edited by:

DAT-P-002/91-02

Center for Quality Engineering

Test Report No.: B0A00001

Order No.: B0A0	Pages: 36	Munich, May 15, 2008		
Client:	Rohde & Schwarz GmbH & Co. KG			
Equipment Under Test:	NV8610V TV Transmitter MediaFlo 6	NV8610V TV Transmitter MediaFlo 6000W		
Manufacturer:	Rohde & Schwarz GmbH & Co. KG			
Task:	Customer selected tests for identification of compliance with the requirements mentioned below:			
Test Specifications: [covered by accreditation]	 FCC 47 CFR Ch.1, Part 15, Subpart B (informative) FCC 47 CFR Ch.1, Part 2 EN 301 489, Part 1 & 11 			
Result:	Requirements of the before mentione	ed Specifications are fulfilled.		

The results relate only to the items tested as described in this test report.

See summary

Steinmüller Qualification Engineer	May 15, 2008	M. Do Mo
approved by:	Date	Signature
Bauer Manager EMC	May 16, 2008	Josef Baner

Date

Signature

This document was signed electronically.

FEDERAL COMMUNICATIONS COMMISSION

Laboratory Division 7435 Oakland Mills Road Columbia, MD 21046

March 07, 2006

Registration Number: 97242

Siemens AG Hofmannstrasse 50 81359 Munich, Germany

Attention:

Josef Bauer

Re:

Measurement facility located at Munich Anechoic chamber No. 2 (3 meters) Date of Renewal: March 07, 2006

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

18 / Will

Information Technician

CONTENTS

	1.1 Tables of Results	4
	1.1.1 Enclosure Port	4
	1.1.2 Antenna terminals	4
	1.1.3 Power Port	5
2	References	6
	2.1 Specifications	6
	2.2 Glossary of Terms	6
3	General Information	7
	3.1 Identification of Client	7
	3.2 Test Laboratory	7
	3.3 Time Schedule	7
	3.4 Participants	7
4	Equipment Under Test	8
	4.1 Picture of EUT	8
	4.2 Configuration of EUT	9
	4.3 Transmitter System in General	13
	4.4 Transmitter System – Specifically R&S NV8610	14
	4.5 Operating Conditions	17
	4.6 Failure Criteria	17
5	Test Equipment	18
	5.1 Test Facility	18
	5.2 Measuring Equipment	19
	5.3 Measurement Uncertainty	19
6	Test Specifications and Results	20
	6.1 Radiated Emission Tests	20
	6.1.1 Radiated Emission Tests FCC Part 15 class A (informative measurement)	20
	6.1.2 Radiated Emission FCC Part 2, Range 30 – 1000 MHz	21
	6.1.3 Radiated Emission FCC Part 2, Range 1 GHz – 10 GHz	23
	Dipole substitution	25
	6.2 Conducted Emission	27
	6.2.1 Spurious Emission to FCC Part 2 on the antenna terminals	27
	6.2.2 Occupied bandwidth	
	6.2.3 Average Output Power	
	6.2.4 Conducted Emission to FCC Part 15 on the AC Power port	34

Summary

A summary of the measurements results will be found in the following tables. The results refer only to the EUT as described in chapter 4.

1.1 Tables of Results

1.1.1 Enclosure Port

Radiated emission tests				
Chapter	hapter Test Specification		Limits	Result
6.1.1	Radiated 30 MHz-1000 MHz Test Distance: 3 meters	FCC Part 15 § 15.109	Class A	passed
6.1.2	Radiated 30 MHz-1 GHz Test Distance: 3 meters FCC Part 2 §2.1053, §2.1057	43+10log(P)	passed	
6.1.3	Radiated 1 GHz-10 GHz Test Distance: 3 meters	FCC Part 2 §2.1053, §2.1057	43+10log(P)	passed

1.1.2 Antenna terminals

Conducted emission tests					
Chapter	Test Specification		Limits	Result	
6.2.1	Spurious Emissions	FCC Part 2 §2.1051 / 2.1057	43+10log(P)	passed	
6.2.2	Occupied Bandwidth	FCC Part 2 §2.1047 / 2.1049	Limit of FCC Part 27.53, 6 MHz	passed	

1.1.3 Power Port

Conducted emission tests				
Chapter	r Test Specification		Limits	Result
6.2.4	Conducted 230 V AC	EN 301 489 - 11	EN 301 489 - 11	passed

2 References

2.1 Specifications

- 47 CFR Code of Federal Regulations Title 47 Telecommunication
- FCC Part 15, § 15.109, Radiated Emission, Class A
- FCC Part 15, § 15.107, Conducted Emission
- FCC Part 2, § 2.1049
- FCC Part 2, §2.1051, §2.1053, §2.1055, §2.1057 Field strength of spurious radiation, Frequency spectrum to be investigated Customer selected tests acc.
- EN 301 489. Part 1 & 11

2.2 Glossary of Terms

EMC specific Abbreviations

AC	Alternating Current
AM	Amplitude Modulation
CBN	Combined Bonding Network
CE	CE-Conformity
CM	Common Mode Coupling

CO+No. Conditional Objective Requirement No. of GR-1089-CORE

CR Customer requirement

DC Direct Current

DM Differential Mode coupling
EFT Electrical Fast Transient
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
EN European Standard

