Cat<br> <br> | <b>Calibration Due</b> 3/20/2014 8/19/2013 |

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

| Date:                      | 15-Jul-13                  |                   | Company:            | Balluff, Inc     |                |                     |                                    |                |                       | 1                 | Vork Order:    | M2102                 |  |
|----------------------------|----------------------------|-------------------|---------------------|------------------|----------------|---------------------|------------------------------------|----------------|-----------------------|-------------------|----------------|-----------------------|--|
| Engineer:                  | Nirak So                   |                   | EUT Desc:           | BIS L-409-       | 045-001-0      | )7-S4               | EUT Operating Voltage/Frequency: 2 |                |                       |                   | 24VDC          |                       |  |
| Temp: 24.5°C               |                            |                   | Humidity:           | 38%              |                | Pressure:           | 1009mBar                           | ar             |                       |                   |                |                       |  |
|                            | Freque                     | ncy Range:        | 1 to 30MH           | Z                |                |                     |                                    |                | Measureme             | nt Distance:      | 3 m            |                       |  |
| Notes:                     |                            |                   |                     |                  |                |                     |                                    |                | EU                    | Γ Max Freq:       | 18.432 MHz     |                       |  |
| Antenna                    |                            |                   | Preamp              | Antenna          | Cable          | Adjusted            |                                    | -              |                       |                   | FCC 15.209     |                       |  |
| Polarization<br>(0° - 90°) | Frequency<br>(MHz)         | Reading<br>(dBµV) | Factor<br>(dB)      | Factor<br>(dB/m) | Factor<br>(dB) | Reading<br>(dBµV/m) | Limit<br>(dBµV/m)                  | Margin<br>(dB) | Result<br>(Pass/Fail) | Limit<br>(dBµV/m) | Margin<br>(dB) | Result<br>(Pass/Fail) |  |
| o emission w               | <br>ere found.<br>         |                   |                     |                  |                |                     |                                    |                |                       |                   |                |                       |  |
| Tabl                       | e Result:                  |                   | by                  | I                | dB             |                     | ı                                  |                | We                    | orst Freq:        |                | MHz                   |  |
|                            | 1DCC-OATS-3<br>Asset #1327 | BM-I              | Cable 1:<br>Preamp: | EMIR-05          |                |                     |                                    | Cable 2:       | <br>Sm Loop (hic      |                   | Cable 3:       |                       |  |

| Rev.7/12/2013                                 |               |             |                   |            |       |     |                        |
|-----------------------------------------------|---------------|-------------|-------------------|------------|-------|-----|------------------------|
| Spectrum Analyzers / Receivers / Preselectors | Range         | MN          | Mfr               | SN         | Asset | Cat | <b>Calibration Due</b> |
| SA EMI Chamber (1327)                         | 9kHz-13.2 GHz | E4405B      | Agilent           | MY45103416 | 1327  | I   | 5/30/2014              |
| Radiated Emissions Sites                      | FCC Code      | IC Code     | VCCI Code         | Range      |       | Cat | Calibration Due        |
| 1DCC-OATS-3M-I                                | 719150        | 2762A-8     | A-0015            | 30-1000MHz |       | II  | 5/17/2015              |
| Preamps /Couplers Attenuators / Filters       | Range         | MN          | Mfr               | SN         | Asset | Cat | Calibration Due        |
| Blue                                          | 0.009-2000MHz | ZFL-1000-LN | CS                | N/A        | 759   | II  | 5/31/2014              |
| Antennas                                      | Range         | MN          | Mfr               | SN         | Asset | Cat | Calibration Due        |
| Small Loop                                    | 10kHz-30MHz   | PLA-130/A   | ARA               | 1024       | 755   | I   | 4/27/2014              |
| Cables                                        | Range         |             | Mfr               |            |       | Cat | Calibration Due        |
| REMI-05                                       | 9kHz - 2GHz   |             | C-S               |            |       | II  | 10/15/2013             |
| Meteorological Meters                         |               | MN          | Mfr               | SN         | Asset | Cat | Calibration Due        |
| Weather Clock (Pressure Only)                 |               | BA928       | Oregon Scientific | C3166-1    | 831   | - 1 | 3/20/2014              |
| 1DCC-OATS-3M-I Thermohygrometer               |               | 35519-044   | Control Company   | 72457635   | 1334  | II  | 8/19/2013              |

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.





**Radiated Emissions Table** Company: Balluff, Inc. Date: 05-Aug-13 Work Order: M2102 Engineer: Arik Zwirner EUT Desc: BIS L-409-045-001-07-S4 EUT Operating Voltage/Frequency: 24VDC Temp: 24°C Humidity: 44% Pressure: 1008mBar Frequency Range: 30-1000MHz Measurement Distance: 3 m Notes: EUT Max Freq: 18.432MHz FCC 15.209 Cable Adjusted Antenna Preamp Antenna Reading Reading Polarization Frequency Factor Limit Result Limit Result Factor Factor Margin Margin (H/V) (dBµV) (dBµV/m) (dBµV/m) (Pass/Fail) (dBµV/m) (Pass/Fail) (MHz) (dB) (dB/m) (dB) (dB) (dB) 37.3 42.3 22.5 15.4 35.7 40.0 -4.3 Pass ٧ 44.6 45.3 22.5 10.2 0.5 33.5 40.0 -6.5 Pass 54.3 41.9 22.5 7.1 0.6 27.1 40.0 -12.9 Pass 66.4 22.5 40.0 44.7 7.9 0.6 30.7 -9.3 Pass 47.3 Н 177.9 22.4 11.1 0.9 36.9 43.5 -6.6 Pass 262.9 42.1 33.5 -12.5 Pass 22.5 12.6 ------46.0 1.3 ---296.8 45.1 22.5 13.3 1.2 37.1 46.0 -8.9 Pass Н 335.6 -10.9 42.4 22.6 14.0 35.1 46.0 Pass Pass Table Result: by -4.3 dB Worst Freq: 37.3 MHz Test Site: EMI Chamber 1 Cable 1: Asset #1781 Cable 2: Asset #1785 Antenna: Red-Brown Analyzer: Gold Preamp: Blue

