

HAC TEST REPORT FOR T-coil

Test Item: Summary Result T-coil Category = T3

REPORT NO.: HC110104E07A-1

MODEL NO.: Dolphin 6000

FCC ID: HD5D6000

HW: MTK6516MA

SW: 0.02A.093

RECEIVED: Feb. 22, 2011

TESTED: Feb. 23, 2011

ISSUED: Mar. 03, 2011

APPLICANT: Honeywell International Inc

ADDRESS: 9680 OLD BAILES RD FORT MILL SC 29707
UNITED STATES

ISSUED BY: Bureau Veritas Consumer Products Services
(H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou
Hsiang, Taipei Hsien 244, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Tsuen, Kwei
Shan Hsiang, Taoyuan Hsien 333, Taiwan,
R.O.C.

This test report consists of 27 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by any government agency. The test results in the report only apply to the tested sample.

A D T

TABLE OF CONTENTS

RELEASE CONTROL RECORD	3
1. CERTIFICATION	4
2. GENERAL INFORMATION	5
2.1 GENERAL DESCRIPTION OF THE EUT	5
2.2 DESCRIPTION OF SUPPORT UNITS	7
2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS	7
3. SUMMARY OF THE TEST RESULTS	8
4. GENERAL INFORMATION OF THE DASY 5 SYSTEM	9
4.1 GENERAL INFORMATION OF TEST EQUIPMENT	9
4.2 TEST SYSTEM CONFIGURATION	13
4.3 TEST EQUIPMENT LIST	13
4.4 T-COIL MEASUREMENT UNCERTAINTY	14
5. SYSTEM VALIDATION & CALIBRATION	15
5.1 CABLING OF SYSTEM	15
5.2 INPUT CHANNEL CALIBRATION	15
5.3 PROBE CALIBRATION IN AMCC	16
5.4 REFERENCE INPUT LEVEL	17
5.4.1 SETTING OF THE AUDIO SIGNAL LEVEL	17
5.4.2 TARGET LEVEL FOR "AUDIO OUT" OF THE AMMI	18
5.4.3 MEASURED GAIN SETTING	18
5.5 REFERENCE INPUT OF AUDIO SIGNAL SPECTRUM	19
6. T-COIL TEST PROCEDURE	20
7. DESCRIPTION FOR EUT TESTING CONFIGURATION	23
8. T-COIL REQUIREMENTS AND CATEGORY	24
8.1 RF EMISSIONS	24
8.2 AXIAL FIELD INTENSITY	24
8.3 SIGNAL QUALITY	24
8.4 FREQUENCY RESPONSE	25
9. T-COIL TEST RESULT	26
9.1 SNR MEASUREMENT RESULT	26
9.2 FREQUENCY RESPONSE AT AXIAL MEASUREMENT POINT	26
10. INFORMATION ON THE TESTING LABORATORIES	27

APPENDIX A1: PROBE CALIBRATION TEST PLOTS

APPENDIX A2: REFERENCE INPUT OF AUDIO SIGNAL SPECTRUM PLOTS

APPENDIX A3: AMBIENT NOISE SPECTRUM PLOTS

APPENDIX B1: SNR TEST PLOTS

APPENDIX B2: FREQUENCY RESPONSE TEST PLOTS

APPENDIX C: SYSTEM EQUIPMENT & CALIBRATION

A D T

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
Original release	N/A	Mar. 03, 2011

1. CERTIFICATION

PRODUCT : Mobile Computer

MODEL NO. : Dolphin 6000

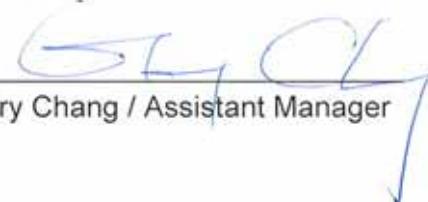
MODEL DISCREPANCY: All the specification and layout are identical except they come with different model numbers for marketing purposes.

BRAND : Honeywell

APPLICANT : Honeywell International Inc

TESTED : Feb. 23, 2011

TEST SAMPLE : ENGINEERING SAMPLE


STANDARDS : FCC 47CFR Part 20.19

ANSI C63.19 2007

TEST ITEM: T-coil performance

The above equipment (Model: Dolphin 6000) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : , DATE: Mar. 03, 2011
Andrea Hsia / Specialist

APPROVED BY : , DATE: Mar. 03, 2011
Gary Chang / Assistant Manager

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

EUT	Mobile Computer
MODEL NO.	Dolphin 6000
FCC ID	HD5D6000
MODEL DISCREPANCY	All the specification and layout are identical except they come with different model numbers for marketing purposes.
POWER SUPPLY	5.0Vdc (Car charger or power adapter) 3.7Vdc (battery)
CLASSIFICATION	Production Unit
MODULATION TYPE	GMSK, 8PSK
FREQUENCY RANGE	824MHz ~ 849MHz (GSM850) 1850MHz ~ 1910MHz (PCS1900)
CHANNEL FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER	Refer to note as below
T-COIL CATEGORY	T3
ANTENNA TYPE	PIFA antenna with 3dBi gain
DATA CABLE	1.2m USB charger shielded cable with one core
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Adapter, Battery, Holder cable, Car Charger

NOTE:

1. The test data are separated into following test reports:

	TEST STANDARD	REFERENCE REPORT
HAC Test Report	FCC Part 20.19	HC110104E07A
HAC T-coil Test Report		HC110104E07A-1

2. The EUT could be supplied with a power adapter or a rechargeable battery as the following table:

Item	Brand	Model No.	Spec.
Adapter	Sunfone	ACW010A3-05Z	I/P: 100~240V, 50~60Hz, 0.4A O/P: 5Vdc, 2A Power cable: 1.4m non-shielded cable without core
Car Charger	Atech OEM Inc	C15C-0520CD0-S3	I/P: 12-24V O/P: 5Vdc, 2A Power cable: 1.5m non-shielded cable without core
battery	Palladium	Dolphin 6000 Battery	3.7Vdc, 1530mAh, 5.7Wh

3. Hardware version: MTK6516MA
4. Software version: 0.02A.093
5. IMEI Code: 00108200002yyy

A D T

6. Conducted power list as below:

CHANNEL	GSM850	GPRS 850 TS1	GPRS 850 TS2	E-GPRS 850 TS1	E-GPRS 850 TS2
CH 128: 824.2MHz	32.5dBm	32.5dBm	32.4dBm	27.7dBm	27.2dBm
CH 190: 836.6MHz	32.2dBm	32.2dBm	32.1dBm	27.5dBm	26.9dBm
CH 251: 848.8MHz	32.0dBm	32.0dBm	31.8dBm	27.1dBm	26.6dBm

CHANNEL	PCS1900	GPRS 1900 TS1	GPRS 1900 TS2	E-GPRS 1900 TS1	E-GPRS 1900 TS2
CH 512: 1850.2MHz	29.7dBm	29.7dBm	29.1dBm	26.2dBm	26.8dBm
CH 661: 1880.0MHz	29.8dBm	29.8dBm	28.8dBm	26.3dBm	26.5dBm
CH 810: 1909.8MHz	29.9dBm	29.9dBm	28.6dBm	26.6dBm	26.1dBm

7. The EUT was manufactured by following manufacture and factory:

Manufacturer	Manufacturer Address
Honeywell International Inc	9680 OLD BAILES RD FORT MILL SC 29707 UNITED STATES
Factory	Factory Address
Universal Scientific Industrial Co., Ltd.	141, Lane 351, Taiping Rd., Sec. 1, Tsao Tuen, Nan-Tou Hsien, Taiwan
Universal Scientific Industrial de Mexico, S.A de C.V.	Periferico Manuel Gomez Morin #656 R. Santa Isabel, Anillo 44290 Guadalajara, Jal Mexico
USI Electronics (Shenzhen)Co., Ltd.	USI Electronics Park, North of High-Tech Industry Park, Nanshan District, Shenzhen, Guangdong, China
Universal Scientific Industrial (Shanghai) Co., Ltd.	NO. 1558, ZHANGDONG RD. PUDONG SHANGHAI 201203 CHINA
Universal Global Technology (Shenzhen) Co., Ltd.	1&2&4 Floor of Building B and 2 Floor of Building C, USI Electronics Park NanShan District, ShenZhen, P.R.C 518057
Universal Scientific Industrial Co., Ltd.	1F&4F No.135, Lane 351, Taiping Road, Sec. 1, Tsao Tuen Nan-Tou, Taiwan
Universal Global Scientific Industrial Co., Ltd.	B1, 1~3F & 5F, No.135, Lane 351, Taiping Road, Sec. 1, Tsao Tuen Nan-Tou, Taiwan

8. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
1	Universal Radio Communication Tester	R&S	CMU200	101095	Dec. 01, 2011

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	NA

NOTE: All power cords of the above support units are non shielded (1.8m).

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC 47CFR Part 20.19

ANSI C63.19 - 2007

All test items have been performed and recorded as per the above standards.

A D T

3. SUMMARY OF THE TEST RESULTS

ANSI C63.19 (2007) T-coil result				
Mode	Test	Test Results	T-Rating	Verdit
GSM850	Min. Field Strength (AMB1), dB A/m	-0.83	3	PASS
	Min. Signal Quality (ABM1/ABM2), dB	25.57	3	PASS
	Frequency Response @ Axial position			PASS
PCS1900	Min. Field Strength (AMB1), dB A/m	-0.78	3	PASS
	Min. Signal Quality (ABM1/ABM2), dB	28.72	3	PASS
	Frequency Response @ Axial position			PASS
Overall T-Rating :		T3		

4. GENERAL INFORMATION OF THE DASY 5 SYSTEM

4.1 GENERAL INFORMATION OF TEST EQUIPMENT

DASY5 (Software 5.2 Build 52.6) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY 5 software defined.

The DASY 5 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box.

The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC. This system consists of the following items:

AM1DV3 Audio Magnetic Field Probe

The AM1D probe is an active probe with a single sensor. It is fully RF-shielded and has a rounded tip 6mm in diameter incorporating a pickup coil with its center offset 3mm from the tip and the sides. The symmetric signal preamplifier in the probe is fed via the shielded symmetric output cable from the AMMI with a 48V "phantom" voltage supply. The 7-pin connector on the back in the axis of the probe does not carry any signals. It is mounted to the DAE for the correct orientation of the sensor. If the probe axis is tilted 54.7 degree from the vertical, the sensor is approximately vertical when the signal connector is at the underside of the probe (cable hanging downwards).

Specification:

Frequency range	0.1 ~ 20 kHz (RF sensitivity <-100dB, fully RF shielded)
Sensitivity	<-50dB A/m @ 1 kHz
Pre-amplifier	40 dB, symmetric
Dimensions	Tip diameter/ length: 6/ 290 mm, sensor according to ANSI-C63.19

DATA ACQUISITION ELECTRONICS (DAE)

The data acquisition electronics (DAE 4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit.

Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an

CONSTRUCTION

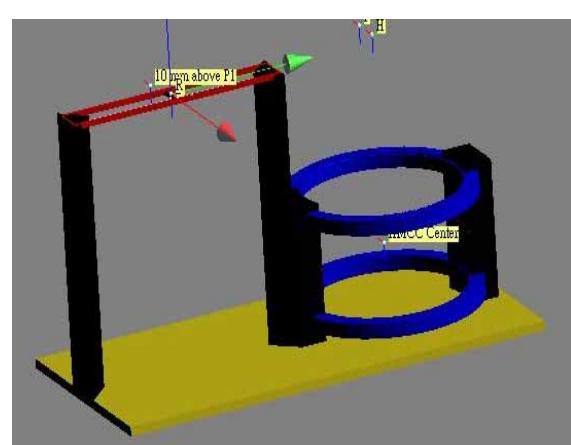
optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3,4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

AMMI

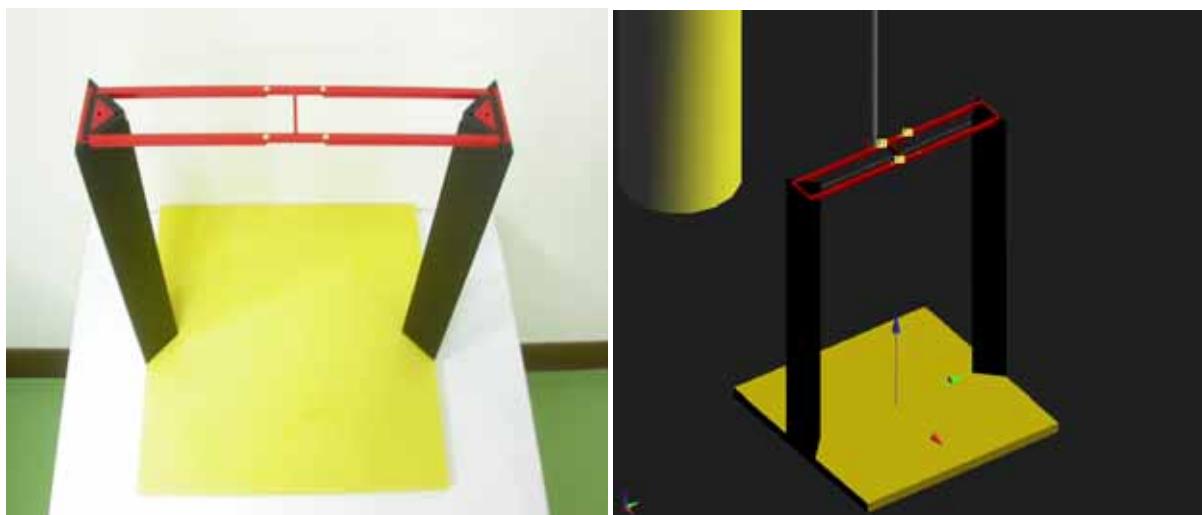
The Audio Magnetic Measuring Instrument (AMMI) is a desktop 19-inch unit containing a sampling unit, a waveform generator for test and calibration signals, and a USB interface.

