

SAR Test Report

Product Name : CDMA 800MHz Mobile Phone

Model No. : E3240

FCC ID : HEOE3240

Applicant : GFIVE MOBILE FZE

Address : Unit 1, 16/F, Cable TV Tower, 9 Hoi Shing Road,
Tusen Wan, N.T., Hong Kong, China

Date of Receipt : Dec. 02, 2013

Date of Test : Dec. 02, 2013

Issued Date : Dec. 04, 2013

Report No. : 13C0127R-HP-US-P03V01

Report Version : V1.2

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation.

Test Report Certification

Issued Date: Dec. 04, 2013

Report No.: 13C0127R-HP-US-P03V01

Product Name : CDMA 800MHz Mobile Phone
Applicant : GFIVE MOBILE FZE
Address : Unit 1, 16/F, Cable TV Tower, 9 Hoi Shing Road, Tusan Wan, N.T., Hong Kong, China
Manufacturer : GFIVE MOBILE CO.,LTD
Address : Floor 1-5, Building F, No.9, East Zone, Shangxue Sci-tech Industrial Park, Bantian Street, Longgang District, Shenzhen City, China
Model No. : E3240
FCC ID : HEOE3240
Brand Name : Movilnet
EUT Voltage : DC 3.7V
Applicable Standard : FCC KDB Publication 447498 D01v05r01
FCC KDB Publication 865664 D01v01r01
FCC KDB Publication 941225 D01v02
Test Result : Max. SAR Measurement (1g)
Head: **0.168**W/kg
Body: **0.640**W/kg
Performed Location : Suzhou EMC Laboratory
No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-TechDevelopment Zone., Suzhou, China
TEL: +86-512-6251-5088 / FAX: +86-512-6251-5098
FCC Registration Number: 800392
Documented By :
Reviewed By :
Approved By :

Laboratory Information

We, **QuieTek Corporation**, are an independent EMC and safety consultancy that was established the whole facility in our laboratories. The test facility has been accredited/accepted(audited or listed) by the following related bodies in compliance with ISO 17025, EN 45001 and specified testing scope:

Taiwan R.O.C.	:	BSMI, NCC, TAF
Germany	:	TUV Rheinland
Norway	:	Nemko, DNV
USA	:	FCC
Japan	:	VCCI
China	:	CNAS

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site :<http://www.quietek.com/tw/ctg/cts/accreditations.htm>
The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site :
<http://www.quietek.com/>

If you have any comments, Please don't hesitate to contact us. Our contact information is as below:

HsinChu Testing Laboratory :

No.75-2, 3rd Lin, Wangye Keng, Yonghxing Tsuen, Qiongliong Shiang, Hsinchu County 307, Taiwan, R.O.C.
TEL:+886-3-592-8858 / FAX:+886-3-592-8859 E-Mail : service@quietek.com

LinKou Testing Laboratory :

No.5-22, Ruishukeng, Linkou Dist., New Taipei City 24451, Taiwan, R.O.C.
TEL : 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : service@quietek.com

Suzhou Testing Laboratory :

No.99 Hongye Rd., Suzhou Industrial Park Loufeng Hi-Tech Development Zone., SuZhou, China
TEL : +86-512-6251-5088 / FAX : 86-512-6251-5098 E-Mail : service@quietek.com

TABLE OF CONTENTS

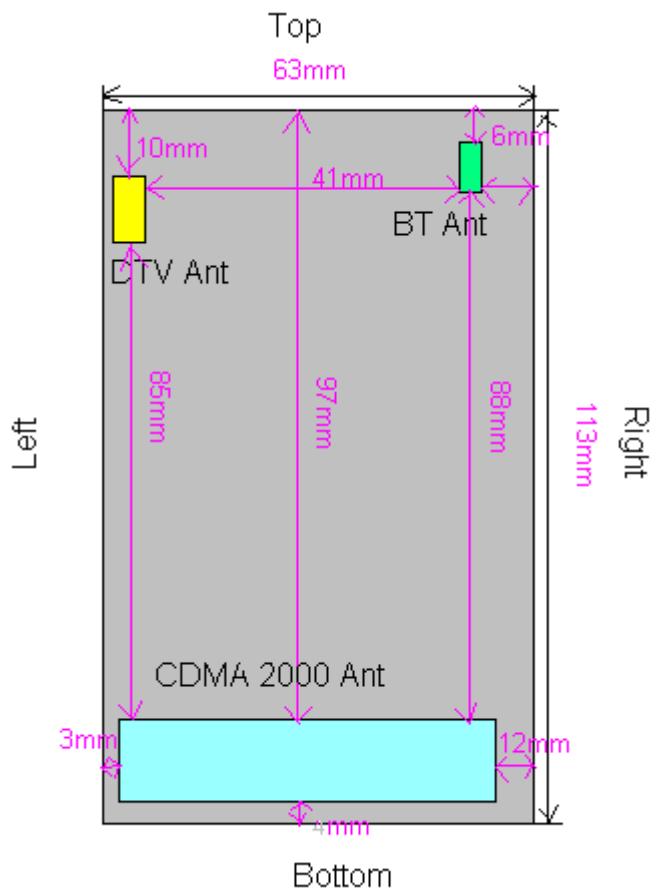
Description	Page
1. General Information.....	6
1.1. EUT Description	6
1.2. Test Environment.....	7
1.3. EUT Antenna Locations.....	7
1.4. Simultaneous Transmission Configurations.....	8
1.5. SAR Test Exclusions Applied.....	8
1.6. Guidance Documents	8
2. SAR Measurement System	9
2.1. DASY5 System Description.....	9
2.1.1. Applications	10
2.1.2. Area Scans	10
2.1.3. Zoom Scan (Cube Scan Averaging)	10
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging	10
2.2. DASY5 E-Field Probe.....	11
2.2.1. Isotropic E-Field Probe Specification	11
2.3. Boundary Detection Unit and Probe Mounting Device	12
2.4. DATA Acquisition Electronics (DAE) and Measurement Server.....	12
2.5. Robot.....	13
2.6. Light Beam Unit.....	13
2.7. Device Holder.....	14
2.8. SAM Twin Phantom.....	14
3. Tissue Simulating Liquid.....	15
3.1. The composition of the tissue simulating liquid	15
3.2. Tissue Calibration Result.....	16
3.3. Tissue Dielectric Parameters for Head and Body Phantoms	17
4. SAR Measurement Procedure.....	18
4.1. SAR System Validation.....	18
4.1.1. Validation Dipoles	18
4.1.2. Validation Result	19
4.2. SAR Measurement Procedure.....	20
4.3. Body-Worn Accessory Configurations	21
4.4. SAR Measurement Conditions for CDMA2000.....	22

5. SAR Exposure Limits.....	24
6. Test Equipment List	25
7. Measurement Uncertainty.....	28
8. Conducted Power Measurement	29
9. Test Results	31
9.1. SAR Test Results Summary	31
9.2. SAR Test Notes	33
Appendix A. SAR System Validation Data	35
Appendix B. SAR measurement Data.....	37
Appendix C. Test Setup Photographs & EUT Photographs	44
Appendix D. Probe Calibration Data	50
Appendix E. Dipole Calibration Data.....	61
Appendix F. DAE Calibration Data	69

1. General Information

1.1. EUT Description

Product Name	CDMA 800MHz Mobile Phone
Model No.	E3240
Device Category	Portable
RF Exposure Environment	Uncontrolled
Antenna Type	Internal
CDMA 2000	
Support Band	BC0
Uplink	BC0: 824~849MHz
Downlink	BC0: 869~894MHz
Antenna Type	Internal
Type of Modulation	QPSK
Peak Antenna Gain	BC0: 1.0dBi
Bluetooth	
Bluetooth Frequency	2402~2480MHz
Bluetooth Version	V2.1 + EDR
Type of modulation	FHSS
Data Rate	1Mbps(GFSK), 2Mbps(Pi/4 DQPSK), 3Mbps (8DPSK)
Antenna Gain	0.5dBi


1.2. Test Environment

Ambient conditions in the laboratory:

Items	Required	Actual
Temperature (°C)	18-25	21.5± 2
Humidity (%RH)	30-70	52

1.3. EUT Antenna Locations

Back View of the CDMA 800MHz Mobile Phone

1.4. Simultaneous Transmission Configurations

According to FCC KDB Publication 447498 D01v05, transmitter are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneously transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Table 1-1
Simultaneous Transmission Scenarios

Ref.	Simultaneous Transmit Configurations	Head	Body-Worn Accessory	Note
		IEEE1528 Supp C	Supplement C	
1	CDMA Voice + Bluetooth	Yes	Yes	

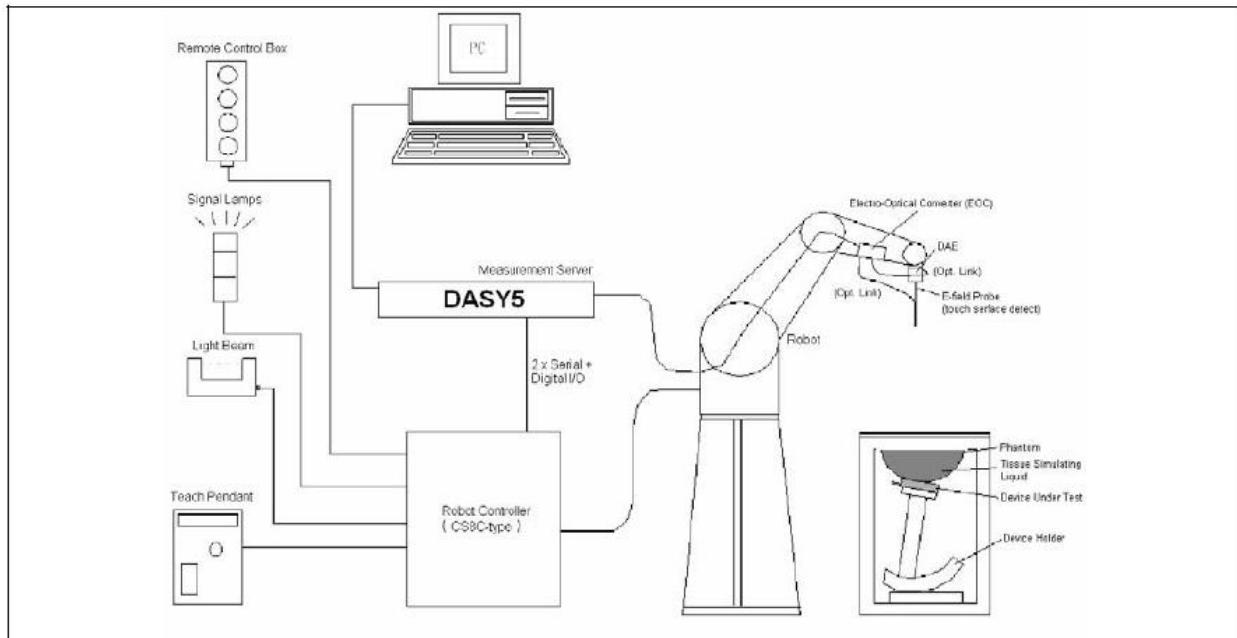
1.5. SAR Test Exclusions Applied

Bluetooth

Per FCC KDB 447498 D01v05, the SAR exclusion threshold for distances<50mm is defined by the following equation:

$$\frac{\text{Max Power of Channel (mW)}}{\text{Test Separation Dist (mm)}} * \sqrt{\text{Frequency(GHz)}} \leq 3.0$$

Based on the maximum conducted power of Bluetooth and the antenna to use separation distance, Bluetooth SAR was not required;


$[(3.55\text{mW}/5) * \sqrt{2.441}] = 1.109 < 3.0$ for Head; $[(3.55\text{mW}/15) * \sqrt{2.441}] = 0.370 < 3.0$ for Body.

1.6. Guidance Documents

- 1) FCC KDB Publication 941225 D01-D06(3G)
- 2) FCC KDB Publication 447498 D01v05(General SAR Guidance)
- 3) FCC KDB Publication 865664 D01v01(SAR measurement 100 MHz to 6 GHz)

2. SAR Measurement System

2.1. DASY5 System Description

The DASY5 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

2.1.1. Applications

Predefined procedures and evaluations for automated compliance testing with all worldwide standards, e.g., IEEE 1528, OET 65, IEC 62209-1, IEC 62209-2, EN 50360, EN 50383 and others.

2.1.2. Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm² step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

When an Area Scan has measured all reachable points, it computes the field maxima found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE 1528-2003 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan).