ES ETSI Standard

ESD Electro Static Discharge

ETS European Telecommunication Standard

EUT Equipment Under Test

FW Firmware HW Hardware

IBN Isolated Bonding Network

IEC International Electrotechnical Commission

ITU-T International Telecommunication Union- Telecommunications sector L > XX m Line Length > XX m (Test applicable for lines with length > XX m) LFC Loss of Function Customer reset (performance criterion)

LFC Loss of Function Customer reset (performance criterion)
LFS Loss of Function Operator reset (performance criterion)
LFS Loss of Function Self recovery (performance criterion)
LISN Line Impedance Stabilization Network

Loc Location of the EUT, can be TC or OTC
LtG Line to Ground coupling
LtL Line to Line coupling
LVDS Low Voltage Differential Signal

NP Normal Performance (performance criterion)
O+No. Objective Requirement No. of GR-1089-CORE

OTC Other than Telecommunication Center

PC Power Contact
PF Power Fault

PIL Power Induction Long term
PIS Power Induction Short term

PP External Port to external Port test as defined in ITU-T K.44

propOJEC proposed to publish in the Official Journal of the European Communities for CE Marking

R Ring

R+No. Requirement No. of GR-1089-CORE

RP Reduced Performance (performance criterion)

SC Short-Circuit SW Software T Tip

TC / ITC
UL
Underwriter Laboratories
with p
without p

Telecommunication Center
Underwriter Laboratories
with primary protection
without primary protection

3 General Information

3.1 Identification of Client

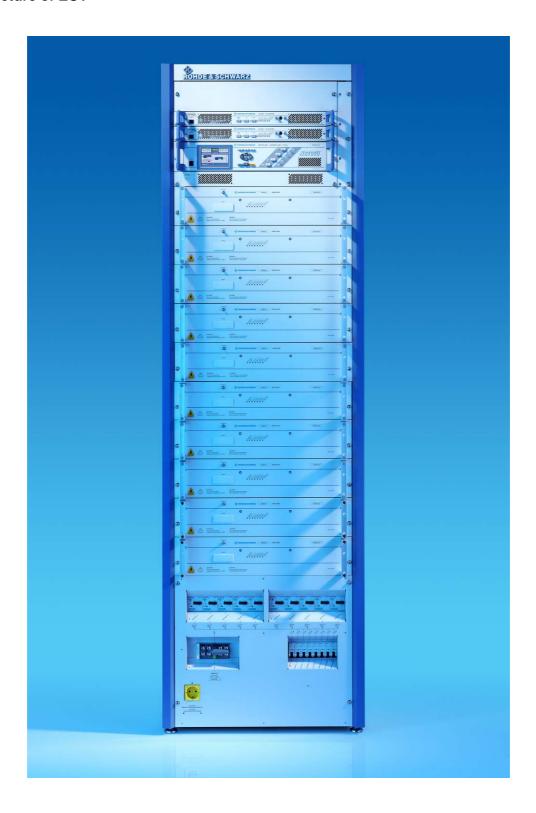
Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 81671 München Uwe Dalisda

3.2 Test Laboratory

Center for Quality Engineering Nokia Siemens Networks GmbH & Co. KG Hofmannstraße 51 81359 München

3.3 Time Schedule

Delivery of EUT: Apr 17, 2008 Start of test: Apr 21, 2008 End of test: Apr 23, 2008


3.4 Participants

Name	Function	Phone	E-Mail
Wolfgang Klein	Operating of EUT, Setup of EUT	+49 99 23 85 717 25	wolfgang.klein@rsdts.rohde- schwarz.com
Uwe Dalisda	da Operating of EUT, Setup of EUT	+49 89 4129 1 1665	uwe.dalisda@rohde-schwarz.com
Michael Steinmüller	Editor, accredited Testing	+49 89 722 25262	michael.steinmueller@nsn.com

4 Equipment Under Test

4.1 Picture of EUT

4.2 Configuration of EUT

A listing of all hardware components including serial numbers and software release is shown in Table 4-1.

GG NV8610V DTV-Transmi	tter 6KW	
Description	Code number	Serial Nr.
GG VH8600A1 UHF-amplifier	2100.6002.02	100060
GG VH8600A1 UHF-amplifier	2100.6002.02	100627
GG VH8600A1 UHF-amplifier	2100.6002.02	100705
GG VH8600A1 UHF-amplifier	2100.6002.02	100718
GG VH8600A1 UHF-amplifier	2100.6002.02	100719
GG VH8600A1 UHF-amplifier	2100.6002.02	100758
GG VH8600A1 UHF-amplifier	2100.6002.02	100759
GG VH8600A1 UHF-amplifier	2100.6002.02	100760
GG VH8600A1 UHF-amplifier	2100.6002.02	100761
GG VH8600A1 UHF-amplifier	2100.6002.02	100965
GG ZR810-Z HP - accessory	/ NX86XX 2099.5102.00	100143
GS SX800Z1 ADE	2099.4006.22	100043
GG NETCCU 800 CONTROL	UNIT 2095.8007.02	101462
ZM KG860H1 rack high-powe	r 2096.0800.02	100151
GS ZR800Z4 TS - distributor	2099.3300.10	100190
GS ZR800F1 PAR. I/O	3562.4210.02	100255
GS ZR800Z2 power socket	2099.3100.14	100348
GG SX800 TV EXCITER DTV	/2 DTMB 2095.1502.81	100076
GG SX800 TV EXCITER DTV	/2 DTMB 2095.1502.81	100077
GG NV8610X DTV-transmitt	er 2101.4503.50	100001
GS ZR810S1 HP - power kit	NX8600 2098.5109.30	100017
GS ZR810S2 HP - distr. kit N	X8600 2098.5209.20	100022
GS ZR800T1 exciter inst. Kit	2099.1007.23	100122