Specification:

Sampling rate	48 kHz/24 bit
Dynamic range	85 dB
Test signal generation	User selectable and predefined (via PC)
Calibration	Auto-calibration/full system calibration using AMCC with monitor output
Connection:	Front connectors Audio Out - audio signal to the base station simulator Coil Out - test and calibration signal to the AMCC Coil In - monitor signal from the AMCC BNO connector Probe In - probe signal
Dimensions	482 x 65 x 270 mm



AMCC


The Audio Magnetic Calibration coil is a Helmholtz Coil designed according to ANSI C63.19-2007 section D.9, for calibration of the AM1D probe. The two horizontal coils generate a homogeneous magnetic field in the z direction. The DC input resistance is adjusted to approximately 50 Ohm by a series resistor, and a shunt resistor of 10 Ohm allows monitoring the current with a scale of 1:10.

Specification:

Coil In	typically 50 Ohm
Coil Monitor	10Ohm $\pm 1\%$ (100mV corresponding to 1 A/m)
Dimensions	370 x 370 x 196 mm

HAC ARCH

DIMENSIONS 370 x 370 x 370mm

A D T

DEVICE HOLDER

CONSTRUCTION Supports accurate and reliable positioning of any phone effect on near field <+/- 0.5dB

4.2 TEST SYSTEM CONFIGURATION

Figure 4.2: T-Coil setup with HAC Test Arch and AMCC

4.3 TEST EQUIPMENT LIST

ITEM	NAME	BRAND	TYPE	SERIES NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
1	Audio Band Magnetic Probe	SPEAG	AM1DV3	3060	Jan. 18, 2011	Jan. 17, 2012
2	DAE	SPEAG	DAE3	510	Oct. 04, 2010	Oct. 03, 2011
3	Audio Band Magnetic Measuring Instrument	SPEAG	AMMI	1075	NA	NA
4	Helmholtz Coil	SPEAG	AMCC	1076	NA	NA
5	HAC Arch	SPEAG	HAC ARCH	1034	NA	NA
6	Robot Positioner	Staubli Unimation	NA	NA	NA	NA

NOTE1: All test equipment has been calibrated by the SPEAG. Please reference "APPENDIX B" for the calibration report.

NOTE2: Before starting the measurement, all test equipment shall be warmed up for 30min.

A D T

4.4 T-COIL MEASUREMENT UNCERTAINTY

HAC UNCERTAINTY BUDGET ACCORDING TO ANSI C63.19							
ERROR DESCRIPTION	UNCERTAINTY VALUE	PROBABILITY DISTRIBUTION	DIV.	(Ci) ABM1	(Ci) ABM2	STD. UNC. AMB1	STD. UNC. AMB2
PROBE SENSITIVITY							
Reference level	±3.0%	Normal	1	1	1	±3.0%	±3.0%
AMCC geometry	±0.4%	Rectangular	$\sqrt{3}$	1	1	±0.2%	±0.2%
AMCC current	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%
Probe positioning during calibration	±0.1%	Rectangular	$\sqrt{3}$	1	1	±0.1%	±0.1%
Noise contribution	±0.7%	Rectangular	$\sqrt{3}$	0.0143	1	±0.0%	±0.4%
Frequency slope	±5.9%	Rectangular	$\sqrt{3}$	0.1	1	±0.3%	±3.5%
PROBE SYSTEM							
Repeatability / Drift	±1.0%	Rectangular	$\sqrt{3}$	1	1	±0.6%	±0.6%
Linearity / Dynamic range	±0.6%	Rectangular	$\sqrt{3}$	1	1	±0.4%	±0.4%
Acoustic noise	±1.0%	Rectangular	$\sqrt{3}$	0.1	1	±0.1%	±0.6%
Probe angle	±2.3%	Rectangular	$\sqrt{3}$	1	1	±1.4%	±1.4%
Spectral processing	±0.9%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%
Integration time	±0.6%	Normal	1	1	5	±0.6%	±3.0%
Field distribution	±0.2%	Rectangular	$\sqrt{3}$	1	1	±0.1%	±0.1%
TEST SIGNAL							
Reference signal spectral response	±0.6%	Rectangular	$\sqrt{3}$	0	1	±0.0%	±0.4%
POSITIONING							
Probe positioning	±1.9%	Rectangular	$\sqrt{3}$	1	1	±1.1%	±1.1%
Phantom thickness	±0.9%	Rectangular	$\sqrt{3}$	1	1	±0.5%	±0.5%
DUT positioning	±1.9%	Rectangular	$\sqrt{3}$	1	1	±1.1%	±1.1%
EXTERNAL CONTRIBUTIONS							
RF interference	±0.0%	Rectangular	$\sqrt{3}$	1	0.3	±0.0%	±0.0%
Test signal variation	±2.0%	Rectangular	$\sqrt{3}$	1	1	±1.2%	±1.2%
Combined Standard Uncertainty (ABM):						±4.1%	±6.1%
Extended Standard Uncertainty (k=2) [%]:						±8.1%	±12.3%

The uncertainty budget for HAC Audio Band Magnetic Field (AMB) assessment according to ANSI C63.19-2007. The budget is valid for the DASY system and represents a worst- case analysis. For specific tests and configurations, the uncertainty could be smaller.

5. SYSTEM VALIDATION & CALIBRATION

At the beginning of the HAC T-coil measurement, a 3-phase calibration was performed per Speag instruction to ensure accurate measurement of the voltages and ABM field. Reference input level was also validated and calibrated per C63.19.

5.1 CABLING OF SYSTEM

The principal cabling of the T-Coil setup is shown in Figure 5.1. All cables provided with the basic setup have a length of approximately 5 m.

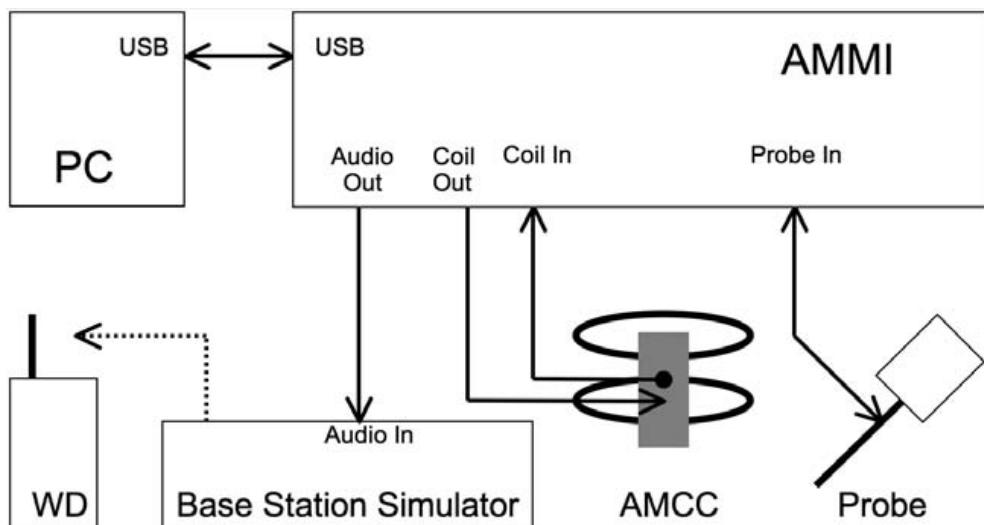


Figure 5.1: T-Coil setup cabling

5.2 INPUT CHANNEL CALIBRATION

Phase 1: The AMMI audio output was switched off, and a 200 mV_pp symmetric rectangular signal of 1 kHz was generated and internally connected directly to both channels of the sampling unit (coil in, probe in).

Phase 2: The AMMI audio output was off, and a 20 mV_pp symmetric 100 Hz signal was internally connected.

The signals during phases 1 and 2 were available at the output on the rear panel of the AMMI. The output must however not be loaded in order not to influence the calibration. After the first two phases, the two input channels were both calibrated for absolute measurements of voltages. The resulting factors were displayed above the multimeter window.

After phases 1 and 2, the input channels were calibrated to measure exact voltages.

5.3 PROBE CALIBRATION IN AMCC

Phase 3: Probe Calibration in AMCC

The probe sensitivity at **1 kHz is 0.00731303V / (A/m)** was calibrated by AMCC coil for verification of setup performance. The evaluated probe sensitivity was able to be compared to the calibration of the AM1D probe. The frequency response and sensitivity was shown in appendix A1. The probe signal is represented after application of an ideal integrator. The green curve represents the current through the AMCC, the blue curve the integrated probe signal. The difference between the two curves is equivalent to the frequency response of the probe system and shows the characteristics. The probe/system complies with the frequency response and linearity requirements in C63.19 according to the Speag's calibrated report as shown in appendix C1

- (1)The frequency response has been tested within +/- 0.5 dB of ideal differentiator from 100 Hz to 10 kHz.
- (2)The linearity has also been tested within 0.1dB from 5 dB below limitation to 16 dB above noise level. The AMCC coil is qualified according to certificate report that shown in appendix C2.

5.4 REFERENCE INPUT LEVEL

An Input Level is measured to verify that it is within +/-0.2 dB from the Reference Input Level in section 6.3.2.1 of ANSI C63.19-2007.

5.4.1 SETTING OF THE AUDIO SIGNAL LEVEL

According to ANSI C63.19:2007 section 6.3.2.1, the normal speech input level for HAC T-coil tests shall be set to -16 dBm0 for GSM and UMTS (WCDMA), and to -18 dBm0 for CDMA. This technical note shows a possibility to evaluate and set the correct level with the HAC T-Coil setup with a Rohde & Schwarz communication tester CMU200 with audio option B52 and B85. Establish a call from the CMU200 to a wireless device. Select CMU200 Network Bitstream "Decoder Cal" to have a 1kHz signal with a level of 3.14 dBm0 at the speech output. Run the measurement job and read the voltage level at the multi-meter display "Coil signal". Read the RMS voltage corresponding to 3.14 dBm0 and note it. Calculate the desired signal levels of -16dBm0 &-18dBm0:

$$3.14 \text{ dBm0} = X \text{ dBV}$$

$$-16 \text{ dBm0} = L1 \text{ dBV}$$

$$-18 \text{ dBm0} = L2 \text{ dBV}$$

Determine the 1kHz input level to generate the desired signal level. Select CMU200 Network Bitstream "Codec Cal" to loop the input via the codec to the output. Run the measurement job (AMMI 1kHz signal with gain 10 inserted) and read the voltage level at the multimeter display "Coil signal". Calculate the required gain setting for the above levels:

$$\text{Gain 10} = G \text{ dBV}$$

$$\text{Difference for } -16 \text{ dBm0} = L1 - (G) = D1 \text{ dB}$$

$$\text{Difference for } -18 \text{ dBm0} = L2 - (G) = D2 \text{ dB}$$

$$\text{Gain factor for } -16 \text{ dBm0} = 10 ^ ((D1) / 20) = F1$$

$$\text{Gain factor for } -18 \text{ dBm0} = 10 ^ ((D2) / 20) = F2$$

$$\text{Resulting Gain for } -16 \text{ dBm0} = 10 \times F1 = R1$$

$$\text{Resulting Gain for } -18 \text{ dBm0} = 10 \times F2 = R2$$

5.4.2 TARGET LEVEL FOR "AUDIO OUT" OF THE AMMI

(CMU200 Audio Codec Calibration)

Measured data is shown in Table 5.4.1. This target level takes into account the difference between AMMI's and CMU's reference levels.