2.1.3. Zoom Scan (Cube Scan Averaging)

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

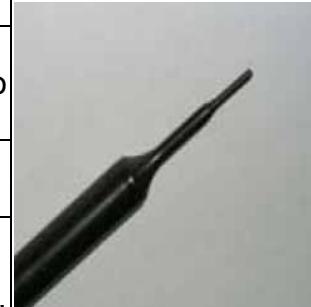
2.1.4. Uncertainty of Inter-/Extrapolation and Averaging

In order to evaluate the uncertainty of the interpolation, extrapolation and averaged SAR calculation algorithms of the Postprocessor, DASY5 allows the generation of measurement grids which are artificially predefined by analytically based test functions. Therefore, the grids of area scans and zoom scans can be filled with uncertainty test data, according to the SAR benchmark functions of IEEE 1528. The three analytical functions shown in equations as below are used to describe the possible range of the expected SAR distributions for the tested handsets. The field gradients are covered by the spatially flat distribution f1, the spatially steep distribution f3 and f2 accounts for H-field cancellation on the phantom/tissue surface.

$$f_1(x, y, z) = Ae^{-\frac{z}{2a}} \cos^2 \left(\frac{\pi}{2} \frac{\sqrt{x'^2 + y'^2}}{5a} \right)$$

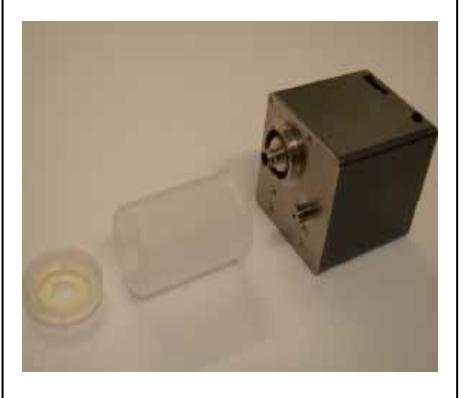
$$f_2(x, y, z) = Ae^{-\frac{z}{a}} \frac{a^2}{a^2 + x'^2} \left(3 - e^{-\frac{2z}{a}} \right) \cos^2 \left(\frac{\pi}{2} \frac{y'}{3a} \right)$$

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a + 2z)^2} \right)$$


2.2. DASY5 E-Field Probe

The SAR measurement is conducted with the dosimetric probe manufactured by SPEAG. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN 62209-1, IEC 62209, etc.) under ISO 17025. The calibration data are in Appendix D.


2.2.1. Isotropic E-Field Probe Specification

Model	EX3DV4
Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

2.3. Boundary Detection Unit and Probe Mounting Device

The DASY5 probes use a precise connector and an additional holder for the probe, consisting of a plastic tube and a flexible silicon ring to center the probe. The connector at the DAE is flexibly mounted and held in the default position with magnets and springs. Two switching systems in the connector mount detect frontal and lateral probe collisions and trigger the necessary software response.

2.4. DATA Acquisition Electronics (DAE) and Measurement Server

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

The DASY5 measurement server is based on a PC/104 CPU board with a 400MHz intel ULV Celeron, 128MB chipdisk and 128MB RAM. The necessary circuits for communication with the DAE electronics box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY5 I/O board, which is directly connected to the PC/104 bus of the CPU board.

2.5. Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used.

The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

2.6. Light Beam Unit

The light beam switch allows automatic "tooling" of the probe. During the process, the actual position of the probe tip with respect to the robot arm is measured, as well as the probe length and the horizontal probe offset. The software then corrects all movements, such that the robot coordinates are valid for the probe tip.

The repeatability of this process is better than 0.1 mm. If a position has been taught with an aligned probe, the same position will be reached with another aligned probe within 0.1 mm, even if the other probe has different dimensions.

During probe rotations, the probe tip will keep its actual position.

2.7. Device Holder

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

2.8. SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

3. Tissue Simulating Liquid

3.1. The composition of the tissue simulating liquid

INGREDIENT (% Weight)	835MHz Head	835MHz Body
Water	40.45	52.4
Salt	1.45	1.40
Sugar	57.6	45.0
HEC	0.40	1.00
Preventol	0.10	0.20
DGBE	0.00	0.00

3.2. Tissue Calibration Result

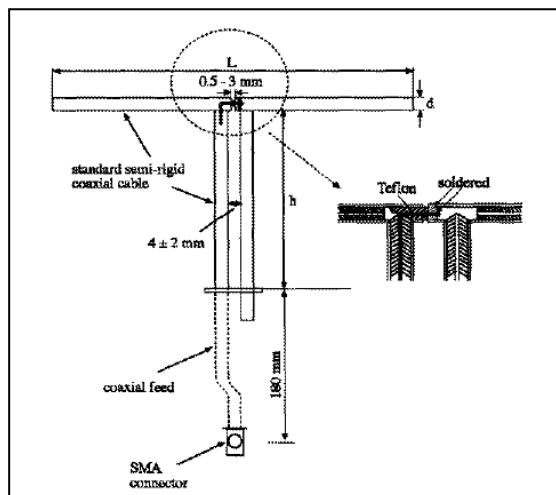
The dielectric parameters of the liquids were verified prior to the SAR evaluation using DASY5 Dielectric Probe Kit and Agilent Vector Network Analyzer E5071C

Head Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
835 MHz	Reference result ± 5% window	41.50 39.43 to 43.58	0.90 0.86 to 0.95	N/A
	02-12-2013	42.06	0.89	21.0

Body Tissue Simulant Measurement				
Frequency [MHz]	Description	Dielectric Parameters		Tissue Temp. [°C]
		ϵ_r	σ [s/m]	
835 MHz	Reference result ± 5% window	55.2 52.44 to 57.96	0.97 0.92 to 1.02	N/A
	02-12-2013	55.64	0.97	21.0

3.3. Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.


Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000$ kg/m³)

4. SAR Measurement Procedure

4.1. SAR System Validation

4.1.1. Validation Dipoles

The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

Frequency	L (mm)	h (mm)	d (mm)
835MHz	161.0	89.8	3.6

4.1.2. Validation Result

System Performance Check at 835MHz for Head

Validation Kit: D835V2-SN 4d094

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
835 MHz	Reference result ± 10% window	9.41 8.47 to 10.35	6.15 5.54 to 6.77	N/A
	02-12-2013	9.76	6.44	21.0

Note: All SAR values are normalized to 1W forward power.

System Performance Check at 835MHz for Body

Validation Kit: D835V2-SN 4d094

Frequency [MHz]	Description	SAR [w/kg] 1g	SAR [w/kg] 10g	Tissue Temp. [°C]
835 MHz	Reference result ± 10% window	9.57 8.61 to 10.53	6.33 5.70 to 6.96	N/A
	02-12-2013	9.96	6.48	21.0

Note: All SAR values are normalized to 1W forward power.

4.2. SAR Measurement Procedure

The DASY5 calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ : represents the simulated tissue conductivity

ρ : represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm²) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm³).

4.3. Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. Per FCC KDB Publication 648474 D04_v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01_v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

4.4. SAR Measurement Conditions for CDMA2000

The following procedures were performed according to FCC KDB Publication 941225 D01 “SAR Measurement Procedures for 3G Devices” v02, October 2007.

4.4.1. Output Power Verification

See 3GPP2 C.S0011/TIA-98-E as recommended by “SAR Measurement Procedures for 3G Devices” v02, October 2007. Maximum output power is verified on the High, Middle and Low channels according to procedures in section 4.4.5.2 of 3GPP2 C.S0011/TIA-98-E. SO55 tests were measured with power control bits in the “All Up” condition.

1. If the mobile station (MS) supports Reverse TCH RC 1 and Forward TCH RC 1, set up a call using Fundamental Channel Test Mode 1 (RC=1/1) with 9600 bps data rate only.
2. Under RC1, C.S0011 Table 4.4.5.2-1, Table 2-1 parameters were applied.
3. If the MS supports the RC 3 Reverse FCH, RC3 Reverse SCH0 and demodulation of RC 3,4, or 5, set up a call using Supplemental Channel Test Mode 3 (RC 3/3) with 9600 bps Fundamental Channel and 9600 bps SCH0 data rate.
4. Under RC3, C.S0011 Table 4.4.5.2-2, Table 2-2 was applied.

Table 2-1

Parameters for Max. Power for RC1

Parameter	Units	Value
\bar{I}_{or}	dBm/1.23 MHz	-104
$\frac{Pilot E_c}{\bar{I}_{or}}$	dB	-7
$\frac{Traffic E_c}{\bar{I}_{or}}$	dB	-7.4

Table 2-2

Parameters for Max. Power for RC3

Parameter	Units	Value
\bar{I}_{or}	dBm/1.23 MHz	-86
$\frac{Pilot E_c}{\bar{I}_{or}}$	dB	-7
$\frac{Traffic E_c}{\bar{I}_{or}}$	dB	-7.4

5. FCHs were configured at full rate for maximum SAR with “All Up” power control bits.

4.4.2. Head SAR Measurements

SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than ¼ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1 using the exposure configuration that results in the highest SAR for that channel in RC3.

4.4.3. Body SAR Measurements

SAR for body exposure configurations is measured in RC3 with the DUT configured to transmit at full rate on FCH with all other code channels disabled using TDSO / SO32. SAR for multiple code channels (FCH + SCHn) is not required when the maximum average output of each RF channel is less than ¼ dB higher than that measured with FCH

only. Otherwise, SAR is measured on the maximum output channel (FCH + SCHn) with FCH at full rate and SCH0 enabled at 9600 bps using the exposure configuration that results in the highest SAR for that channel with FCH only. When multiple code channels are enabled, the DUT output may shift by more than 0.5 dB and lead to higher SAR drifts and SCH dropouts. Body SAR was measured using TDSO / SO32 with power control bits in the "All Up" Body SAR in RC1 is not required when the maximum average output of each channel is less than $\frac{1}{4}$ dB higher than that measured in RC3. Otherwise, SAR is measured on the maximum output channel in RC1; with Loopback Service Option SO55, at full rate, using the body exposure configuration that results in the highest SAR for that channel in RC3.

4.4.4. Handsets with EVDO

For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than $\frac{1}{4}$ dB higher than that measured in RC3 (1x RTT), body SAR for EV-DO is not required. Otherwise, SAR for Rev. 0 is measured on the maximum output channel at 153.6 kbps using the body exposure configuration that results in the highest SAR for that channel in RC3.

SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than $\frac{1}{4}$ dB higher than that measured in RC3.

Otherwise, SAR is measured on the maximum output channel for Rev. A using a Reverse Data Channel payload size of 4096 bits and a Termination Target of 16 slots defined for Subtype 2 Physical Layer configurations. A Forward Traffic Channel data rate corresponding to the 2-slot version of 307.2 kbps with the ACK Channel transmitting in all slots would be configured in the downlink for both Rev. 0 and Rev. A.

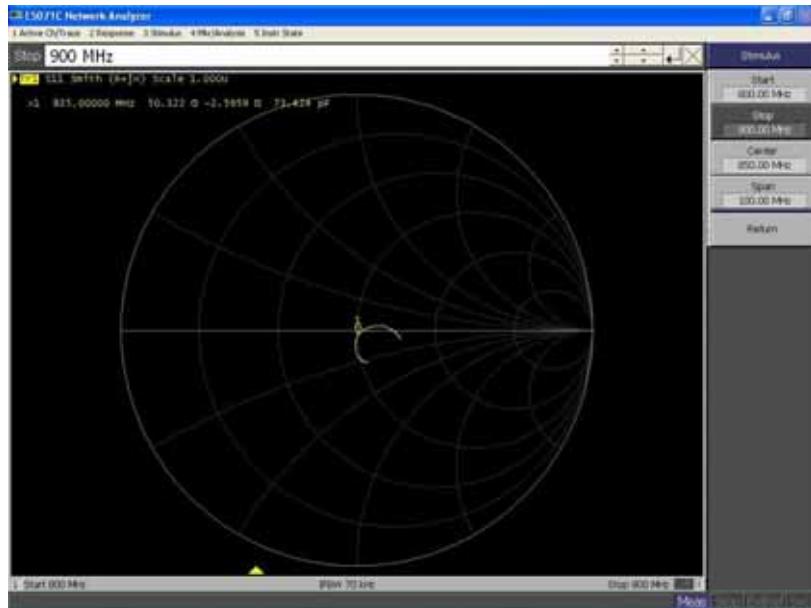
5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