Accessory		
Bandpass Filter W/O-2916060	P/N- 005A76501	S/N 3038
Danupass i liter W/O-2910000	003A70301	3/N 3030
Heat exchanger 30kW KL861	2103.0711.31	
ZK810K1 pump unit	2103.1001.24	100072

Table 4-1: Configuration of NV8610V

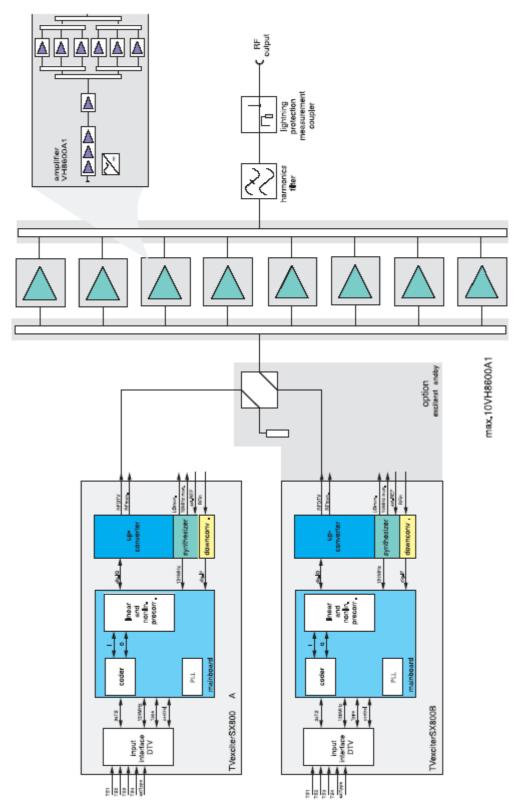


Figure 4-1: Block diagram of DTV transmitter: This example: R&S NV8608E/V

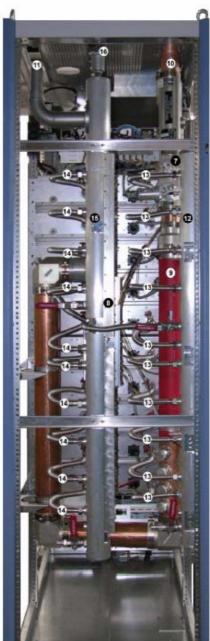


Figure 4-2: Transmitter R&S NV8610 - modules

- 1) Connection panel
- 2) Exciter
- Transmitter control unit
- Output stage

- 5) Power distribution
- 6) RF connector
- 7) Directional coupler lightning protection system
- 8) Combiner unit
- 9) Harmonics filter
- 10) Coolant inlet
- 11) Coolant outlet
- 12) Coolant distributor
- 13) Amplifier coolant inlet
- 14) Amplifier coolant outlet
- 15) Coolant collector
- 16) Ventilation unit

The R&S NV8610 transmitter consists of the following units and modules:

- Power distribution
 - Main switch
 - Motor protection switch
 - Automatic line fuse
 - Power distribution board
 - Auxiliary power supply
 - Optional socket
 - Grounding bolt
- O Transmitter control unit components
 - R&S NetCCU800
 - Rack controller
- Connection panel
- Exciter unit
 - Exciters (1 or 2)
 - Exciter switch (in the case of exciter standby)
- Output stage unit
 - Amplifiers
 - Multiple combiner unit consisting of:
 - Splitter function module
 - Multiple combiner function module
 - Power absorber function module
- Harmonics filter
- Directional coupler lightning protection system
 - Lightning protection
 - Directional coupler
 - Unassigned test point
- RF connector
- Cooling system
 - Coolant inlet/outlet
 - Coolant distributor
 - Amplifier coolant inlet and coolant outlet
 - Coolant collector
 - Temperature sensors (2)
 - Ventilation unit
- Transformer (optional)

4.3 Transmitter System in General

Frequency range	470 MHz to 862 MHz
Standards	DVB-T (EN 300 744) and ATSC (FCC Doc. A/53)
Transmission bandwidth	DVB-T (5, 6, 7 or 8 MHz) ATSC (6 MHz)
SFN/DTx function	DVB-T (SFN) ATSC on request
EMC	to EN302296
Voltage supply	3 x 400 V AC ± 15% 47 Hz to 63 Hz Three-phase current Overvoltage category II to EN 60950-1 Reaction on system to EN 61000-3-12 satisfied with R _{soe} ≥ 350 Cos φ ≥ 90
Maximum installation altitude	2000 m above sea level (higher than 2000 m on request)
Operating temperature range	+1 °C to +45 °C
Max. permissible humidity	95%, non-condensing
Cooling system	Liquid-cooled, Antifrogen N/water mixture (39%/61%)
VSWR	s ≤ 1.3
Inputs (DVB-T/-H)	4 x ASI
Synchronization	
Reference frequency	10 MHz, 0.1 V to 5 V (pp) or TTL, BNC
Reference pulse	