| Rev.7/25/2013                                 |                |             |                   |            |       |     |                 |
|-----------------------------------------------|----------------|-------------|-------------------|------------|-------|-----|-----------------|
| Spectrum Analyzers / Receivers / Preselectors | Range          | MN          | Mfr               | SN         | Asset | Cat | Calibration Due |
| Gold                                          | 100Hz-26.5 GHz | E4407B      | Agilent           | MY45113816 | 1284  | I   | 3/18/2014       |
| Radiated Emissions Sites                      | FCC Code       | IC Code     | VCCI Code         | Range      |       | Cat | Calibration Due |
| EMI Chamber 1                                 | 719150         | 2762A-6     | A-0015            | 30-1000MHz |       | II  | 2/16/2014       |
| Preamps/Couplers Attenuators / Filters        | Range          | MN          | Mfr               | SN         | Asset | Cat | Calibration Due |
| Blue                                          | 0.009-2000MHz  | ZFL-1000-LN | CS                | N/A        | 759   | II  | 5/31/2014       |
| Antennas                                      | Range          | MN          | Mfr               | SN         | Asset | Cat | Calibration Due |
| Red-Brown Bilog                               | 30-2000MHz     | JB1         | Sunol             | A0032406   | 1218  | I   | 1/8/2015        |
| Cables                                        | Range          |             | Mfr               |            |       | Cat | Calibration Due |
| Asset #1781                                   | 9kHz - 18GHz   |             | Florida RF        |            |       | Ш   | 3/6/2014        |
| Asset #1785                                   | 9kHz - 18GHz   |             | Florida RF        |            |       | II  | 3/14/2014       |
| Meteorological Meters                         |                | MN          | Mfr               | SN         | Asset | Cat | Calibration Due |
| Weather Clock (Pressure Only)                 |                | BA928       | Oregon Scientific | C3166-1    | 831   | - 1 | 3/20/2014       |
| CHAMBER1 Thermohygrometer                     |                | 35519-044   | Control Company   | 72457642   | 1345  | П   | 8/19/2013       |
| 7,3                                           |                |             | , ,               |            |       |     |                 |

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

### **Radiated Emissions Modifications:**

None





**Radiated Emissions Testing Overview** 

REV 10-APR-09

Digital and microprocessor based devices use radio frequency (RF) digital signals for timing purposes. An unintentional consequence of this signal usage is that a certain amount of RF energy is radiated from the device into the local environment. This radiated RF energy has the potential to interfere with constructive uses of the RF spectrum such as television broadcasting, police and fire radio, and the like. In order to reduce the likelihood that a device will interfere with these services, it is required that the amplitudes of radiated RF signals from the device are kept below an allowable level.

These RF signals decrease in strength as the distance from the source increases. Thus if the potential victim of interference, e.g. a TV receiver, is far enough from the radiator, e.g. a computer, then no interference will occur. For certain environments it is appropriate to expect that potential interference victims will be located at least a minimum distance from the radiator. For the residential environment this distance is generally accepted to be 10 meters while in the commercial environment the accepted distance is 30 meters. The allowable emissions levels are therefore specified to protect equipment which is located further than that distance from the radiator. In general, radiation from the Equipment Under Test (EUT) is measured at 3 or 10 meters to insure that it is at or below allowable levels.

Measurements of the radiated energy are made by recording the field strength indicated by an antenna placed at a specific distance from the device. Most devices do not radiate the RF energy in a predictable manner. The emitted energy may vary with changes in operating mode, physical configuration, or orientation. During the measurement process these parameters are varied to confirm that the emissions will remain below the allowable levels in the range of typical installations.

The extent of annoyance experienced by a person who is being affected by interference is related to the persistence of the interfering signal. For example, a low level steady whine from a receiver is considered to be more annoying than brief, loud, intermittent pops or clicks. This "human factor" is accounted for by the use of a "quasi-peak" detector in the receiver or spectrum analyzer which measures the signal from the measurement antenna. The detector is a weighted averaging filter with a fast charge time and a slow discharge time. Thus steady continuous signals will charge the quasi-peak detector fully while intermittent signals (those with pulse repetition rates less than 1kHz) are reported at a level which can be significantly below their peak level. It should be noted that most RF signals produced by digital devices are continuous in nature and thus the quasi-peak reading will be identical to the peak signal reading. To reduce the test time, the peak emission level is recorded for continuous wave signals as it is the same as the quasi-peak signal level.

Testing is performed according to test methods from ANSI C63.4 and CISPR 22.