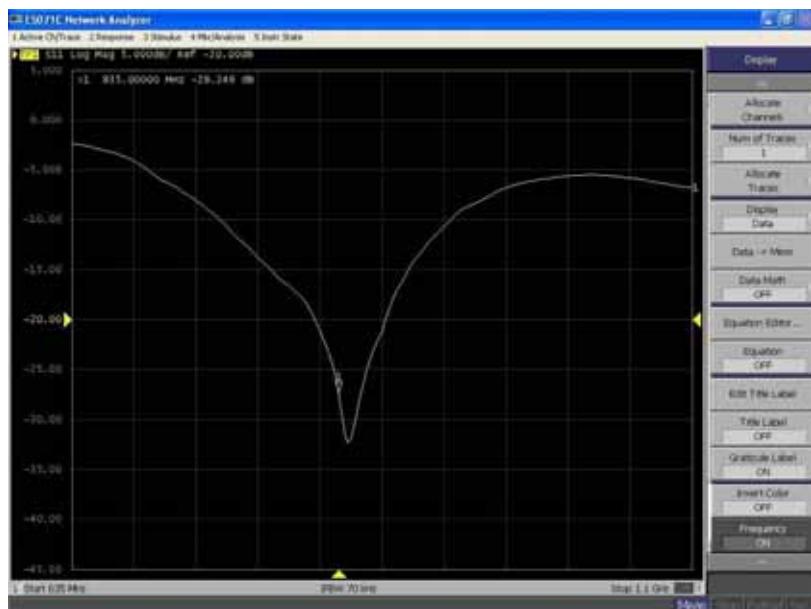
Limits for General Population/Uncontrolled Exposure (W/kg)

Type Exposure	Uncontrolled Environment Limit
Spatial Peak SAR (1g cube tissue for brain or body)	1.60 W/kg
Spatial Average SAR (whole body)	0.08 W/kg
Spatial Peak SAR (10g for hands, feet, ankles and wrist)	4.00 W/kg

6. Test Equipment List

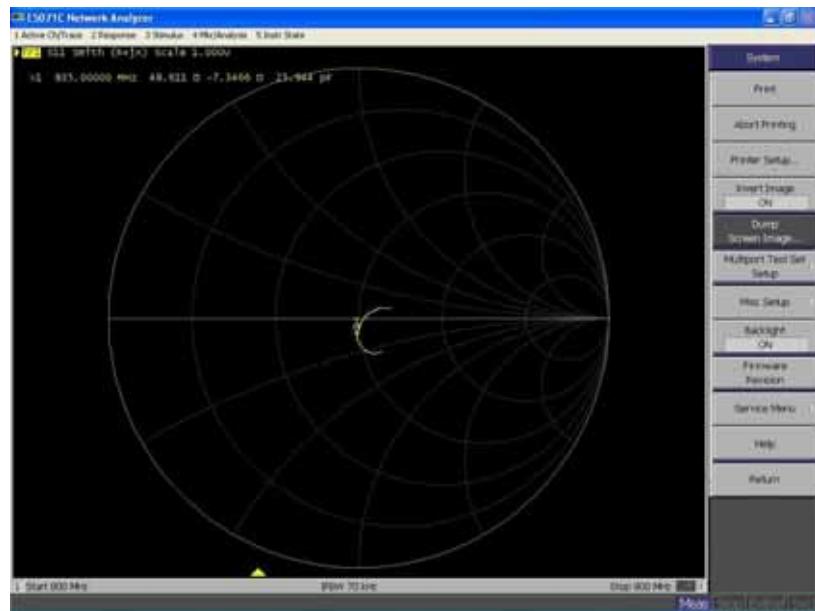

Instrument	Manufacturer	Model No.	Serial No.	Cali. Due Date
Stäubli Robot TX60L	Stäubli	TX60L	F10/5C90A1/A/01	N/A
Controller	Stäubli	SP1	S-0034	N/A
Dipole Validation Kits	Speag	D835V2	4d094	2014.02.17
SAM Twin Phantom	Speag	SAM	TP-1561/1562	N/A
Device Holder	Speag	SD 000 H01 HA	N/A	N/A
Data Acquisition Electronic	Speag	DAE4	Sn1220	2014.01.24
E-Field Probe	Speag	EX3DV4	3710	2014.03.12
SAR Software	Speag	DASY5	V5.2 Build 162	N/A
Power Amplifier	Mini-Circuit	ZVA-183-S+	N657400950	N/A
Directional Coupler	Agilent	778D	20160	N/A
Universal Radio Communication Tester	R&S	CMU 200	117088	2014.03.30
Vector Network	Agilent	E5071C	MY48367267	2014.03.30
Signal Generator	Agilent	E4438C	MY49070163	2014.03.30
Power Meter	Anritsu	ML2495A	0905006	2014.11.01
Wide Bandwidth Sensor	Anritsu	MA2411B	0846014	2014.11.01

Note: Per KDB 450824 D02 requirements for dipole calibration, QuieTek Lab has adopted two years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

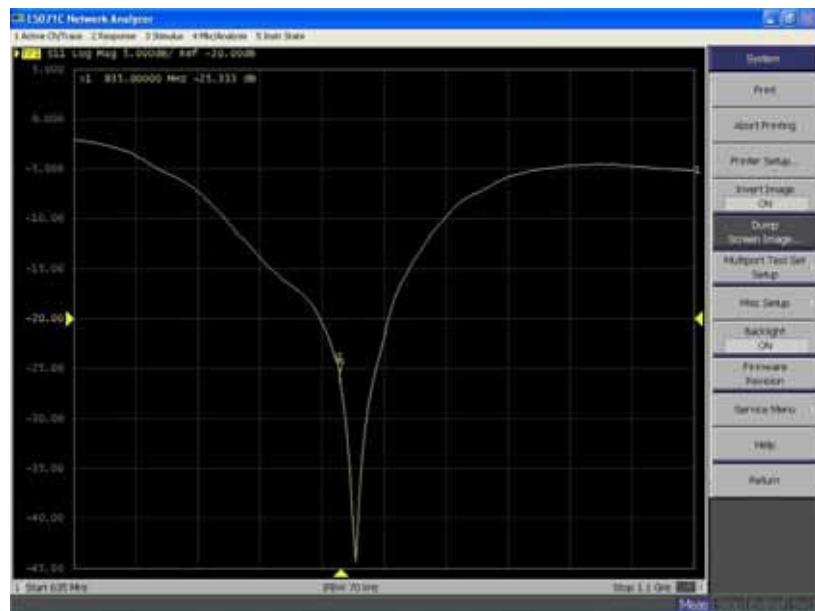

1. There is no physical damage on the dipole;
2. System validation with specific dipole is within 10% of calibrated value;
3. Return-loss is within 20% of calibrated measurement (Show below);
4. Impedance is within 5Ω of calibrated measurement (Show below).

Impedance Plot for D835V2**835 Head**

Calibrated impedance: 53.5Ω ; Measured impedance: 50.322Ω (within 5Ω)



Calibrated return loss: -28.1 dB; Measured return loss: -28.246 dB (within 20%)



835 Body

Calibrated impedance: 47.7 Ω ; Measured impedance: 48.611 Ω (within 5 Ω)

Calibrated return loss: -24.5 dB; Measured impedance: -25.333 dB (within 20%)

7. Measurement Uncertainty

DASY5 Uncertainty								
Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram / 10 gram.								
Error Description	Uncert. value	Prob. Dist.	Div.	(ci) 1g	(ci) 10g	Std. Unc. (1g)	Std. Unc. (10g)	(vi) veff
Measurement System								
Probe Calibration	±6.0%	N	1	1	1	±6.0%	±6.0%	∞
Axial Isotropy	±4.7%	R	$\sqrt{3}$	0.7	0.7	±1.9%	±1.9%	∞
Hemispherical Isotropy	±9.6%	R	$\sqrt{3}$	0.7	0.7	±3.9%	±3.9%	∞
Boundary Effects	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Linearity	±4.7%	R	$\sqrt{3}$	1	1	±2.7%	±2.7%	∞
System Detection Limits	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Readout Electronics	±0.3%	N	1	1	1	±0.3%	±0.3%	∞
Response Time	±0.8%	R	$\sqrt{3}$	1	1	±0.5%	±0.5%	∞
Integration Time	±2.6%	R	$\sqrt{3}$	1	1	±1.5%	±1.5%	∞
RF Ambient Noise	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
RF Ambient Reflections	±3.0%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Probe Positioner	±0.4%	R	$\sqrt{3}$	1	1	±0.2%	±0.2%	∞
Probe Positioning	±2.9%	R	$\sqrt{3}$	1	1	±1.7%	±1.7%	∞
Max. SAR Eval.	±1.0%	R	$\sqrt{3}$	1	1	±0.6%	±0.6%	∞
Test Sample Related								
Device Positioning	±2.9%	N	1	1	1	±2.9%	±2.9%	145
Device Holder	±3.6%	N	1	1	1	±3.6%	±3.6%	5
Power Drift	±5.0%	R	$\sqrt{3}$	1	1	±2.9%	±2.9%	∞
Phantom and Setup								
Phantom Uncertainty	±4.0%	R	$\sqrt{3}$	1	1	±2.3%	±2.3%	∞
Liquid Conductivity (target)	±5.0%	R	$\sqrt{3}$	0.64	0.43	±1.8%	±1.2%	∞
Liquid Conductivity (meas.)	±2.5%	N	1	0.64	0.43	±1.6%	±1.1%	∞
Liquid Permittivity (target)	±5.0%	R	$\sqrt{3}$	0.6	0.49	±1.7%	±1.4%	∞
Liquid Permittivity (meas.)	±2.5%	N	1	0.6	0.49	±1.5%	±1.2%	∞
Combined Std. Uncertainty						±11.0%	±10.8%	387
Expanded STD Uncertainty						±22.0%	±21.5%	

8. Conducted Power Measurement

CDMA2000 BC0

Mode	Test Case			BC0 (850MHz) Channel		
	Num.	FWD RC/TAP	REV RC/TAP	Conducted Power (dBm)		
				1013	384	777
1x RTT	1	RC1	RC1 (SO2)	25.04	24.81	24.96
	2	RC1	RC1 (SO55)	25.11	24.82	24.98
	3	RC2	RC2 (SO9)	25.08	24.86	25.01
	4	RC2	RC2 (SO55)	25.16	24.88	25.05
	5	RC3	RC3 (SO55)	25.11	24.93	25.04
	6	RC3	RC3 (SO32)	25.19	24.92	25.08
EV-DO Rel0	7a	FTAP rate = 307kbps (2 slot, QPSK)	RTAP rate = 9.6kbps	24.93	24.77	24.88
	7b		RTAP rate = 19.2kbps	24.78	24.71	24.74
	7c		RTAP rate = 38.4kbps	24.68	24.62	24.69
	7d		RTAP rate = 76.8kbps	24.59	24.58	24.51
	7e		RTAP rate = 153.6kbps	24.53	24.57	24.56
EV-DO Rev A	8a	FETAP rate = 307kbps (2 slot, ACK channel is transmitted at all the slots)	RETAP – payload size = 128	24.73	24.69	24.72
	8b		RETAP – payload size = 256	24.77	24.78	24.81
	8c		RETAP – payload size = 512	24.78	24.73	24.69
	8d		RETAP – payload size = 768	24.77	24.76	24.85
	8e		RETAP – payload size = 1024	24.73	24.68	24.83
	8f		RETAP – payload size = 1536	24.71	24.82	24.93
	8g		RETAP – payload size = 2048	24.74	24.67	24.82
	8h		RETAP – payload size = 3072	24.73	24.67	24.81
	8i		RETAP – payload size = 4096	24.68	24.71	24.68
	8j		RETAP – payload size = 6144	24.88	24.93	24.96
	8k		RETAP – payload size = 8192	24.82	24.83	24.88
	8l		RETAP – payload size = 12288	24.79	24.77	24.74

Note 1: Per FCC KDB 941225 D01 v02, SAR for head exposure configurations is measured in RC3 with the DUT configured to transmit at full rate using Loopback Service Option SO55. SAR for RC1 is not required when the maximum average output of each channel is less than $\frac{1}{4}$ dB higher than that measured in RC3.

2: SAR for body exposure configurations is measured in RC3 with the DUT configured using SO32, to transmit at full rate on FCH with all other code channels disabled. Body SAR in RC1 is not required when the maximum average output of each channel is less than $\frac{1}{4}$ dB higher than that measured in RC3.

3: For handsets with Ev-Do capabilities, when the maximum average output of each channel in Rev. 0 is less than $\frac{1}{4}$ dB higher than that measured in RC3 (1x RTT), body SAR for Ev-Do is not required. Otherwise,

SAR for Rev. 0 is measured on the maximum output channel, at 153.6kbps using the body exposure configuration that results in the highest SAR for that channel in RC3.

4: For handsets with Ev-Do capabilities, only when VOIP is available for Ev-Do devices to operate in configurations next to the ear, head exposure conditions are applicable. If not, head SAR for for Ev-Do is not required.

5: SAR for Rev. A is not required when the maximum average output of each channel is less than that measured in Rev. 0 or less than 1/4 dB higher than that measured in RC3.