Supported modulation parameters

Length of transport packet	. 188 or 204 bytes
TPS and TX automatic	to TS101191 (MIP) with MFN and SFN
Coding and modulation	to EN 300744, EN 302304 (optional)
Modulation	QPSK, 16QAM or 64QAM
Guard interval	. 1/4, 1/8, 1/16 or 1/32 of useful symbol period
IFFT mode	2 k and 8 k, 4 k (optional)
Inner code rate	. 1/2, 2/3, 3/4, 5/6 or 7/8
Useful symbol period	. 224 μs (2 k) or 896 μs (8 k), 448 μs (4 k, optional)

Operation

Local

Color display and keys Front-panel operation via graphical user interface (GUI) RJ45 Operation via PC with standard web browser Remote RJ45 IEC 864-2 via Ethernet (standard) RJ45 Network management interface (web server

and/or SNMP agent, optional)

Parallel remote-control interface...... Floating contacts for messages and commands (optional)

BIT bus Bus interface to IEC 864-2 (optional)

4.4 Transmitter System – Specifically R&S NV8610

Number of amplifiers10

Output power at transmitter output (without bandpass filter)

Pout MER >35 dB 5200 W

Pout MER >33 dB

from channel 21 to 25 5500 W from channel 26 to 44 6100 W from channel 45 to 69 6400 W

Power consumption of transmitter 25 kW to 35 kW

(depending on power and frequency)

Power consumption of cooling system

Pump unit approx. 370 W Cooler approx. 600 W

Recommended fuse protection for transmitter

NH fuse, gG 3x 100 A Siemens automatic power cutout 3x 100 A (e.g. type 3VL2705-1DC33-....)

Recommended supply cable

for automatic power cutout: 5x 25 mm² for NH fuse, gG:5x 35 mm²

Coolant flow rate	. approx. 67 I/min
Heat dissipation	
to surrounding air	. approx. 1000 W
fed to outside	. approx. 26.5 kW
Dimensions (W x H x D)	. 600 mm x 2000 mm x 1100 mm
Total weight (approx.)	 . 625 kg (without transport packaging and cooling system)
RF output connector	. 3 ¹ / ₈ EIA
RF test-point connector	. N

Figure 4-2: Label with Serial Nr. of EUT

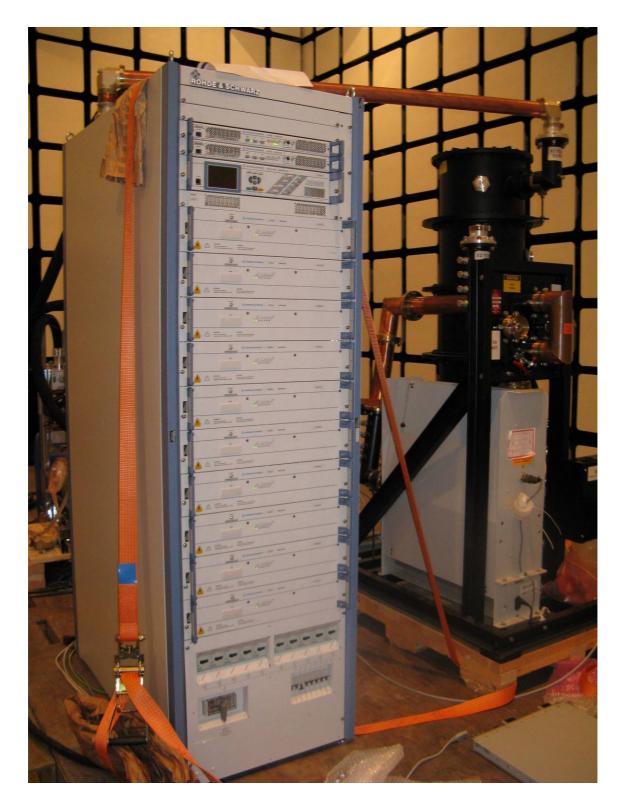


Figure 4-3: NV8610V in the EMC chamber for Emission Tests

4.5 Operating Conditions

The emission tests were executed in an anechoic test chamber equipped with RF absorbers. The measurement, simulation and control equipment was located outside of the chamber. The EUT was placed on a metallic turntable in order to test radiated emission automatically around 360°.

During the measurement the EUT was grounded to the groundplane via a 1-wire cable with a length of 3 m. The EUT was powered via a fixed installed powerline cable.

The EUT was operated with 3x 400V AC and activated with it's rated output power.

4.6 Failure Criteria

No entry, because only emission tests were performed.

5 Test Equipment

5.1 Test Facility

The EMC-tests were carried out in the shielded rooms of the Center for Quality Engineering, Hofmannstraße 51, 81359 München, Germany.