The test site used for measuring radiated emissions follows the format developed internationally for a weather protected Open Area Test Site (OATS). The test site used for measuring radiated emissions above 1GHz for CISPR limits is a Free Space Open Area Test





\_\_\_\_\_

Site (FSOATS). An antenna mast is installed at the specified distance from a rotating table and is used to raise and lower the measuring antenna. The reference site is clear of reflecting objects, such as metal fences and buildings for an ellipse of twice the measurement test distance. Measuring equipment and personnel are present within the ellipse to facilitate cable manipulation, but measures are taken to minimize the effects. Often preliminary radiated emissions measurements are made at alternate test sites which do not meet the clear space reference criteria. The data collected at alternate test sites is not considered conclusive unless the alternate site also complies with a volumetric site attenuation survey performed over the area that the EUT occupies. The EUT and measuring antenna mark the two foci of the ellipse. The ground plane is made of a combination of galvanized steel sheets and tight wire mesh electrically connected along the seams. This metal ground plane extends 1 meter beyond the furthest extent of the EUT and the measuring antenna. It also covers the area between the EUT and the measuring antenna. The hardware cloth is connected to the utility ground or to stakes driven into the earth for safety. The site configuration for CISPR testing above 1GHz is a semianechoic chamber. The ground plane in the test volume is covered by an absorbing material between the antenna and the EUT. In the case of table top equipment, the absorbing material is also placed under the table. In the case of floor-standing equipment the absorbing material extends up from the ground plane 30cm into the test volume, and surrounds the EUT by at most 10cm from the footprint of the equipment.

In order for accurate emissions measurements to be made the test site must possess propagation characteristics which fall within accepted norms. The site has been checked for suitability using techniques specified in American National Standards Institute (ANSI) document C63.4. This document details a procedure which measures the attenuation of the site which is the chief indicator of site acceptability. The theory behind site attenuation is quite simple. A transmitting antenna is set up at a fixed location at one end of the site with a receiving antenna at the other end. If a signal of some arbitrary amplitude is fed into the transmitting antenna, a lesser amount of signal ought to be measured at the receiving antenna. This difference in signal amplitude is known as the site attenuation, which should follow a predicted curve. Data that does not correspond to the predicted site attenuation curve points to a problem with either the equipment being used or the physical characteristics of the site.

Actual emissions measurements are taken with broadband biconical-log-periodic hybrid antennas calibrated in accordance with the standard site method detailed in ANSI C63.5. Emissions are measured with the receiving antenna oriented in horizontal and vertical polarization with respect to the ground plane. If measurements are made at other than the limit distance, then the readings obtained are scaled to the limit distance using an inverse relationship. The actual test distance used is noted in the report.

The antenna mast is capable of a varying the antenna height between 1 and 4 meters above the ground plane. The receiving antenna is moved over this range at each emission frequency in order to record the maximum observed signal. The mast is non-conductive and remotely controllable. The test distance is measured from the antenna center (marked during calibration) and the periphery of the EUT.

The Equipment Under Test (EUT) is rotated in order to maximize emissions during the test. For equipment intended to operate on a tabletop or desk radiated tests are conducted on a





\_\_\_\_

0.8 meter high, non-conductive platform. Larger floor standing equipment is tested on a floor mounted rotatable platform. In some cases, large equipment on its own casters may be tested without a platform.

Since radiated emissions are a function of cable placement, the cable placement is varied to encompass typical configurations that an end user might encounter to determine the configuration resulting in maximum emissions. At least one cable for each I/O port type is attached to the EUT. If peripherals or modules are available, at least one of each available type is installed and noted in the report. Excess cable length beyond one meter is bundled in the center into a 30 to 40 cm bundle. Cables requiring non-standard lead dress are recorded in the report.

Network connections are simulated if necessary. Any simulator used matches the expected real network connection in terms of both functionality and impedance. For distributed systems, the support equipment may be placed at such a distance that it does not influence the measured emissions. If this option is used, such placement is noted in the test report.

The possible operating modes of the EUT are explored to determine the configuration which maximizes emissions. Software is investigated as well as different methods of displaying data if available. Data is recorded in the worst case operating mode.

At least the six highest emissions with respect to the limit are recorded. If less than six emissions are visible above the noise floor of the instrumentation, then noise floor measurements at six representative frequencies are recorded. The test report will document if noise floor readings are reported.

| FCC and European Norms Radiated Emissions Limits at 10 meters |                         |                         |               |               |                 |  |  |  |
|---------------------------------------------------------------|-------------------------|-------------------------|---------------|---------------|-----------------|--|--|--|
| Frequency (MHz)                                               | FCC Class A             | FCC Class B             | CISPR Class A | CISPR Class B | Frequency (MHz) |  |  |  |
| 30-88                                                         | 39.1                    | 29.5                    | 40            | 30            | 30-88           |  |  |  |
| 88-216                                                        | 43.5                    | 33.1                    | 40            | 30            | 88-216          |  |  |  |
| 216-230                                                       | 46.4                    | 35.6                    | 40            | 30            | 216-230         |  |  |  |
| 230-960                                                       | 46.4                    | 35.6                    | 47            | 37            | 230-960         |  |  |  |
| 960-1000                                                      | 49.5                    | 43.5                    | 47            | 37            | 960-1000        |  |  |  |
| 1000-3000                                                     | Avg: 49.5<br>Peak: 69.5 | Avg: 43.5<br>Peak: 63.5 | Not defined   | Not defined   | 1000-3000       |  |  |  |
| 3000+                                                         | Avg: 49.5<br>Peak: 69.5 | Avg: 43.5<br>Peak: 63.5 | Not defined   | Not defined   | 3000+           |  |  |  |

At the transitions, the lower limit applies. Simple inverse scaling utilized to convert limits where appropriate.

| FCC and European Norms Radiated Emissions Limits at 3 meters |             |             |               |               |                 |  |  |
|--------------------------------------------------------------|-------------|-------------|---------------|---------------|-----------------|--|--|
| Frequency (MHz)                                              | FCC Class A | FCC Class B | CISPR Class A | CISPR Class B | Frequency (MHz) |  |  |
| 30-88                                                        | 49.5        | 40          | 50.5          | 40.5          | 30-88           |  |  |
| 88-216                                                       | 54          | 43.5        | 50.5          | 40.5          | 88-216          |  |  |