Mode	Channel	Normal Power (dBm)	Max. Power (dBm)	Scaling Factor
CDMA BC0 RC3(SO55)	1013	25.11	25.5	1.094
	384	24.93	25.5	1.140
	777	25.04	25.5	1.112
CDMA BC0 RC3(SO32)	1013	25.19	25.5	1.074
	384	24.92	25.5	1.143
	777	25.08	25.5	1.102

Note: Scaling Factor = Max. Power(mW) / Normal Power(mW)

9. Test Results

9.1. SAR Test Results Summary

SAR MEASUREMENT														
Ambient Temperature (°C) : 21.5 ±2					Relative Humidity (%): 52									
Liquid Temperature (°C) : 21.0 ±2					Depth of Liquid (cm):>15									
Product: CDMA 800MHz Mobile Phone														
Test Mode: CDMA2000 BC0														
Test Position Head	Antenna Position	Frequency		Conducted Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Limit (W/kg)					
		Channel	MHz											
Left-Cheek	Fixed	1013	824.7	25.11	--	--	1.094	--	1.6					
Left-Cheek	Fixed	384	836.52	24.93	0.09	0.082	1.140	0.093	1.6					
Left-Cheek	Fixed	777	848.31	25.04	--	--	1.112	--	1.6					
Left-Tilted	Fixed	384	836.52	24.93	0.14	0.045	1.140	0.051	1.6					
Right-Cheek	Fixed	1013	824.7	25.11	--	--	1.094	--	1.6					
Right-Cheek	Fixed	384	836.52	24.93	-0.01	0.147	1.140	0.168	1.6					
Right-Cheek	Fixed	777	848.31	25.04	--	--	1.112	--	1.6					
Right-Tilted	Fixed	384	836.52	24.93	-0.05	0.074	1.140	0.084	1.6					
Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.														

SAR MEASUREMENT												
Ambient Temperature (°C) : 21.5 ±2					Relative Humidity (%): 52							
Liquid Temperature (°C) : 21.0 ±2					Depth of Liquid (cm):>15							
Product: CDMA 800MHz Mobile Phone												
Test Mode: CDMA2000 BC0												
Test Position of Body (15mm gap)	Antenna Position	Frequency		Conducted Power (dBm)	Power Drift (<±0.2)	SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)				
		Channel	MHz									
Body-worn	Fixed	1013	824.7	25.19	--	--	1.074	--				
Body-worn	Fixed	384	836.52	24.92	-0.16	0.560	1.143	0.640				
Body-worn	Fixed	777	848.31	25.08	--	--	1.102	--				
Body-Front	Fixed	384	836.52	24.92	-0.02	0.097	1.143	0.111				

Note: when the 1-g SAR is ≤ 0.8 W/kg, testing for low and high channel is optional, refer to KDB 447498.

9.2. SAR Test Notes

9.2.1. Test position and configuration

Head SAR was performed with the device configured in the positions according to IEEE1528. Body SAR was performed with the device 15mm from the phantom. This test separation distance is determined by the manufacturer and it is clearly explained in the user manual to enable users to purchase aftermarket body-worn accessories with the required minimum separation 15mm.

9.2.2. Body SAR with Headset

Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.

9.2.3. Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific physical test configuration is ≤ 1.6 W/kg. When standalone SAR is not required to be measured, per FCC KDB 447498 D01v05 4.3.2.2, the following equation must be used to estimate the standalone 1g SAR for simultaneous transmission assessment involving that transmitter.

$$\text{Estimated SAR} = \frac{\sqrt{f(\text{GHz})}}{7.5} * \frac{(\text{Max Power of channel, mW})}{\text{Min. Separation Distance, mm}}$$

Estimated SAR for Bluetooth

Mode	Frequency	Maximum Allowed Power	Separation Distance (Head)	Estimated SAR (Held-to-Ear)	Separation Distance (Body)	Estimated SAR (Body)
	[MHz]	[dBm]	[mm]	[W/kg]	[mm]	[W/kg]
Bluetooth	2441	5.5	5	0.148	15	0.049

9.2.4. Simultaneous Transmission Analysis

Simultaneous Transmission Scenario with Bluetooth

Configuration	Mode	Max. Scaled CDMA SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
Head	CDMA2000 BC0	0.168	0.148	0.316
Body-Worn	CDMA2000 BC0	0.640	0.049	0.689

Note: Bluetooth SAR was not required to be measured per FCC KDB 447498. Estimated SAR results were used in the above table to determine simultaneous transmission SAR test exclusion.

9.2.5. Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

Appendix A. SAR System Validation Data

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

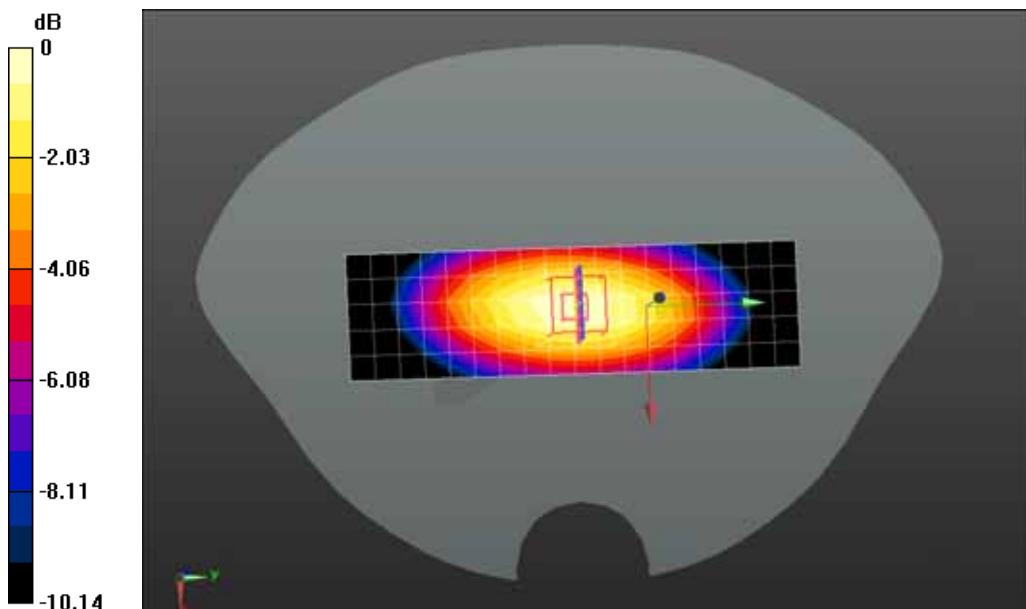
System Check Head 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

Communication System: CW; Communication System Band: D835(835.0MHz); Duty Cycle: 1:1; Frequency: 835 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.06$; $\rho = 1000$ kg/m³; Phantom section: Flat Section ; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.52, 9.52, 9.52); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Head 835MHz/Area Scan (6x19x1): Measurement grid: dx=10mm, dy=10mm, Maximum value of SAR (measured) = 2.51 mW/g

Configuration/System Check Head 835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 54.086 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 3.653 mW/g

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.61 mW/g Maximum value of SAR (measured) = 2.63 mW/g

0 dB = 2.63 mW/g = 8.40 dB mW/g

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

System Check Body 835MHz

DUT: Dipole 835 MHz D835V2; Type: D835V2

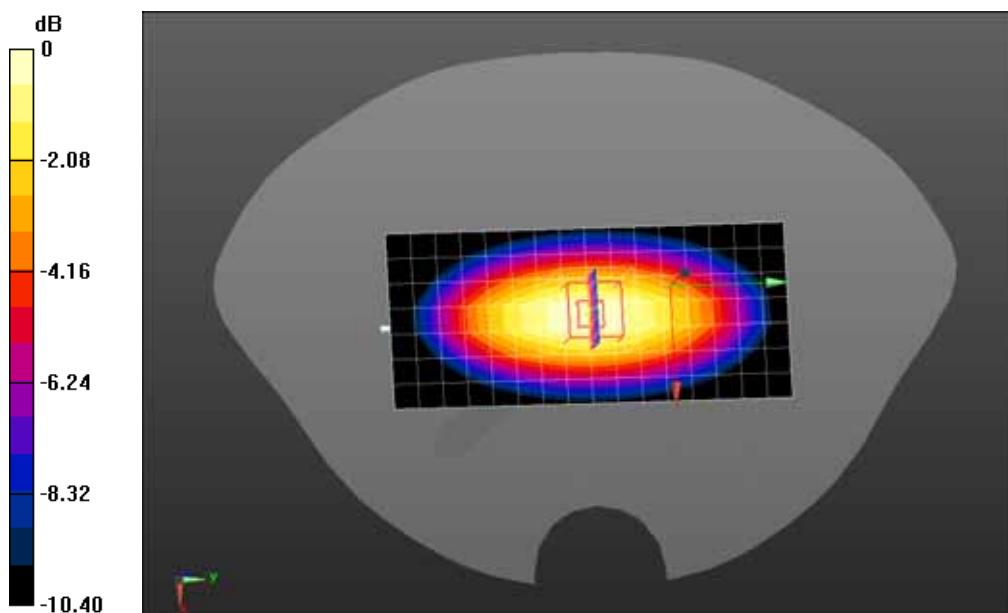
Communication System: CW; Communication System Band: D835 (835.0 MHz); Duty Cycle: 1:1;

Frequency: 835 MHz; Medium parameters used: $f = 835$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 55.64$; $\rho = 1000$ kg/m³ ;

Phantom section: Flat Section ; Input Power=250mW

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.41, 9.41, 9.41); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/System Check Body 835MHz/Area Scan (8x17x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.54 mW/g

Configuration/System Check Body 835MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm, Reference Value = 53.108 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 3.732 mW/g

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.62 mW/g Maximum value of SAR (measured) = 2.68 mW/g

Appendix B. SAR measurement Data

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

CDMA2000 BC0 Mid Touch-Left

DUT: CDMA 800MHz Mobile Phone; Type: E3240

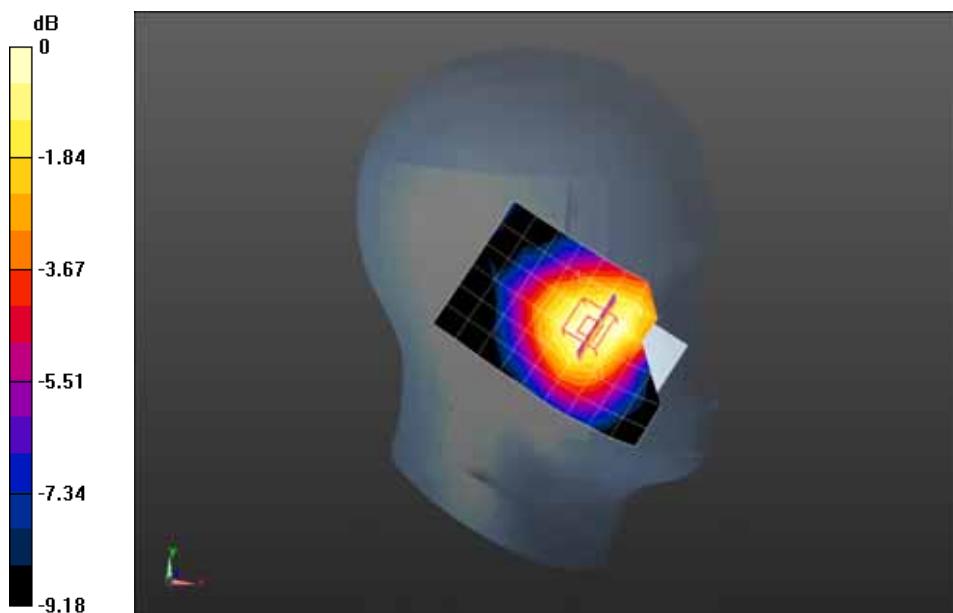
Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.04$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(9.52, 9.52, 9.52); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)


Configuration/CDMA2000 Mid Touch-Left/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0867 mW/g

Configuration/CDMA2000 Mid Touch-Left/Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.045 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.108 mW/g

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.063 mW/g Maximum value of SAR (measured) = 0.0857 mW/g