Table 5.4.1: Measured Input Level

CMU voltage level(dBV)	AMMI 1kHz signal with gain 10 inserted(dBV)
-2.58	-19.78

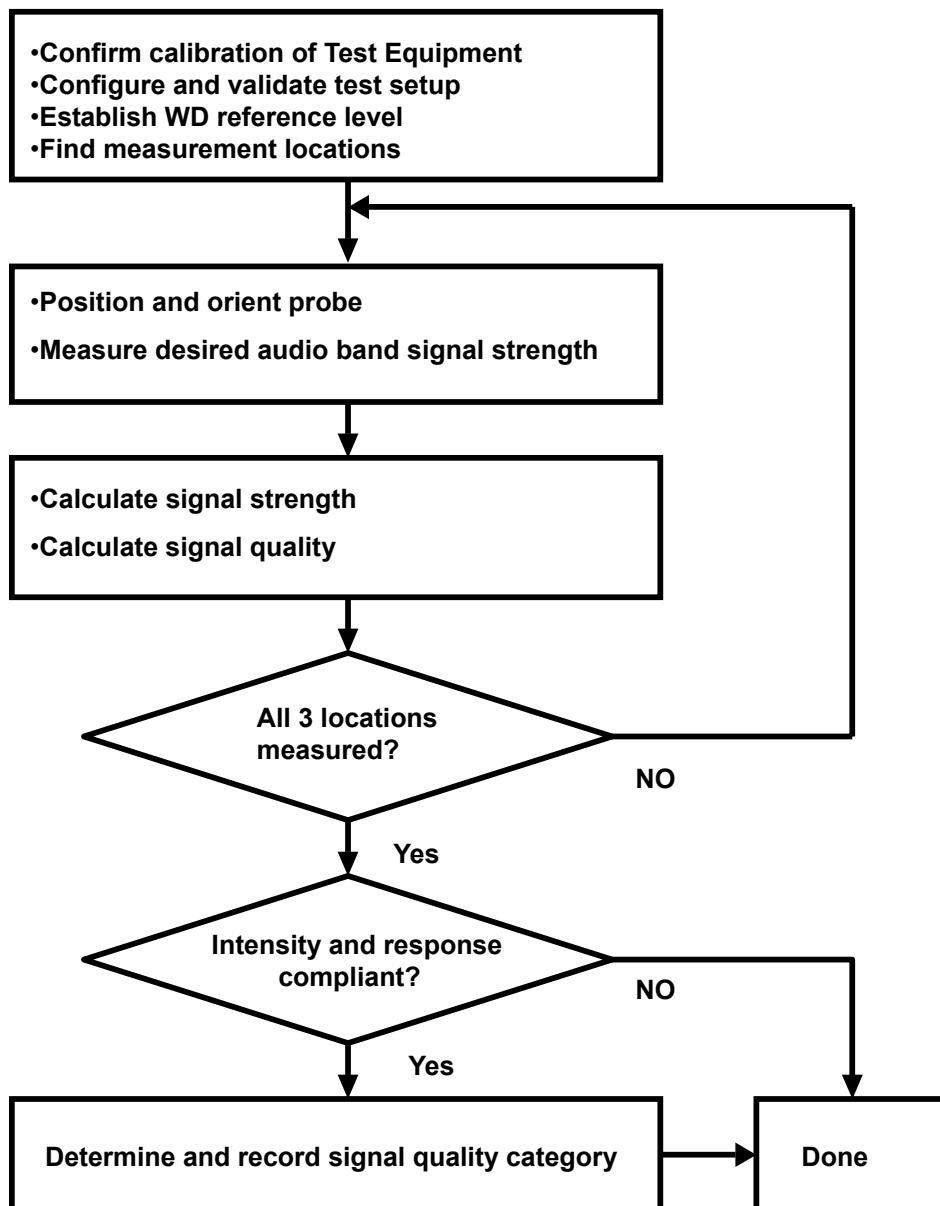
5.4.3 MEASURED GAIN SETTING

The predefined signal types have the following differences / factors compared to the 1kHz sine signal:

Table 5.4.2: Measured Gain Setting

Audio Signal Level	Signal Type Duration	Peak to RMS (dB)	RMS(dB)	Gain factor	Gain Setting
-16dBm0	1KHz	16.2	-12.7	4.33	34.63
-16dBm0	300 to 3KHz	21.6	-18.6	8.48	67.83

5.5 REFERENCE INPUT OF AUDIO SIGNAL SPECTRUM


With the reference job "use as reference" in the beginning of a procedure, measure the spectrum of the current when applied to the AMCC, i.e. the input magnetic field spectrum, as shown in the **appendix A2**. For this, the delay of the window shall be set to a multiple of the signal period and at least 2s. From the measurement on the device, using the same signal, the postprocessor deducts the input spectrum, so the result represents the net DUT response.

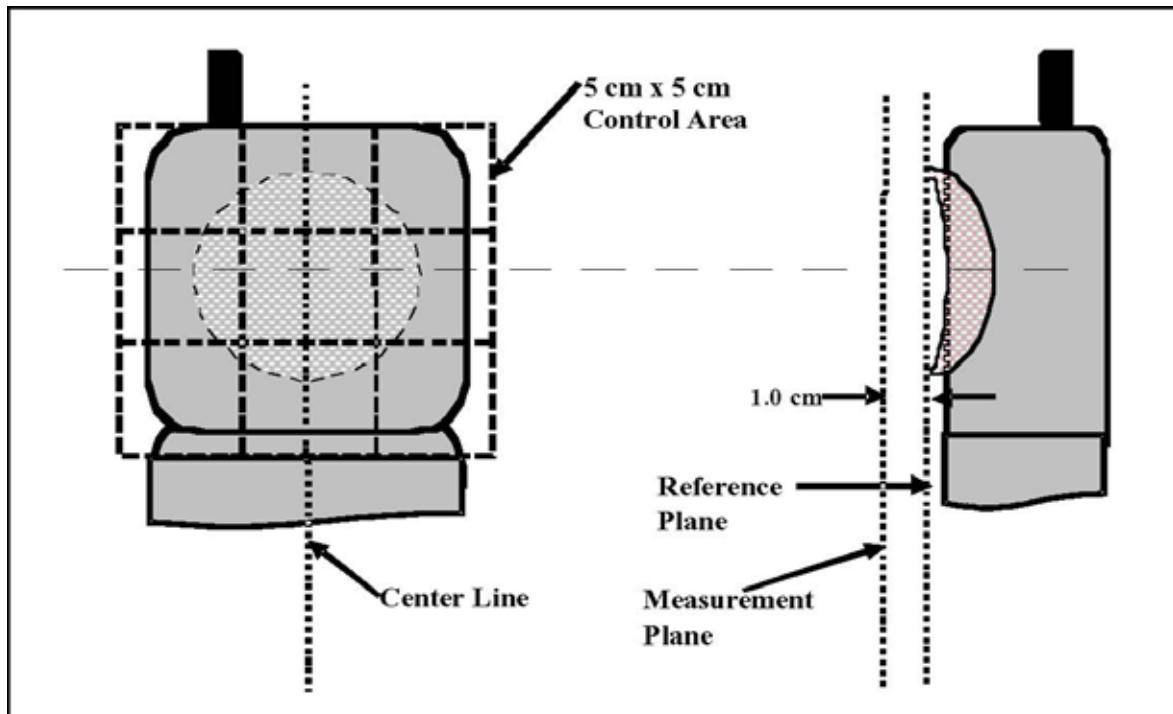
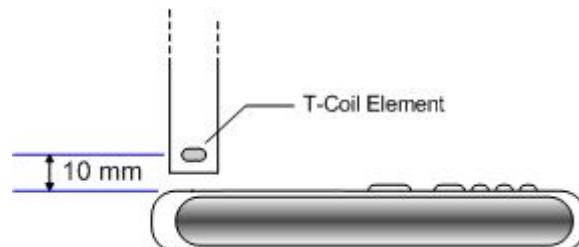
A D T

6. T-COIL TEST PROCEDURE

The device was positioned and setup according to ANSI C63.19-2007. The following shows the T-Coil Signal measurement flowchart:

The following steps were a typical test scan for the wireless communications device:

1. Geometry and signal check: system probe alignment, proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the test Arch.
2. Set the reference drive level of signal voice defined in C63.19 per 6.3.2.1, as shown in the **appendix A2** of this report
3. The ambient and test system background noise (dB A/m) was measured as well as ABM2 over the full measurement. The maximum noise level must be at least 10dB below the limit of C63.19 per 7.3.2.
For the three probe positions, noise spectrum plots for the highest ambient noise are given in **appendix A3**.
4. The DUT was positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
5. The DUT operation for maximum rated RF output power was configured and connected by using of coaxial cable connection to the base station simulator at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The DUT audio output was positioned tangent (as physically possible) to the measurement plane.
6. The DUT's RF emission field was eliminated from T-coil results by using a well RF-shielding of the probe, AM1D, and by using of coaxial cable connection to a Base Station Simulator. One test channel was pre-measurement to avoid this possibility.
7. Determined the optimal measurement locations for the DUT by following the three steps, coarse resolution scan, fine resolution scans, and point measurement, as described in C63.19 per 6.3.4.4. At each measurement locations, samples in the measurement window duration were evaluated to get ABM1 and the signal spectrum. The noise measurement was performed after the scan with the signal, the same happened, just with the voice signal switched off. The ABM2 was calculated from this second scan.
 - (1) Coarse resolution scans (1 KHz signal at 50 x 50 mm grid area with 10 mm spacing). Only ABM1 was measured in order to find the location of T-Coil source.
 - (2) Fine resolution scans (1 KHz signal at 10 x 10 mm grid area with 2 mm spacing). The positioned appropriately based on optimal ABM1 of coarse resolution scan. Both ABM1 and ABM2 were measured in order to find the location of the SNR point.
 - (3) Point measurement (1 KHz signal) for ABM1 and ABM2 in axial, radial transverse and radial longitudinal. The positioned appropriately based on optimal SNR of fine resolution scan. The SNR was calculated for axial, radial transverse and radial longitudinal orientation.



A D T

- (4) Point measurement (300Hz to 3 KHz signal) for frequency response in axial. The positioned appropriately based on optimal SNR of fine resolution axial scan.
- 8. All results resulting from a measurement point in a T-Coil job were calculated from the signal samples during this window interval. ABM values were averaged over the sequence of these samples.
- 9. At an optimal point measurement, the SNR(ABM1/ABM2) was calculated for axial, radial transverse and radial longitudinal orientation, and the frequency response was measured in axial axis.
- 10. Corrected for the frequency response after the DUT measurement since the DASY5 system had known the spectrum of the input signal by using a reference job, as shown in the **appendix B2** of this report.
- 11. In SEMCAD post-processing, the spectral points are in addition scaled with the high-pass (half-band) and the A-weighting, bandwidth compensated factor (BWC) and those results are final as shown in this report.
- 12. Classified the signal quality based on the T-Coil Signal Quality Categories.

7. DESCRIPTION FOR EUT TESTING CONFIGURATION

The phone was tested in normal configurations for the ear use. The DASY5 measurement system specified in section 3.1 was utilized within the intended operations as set by the SPEAG™ setup. The Test Arch provided by SPEAG is used to position the DUT. All tests are done via conducted setup with CMU 200.

The distance is established by positioning the device beneath the test arch phantom so that it is touching the frame. The location and thickness of the arch, and the location/orientation of the coil within the probe housing, are precisely known values in the DASY software. The height of the measurement plane is further fine-tuned by performing a Surface Detection job at the beginning of each test. The end result is that the probe sensor is very precisely located 10mm above the device reference plane.

8. T-COIL REQUIREMENTS AND CATEGORY

8.1 RF EMISSIONS

EUT has to fulfill RF emission requirements at the axial measurement location.

8.2 AXIAL FIELD INTENSITY

The minimum limits of ABM1 field intensity shall be ≥ -18 dB (A/m) at 1 kHz, in a 1/3 octave band filter for all orientations.

8.3 SIGNAL QUALITY

Table 9.3 provides the signal quality requirement for the intended T-Coil signal from a Wireless Device. The worst Signal Quality of the axial and radial components of the magnetic field was used to determined the T-Coil category

Category	Telephone parameters WD signal quality [(signal + noise)-to-noise ratio in decibels]
Category T1	0 dB to 10 dB
Category T2	10 dB to 20 dB
Category T3	20 dB to 30 dB
Category T4	> 30 dB

8.4 FREQUENCY RESPONSE

The frequency response of the axial component must follow the frequency curve specified in ANSI C63.19-2007 section 7.3.3, over the frequency range 300-3000 Hz.