\_\_\_\_\_

|           |          | •        |          |          |           |
|-----------|----------|----------|----------|----------|-----------|
| 216-230   | 56.9     | 46       | 50.5     | 40.5     | 216-230   |
| 230-960   | 56.9     | 46       | 57.5     | 47.5     | 230-960   |
| 960-1000  | 60       | 54       | 57.5     | 47.5     | 960-1000  |
| 1000-3000 | Avg: 60  | Avg: 54  | Avg: 56  | Avg: 50  | 1000-3000 |
| 1000-3000 | Peak: 80 | Peak: 74 | Peak: 76 | Peak: 70 | 1000-3000 |
| 3000+     | Avg: 60  | Avg: 54  | Avg: 60  | Avg: 54  | 3000+     |
| 3000+     | Peak: 80 | Peak: 74 | Peak: 80 | Peak: 74 | 3000+     |

At the transitions, the lower limit applies. Simple inverse scaling utilized to convert limits where appropriate.

The measurement range is based on the highest frequency signal present or used in the device. The following table details the frequency range of measurements performed.

| Frequency range of radiated emissions measurements                |                                                                              |                                                                             |  |  |  |  |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| Highest frequency generated or                                    | Upper frequency of me                                                        | asurement range (MHz)                                                       |  |  |  |  |  |
| used in the device or on which the device operates or tunes (MHz) | FCC                                                                          | EU/CISPR                                                                    |  |  |  |  |  |
| Below 1.705                                                       | 30 (No radiated measurements)                                                | 1000                                                                        |  |  |  |  |  |
| 1.705-108                                                         | 1000                                                                         | 1000                                                                        |  |  |  |  |  |
| 108-500                                                           | 2000                                                                         | 2000                                                                        |  |  |  |  |  |
| 500-1000                                                          | 5000                                                                         | 5000                                                                        |  |  |  |  |  |
| Above 1000                                                        | 5 <sup>th</sup> harmonic of the highest frequency 40 GHz whichever is lower. | 5 <sup>th</sup> harmonic of the highest frequency 6 GHz whichever is lower. |  |  |  |  |  |

The test data is derived from the voltage on the spectrum analyzer. First the reading is corrected for gain factors associated with the use of preamps and loss in the cable. A factor in dB is subtracted from the reading to account for preamp gain, while a factor in dB is added to the signal to account for cable loss. A conversion is performed from the resulting voltage to field strength by multiplying the voltage by the antenna factor. Since antenna factor is expressed as a logarithm (dB/m), this operation takes the form of an addition (to multiply logarithmic numbers, you add them together). Thus:

Field Strength (dBuV/m) = Voltage Reading (dBuV) - Preamp Gain (dB) + Cable Loss (dB) + Antenna Factor (dB/m)
When the levels of ambient radio signals such as local television stations are within 6 dB
of the appropriate limit, the following steps may be taken to assure compliance:

- 1. The measurement bandwidth may be reduced. A check is made to see that peak readings are not affected. The use of a narrower bandwidth allows examination of emissions close to local ambient signals.
- 2. The antenna may be brought closer to the EUT to increase signal-to-ambient signal strength.





\_\_\_\_\_

3. For horizontally polarized signals the axis of the test site may be rotated to discriminate against local ambients.

### **CONDUCTED EMISSIONS**

### **Test Method:**

In accordance with the following:

- CFR 47 FCC Part 15.207
- RSS-Gen Issue 4

### **Results:**

| Теѕт                               | RESULT | TEST LEVEL | MARGIN              | COMMENTS                                  |
|------------------------------------|--------|------------|---------------------|-------------------------------------------|
| AC Mains<br>Conducted<br>Emissions | PASS   | FCC 15.207 | -7.6dB @<br>3.67MHz | AC side of support DC Power Supply tested |
| DC Mains<br>Conducted<br>Emissions | N/A    | FCC 15.207 | N/A                 | EUT support Power Supply is AC powered    |