0 dB = 0.0857 mW/g = -21.34 dB mW/g

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

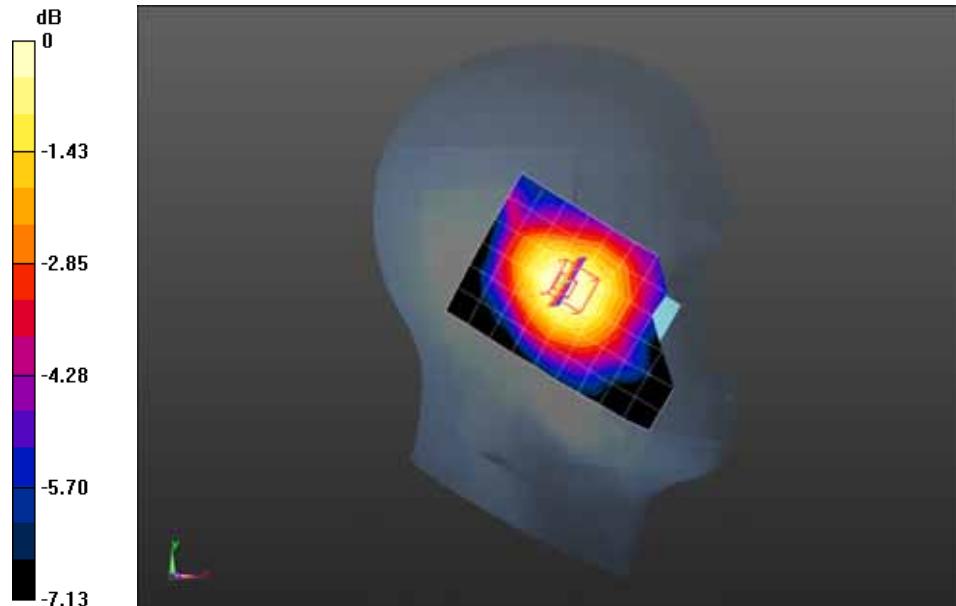
CDMA2000 BC0 Mid Tilt-Left

DUT: CDMA 800MHz Mobile Phone; Type: E3240Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.04$; $\rho = 1000$ kg/m³;

Phantom section: Left Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.52, 9.52, 9.52); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/CDMA2000 Mid Tilt-Left/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0493 mW/g

Configuration/CDMA2000 Mid Tilt-Left/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.293 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.053 mW/g

SAR(1 g) = 0.045 mW/g; SAR(10 g) = 0.035 mW/g Maximum value of SAR (measured) = 0.0474 mW/g

0 dB = 0.0474 mW/g = -26.48 dB mW/g

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

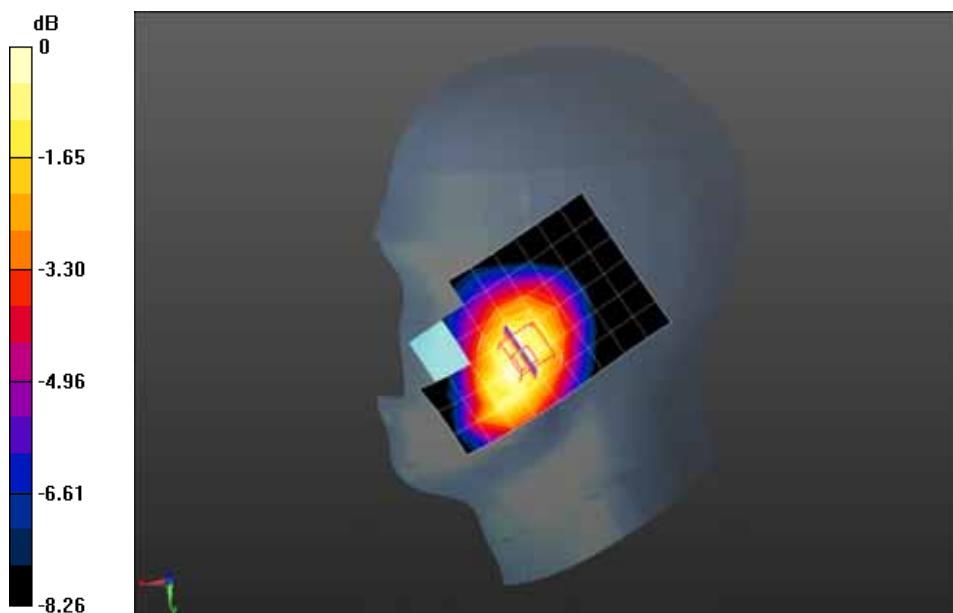
CDMA2000 BC0 Mid Touch-Right

DUT: CDMA 800MHz Mobile Phone; Type: E3240Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.04$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.52, 9.52, 9.52); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/CDMA2000 Mid Touch-Right/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.149 mW/g

Configuration/CDMA2000 Mid Touch-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 4.950 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.199 mW/g

SAR(1 g) = 0.147 mW/g; SAR(10 g) = 0.109 mW/g Maximum value of SAR (measured) = 0.154 mW/g

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

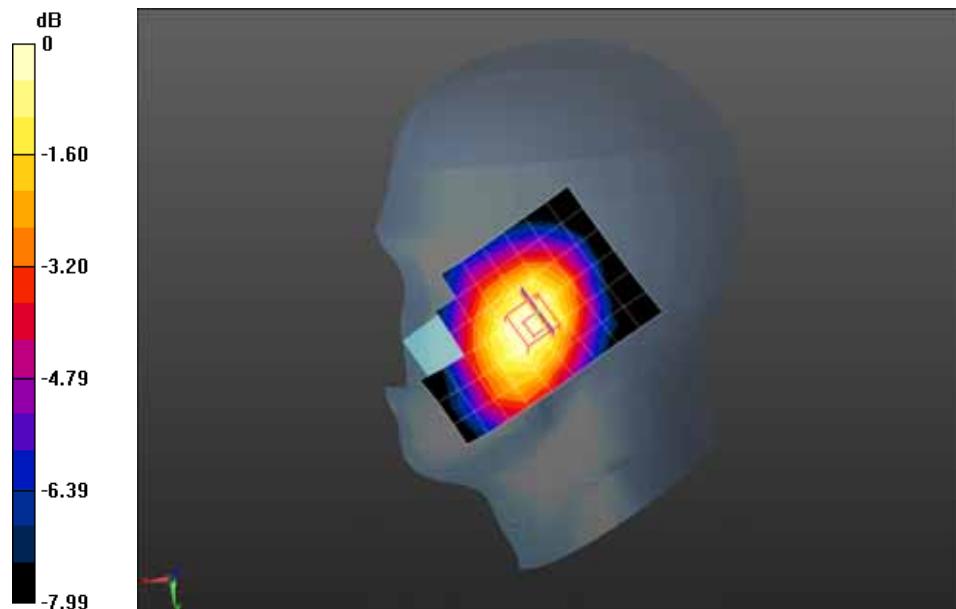
CDMA2000 BC0 Mid Tilt-Right

DUT: CDMA 800MHz Mobile Phone; Type: E3240Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 42.04$; $\rho = 1000$ kg/m³;

Phantom section: Right Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.52, 9.52, 9.52); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/CDMA2000 Mid Tilt-Right/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0765 mW/g

Configuration/CDMA2000 Mid Tilt-Right/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 5.741 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.088 mW/g

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.057 mW/g Maximum value of SAR (measured) = 0.0770 mW/g

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

CDMA2000 BC0 Mid Body-Back

DUT: CDMA 800MHz Mobile Phone; Type: E3240

Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 55.63$; $\rho = 1000$ kg/m³;

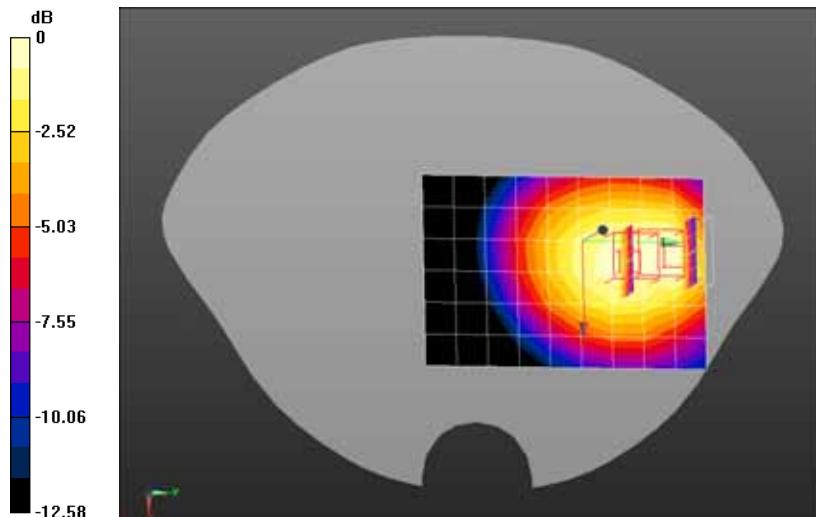
Phantom section: Flat Section

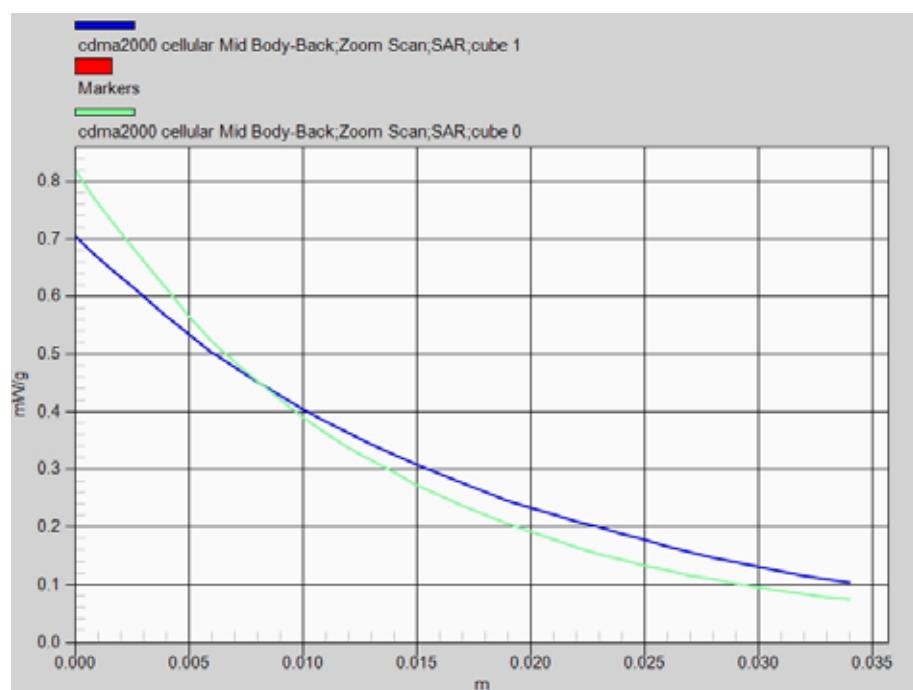
Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

DASY5 Configuration:

- Probe: EX3DV4 - SN3710; ConvF(9.41, 9.41, 9.41); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/CDMA2000 Mid Body-Back/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.562 mW/g


Configuration/CDMA2000 Mid Body-Back/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.418 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.705 mW/g

SAR(1 g) = 0.536 mW/g; SAR(10 g) = 0.397 mW/g Maximum value of SAR (measured) = 0.568 mW/g**Configuration/CDMA2000 Mid Body-Back/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.418 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.819 mW/g

SAR(1 g) = 0.560 mW/g; SAR(10 g) = 0.396 mW/g Maximum value of SAR (measured) = 0.600 mW/g

Z-Axis Plot

Date/Time: 02-12-2013

Test Laboratory: QuieTek Lab

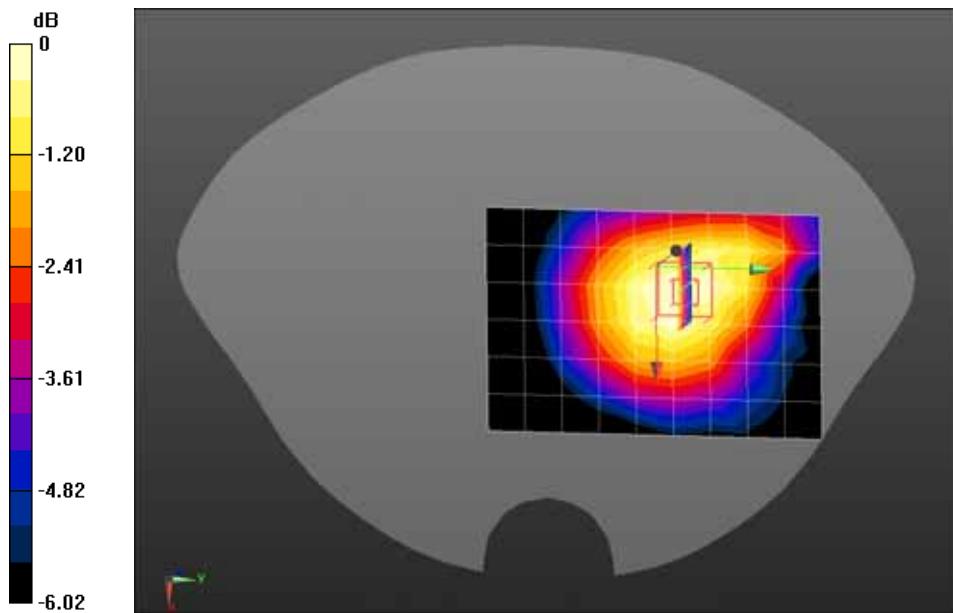
CDMA2000 BC0 Mid Body-Front

DUT: CDMA 800MHz Mobile Phone; Type: E3240Communication System: CDMA2000; Communication System Band: BC0; Duty Cycle: 1:1; Frequency: 836.52 MHz; Medium parameters used: $f = 836.52$ MHz; $\sigma = 0.97$ mho/m; $\epsilon_r = 55.63$; $\rho = 1000$ kg/m³;