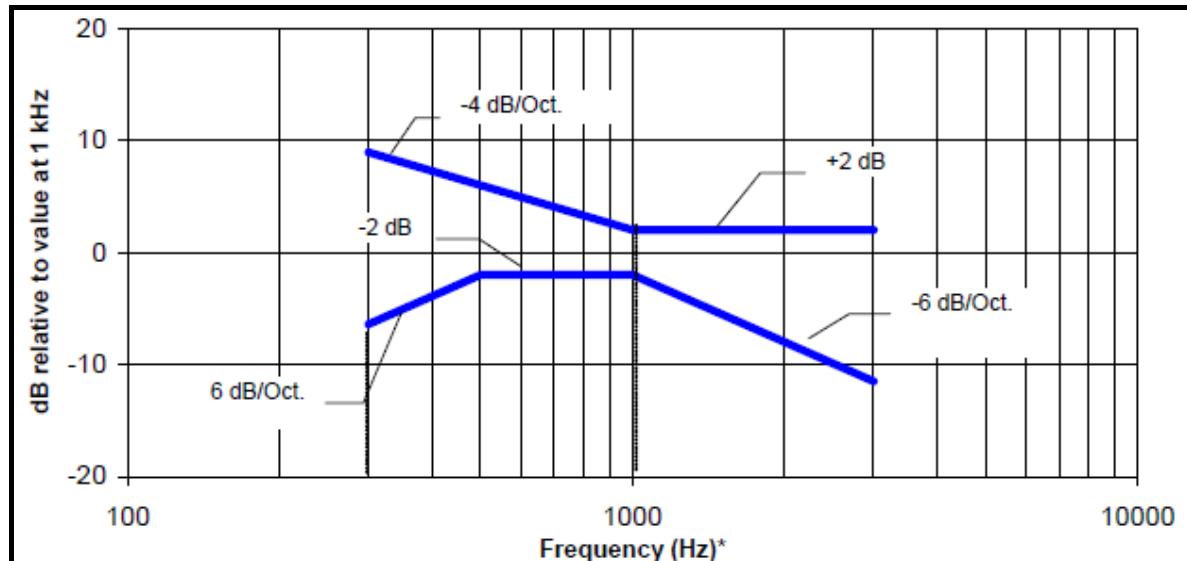


Figure 8.4a Magnetic field frequency response for WDs with a field ≤ -15 dB (A/m) at 1 kHz

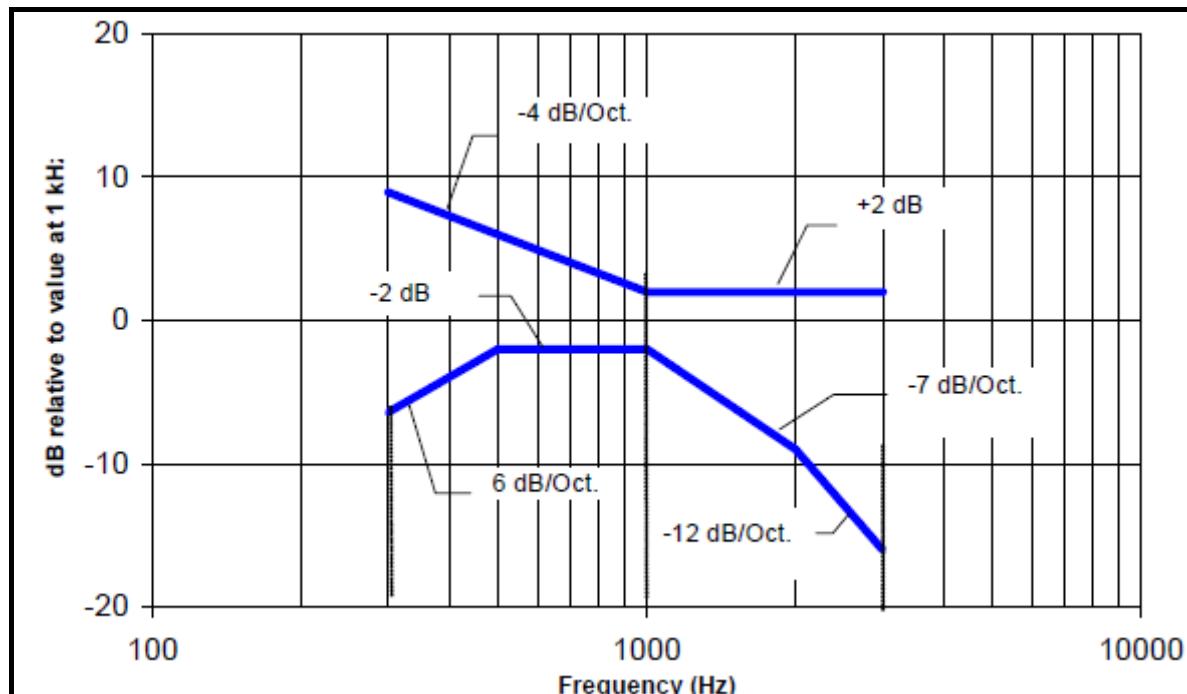


Figure 8.4b Magnetic field frequency response for WDs with a field that exceeds -15 dB(A/m) at 1 kHz

A D T

9. T-COIL TEST RESULT

9.1 SNR MEASUREMENT RESULT

Probe Position	Band	Channel	Measurement Position (x mm, y mm)	Ambient Background Noise (dB A/m)	ABM2 (dB A/m)	ABM1 (dB A/m)	SNR (dB)	T-coil SNR Rating
Radial 1 (Longitudinal)	GSM 850	128	-8, -2	-53.98	-33.12	-0.71	32.41	T4
		190	-8, -2	-54.81	-33.42	-0.67	32.75	T4
		251	-8, -2	-54.61	-34.74	-0.66	34.08	T4
	PCS 1900	512	8, -2	-54.76	-29.18	-0.46	28.72	T3
		661	8, -2	-54.01	-30.21	-0.75	29.46	T3
		810	8, -2	-54.78	-31.27	-0.56	30.71	T4
		128	0, 6	-55.01	-30.36	-0.75	29.61	T3
Radial2 (Transversal)	GSM 850	190	0, 6	-54.95	-30.7	-0.76	29.94	T3
		251	0, 6	-54.82	-32.04	-0.83	31.21	T4
		512	0, 8	-54.93	-35.03	-0.78	34.25	T4
	PCS 1900	661	0, 6	-54.84	-37.12	-0.78	36.34	T4
		810	0, 8	-54.79	-36.95	-0.78	36.17	T4
		128	0, -4	-53.98	-17.94	7.63	25.57	T3
Axial	GSM 850	190	0, -4	-53.9	-18.34	7.57	25.91	T3
		251	0, -4	-53.84	-19.7	7.56	27.26	T3
		512	0, -4	-53.93	-23.37	7.55	30.92	T4
	PCS 1900	661	0, -4	-54.01	-24.4	7.54	31.94	T4
		810	0, -4	-53.63	-25.44	7.52	32.96	T4

Table 9.1: Test Result for Various Positions

Note:

- Minimum Limit: ABM1 \geq -18 dB A/m
- Signal Quality = ABM1/ABM2
- Bold Number = worst case at each frequency band
- Data plots are showed in **appendix B1**

9.2 FREQUENCY RESPONSE AT AXIAL MEASUREMENT POINT

Cell Phone Mode	Verdict
GSM 850	Pass
PCS 1900	Pass

Note: Please see **appendix B2** for the frequency response test raw data.

10. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

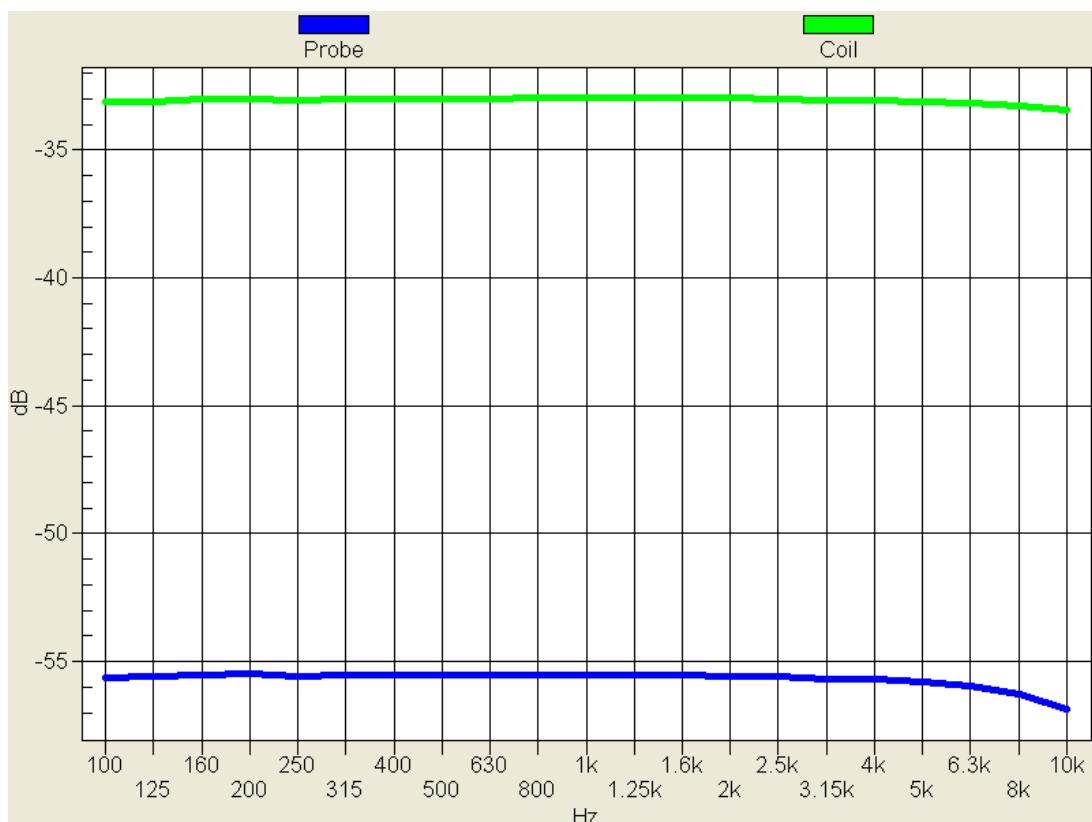
Hwa Ya EMC/RF/Safety/Telecom Lab:

Tel: 886-3-3183232
Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---


香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

APPENDIX A1:

Probe Calibration in AMCC

	Coil	Probe
Internal calibration factor	2.3661 V	1.1433 V
Probe sensitivity at 1kHz		0.007329 V/(A/m)

Appendix A1 : The frequency response and sensitivity of AM1D probe

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

APPENDIX A2:

Reference Input of Audio Signal Spectrum

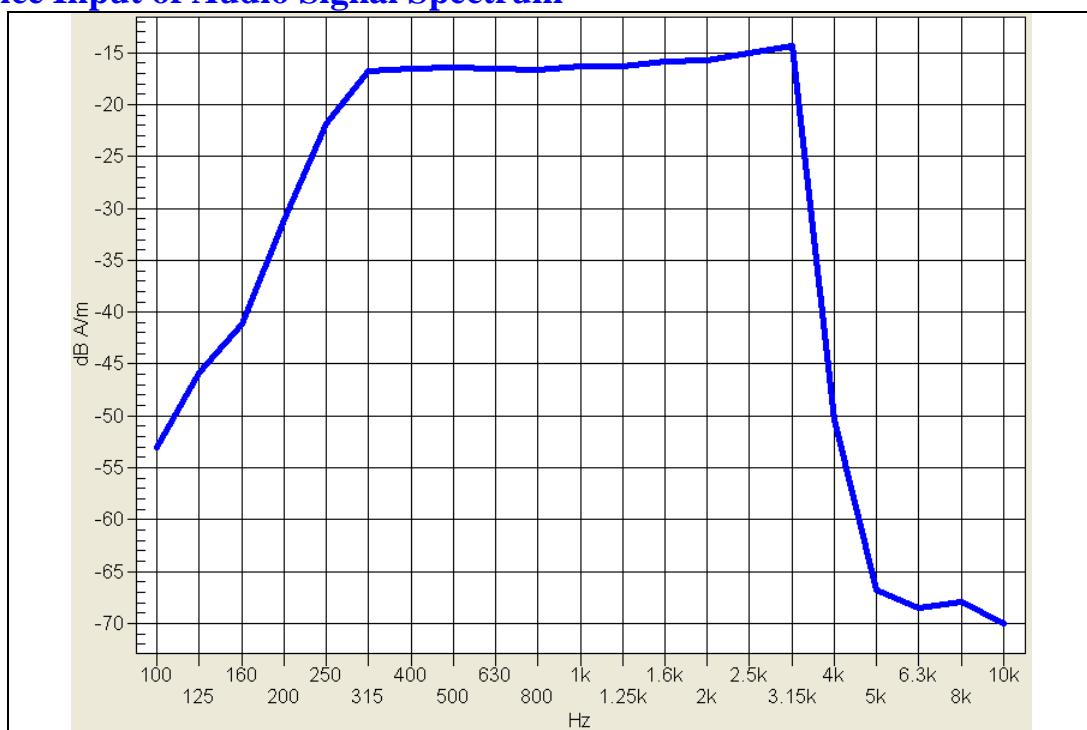


Figure A2-1: Audio signal spectrum of the broadband signal
(48KHz_voice_300Hz~3KHz)