**Conducted Emissions Data Table(s):** 

| <b>AC Conducted E</b>       | missions l         | Data Tab     | le            |               |               |       |                 |                |            |                |             |             |            |                 |
|-----------------------------|--------------------|--------------|---------------|---------------|---------------|-------|-----------------|----------------|------------|----------------|-------------|-------------|------------|-----------------|
|                             | te: 12-Jun-13      |              |               |               |               |       |                 | Balluff, Inc.  |            |                |             |             | Work Order | : M2102         |
|                             | er: Chris Reynolds | S            |               |               |               |       |                 | BIS L-409-45   | -001-07-S4 |                |             |             |            |                 |
|                             | p: 25.7 °C         |              |               |               |               |       | Humidity:       | 28%            |            |                |             |             | Pressure   | : 997 mBar      |
| Note                        | es:                |              |               |               |               |       |                 |                |            |                |             | _           |            |                 |
|                             |                    | 5 .          |               |               |               | Frequ | ency Range:     | 0.15-30MHz     |            | EUT In         | put Voltage | /Frequency: | : 24VDC    |                 |
|                             | Quasi              |              | Avei          |               | LISN          |       | 0.11            | 4.770.1        |            | F00 4F 007     |             |             | E00 45 00  | _               |
| F                           | QP1                | ings<br>OP2  | AVG1          | aings<br>AVG2 | Factors<br>L1 | L2    | Cable<br>Factor | ATTN<br>Factor | QP Limit   | FCC 15.207     | Result      | AVG Limit   | FCC 15.20  | Result          |
| Frequency<br>(MHz)          | (dBµV)             | (dBµV)       | (dBµV)        | (dBµV)        |               | (dB)  | (dB)            | (dB)           | (dBµV)     | Margin<br>(dB) | (Pass/Fail) | (dBµV)      | (dB)       | (Pass/Fail)     |
| 0.18                        | 29.0               | 28.8         | 17.2          | 17.0          |               | -0.1  | -0.1            | -20.9          | 64.3       | -14.4          | Pass        | 54.3        | -16.2      | Pass            |
| 0.28                        | 27.7               | 27.3         | 17.3          | 17.8          |               | -0.1  | -0.1            | -20.8          | 60.7       | -12.1          | Pass        | 50.7        | -12.0      | Pass            |
| 0.31                        | 27.3               | 27.2         | 18.9          | 18.2          |               | -0.1  | -0.1            | -20.8          | 60.1       | -11.9          | Pass        | 50.1        | -10.3      | Pass            |
| 0.37                        | 30.1               | 30.0         | 19.1          | 19.1          |               | -0.1  | -0.1            | -20.8          | 58.6       | -7.6           | Pass        | 48.6        | -8.5       | Pass            |
| 0.43                        | 24.4               | 24.6         | 14.7          | 14.6          | 0.0           | -0.1  | -0.1            | -20.8          | 57.2       | -11.7          | Pass        | 47.2        | -11.7      | Pass            |
| 16.42                       | 20.4               | 21.0         | 17.4          | 15.7          | -0.1          | -0.1  | -0.3            | -20.8          | 60.0       | -17.8          | Pass        | 50.0        | -11.4      | Pass            |
| Result                      | t: Pass            |              |               |               |               |       | Worst           | Margin:        | -7.6       | dB             | Freq        | uency:      | 0.367      | MHz             |
| Measurement Device          | • LISN ASSE        | T 1730/I ine | 1) I ISN AS   | SSFT 173      | 1(Line 2)     |       | Cable:          | CEMI-05        |            | 9              | Snectrum    | Analyzer:   | Black      |                 |
| incusurement beviou         | o. Lioit/tool      | 11100(EIIIC  | 1) LIOI 17 (0 | JOE 1 170     | r(Emo Z)      |       |                 | 20dB Atter     | n_4        |                | opcou am    |             | CEMI 1     |                 |
| C-S CEMI Calculator Version | 3.0.11             |              |               |               |               |       |                 | 20aB / mor     | •          |                |             |             |            | t rev: 5/4/2013 |
| Rev.6/3/2013                |                    |              |               |               |               |       |                 |                |            |                |             |             |            |                 |
| Spectrum Anal               | vzers / Rece       | ivers/Pres   | electors      |               | Range         |       | MN              | Mfr            |            | SN             | Asset       | Cat         | Calibrati  | on Due          |
|                             | Black              |              |               | 9k            | Hz-12.8GHz    | 8     | 596E            | Agilent        | 37         | 710A00944      | 4 337       | 1           | 1/17/2     | 2014            |
| LISNs                       | /Measureme         | nt Probes    |               |               | Range         |       | MN              | Mfr            |            | SN             | Asset       | Cat         | Calibrati  | on Due          |

150kHz-30MHz LISN Asset 1730 LI-150A Com-Power 201090 1730 2/14/2014 LISN Asset 1731 150kHz-30MHz LI-150A Com-Power 201091 1731 2/14/2014 Conducted Test Sites (Mains / Telco) FCC Code VCCI Code Cat **Calibration Due** CEMI 1 719150 A-0015 Ш NA **Calibration Due** Cables Range Mfr Cat CEMI-05 9kHz - 2GHz C-S II 5/3/2014 **Attenuators** Range MN Mfr SN Cat **Calibration Due** Asset 12/6/2013 20dB Atten-4 9kHz-2GHz N/A Ш **Meteorological Meters** MN Mfr SN Asset Cat **Calibration Due** Weather Clock (Pressure Only) BA928 Oregon Scientific C3166-1 831 3/20/2014 CEMI1 Thermohygrometer 72457738 1335 Ш 8/19/2013 35519-044 Control Company

All equipment is calibrated using standards traceable to NIST or other nationally recognized calibration standard.

#### **Conducted Emissions Modifications:**

None





#### **Line Conducted Emissions Overview:**

REV 9-MAY-06

Digital and microprocessor based devices use radio frequency (RF) digital techniques for timing purposes and in applications such as switching power supplies. An unintentional consequence of this for AC powered devices is that a certain amount of the RF energy is impressed upon the AC power mains in the form of a conducted noise voltage. These conducted emissions have the potential to interfere with constructive uses of the RF spectrum such as AM radio and may also interfere with other devices attached to the same AC mains circuit. In order to reduce the likelihood that a device will interfere it is required that the conducted RF signals from the device are below an allowable level.

Testing is performed according to test methods from ANSI C63.4 and CISPR 22.

Line conducted emissions are measured from the device over the frequency range of 0.15 to 30 MHz. The EUT is powered from a Line Impedance Stabilization Network (LISN). The purpose of the LISN is to provide a calibrated impedance across which to measure the conducted emissions. The RF noise voltage produced by the EUT across the LISN is measured and compared to the limit. In order for the LISN to perform properly it is attached to a ground plane at least 2 meters by 2 meters in size. For tabletop equipment the measurement is performed with the equipment 40 cm from a vertical conducting surface bonded to a ground plane under the product. The ground plane extends 0.5 meters beyond the product and is 2.5mx3.7m in size. The vertical surface is 2.5mx2.5m.

As with radiated emissions, the "human factor" is accounted for by the use of a "quasi-peak" detector in the receiver or spectrum analyzer that measures the signal from the LISN. For certain tests (such as EN55022), both an average and a quasi-peak limit are specified. Emissions from a device must be below both limits when measured with the appropriate detector. If the emission level is below the average limit when measured with the quasi-peak detector, the EUT is presumed to pass both limits.