Phantom section: Flat Section

Ambient temperature (°C): 21.5, Liquid temperature (°C): 21.0

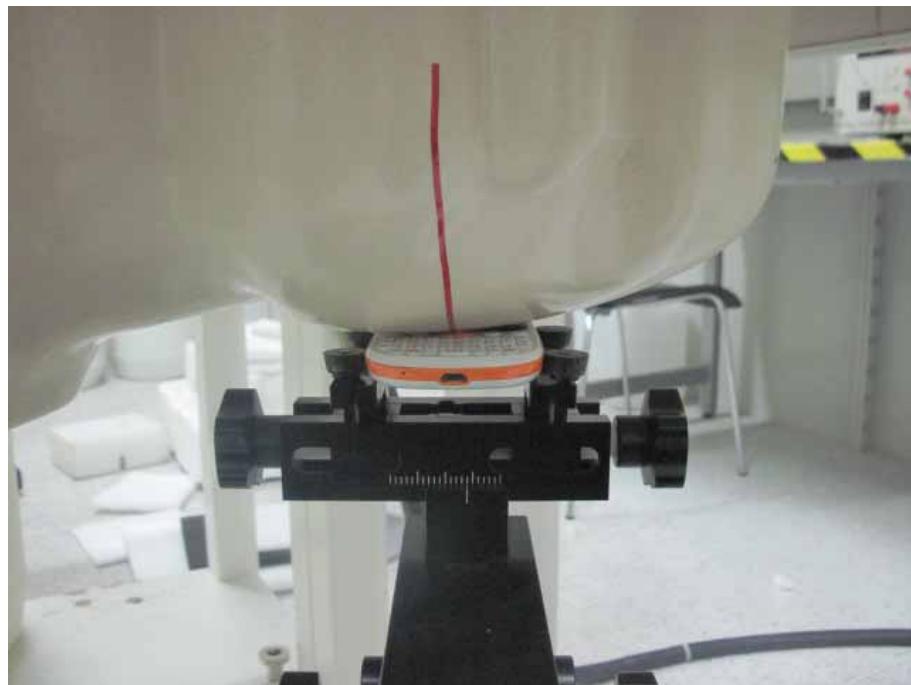
DASY5 Configuration:


- Probe: EX3DV4 - SN3710; ConvF(9.41, 9.41, 9.41); Calibrated: 27/03/2013;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1220; Calibrated: 24/01/2013
- Phantom: SAM1; Type: SAM; Serial: TP1561
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

Configuration/CDMA2000 Mid Body-Front/Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.104 mW/g

Configuration/ CDMA2000 Mid Body-Front/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm, Reference Value = 6.009 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 0.125 mW/g

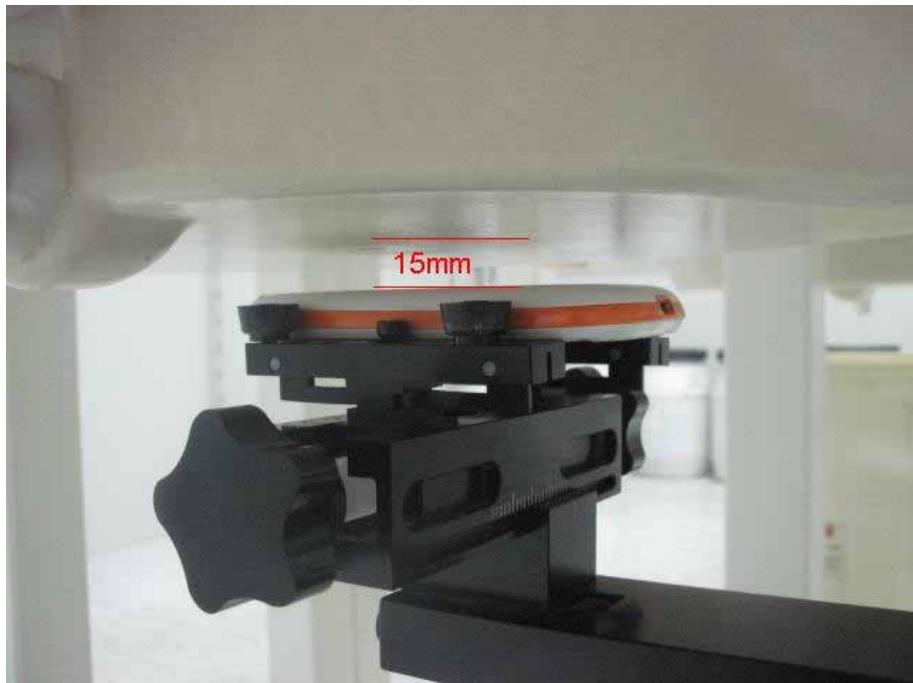
SAR(1 g) = 0.097 mW/g; SAR(10 g) = 0.075 mW/g Maximum value of SAR (measured) = 0.102 mW/g

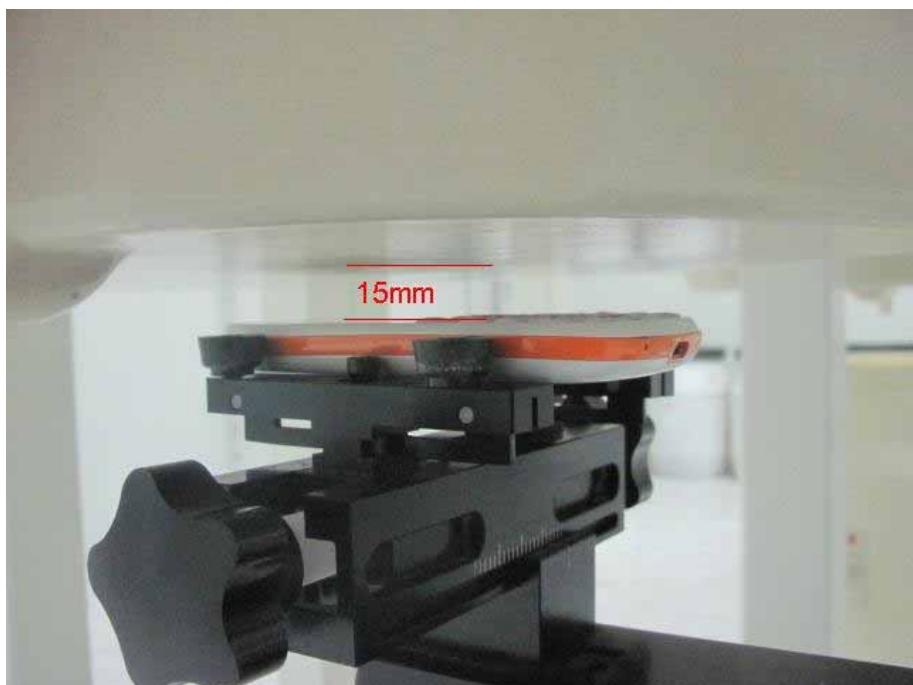
Appendix C. Test Setup Photographs & EUT Photographs

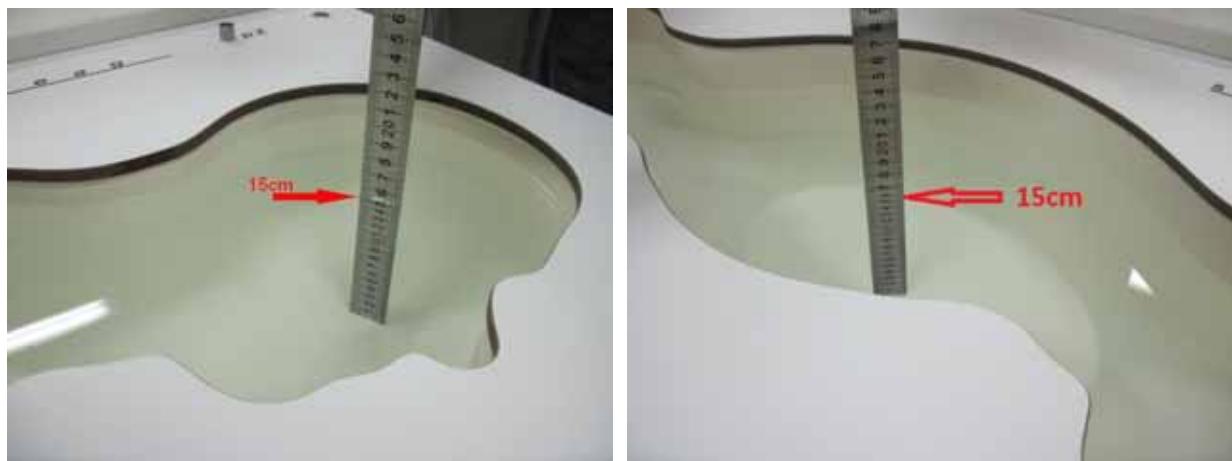
Test Setup Photographs

Left Head (EUT Cheek)

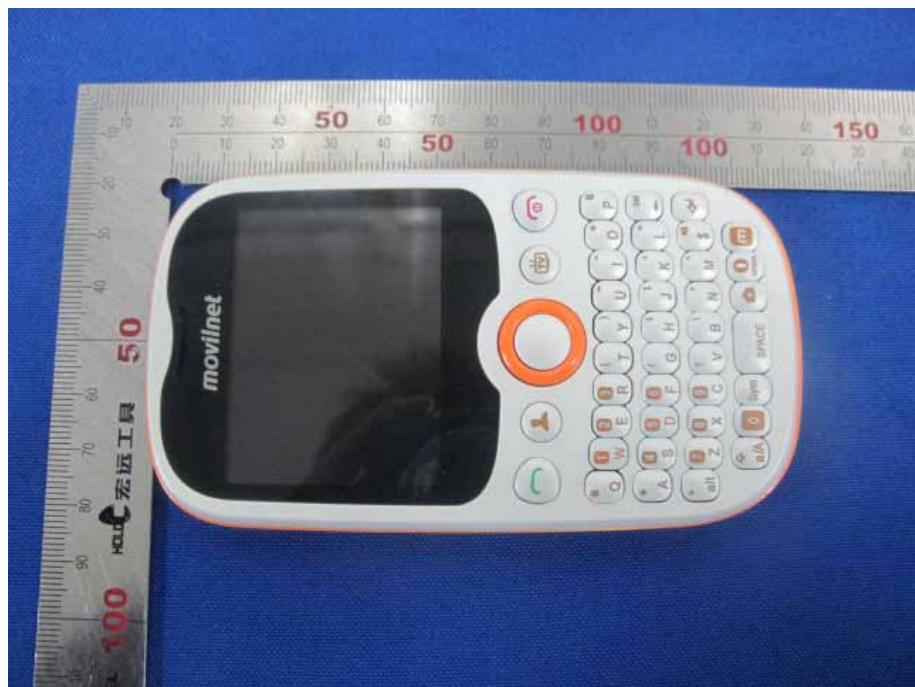
Left Head (EUT Tilted)


Right Head (EUT Cheek)


Right Head (EUT Tilted)



Body SAR Back 15mm



Body SAR Front 15mm

Depth of the liquid in the phantom – Zoom in

Note: The position used in the measurements were according to EN62209-1/-2

EUT Photographs

Appendix D. Probe Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quietek-CN (Auden)

Certificate No.: EX3-3710_Mar13

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3710

Calibration procedure(s): QA CAL-01.v8, QA CAL-12.v7, QA CAL-14.v3, QA CAL-23.v4,
QA CAL-25.v4
Calibration procedure for dosimetric E-field probes

Calibration date: March 27, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217 01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217 01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217 01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20c)	27-Mar-12 (No. 217 01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30c)	27-Mar-12 (No. 217 01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES1-3013_Dec12)	Dec-12
DAE4	SN: 660	31-Jan-13 (No. DAE4-660_Jan13)	Jan-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3842U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37300586	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by:	Name	Function	Signature
	Claudio Leubler	Laboratory Technician	
Approved by:	Kaja Pokovic	Technical Manager	

Issued: April 2, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	ϕ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORM $x,y,z$$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM $x,y,z$$ are only intermediate values, i.e., the uncertainties of $NORM $x,y,z$$ does not affect the E 2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORM x,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z ; Bx,y,z ; Cx,y,z ; Dx,y,z ; VRx,y,z : A , B , C , D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and Inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM x,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.$
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 – SN:3710

March 27, 2013

Probe EX3DV4

SN:3710

Manufactured: July 21, 2009
Calibrated: March 27, 2013

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

EX3DV4- SN:3710

March 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μ V/(V/m)) ^a	0.51	0.56	0.45	$\pm 10.1\%$
DCP (mV) ^b	101.3	99.6	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu}$ V	C	D dB	VR mV	Unc ^c (k=2)
0	CW	X	0.0	0.0	1.0	0.00	159.5	$\pm 2.7\%$
		Y	0.0	0.0	1.0		182.9	
		Z	0.0	0.0	1.0		159.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^a The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^b Numerical linearization parameter: uncertainty not required.