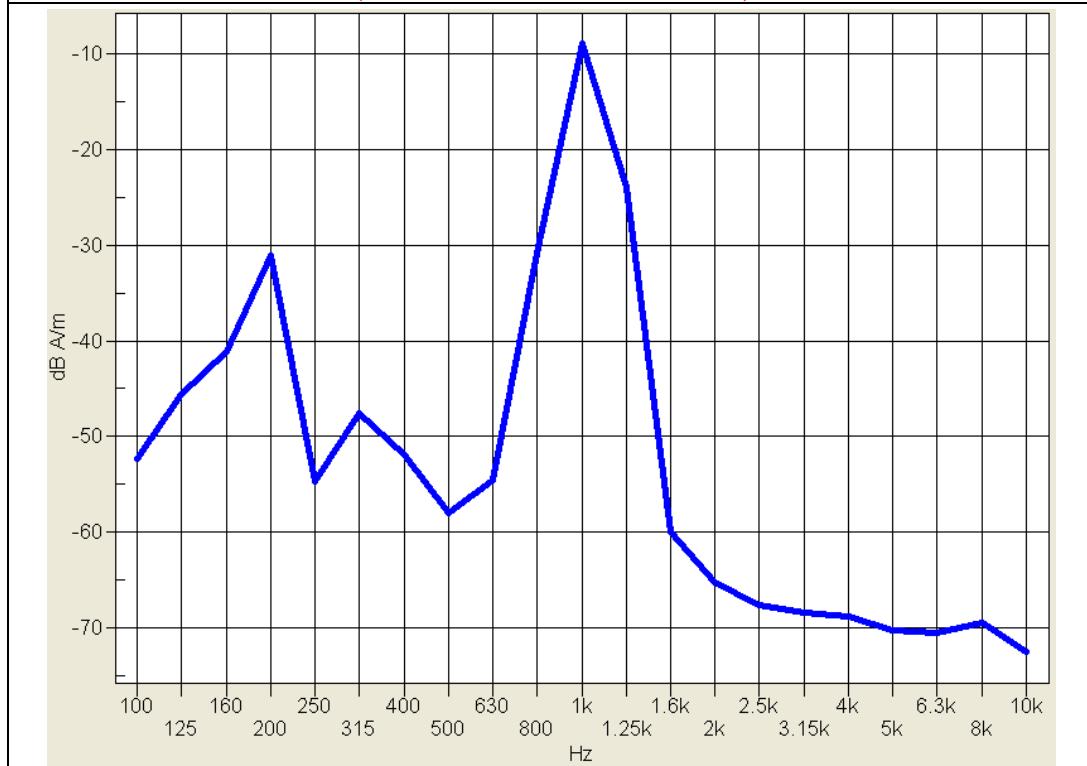
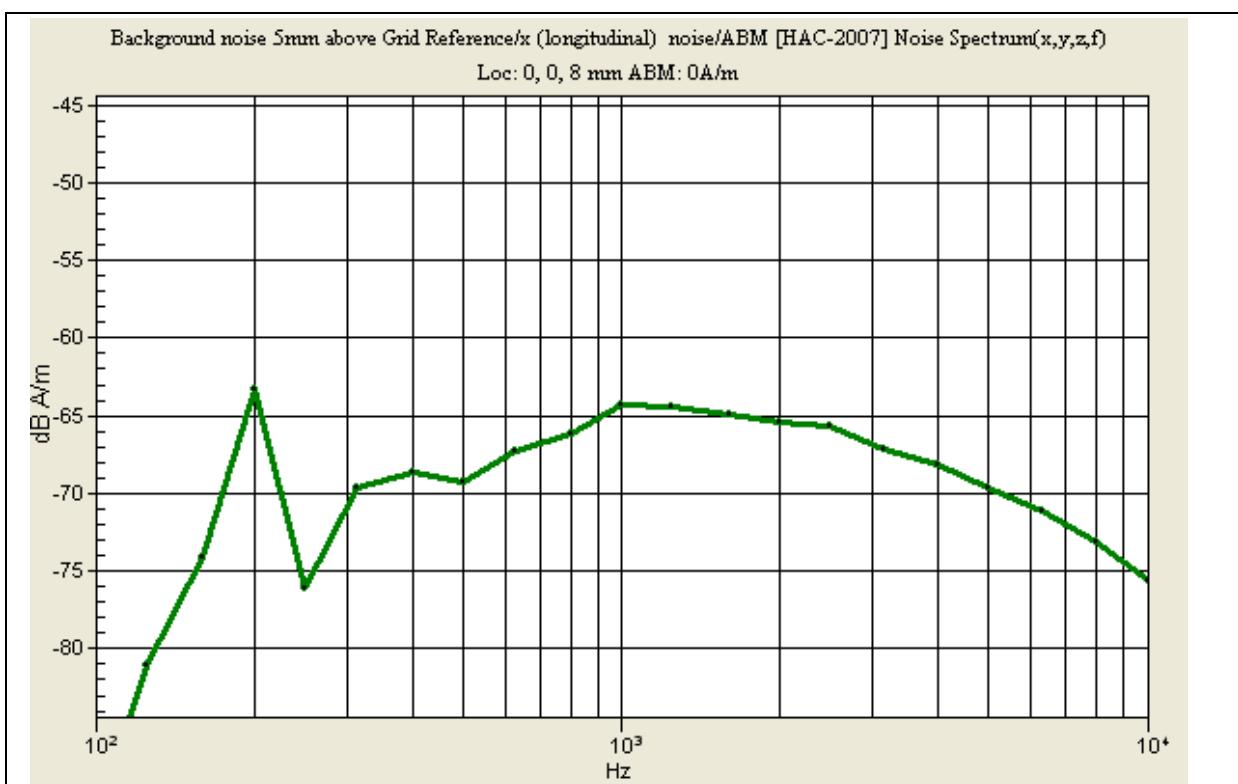
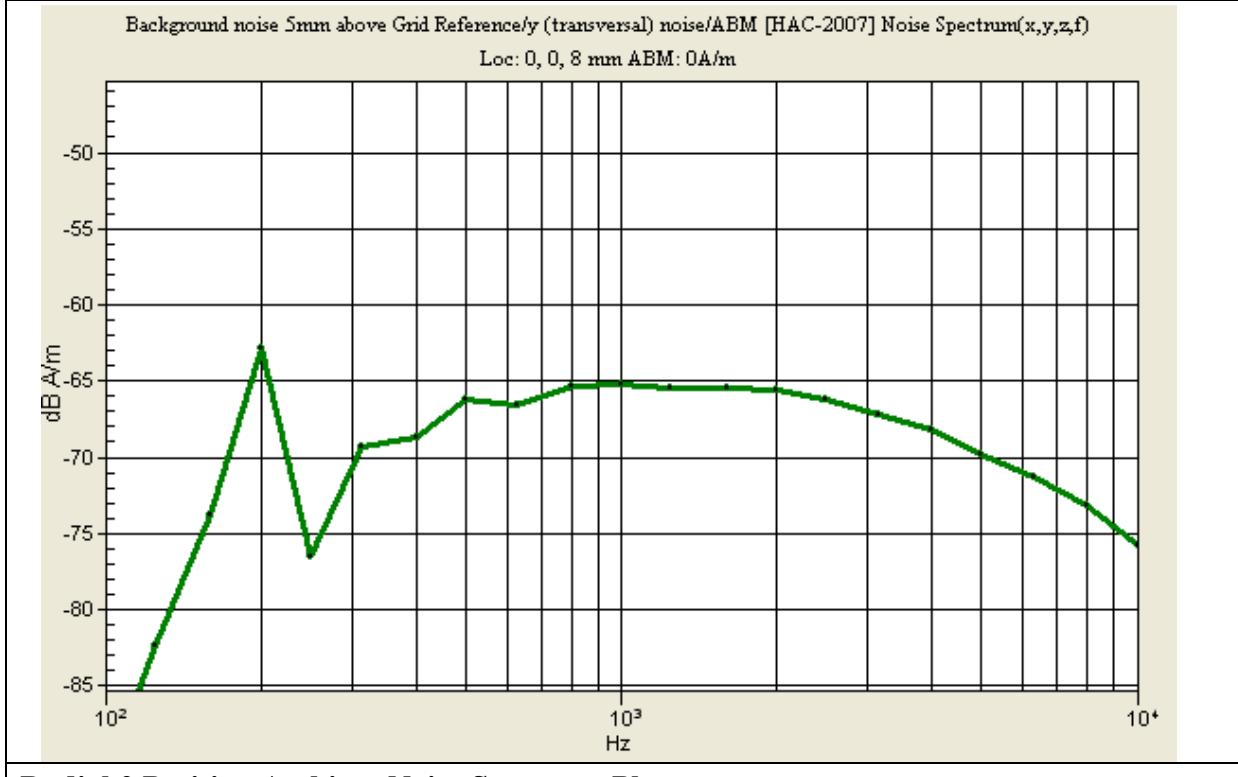


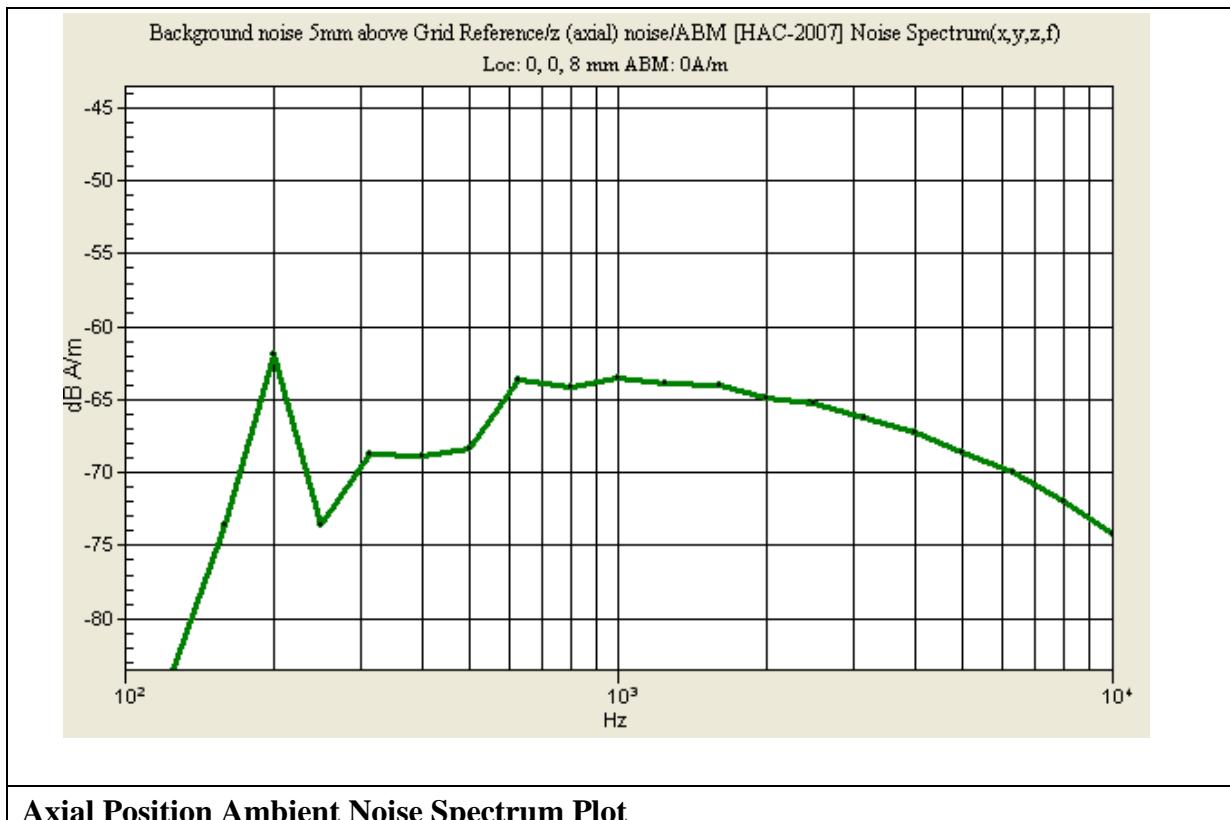
Figure A2-2: Audio signal spectrum of the narrowband signal
(48KHz_voice_1KHz)