Chamber	1	2	3	4/5	6
Dimensions (net)	17.70*10.85*6.84m	9.63*8.49*5.28m	6.59*5.81*4.78m	4.1*3.53*3.5m	6.4*4.3*4.35m
Max. Door Exit	5.0*3.86m	3.9*4.0m	1.4*2.23m	0.9*2.25m	1.8*3.0mm
Shielding material	Sheet steel (Thickness:1.5mm on floor, 1.0mm on walls and ceiling)	Sheet steel	Sheet steel	Sheet steel	Sheet steel
Absorbers	 hybrid absorbers on walls and ceiling (TDK), length 1m 	 hybrid absorbers on walls and ceiling (E+C), length 0.5m 	 pyramid absorbers on walls and ceiling (E+C), length 0.76m 	without absorbers	without absorbers
Floor	 metallic ground plane floor load: 12 t/m² 	 metallic ground plane floor load: 1.5 t/m² 	 metallic ground plane floor load: 1 t/m² 		
Specials	 measuring distance of max. 10m turntable Ø 4m/6t Test chamber no. 1 complies with:	measuring distance of 3m (max 5m) turntable Ø 3.2m/ 1.5t Test chamber no. 2 complies with: Emission (3m distance and frequency range 30-1000MHz) DIN EN 55022 / 2003-09 CISPR 16-1-4, Ed. 1.1 / 2004-05 ANSI C63.4 / 2003 FCC-listed until March 2009, Reg. Nr.: 97242 Immunity (field uniformity in the frequency range 27-1000MHz) EN 61000-4-3:2002 + A1:2002	measuring distance of max. 3m turntable Ø 2.0m / 1t Test chamber no. 3 complies with: Emission (3m distance and frequency range 30-1000MHz) DIN EN 55022 / 2003-09 CISPR 16-1-4, Ed. 1.1 / 2004-05 ANSI C63.4 / 2003 Site VSWR 1 − 18GHz acc. CISPR 16-1-4 (2007) FCC-listed until March 2010, Reg. Nr.: 299569 Immunity (field uniformity in the frequency range 80-3000MHz) EN 61000-4-3:2006		

Table 5-1: Anechoic chamber No. 1

5.2 Measuring Equipment

ID. No.	Equipment	Туре	Manufacturer	Specification	Status	Last Cal.	Next Cal.
P0336	test chamber 1		Siemens	20.3 x 13.2 x 8.0 m; 1 m pyramid absorbers + ferrite tiles		Jan 28, 2008	Jan 31, 2009
P1140	Controller	CO 2000	innco GmbH		cnn		
P1139	Mast	MA 4000	innco GmbH	1 - 4m, hor./vert.	cnn		
P1327	EMI receiver	ESU40	R&S	20Hz - 40GHz, FFT-Scan, Preamplifier 100kHz - 40GHz, 30dB	cal	Sep 04, 2007	Sep 30, 2009
P1352	antenna, Ultralog	HL562	R&S	30 MHz - 3000 MHz	cal	Jan 17, 2008	Jan 31, 2010
P0776	attenuator 30dB	46-30-34	Weinschel	30dB	chk	Apr 08, 2008	Apr 30, 2009
P1271	coax cable	FB311AF04000505 0	Rosenberger Micro-Coax	DC - 18 GHz, 2.61dB@18GHz	cnn		
P1063	coax cable	UFB293C	Rosenberger Micro-Coax	DC - 18 GHz, 1.7dB@18GHz	cnn		
P0920	LISN	NNB-4/200X	Heine	4 x 200 A; 700 V; 0 - 63 Hz	cal	Apr 03, 2008	Apr 30, 2010

cal = Calibration, car = Calibration restricted use, chk = Check, chr = Check restricted use, cpu = Check prior to use, cnn = Calibration not necessary, ind = for indication only

Table 5-2: Measuring Equipment for EMC tests

5.3 Measurement Uncertainty

As far as the underlying standards include requirements concerning the uncertainty of measuring instruments or measuring methods, they are met.

The expanded measurement uncertainty of the measuring chain was calculated for all tests according to the "ISO Guide to the expression of uncertainty in measurement (GUM)". The results are documented in an "internal controlled document" at CQE archives.

The measuring accuracy for all measuring devices is provided in their technical description. The measuring instruments, including any accessories, are calibrated correspondingly and verified to ensure the necessary accuracy. Depending on the kind of measuring equipment it is checked within regular intervals or directly before the measurement is performed. Adjustments are made and correction factors applied to measured data in accordance with the specifications of the corresponding instrument.

The expanded measurement instrumentation uncertainty of our Test Laboratory meets the requirements of IEC CISPR 16-4-2 (2003-11) "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modeling – Uncertainty in EMC measurements" for all listed Tests.

6 Test Specifications and Results

6.1 Radiated Emission Tests

The test results in the report refer exclusively to the test object described in section 4 and the test period in section 3.3.

6.1.1 Radiated Emission Tests FCC Part 15 class A (informative measurement)

Test procedures see 6.1.2

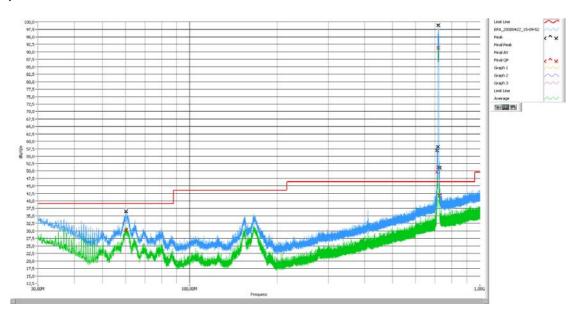


Figure 6-1: Radiated emission, 30 - 1000 MHz

f [MHz]	Pos. [°]	Height [cm]	Polarisation	Rec Peak	Rec AV	Rec QP	Limit FCC Part 15	Margin QP
60.29633	358	368	vertical	37.30	22.44	30.17	39.00	8.83
713.20105	124	199	horizontal	57.03	41.16	49.60	RF carrier	MediaFlo
715.20801	133	199	horizontal	59.66	43.13	51.26	RF carrier	MediaFlo
717.21265	148	199	horizontal	97.47	84.33	91.33	RF carrier	MediaFlo
726.20135	43	300	vertical	50.68	31.72	41.74	46.40	4.66

Table 6-1: Highest values, Quasi peak detection

6.1.2 Radiated Emission FCC Part 2, Range 30 - 1000 MHz

The purpose of this test is to evaluate the electrical component of the electromagnetic field radiated by the EUT between 30MHz and 1000MHz.