^c Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3710

March 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^D	Conductivity (S/m) ^E	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	43.5	0.87	9.87	9.87	9.87	0.14	1.30	± 13.4 %
750	41.9	0.89	9.94	9.94	9.94	0.29	0.99	± 12.0 %
835	41.5	0.90	9.52	9.52	9.52	0.39	0.83	± 12.0 %
900	41.5	0.97	9.50	9.50	9.50	0.70	0.63	± 12.0 %
1810	40.0	1.40	7.75	7.75	7.75	0.66	0.63	± 12.0 %
1950	40.0	1.40	7.47	7.47	7.47	0.75	0.59	± 12.0 %
2450	39.2	1.80	7.03	7.03	7.03	0.63	0.64	± 12.0 %
2600	39.0	1.96	6.83	6.83	6.83	0.50	0.74	± 12.0 %
3500	37.9	2.91	6.81	6.81	6.81	0.82	0.73	± 13.1 %
5200	36.0	4.66	4.86	4.86	4.86	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.74	4.74	4.74	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.50	4.50	4.50	0.50	1.80	± 13.1 %
5600	35.5	5.07	4.42	4.42	4.42	0.45	1.80	± 13.1 %
5800	35.3	6.27	4.43	4.43	4.43	0.50	1.80	± 13.1 %

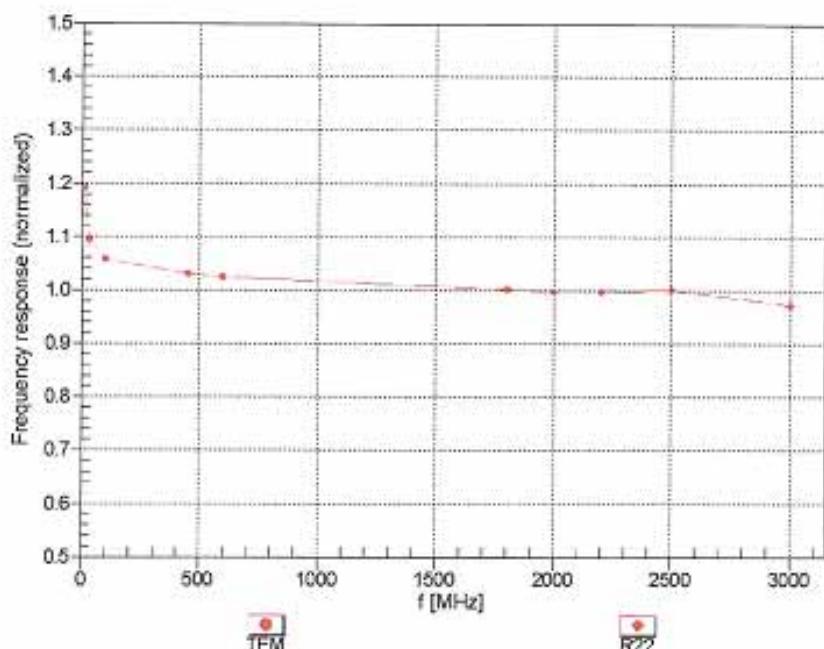
^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^E At frequencies below 3 GHz, the validity of tissue parameters (r and n) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (r and n) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX3DV4- SN:3710

March 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**Calibration Parameter Determined in Body Tissue Simulating Media**

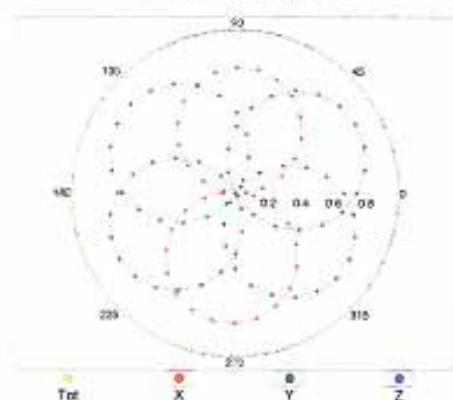

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
450	56.7	0.94	10.89	10.89	10.89	0.05	1.20	± 13.4 %
750	55.5	0.96	9.60	9.60	9.60	0.48	0.83	± 12.0 %
835	55.2	0.97	9.41	9.41	9.41	0.38	0.90	± 12.0 %
900	55.0	1.05	9.30	9.30	9.30	0.80	0.63	± 12.0 %
1810	53.3	1.52	7.60	7.60	7.60	0.42	0.81	± 12.0 %
1950	53.3	1.52	7.62	7.62	7.62	0.34	0.98	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.76	0.56	± 12.0 %
2600	52.5	2.16	6.88	6.88	6.88	0.80	0.50	± 12.0 %
3500	51.3	3.31	6.38	6.38	6.38	1.00	0.57	± 13.1 %
5200	49.0	5.30	4.32	4.32	4.32	0.45	1.90	± 13.1 %
5300	48.9	5.42	4.16	4.16	4.16	0.45	1.90	± 13.1 %
5500	48.6	5.65	3.87	3.87	3.87	0.50	1.90	± 13.1 %
5600	48.5	5.77	3.89	3.89	3.89	0.40	1.90	± 13.1 %
5800	48.2	6.00	4.05	4.05	4.05	0.50	1.90	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

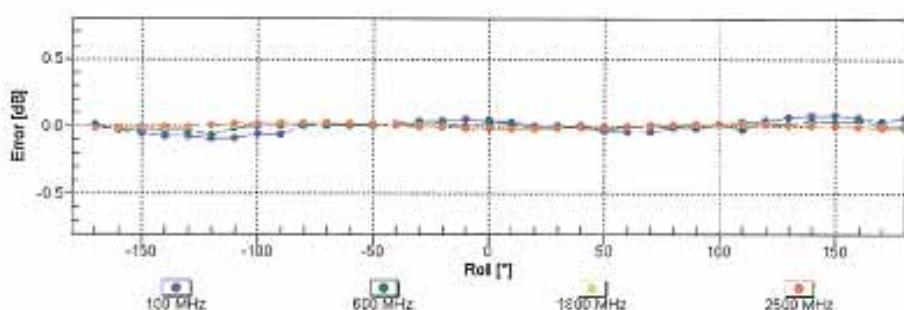
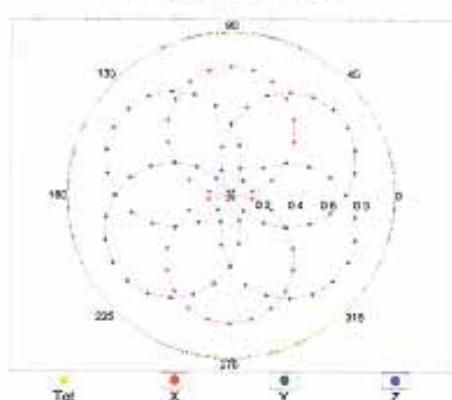
^F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

EX30V4- SN:3710

March 27, 2013

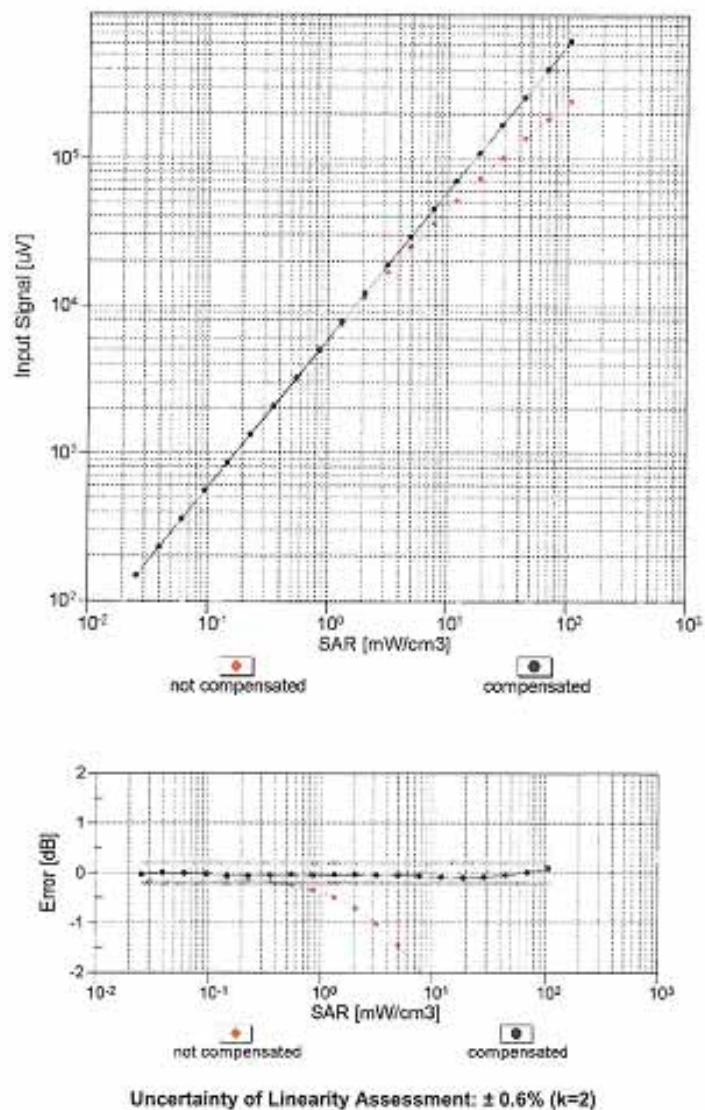

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

EX3DV4- SN:3710



March 27, 2013

Receiving Pattern (ϕ), $\theta = 0^\circ$

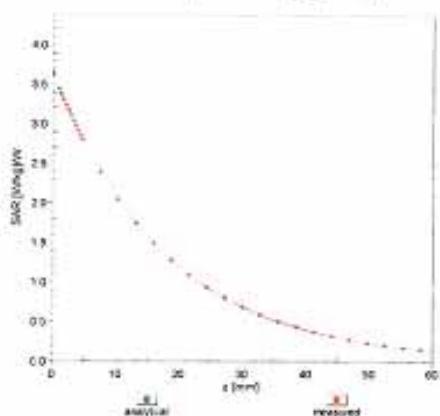
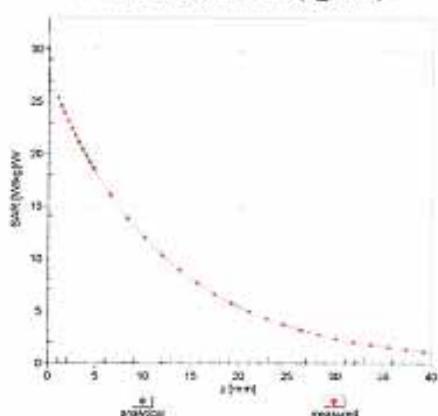
f=600 MHz, TEM



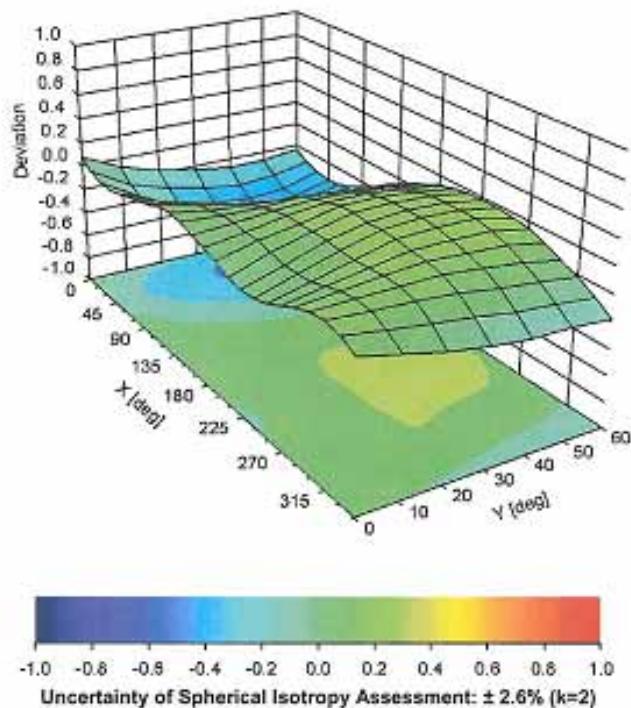
f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