香港商立德國際商品試驗有限公司桃園分公司


Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

APPENDIX A3:


Ambient Noise Spectrum Plots

Radial 1 Position Ambient Noise Spectrum Plot

Radial 2 Position Ambient Noise Spectrum Plot

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

APPENDIX A: TEST DATA

Product Name: Mobile Computer ; Model Number: Dolphin 6000

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:24:46

GSM850-Ch128 / Radial 1

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.78 dB A/m

BWC Factor = 0.16 dB

Location: -5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.54 dB A/m

BWC Factor = 0.16 dB

Location: -8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

(1x1x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

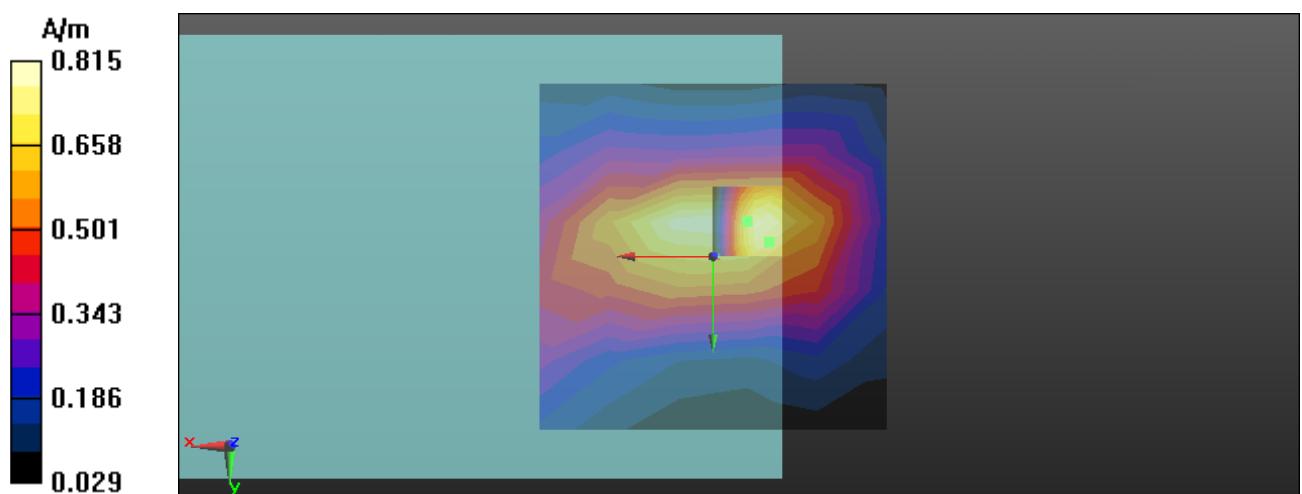
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


• **Cursor:**

ABM1/ABM2 = **32.41** dB

ABM1 comp = -0.71 dB A/m

BWC Factor = 0.16 dB

Location: -8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:48:36

GSM850-Ch190 / Radial 1

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.83 dB A/m

BWC Factor = 0.16 dB

Location: -5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.59 dB A/m

BWC Factor = 0.15 dB

Location: -8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

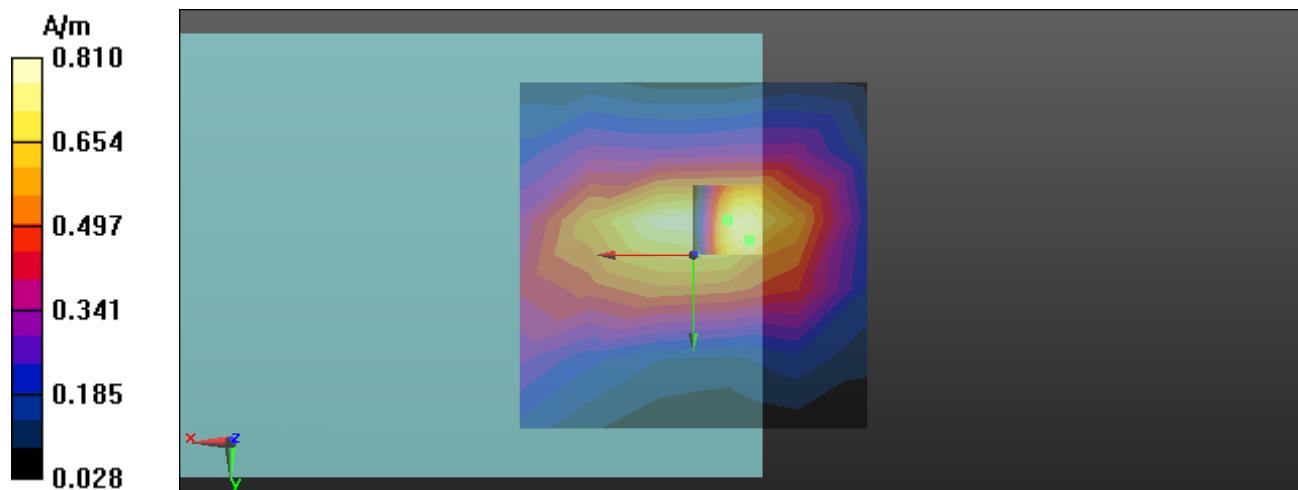
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = **32.75** dB

ABM1 comp = -0.67 dB A/m

BWC Factor = 0.15 dB

Location: -8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 04:15:54

GSM850-Ch251 / Radial 1

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.80 dB A/m

BWC Factor = 0.15 dB

Location: -5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.61 dB A/m

BWC Factor = 0.16 dB

Location: -8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

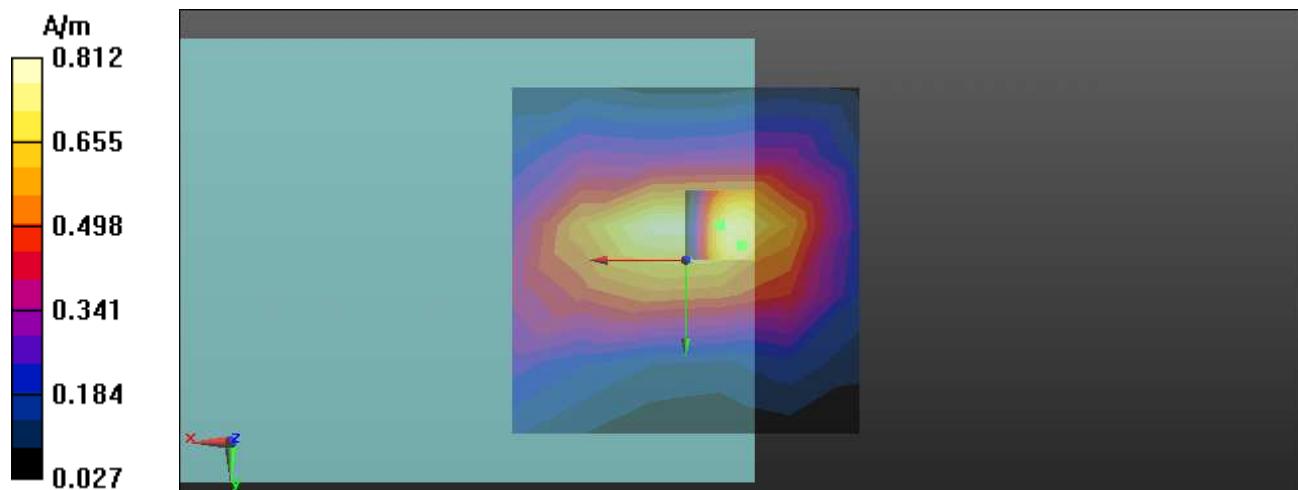
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 34.08 dB

ABM1 comp = -0.66 dB A/m

BWC Factor = 0.16 dB

Location: -8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:06:35

PCS1900-Ch512 / Radial 1

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.77 dB A/m

BWC Factor = 0.16 dB

Location: 5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.52 dB A/m

BWC Factor = 0.16 dB

Location: 8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

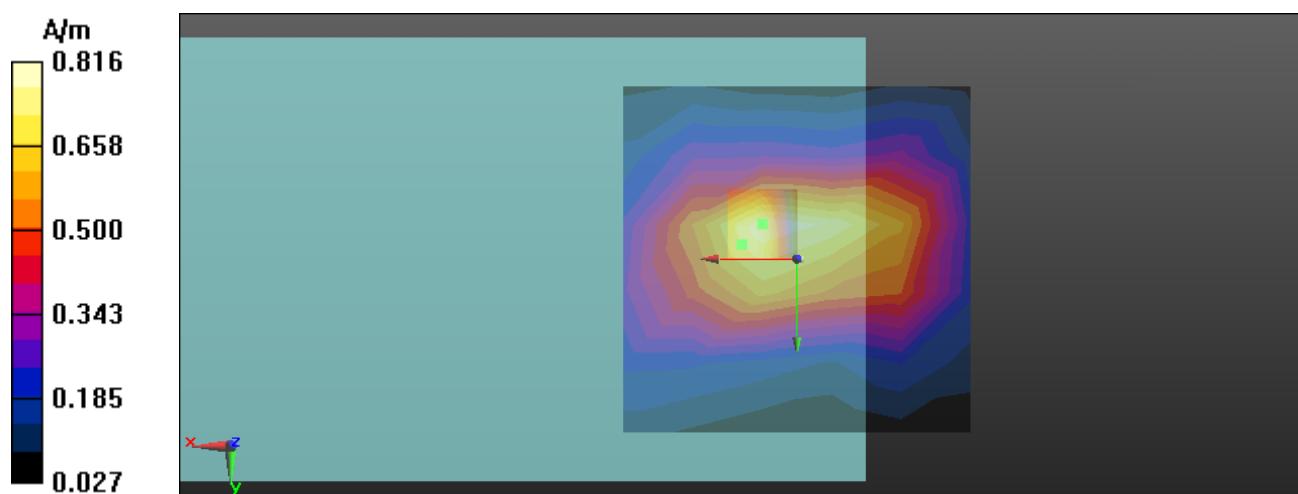
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = **28.72** dB

ABM1 comp = -0.46 dB A/m

BWC Factor = 0.16 dB

Location: 8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:36:45

PCS1900-Ch661 / Radial 1

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.75 dB A/m

BWC Factor = 0.16 dB

Location: 5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.47 dB A/m

BWC Factor = 0.15 dB

Location: 8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

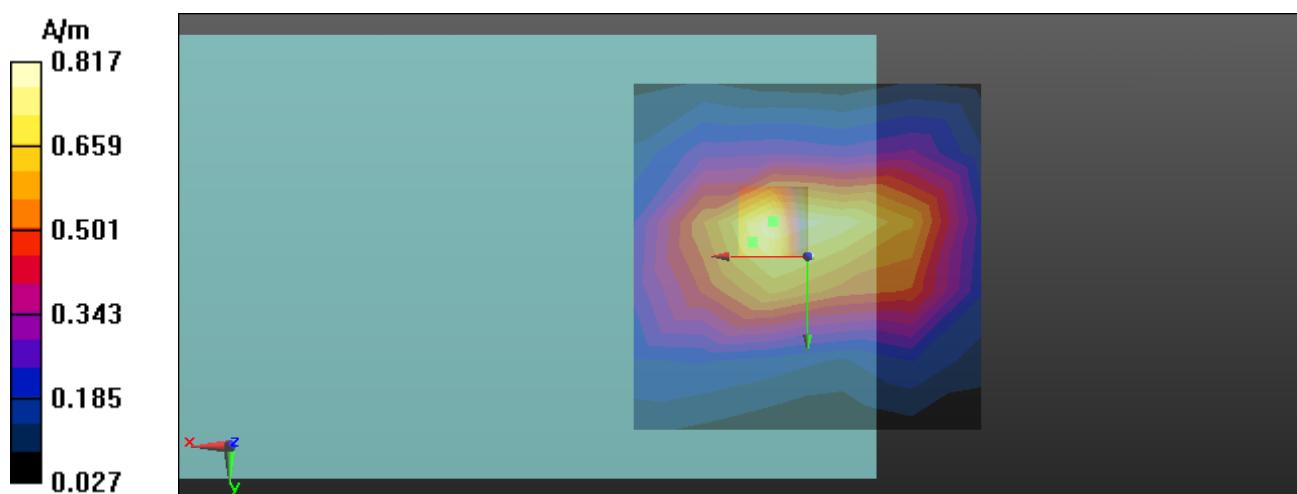
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = **29.46** dB