The possible operating modes of the EUT are explored to determine the configuration that maximizes emissions. Software is investigated as well as different methods of displaying data if available. Data is recorded in the worst case operating mode.

As of September 9, 2002, the FCC has harmonized it's conducted emission limits with CISPR. The following table displays the limits applicable to both FCC and CISPR.



| Line Conducted Emissions Limits: Class A (dBμV)                                       |                                                                |          |  |  |  |  |
|---------------------------------------------------------------------------------------|----------------------------------------------------------------|----------|--|--|--|--|
| Frequency (MHz)                                                                       | Quasi-Peak                                                     | Average  |  |  |  |  |
| 0.15 - 0.5                                                                            | 79                                                             | 66       |  |  |  |  |
| 0.5 - 30                                                                              | 73                                                             | 60       |  |  |  |  |
| Line Conducted Emissions Limits: Class B (dBμV)  Frequency (MHz)  Quasi-Peak  Average |                                                                |          |  |  |  |  |
| 0.15 - 0.5                                                                            | 66 - 56*                                                       | 56 - 46* |  |  |  |  |
| 0.5 - 5                                                                               | 56                                                             | 46       |  |  |  |  |
| 5 - 30 60 50                                                                          |                                                                |          |  |  |  |  |
| 5 - 30                                                                                | 0                                                              | 30       |  |  |  |  |
| Note 1: The lower limit a                                                             | applies at the transition frequeses linearly with the logarith | uencies  |  |  |  |  |

At least the six highest emissions with respect to the limit are recorded. If less than six emissions are visible above the noise floor of the instrumentation, then the noise floor at six representative frequencies is recorded. The test report will document if noise floor readings are reported.

All testing is performed within the framework of a laboratory quality system modeled on ISO/IEC 17025 *General requirements for the competence of calibration and testing laboratories* and is subject to our terms and conditions. This test method is covered by our A2LA accreditation.



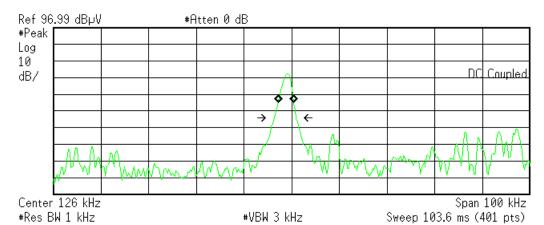
### **OCCUPIED BANDWIDTH**

### **Test Method:**

In accordance with the following:

RSS 210 - License - exempt Radio Apparatus (All Frequency Bands): Category I Equipment

### Results:


| TEST                  | RESULT | TEST LEVEL | MARGIN | COMMENTS |
|-----------------------|--------|------------|--------|----------|
| Occupied<br>Bandwidth | DONE   | RSS 210    | N/A    |          |



# Occupied Bandwidth Plot(s):

\* Agilent 10:13:42 Jul 15, 2013

R T



Occupied Bandwidth 3.3376 kHz Occ BW % Pwr 99.00 % **x dB** -26.00 dB

Transmit Freq Error -1.198 kHz x dB Bandwidth 4.676 kHz\*

C:temp.gif file saved



# Measurement Uncertainty

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

| PASS/FAIL results.                                                                                                  |                          |                               |
|---------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------------|
| Measurement                                                                                                         | Expanded Uncertainty k=2 | Maximum allowable uncertainty |
| Radiated Emissions (30-1000MHz)                                                                                     |                          |                               |
| NIST<br>CISPR                                                                                                       | 5.6dB<br>4.6dB           | N/A<br>5.2dB (Ucispr)         |
| Radiated Emissions (1-26.5GHz)                                                                                      | 4.6dB                    | N/A                           |
| Radiated Emissions (above 26.5GHz)                                                                                  | 4.9dB                    | N/A                           |
| Magnetic Radiated Emissions                                                                                         | 5.6dB                    | N/A                           |
| Conducted Emissions                                                                                                 | 0.0.15                   |                               |
| NIST<br>CISPR                                                                                                       | 3.9dB<br>3.6dB           | N/A<br>3.6dB (Ucispr)         |
| Telco Conducted Emissions (Current)                                                                                 | 2.9dB                    | N/A                           |
| Telco Conducted Emissions (Voltage)                                                                                 | 4.4dB                    | N/A                           |
| Electrostatic Discharge                                                                                             | 11.5%                    | N/A                           |
| Radiated RF Immunity (Uniform Field)                                                                                | 1.6dB                    | N/A                           |
| Electrical Fast Transients                                                                                          | 23.1%                    | N/A                           |
| Surge                                                                                                               | 23.1%                    | N/A                           |
| Conducted RF Immunity                                                                                               | 3dB                      | N/A                           |
| Magnetic Immunity                                                                                                   | 12.8%                    | N/A                           |
| Dips and Interrupts                                                                                                 | 2.3V                     | N/A                           |
| Harmonics                                                                                                           | 3.5%                     | N/A                           |
| Flicker                                                                                                             | 3.5%                     | N/A                           |
| Radio frequency (@ 2.4GHz)                                                                                          | 3.23 x 10 <sup>-8</sup>  | 1 x 10 <sup>-7</sup>          |
| RF power, conducted                                                                                                 | 0.40dB                   | 0.75dB                        |
| Maximum frequency deviation:  • Within 300Hz and 6kHz of audio frequency / Within 6kHz and 25kHz of audio frequency | 3.4%<br>0.3dB            | 5%<br>3dB                     |
| Adjacent channel power                                                                                              | 1.9dB                    | 3dB                           |
| Conducted spurious emission of transmitter, valid up to 12.75GHz                                                    | 2.39dB                   | 3dB                           |
| Conducted emission of receivers                                                                                     | 1.3dB                    | 3dB                           |
| Radiated emission of transmitter, valid up to 26.5GHz                                                               | 3.9dB                    | 6dB                           |
| Radiated emission of transmitter, valid up to 80GHz                                                                 | 3.3dB                    | 6dB                           |
| Radiated emission of receiver, valid up to 26.5GHz                                                                  | 3.9dB                    | 6dB                           |
| Radiated emission of receiver, valid up to 80GHz                                                                    | 3.3dB                    | 6dB                           |
| Humidity                                                                                                            | 2.37%                    | 5%                            |
| Temperature                                                                                                         | 0.7°C                    | 1.0°C                         |
| Time                                                                                                                | 4.1%                     | 10%                           |
| RF Power Density, Conducted                                                                                         | 0.4dB                    | 3dB                           |
| DC and low frequency voltages                                                                                       | 1.3%                     | 3%                            |
| Voltage (AC, <10kHz)                                                                                                | 1.3%                     | 2%                            |
| Voltage (DC)                                                                                                        | 0.62%                    | 1%                            |
| The above reflects a 95% confidence level                                                                           |                          |                               |