The EUT was placed on a turntable in order to determine the direction of maximum field strength for each predominant emission around 360 degrees (continuous sweeps). At each azimuth step, the antenna was raised from the height of 1 to 4m (step = 1m) with both, horizontal and vertical planes of polarisation. This measurement was made with an automatic test set. Pre-Scans were made with peak and average detection with variation of turntable angle, antenna height and polarisation. The measuring distance was 10 m. The test set-up of Figure 6-2 was used.

Figure 6-2: Test setup for radiated emissions measurement

Result for 30 - 1000 MHz:

Frequency Band	BW
30 MHz to 716 MHz	100 kHz
716 MHz to 722 MHz	licensee frequency block
722 MHz to 1000 MHz	100 kHz

Table 6-2: Resolution bandwidth in the range 30 MHz to 1 GHz

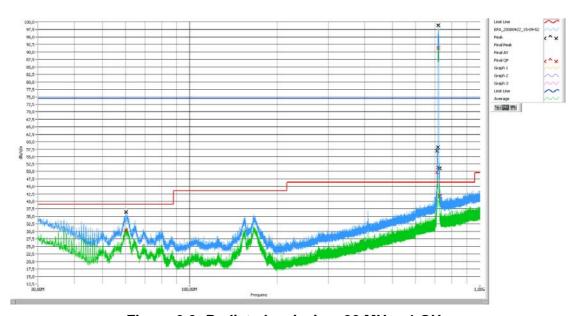


Figure 6-3: Radiated emission, 30 MHz - 1 GHz

f [MHz]	Pos. [°]	Height [cm]	Polarisation	Rec Peak	Rec AV	Rec QP		Margin PK
60.29633	358	368	vertical	37.30	22.44	30.17	74.4	37.1
712.20105	124	199	horizontal	57.03	41.16	49.60	RF carrier	MediaFlo
715.20801	133	199	horizontal	59.66	43.13	51.26	RF carrier	MediaFlo
717.21265	148	199	horizontal	97.47	84.33	91.33	RF carrier	MediaFlo
726.20135	43	300	vertical	50.68	31.72	41.74	74.4	23.72

Table 6-3: Highest values, Pk detection

6.1.3 Radiated Emission FCC Part 2, Range 1 GHz – 10 GHz

The electric field strength was measured in the frequency range 1 GHz to 10 GHz using a horn antenna and a test receiver. The test was performed using a computer-controlled testset, controlling the test receivers, the turntable (0-360°) and the polarization (hor/vert) of the antenna (h=1-4m). The measuring distance was 3 m.

Figure 6-4: Test setup for radiated emission measurement, 1 - 10GHz

The detector function was set to peak, the measuring bandwidth was selected according to the following table:

Frequency Band BW required
1000 MHz to 10000 MHz 100 kHz

Table 6-4: Resolution bandwidth in the range 1 GHz to 10 GHz

Result for 1 - 10 GHz:

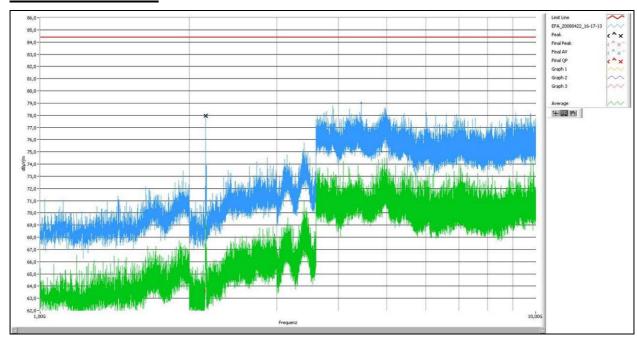


Figure 6-5: Radiated emission, 1 GHz - 10 GHz

f [MHz]		Limit FCC Part 2	Margin	Pos. [°]	Height [cm]	Polarisation
2158.89990	77.972	84.40	6.428	46	100	vertical

Table 6-5: Highest values, PK detection

Dipole substitution

Specification:

 ANSI / TIA / EIA-603-A-2001 Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

The EUT was removed, and replaced by a horn antenna. Afterwards the performance at the antenna was increased with a signal generator, until the same field strength was achieved, as with the preceding measurements. The measuring distance was 3 m.