ABM1 comp = -0.75 dB A/m

BWC Factor = 0.16 dB

Location: 8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 06:01:00

PCS1900-Ch810 / Radial 1

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/x (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -1.78 dB A/m

BWC Factor = 0.16 dB

Location: 5, -5, 3 mm

Fine scan/x (longitudinal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.51 dB A/m

BWC Factor = 0.16 dB

Location: 8, -2, 3 mm

Point scan/x (longitudinal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

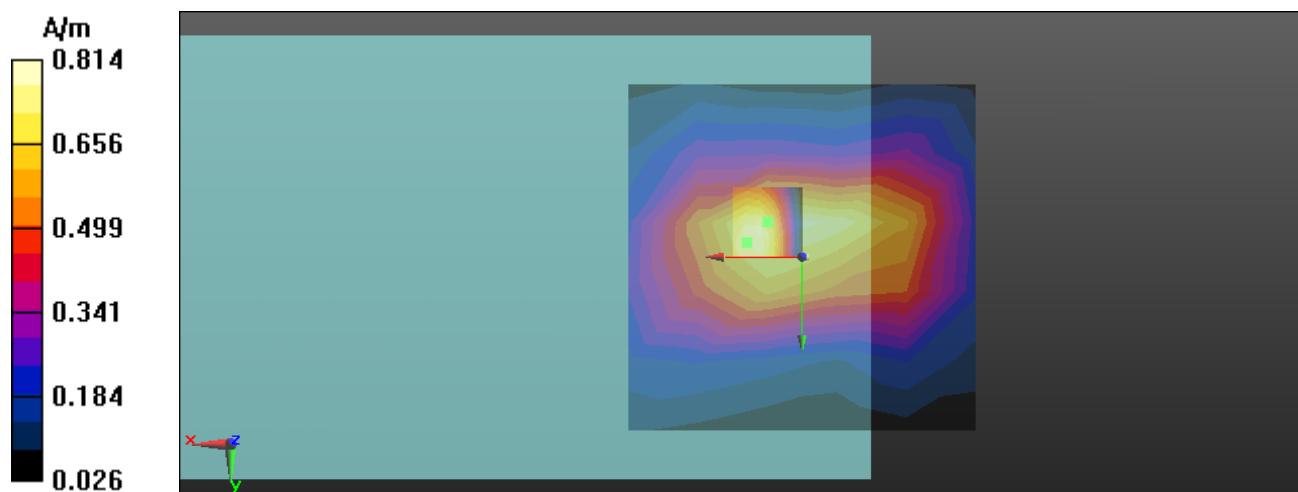
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 30.71 dB

ABM1 comp = -0.56 dB A/m

BWC Factor = 0.16 dB

Location: 8, -2, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:25:29

GSM850-Ch128 / Radial 2

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.40 dB A/m

BWC Factor = 0.16 dB

Location: 5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.67 dB A/m

BWC Factor = 0.16 dB

Location: 0, 6, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

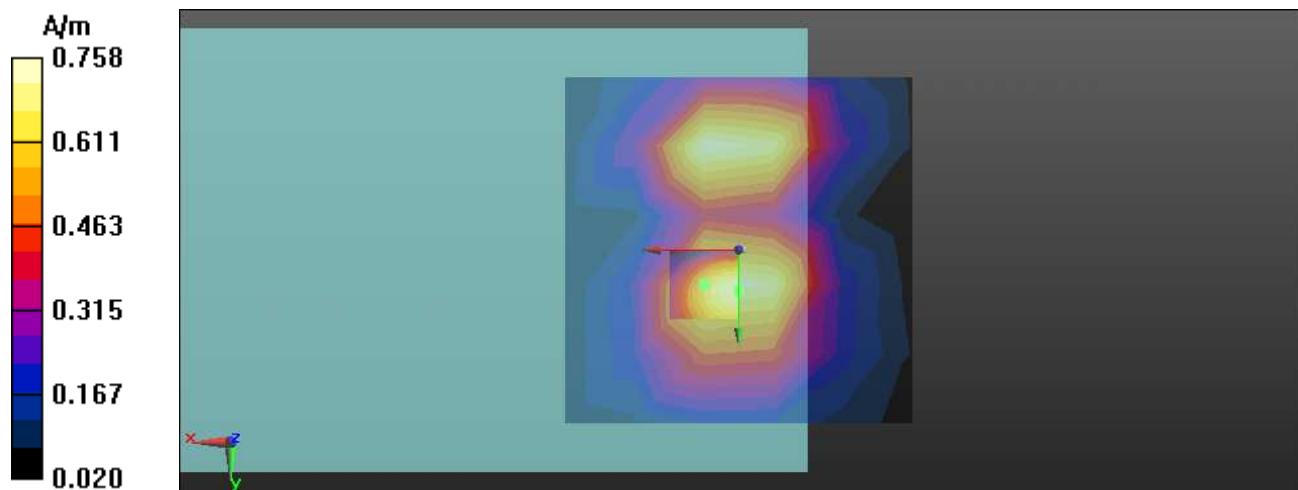
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = **29.61** dB

ABM1 comp = -0.75 dB A/m

BWC Factor = 0.16 dB

Location: 0, 6, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:49:18

GSM850-Ch190 / Radial 2

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.42 dB A/m

BWC Factor = 0.16 dB

Location: 5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.69 dB A/m

BWC Factor = 0.15 dB

Location: 0, 6, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

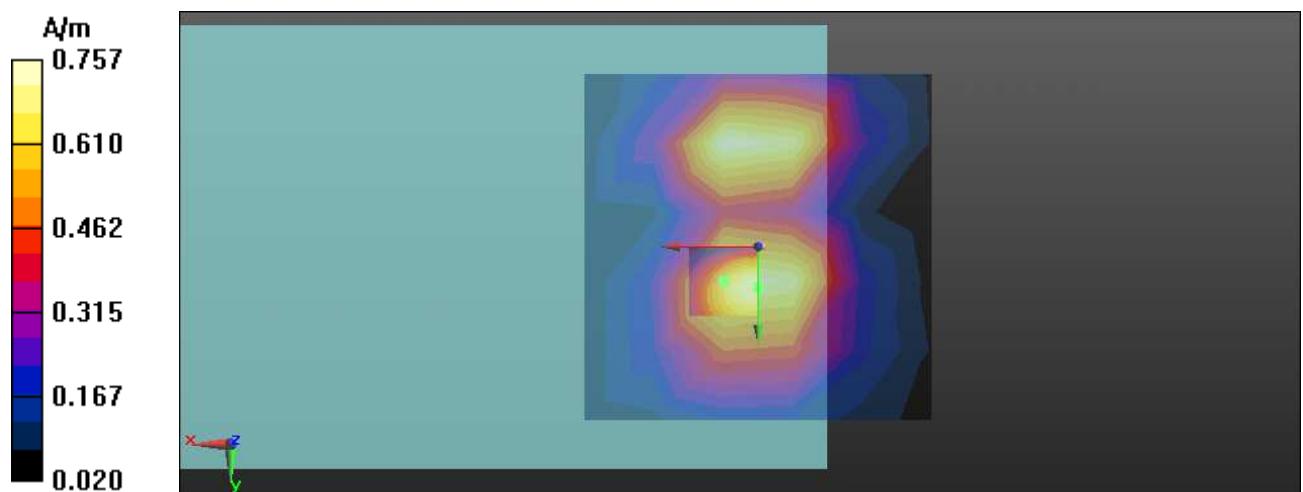
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 29.94 dB

ABM1 comp = -0.76 dB A/m

BWC Factor = 0.15 dB

Location: 0, 6, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 04:16:37

GSM850-Ch251 / Radial 2

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.41 dB A/m

BWC Factor = 0.15 dB

Location: 5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.75 dB A/m

BWC Factor = 0.16 dB

Location: 0, 6, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

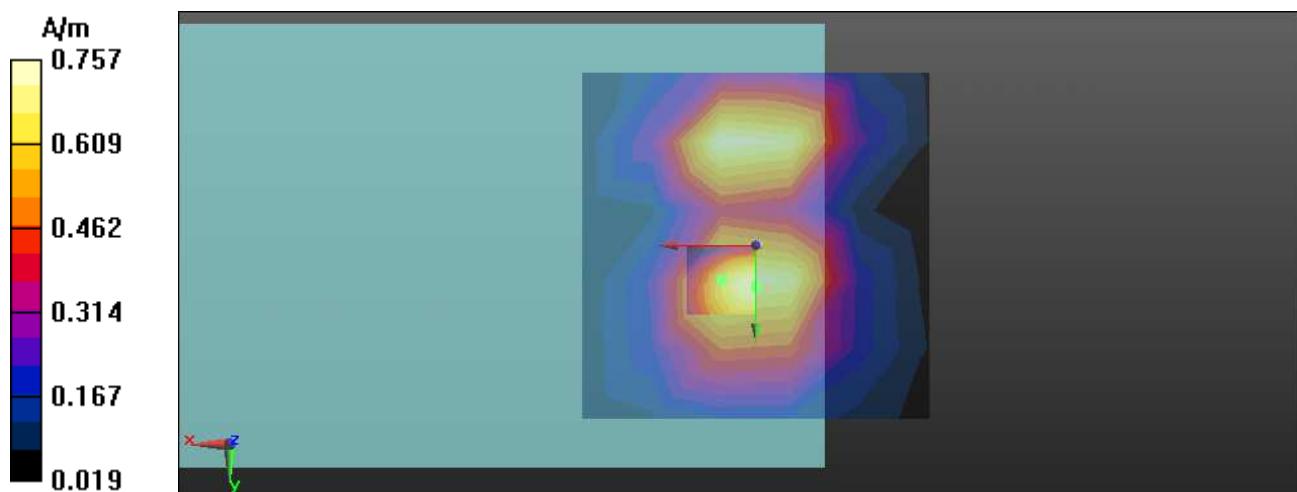
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 31.21 dB

ABM1 comp = -0.83 dB A/m

BWC Factor = 0.16 dB

Location: 0, 6, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:07:18

PCS1900-Ch512 / Radial 2

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.87 dB A/m

BWC Factor = 0.16 dB

Location: -5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.74 dB A/m

BWC Factor = 0.16 dB

Location: 0, 8, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

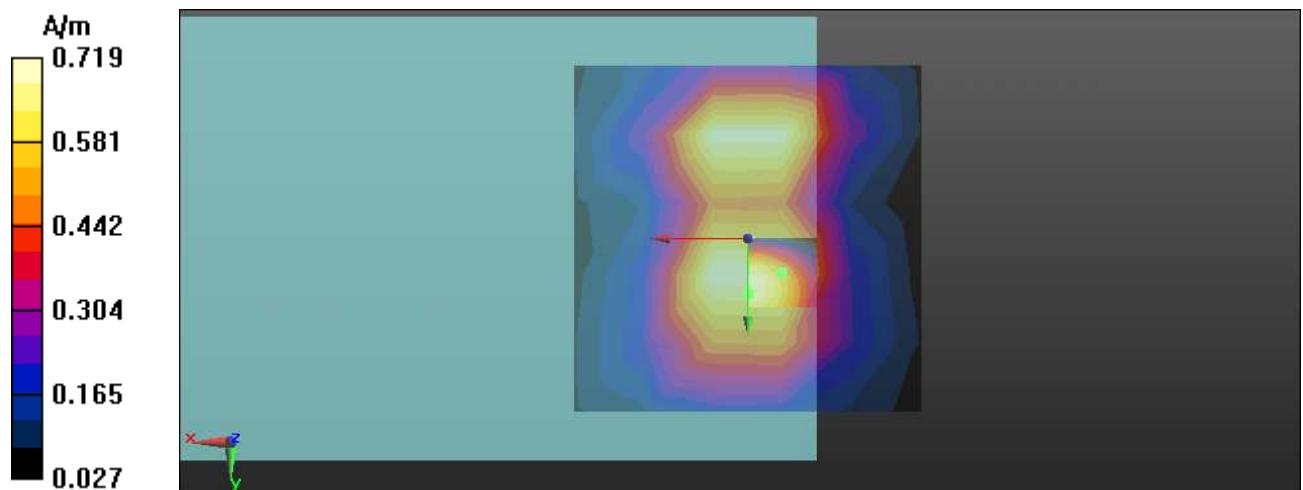
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 34.25 dB