## **Conditions Of Testing**

[Bureau Veritas Consumer Products Services, Inc., a Massachusetts corporation], and/or its affiliates (collectively, the "Company") will conduct, at the request of the Submitter ("Client"), the tests specified on the submitted Test Request Form or equivalent in accordance with, and subject to, the following terms and conditions (collectively, "Conditions"):

- 1. All orders for tests are subject to acceptance by the Company, and no order will constitute a binding commitment of the Company unless and until such order is accepted by it, as evidenced by the issuance of a written report ("Test Report") by the Company. The Test Report is issued solely by the Company, is intended for the exclusive use of Client and shall not be published, used for advertising purposes, copied or replicated for distribution to any other person or entity or otherwise publicly disclosed without the prior written consent of the Company. By submitting a request for services to the Company, Client consents to the disclosure to accreditation bodies of those records of Client relevant to the accreditation body's assessment of the Company's competence and compliance with relevant accreditation criteria. The Company shall not be liable for any loss or damage whatsoever resulting from the failure of the Company to provide its services within any time period for completion estimated by the Company. If Client anticipates using the Test Report in any legal proceeding, arbitration, dispute resolution forum or other proceeding, it shall so notify the Company prior to submitting the Test Report in such proceeding. The Company has no obligation to provide a fact or expert witness at such proceeding unless the Company agrees in advance to do so for a separate and additional fee.
- 2. The Test Report will set forth the findings of the Company solely with respect to the test samples identified therein. Unless specifically and expressly indicated in the Test Report, the results set forth in such Test Report are not intended to be indicative or representative of the quality or characteristics of the lot from which a test sample is taken, and Client shall not rely upon the Test Report as being so indicative or representative of the lot or of the tested product in general. The Test Report will reflect the findings of the Company at the time of testing only, and the Company shall have no obligation to update the Test Report after its issuance. The Test Report will set forth the results of the tests performed by the Company based upon the written information provided to the Company. The Test Report will be based solely on the samples and written information submitted to the Company by Client, and the Company shall not be obligated to conduct any independent investigation or inquiry with respect thereto.
- 3. The Company may, in its sole discretion, destroy samples which have been furnished to the Company for testing and which have not been destroyed in the course of testing. The Company may delegate the performance of all or a portion of the services contemplated hereunder to an affiliate, agent or subcontractor of the Company, and Client consents to such delegation.
- 4. These Conditions and the Test Report represent the entire understanding of the parties hereto with respect to the subject matter hereof and of the Test Report, and no modification, variance or extrapolation with respect thereto shall be permitted without the prior written consent of the Company.
- 5. The names, service marks, trademarks and copyrights of the Company and its affiliates, including the names "BUREAU VERITAS," "BUREAU VERITAS CONSUMER PRODUCTS SERVICES," "BVCPS", "MTL", "ACTS", "MTL-ACTS" and CURTIS-STRAUS (collectively, the "Marks") are and shall remain the sole property of the Company or its affiliates and shall not be used by Client except solely to the extent that Client obtains the prior written approval of the Company and then only in the manner prescribed by the Company. Client shall not contest the validity of the Marks or take any action that might impair the value or goodwill associated with the Marks or the image or reputation of the Company or its affiliates.
- 6. Payment in full shall be due 30 days after the date of invoice. Interest shall be due on overdue amounts from the due date until paid at an interest rate of 1.5% per month or, if less, the maximum rate permitted by law. The Company reserves the right, at any time and from time to time, to revoke any credit extended to Client. Client shall reimburse the Company for any costs it incurs in collecting past due amounts, including court costs and fees and expenses of attorneys and collection agencies. The Test Report may not be used or relied upon by Client if and for so long as Client fails to pay when due any invoice issued by the Company or any affiliate of it to Client or any affiliate or subsidiary of Client together with interest and penalties, if any, accrued thereon.
- 7. The Company disclaims any and all responsibility or liability arising out of or in connection with e-mail transmissions of such information.
- 8. Client understands and agrees that the Company is neither an insurer nor a guarantor, that the Company does not take the place of Client or any designer, manufacturer, agent, buyer, distributor or transportation or shipping company, and that the Company disclaims all liability in such capacities. Client further understands that if it seeks assurance against loss or damage, it should obtain appropriate insurance.
- 9. Client agrees that the Company, by providing the services, does not take the place of Client nor any third party, nor does the Company release them from any of their obligations, nor does the Company otherwise assume, abridge, abrogate or undertake to discharge any duty of any third party to Client or any duty of Client or any third party to any other third party, and Client will not release any third party from its obligations and duties with respect to the tested goods.
- 10. Client shall, on a timely basis, (a) provide adequate instructions to the Company in order to enable the Company to perform properly its services, (b) provide, or cause Client's suppliers and contractors to provide, the Company with all documents necessary to enable the Company to perform its services, (c) furnish the Company with all relevant information regarding Client's intended use and purposes of the tested goods, (d) advise the Company of essential dates and deadlines relevant to the tested goods and (e) fully exercise all rights and remedies available to Client against third parties in respect of the tested goods.
- 11. The Company shall undertake due care and ordinary skill in the performance of its services to Client, and the Company shall accept responsibility only were such skill has not been exercised and, even in such event, only to the extent of the limitation of liability set forth herein.
- 12. If Client desires to assert a claim arising from or relating to (i) the performance, purported performance or non-performance of any services by the Company or (ii) the sale, resale, manufacture, distribution or use of any tested goods, it must