EX3DV4- SN:3710



March 27, 2013

Dynamic Range f(SAR_{head})
(TEM cell , f = 900 MHz)


EX3DV4- SN:3710

March 27, 2013

Conversion Factor Assessment

 $f = 900 \text{ MHz, WGLS R9 (H_convF)}$ $f = 1810 \text{ MHz, WGLS R22 (H_convF)}$

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$ Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\% (k=2)$

EX3DV4- SN:3710

March 27, 2013

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3710**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-20.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Appendix E. Dipole Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quietek-CN (Auden)

Certificate No: D835V2-4d094_Feb12

CALIBRATION CERTIFICATE

Object	D835V2 - SN: 4d094		
Calibration procedure(s)	QA CAL-05.v8 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	February 17, 2012		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	04-Jul-11 (No. DAE4-601_Jul11)	Jul-12
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
Calibrated by:	Name Israe El-Naouq	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	
Issued: February 17, 2012			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.0 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.34 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	9.41 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	6.15 mW / g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.7 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	9.57 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.62 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	6.33 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.5 Ω - 2.0 $j\Omega$
Return Loss	- 28.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω - 5.3 $j\Omega$
Return Loss	- 24.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 15, 2009

DASY5 Validation Report for Head TSL

Date: 17.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d094

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 0.89$ mho/m; $\epsilon_r = 41$; $\rho = 1000$ kg/m³

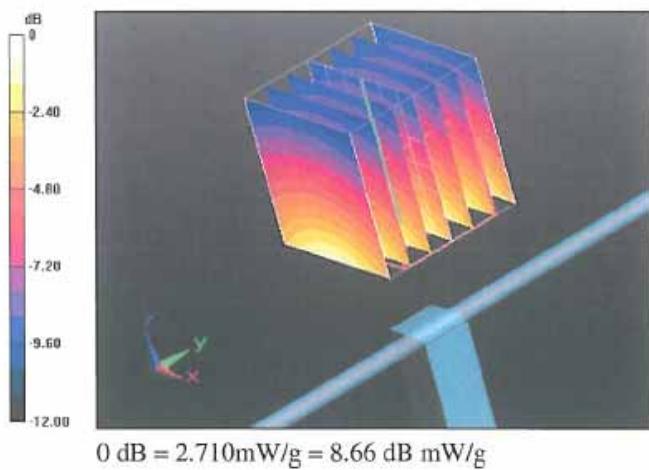
Phantom section: Flat Section

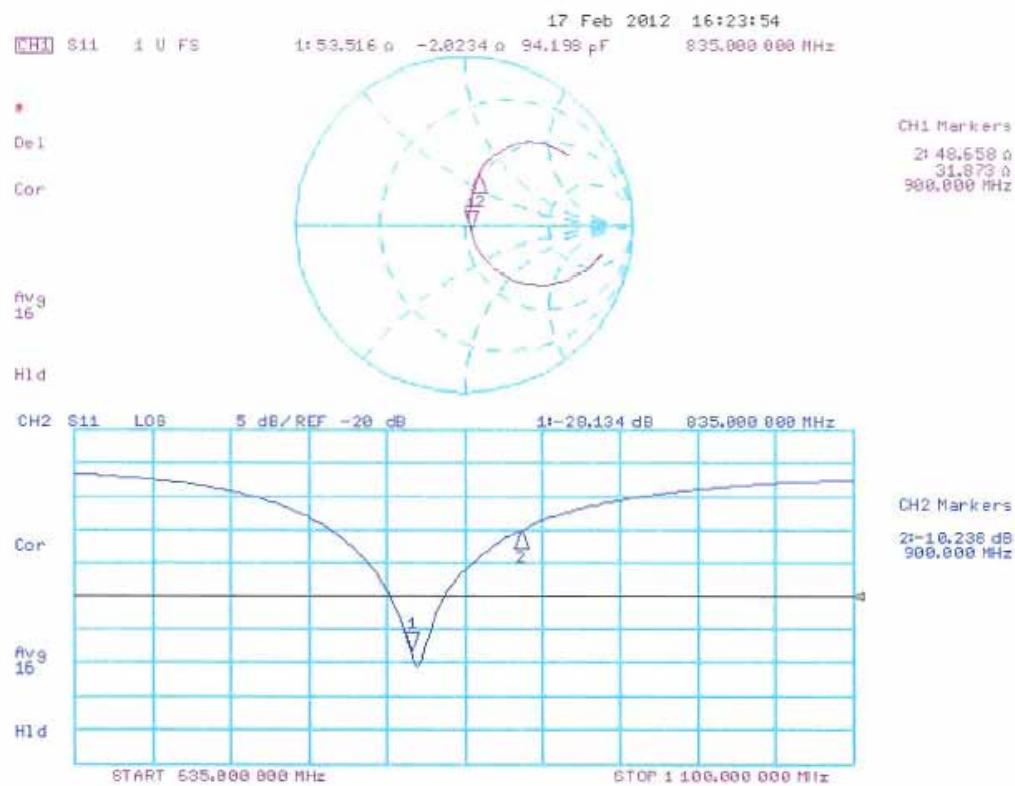
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.07, 6.07, 6.07); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 57,027 V/m; Power Drift = 0,02 dB

Peak SAR (extrapolated) = 3.4380

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.712 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 17.02.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d094

Communication System: CW; Frequency: 835 MHz

Medium parameters used: $f = 835$ MHz; $\sigma = 1.01$ mho/m; $\epsilon_r = 55.7$; $\rho = 1000$ kg/m³

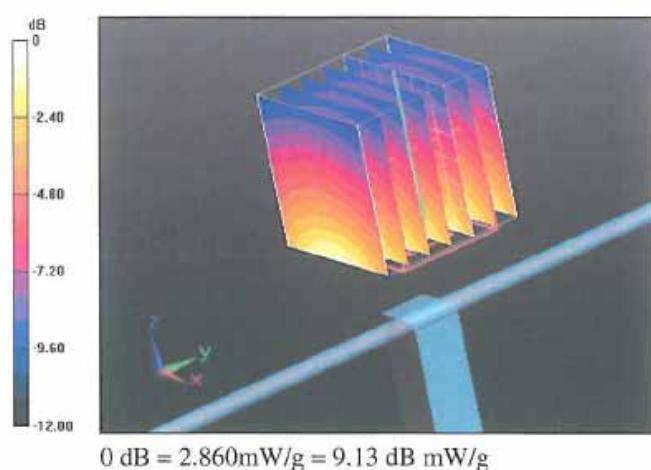
Phantom section: Flat Section

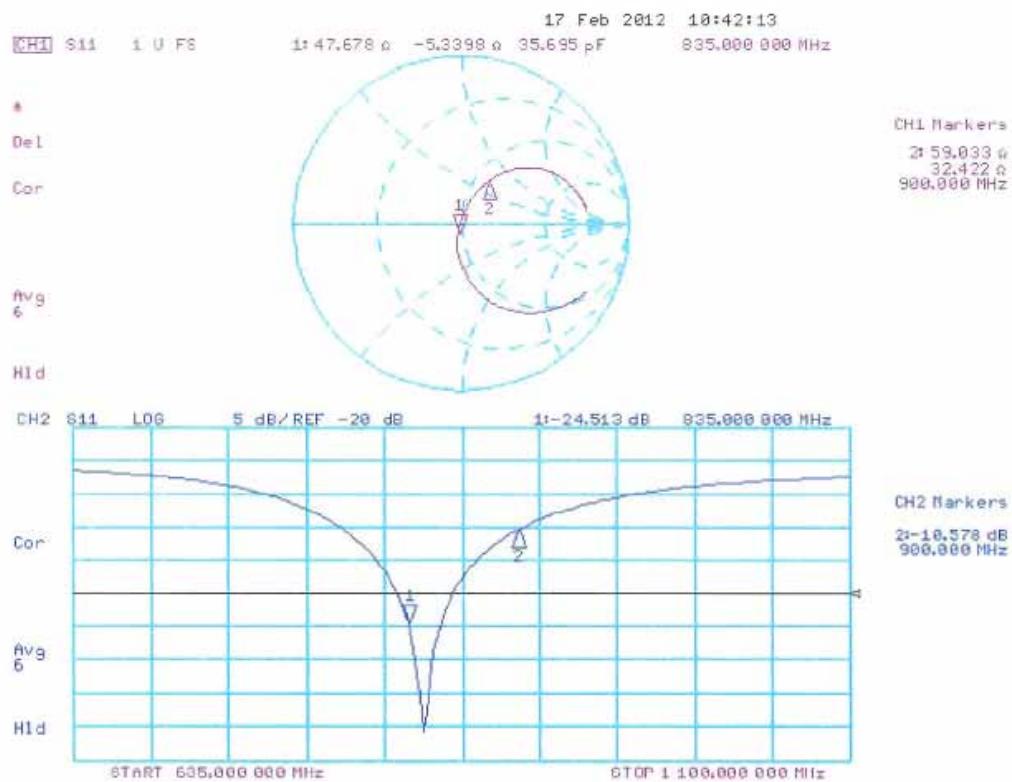
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(6.02, 6.02, 6.02); Calibrated: 30.12.2011
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.07.2011
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.0(692); SEMCAD X 14.6.4(4989)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 55.114 V/m; Power Drift = 0.0041 dB

Peak SAR (extrapolated) = 3.5590

SAR(1 g) = 2.46 mW/g; SAR(10 g) = 1.62 mW/g

Maximum value of SAR (measured) = 2.861 mW/g

Impedance Measurement Plot for Body TSL

Appendix F. DAE Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Quie Tek (Auden)

Certificate No: DAE4-1220_Jan13

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 1220

Calibration procedure(s) QA CAL-06 v25
Calibration procedure for the data acquisition electronics (DAE)

Calibration date: January 24, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

Calibrated by:	Name R. Mayoraz	Function Technician	Signature
Approved by:	Fin Bomholt	Deputy Technical Manager	

Issued: January 24, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
S Service suisse d'étalonnage
C Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement*: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle*: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - *DC Voltage Measurement Linearity*: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - *Common mode sensitivity*: Influence of a positive or negative common mode voltage on the differential measurement.
 - *Channel separation*: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - *AD Converter Values with inputs shorted*: Values on the internal AD converter corresponding to zero input voltage
 - *Input Offset Measurement*: Output voltage and statistical results over a large number of zero voltage measurements.
 - *Input Offset Current*: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - *Input resistance*: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - *Low Battery Alarm Voltage*: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - *Power consumption*: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = $6.1\mu\text{V}$, full range = $-100...+300\text{ mV}$ Low Range: 1LSB = 61nV , full range = $-1.....+3\text{mV}$

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$405.203 \pm 0.02\% (\text{k}=2)$	$404.925 \pm 0.02\% (\text{k}=2)$	$404.155 \pm 0.02\% (\text{k}=2)$
Low Range	$3.97823 \pm 1.55\% (\text{k}=2)$	$3.99494 \pm 1.55\% (\text{k}=2)$	$3.98678 \pm 1.55\% (\text{k}=2)$

Connector Angle

Connector Angle to be used in DASY system	$176.5^\circ \pm 1^\circ$
---	---------------------------

Appendix**1. DC Voltage Linearity**

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199994.51	-0.20	-0.00
Channel X + Input	20002.32	2.74	0.01
Channel X - Input	-19999.37	2.24	-0.01
Channel Y + Input	199995.12	0.58	0.00
Channel Y + Input	19999.79	0.15	0.00
Channel Y - Input	-20001.15	0.37	-0.00
Channel Z + Input	199993.80	-0.47	-0.00
Channel Z + Input	19998.06	-1.59	-0.01
Channel Z - Input	-20003.12	-1.65	0.01

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.11	0.30	0.02
Channel X + Input	199.89	-0.29	-0.15
Channel X - Input	-199.74	-0.14	0.07
Channel Y + Input	2000.30	0.54	0.03
Channel Y + Input	200.19	0.06	0.03
Channel Y - Input	-199.81	-0.14	0.07
Channel Z + Input	1999.40	-0.47	-0.02
Channel Z + Input	199.41	-0.98	-0.49
Channel Z - Input	-200.25	-0.72	0.36

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	9.11	7.73
	-200	-8.18	-9.59
Channel Y	200	-9.61	-9.37
	-200	8.21	8.45
Channel Z	200	12.18	11.90
	-200	-15.16	-14.84

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	2.08	-4.00
Channel Y	200	7.59	-	2.69
Channel Z	200	9.59	6.24	-

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15892	15975
Channel Y	16014	16213
Channel Z	15705	16067

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μ V)	min. Offset (μ V)	max. Offset (μ V)	Std. Deviation (μ V)
Channel X	1.05	-0.80	2.18	0.45
Channel Y	-0.16	-1.22	0.92	0.45
Channel Z	-0.69	-2.22	0.60	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