Figure 6-6: Test set-up for the Dipole substitution

For ideal half wave dipole the power can be calculated by:

 $P_d(dBm) = P_d(dBm)$ - cable loss (dB) + antenna gain (dB)

 P_{d} is the dipole equivalent power

Pg is the generator output power into the substitution antenna

Result for the dipole substitution:

Spurious Emission Frequency	Spurious Emission Reference Field Strength	Signal Genera tor Output	Cable loss	Antenna Gain	Calc. Result	Limit	Result
[MHz]	[dBµV/m]	[dBm]	[dB]	[dB]	[dBm]	[dBm]	
1438	79, max.Noise level	-25.1	1.81	5.6	-21.31	-13	passed
2157	78	-26.5	2.07	6.54	-21.04	-13	passed
2876	79, max.Noise level	-24	2.48	7.26	-19.22	-13	passed
3595	79, max.Noise level	-19.7	2.69	7.17	-15.22	-13	passed
4314	79, max.Noise level	-26.5	3.03	7.84	-21.69	-13	passed
5033	79, max.Noise level	-25	3.31	7.15	-21.16	-13	passed
6471	79, max.Noise level	-27.3	3.73	9.09	-21.94	-13	passed
7190	79, max.Noise level	-24.6	3.93	8.32	-20.21	-13	passed

Table 6-6: Results for the dipole substitution

According to FCC Part 2 §2.1053, §2.1057 Class B this measurement is **passed**.

6.2 Conducted Emission

6.2.1 Spurious Emission to FCC Part 2 on the antenna terminals

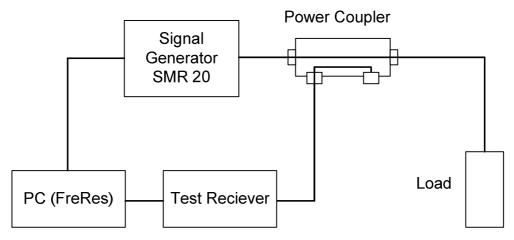


Figure 6-7: Test setup for conducted emissions measurement

Figure 6-8: Picture of Power Coupler

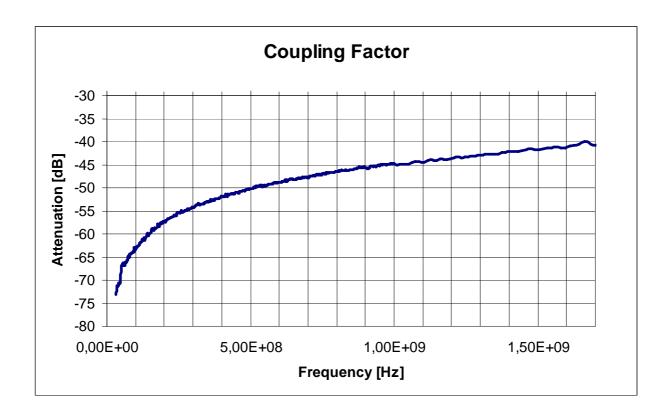


Figure 6-9: Coupling Factor of the Power Coupler 30MHz – 1.438 GHz

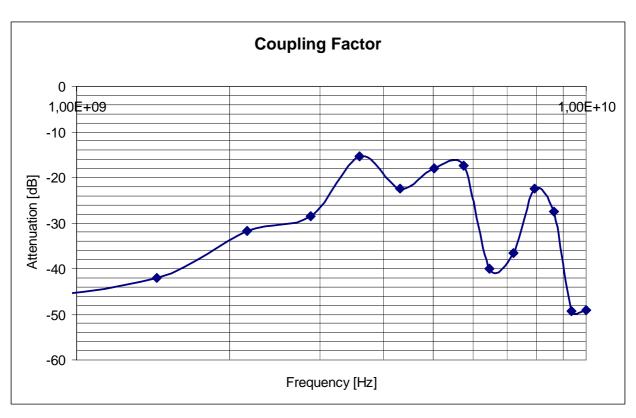


Figure 6-10: Coupling Factor of the Power Coupler 1.438 GHz – 10 GHz

Result for the conducted spurious emission:

Limit: $43+10\log(P) = 43+10\log(6000W) \approx 81 \text{ dB}$

Harmonics	Harmonics Frequency		Margin
Order	MHz	dB	dBc
Carrier (reference)	Carrier (reference) 719		0
1st Harmonic	1438	-89	> 81 dB
2nd Harmonic	2157	-89	> 81 dB
3rd Harmonic	2876	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB
4th Harmonic	3595	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB
5th Harmonic	4314	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB
6th Harmonic	5033	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB
7th Harmonic	5752	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB
8th Harmonic	8th Harmonic 6471		> 81 dB
9th Harmonic	7190	Below the Noise- Sensitivity Level of the Spectrum Analyzer	> 81 dB

Table 6-7: Spurious Emissions

According to FCC Part 2 §2.1051 / 2.1057 this measurement is passed.

6.2.2 Occupied bandwidth

Transmitter Frequency: 719 MHz

Receiver Setting: RSB 10 kHz, detector RMS

Result: 5.5 MHz

Limit: 6.0 MHz

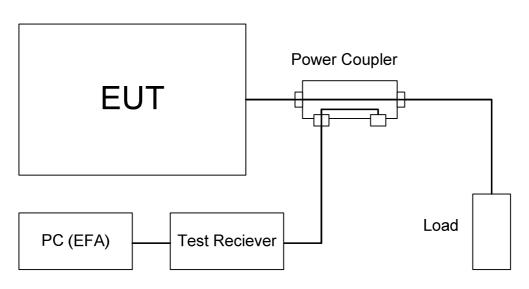


Figure 6-11: Test setup for occupied bandwidth measurement

Result for the Occupied bandwidth:

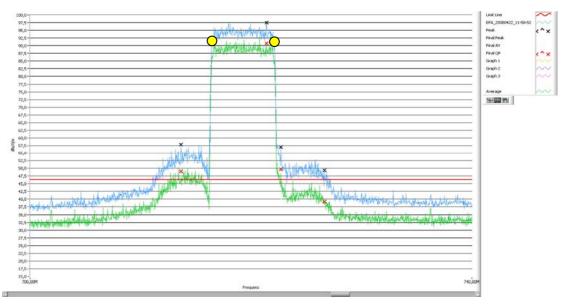
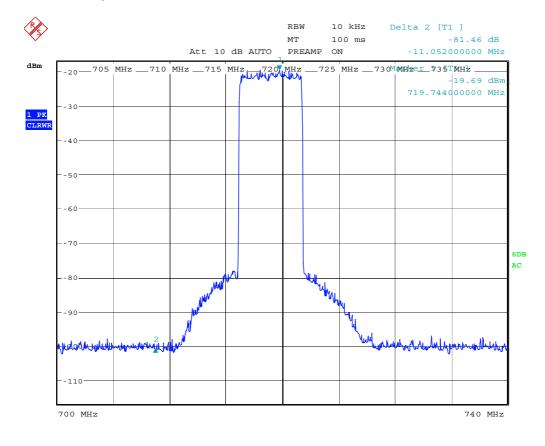


Figure 6-12 Bandwidth of the MediaFlo transmitter

Left yellow Marker = 716.25 MHz Right yellow Marker = 721.75 MHz

Result: Occupied BW [MHz] = 5.5 MHz

According to FCC Part 2 §2.1049 / 2.1047 this measurement is passed.



6.2.3 Average Output Power

Average Output Power: 5620 W

Transmitter Frequency: 719 MHz

Receiver Setting: RSB 10 kHz, detector peak

Date: 22.APR.2008 09:50:52

Figure 6-13: Power of the MediaFlo transmitter

The power of any emission outside the occupied bandwidth is below the noisefloor. The level is 81dB below the carrier power. So the limit of 47CFR27.53 f is fulfilled.

Result of the output power calculation:

$$P_{\textit{Messure}} = -19.69 + 47.3(coupler) + 10dB(attenuator) = 37.6dBm$$

$$cable = 2.5dB$$

$$P_{Messure} = 40.1dBm$$

$$A_{BW} = 10 * \log(\frac{P_{BW}}{P_{RBW}}) = 10 * \log(\frac{BW}{RBW})$$

$$A_{BW} = 10 * \log(\frac{5500kHz}{10kHz}) = 27.4dB$$

$$P = A_{BW} + P_{Messure}$$

 $P = 27.4dB + 40.1dBm = 67.5dBm \approx 5.62 \text{ kW}$ (output power after bandpass filter)

6.2.4 Conducted Emission to FCC Part 15 on the AC Power port

Specification:

- FCC Part 15 § 15.107
- EN 301489-11

The test is designed to evaluate the RF signals conducted on the AC power interface of the EUT and to confirm that there is no major spurious signal feedback between items of the equipment. The measurement method was as described in FCC Part 15.

The EUT was connected to the mains power supply inside the test chamber via a LISN. The interference voltage on the AC power interface was measured separately on each power phase (L1, L2, L3, N) with PE grounded. The measurement results were combined to one test sheet by a peak hold function and the highest values were taken for examination with AV- and QP-detection. The resulting plot shows a worst case envelope of the measured spectrum. The test set-up of the following figures was used.

Figure 6-14: Test setup for conducted emissions measurement

Figure 6-15: Test setup for conducted emissions measurement

Results in detail:

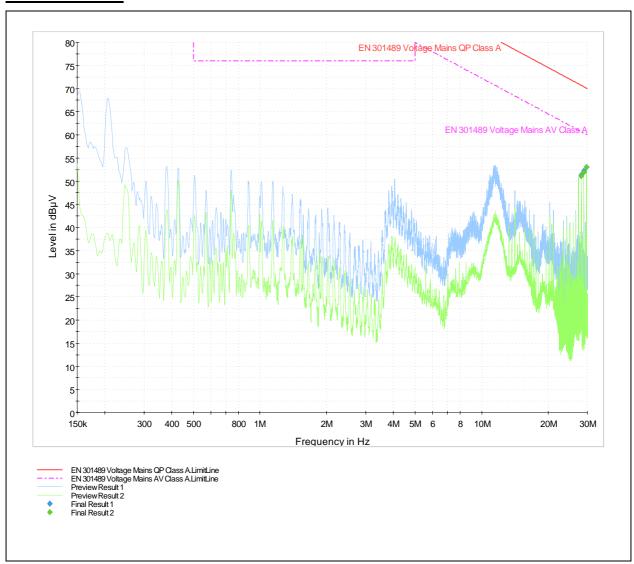


Figure 6-16: Conducted Emission, 0.15 – 30 MHz

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
28.153500	51.3	1000.000	9.000	GND	L1	9.5	19.4	70.7
28.936500	52.3	1000.000	9.000	GND	L1	9.5	18.1	70.4
29.717250	53.0	1000.000	9.000	GND	L1	9.4	17.1	70.1

Table 6-8: Highest values, QP detection

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
28.153500	51.1	1000.000	9.000	GND	L1	9.5	9.6	60.7
28.936500	51.9	1000.000	9.000	GND	L1	9.5	8.5	60.4
29.717250	53.0	1000.000	9.000	GND	L1	9.4	7.1	60.1

Table 6-9: Highest values, AV detection

According to EN 301489-11, Class A this measurement is passed.