submit that claim to the Company in a writing that sets forth with particularity the basis for such claim within 60 days from discovery of the potential claim and not more than six months after the date of issuance of the Test Report to Client. Client waives any and all such claims including, without limitation, claims that the Test Report is inaccurate, incomplete or misleading or that additional or different testing is required, unless and then only to the extent that Client submits a written claim to the Company within both such

time periods.

13. CLIENT SHALL, EXCEPT TO THE EXTENT OF COMPANY'S LIABILITY TO CLIENT HEREUNDER (WHICH IN NO EVENT SHALL EXCEED THE LIMITATION OF LIABILITY HEREIN), HOLD HARMLESS AND INDEMNIFY THE COMPANY, ITS AFFILIATES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, AGENTS AND SUBCONTRACTORS AGAINST ALL ACTUAL OR ALLEGED THIRD PARTY CLAIMS FOR LOSS, DAMAGE OR EXPENSE OF WHATSOEVER NATURE AND HOWSOEVER ARISING FROM OR RELATING TO (i) THE PERFORMANCE, PURPORTED PERFORMANCE OR NON-PERFORMANCE OF ANY SERVICES BY THE COMPANY OR (ii) THE SALE, RESALE, MANUFACTURE, DISTRIBUTION OR USE OF ANY TESTED GOODS.

- 14. EXCEPT AS MAY OTHERWISE BE EXPRESSLY AGREED TO IN WRITING BY THE COMPANY AND NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN OR IN ANY TEST REPORT, NO WARRANTY OR GUARANTEE, EXPRESS OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE. IS MADE.
- 15. (A) IN NO EVENT WHATSOEVER SHALL THE COMPANY BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE TEST REPORT OR THE SERVICES PROVIDED BY THE COMPANY HEREUNDER, INCLUDING WITHOUT LIMITATION LOSS OF OR DAMAGE TO PROPERTY; LOSS OF INCOME, PROFIT OR USE; OR ANY CLAIMS OR DEMANDS MADE AGAINST CLIENT OR ANY OTHER PERSON BY ANY THIRD PARTY IN CONNECTION WITH, RELATING TO OR ARISING OUT OF THE SERVICES PROVIDED BY THE COMPANY HEREUNDER.
- (B)NOTWITHSTANDING ANY PROVISION TO THE CONTRARY CONTAINED HEREIN, AND IN RECOGNITION OF THE RELATIVE RISKS AND BENEFITS TO CLIENT AND THE COMPANY ASSOCIATED WITH THE TESTING SERVICES CONTEMPLATED HEREBY, THE RISKS HAVE BEEN ALLOCATED SUCH THAT UNDER NO CIRCUMSTANCES WHATSOEVER SHALL THE LIABILITY OF THE COMPANY TO CLIENT OR ANY THIRD PARTY IN RESPECT OF ANY CLAIM FOR LOSS, DAMAGE OR EXPENSE, OF WHATSOEVER NATURE OR MAGNITUDE, AND HOWSOEVER ARISING, EXCEED AN AMOUNT EQUAL TO FIVE (5) TIMES THE AMOUNT OF THE FEES PAID TO THE COMPANY FOR THE SPECIFIC SERVICES WHICH GAVE RISE TO SUCH CLAIM OR U.S.\$10,000, WHICHEVER IS THE LESSER AMOUNT.
- 16. The Company shall not be liable for any loss or damage resulting from any delay or failure in performance of its obligations hereunder resulting directly or indirectly from any event of force majeure or any event outside the control of the Company. If any such event occurs, the Company may immediately cancel or suspend its performance hereunder without incurring any liability whatsoever to Client.

Company's services, including these Conditions, shall be governed by, and construed in accordance with, the local laws of the country where the Company performs the tests or, in the case of tests performed in the United States of America, the laws of Massachusetts without regard to conflicts of laws principles. If any aspect(s) of these Conditions is found to be illegal or unenforceable, the validity, legality and enforceability of all remaining aspects of these Conditions shall not in any way be affected or impaired thereby. Any proceeding related to the subject matter hereof shall be brought, if at all, in the courts of the country where the Company performs the tests or, in the case of tests performed in the United States of America, in the courts of Massachusetts. Client waives the right to interpose any counterclaim or setoffs of any nature in any litigation arising hereunder.

The complete list of the Approved Subcontractors Curtis-Straus may use to delegate the performance of work can be provided upon request.



# Appendix A: Non-Evaluated Data

This section contains information that Balluff, Inc. has requested accompany report. It has not been evaluated for accuracy by Curtis-Straus.