ABM1 comp = -0.78 dB A/m

BWC Factor = 0.16 dB

Location: 0, 8, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:37:28

PCS1900-Ch661 / Radial 2

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.83 dB A/m

BWC Factor = 0.16 dB

Location: -5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.75 dB A/m

BWC Factor = 0.15 dB

Location: 0, 6, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

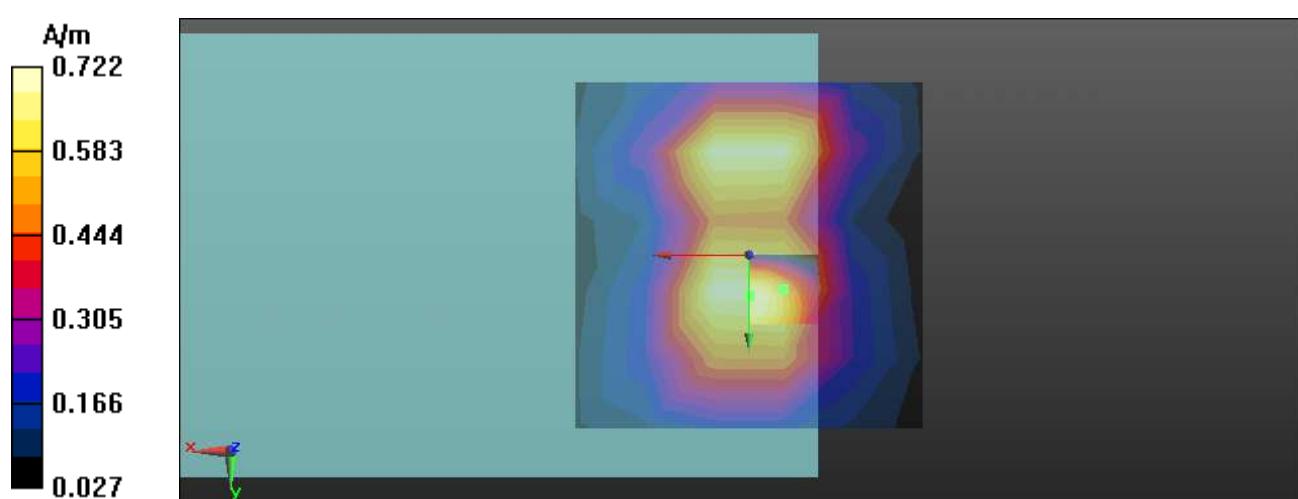
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 36.34 dB

ABM1 comp = -0.78 dB A/m

BWC Factor = 0.16 dB

Location: 0, 6, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 06:01:43

PCS1900-Ch810 / Radial 2

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scan/y (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -2.88 dB A/m

BWC Factor = 0.16 dB

Location: -5, 5, 3 mm

Fine scan/y (transversal) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = -0.74 dB A/m

BWC Factor = 0.16 dB

Location: 0, 8, 3 mm

Point scan/y (transversal) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

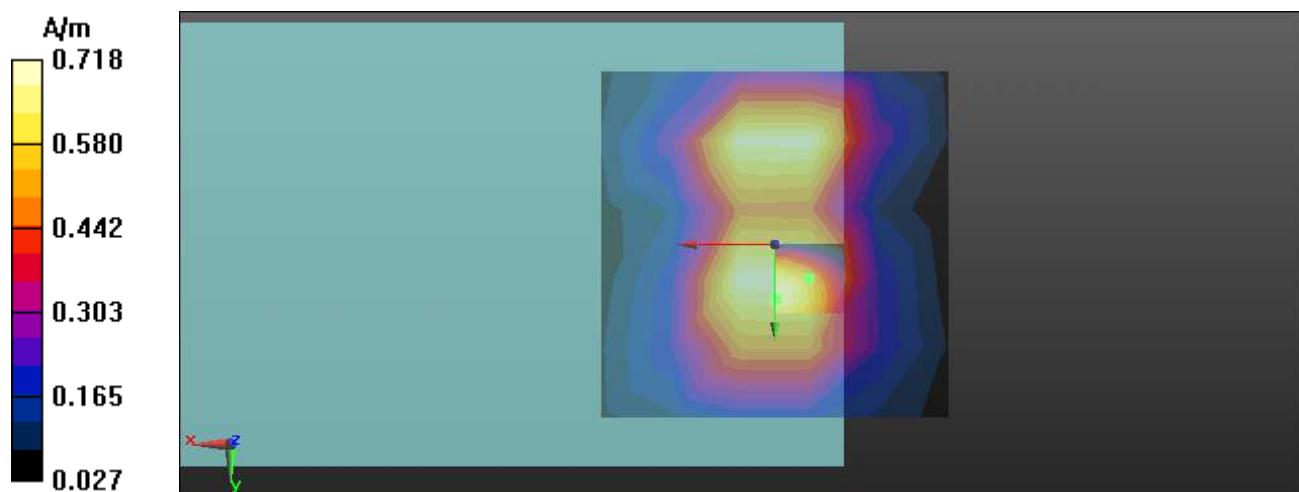
Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 36.17 dB

ABM1 comp = -0.78 dB A/m

BWC Factor = 0.16 dB

Location: 0, 8, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:23:57

GSM850-Ch128 / Axial

Communication System: Generic GSM; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.84 dB A/m

BWC Factor = 0.16 dB

Location: 5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.71 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 25.57 dB

ABM1 comp = 7.63 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

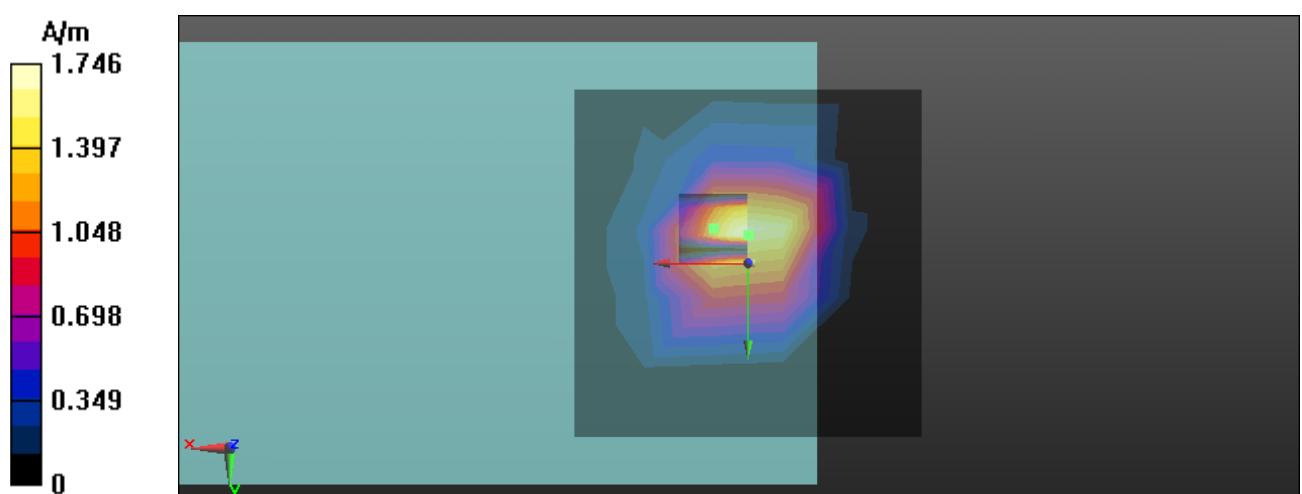
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 22.13 dB

ABM1 comp = 4.18 dB A/m

BWC Factor = 10.80 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 03:47:46

GSM850-Ch190 / Axial

Communication System: Generic GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.74 dB A/m

BWC Factor = 0.16 dB

Location: 5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.65 dB A/m

BWC Factor = 0.15 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 25.91 dB

ABM1 comp = 7.57 dB A/m

BWC Factor = 0.15 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

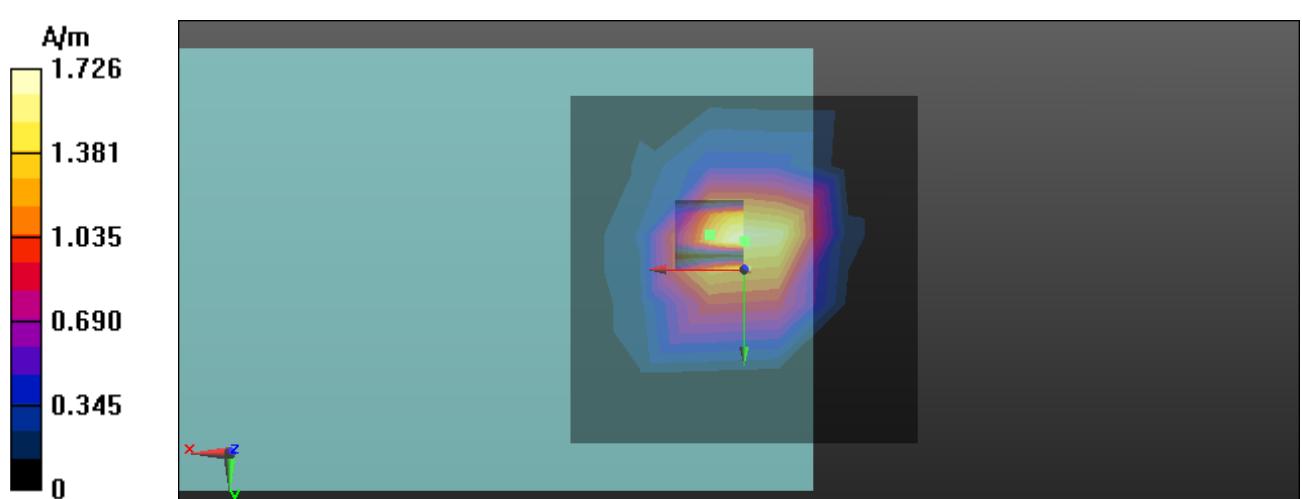
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.79 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 21.74 dB

ABM1 comp = 3.40 dB A/m

BWC Factor = 10.79 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 04:15:04

GSM850-Ch251 / Axial

Communication System: Generic GSM; Frequency: 848.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.73 dB A/m

BWC Factor = 0.15 dB

Location: 5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.66 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 27.26 dB

ABM1 comp = 7.56 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

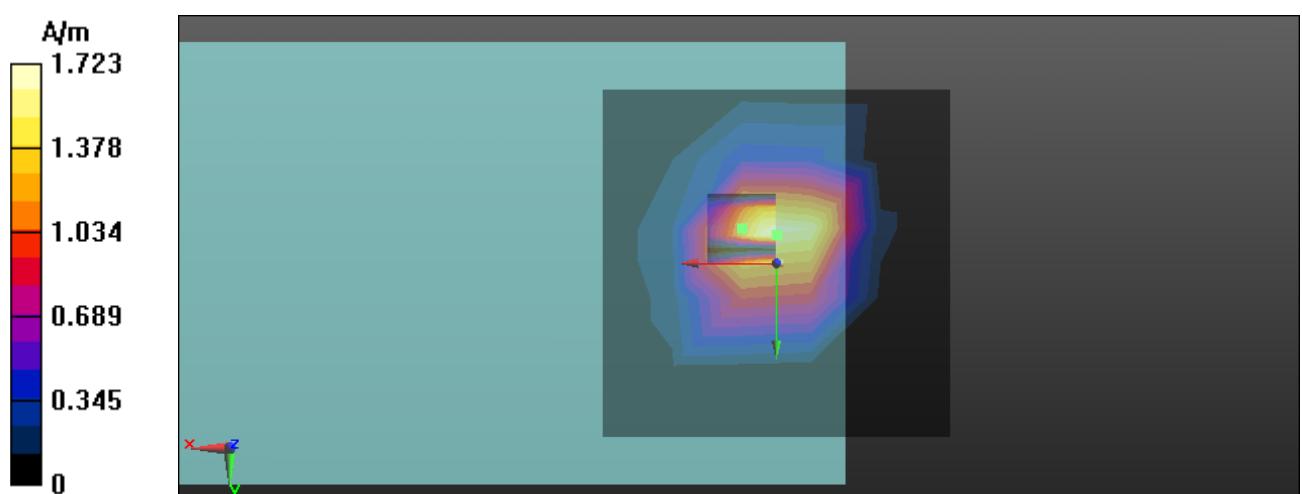
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.79 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 23.12 dB

ABM1 comp = 3.43 dB A/m

BWC Factor = 10.79 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:05:46

PCS1900-Ch512 / Axial

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.64 dB A/m

BWC Factor = 0.16 dB

Location: -5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z)

(6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.58 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 30.92 dB

ABM1 comp = 7.55 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

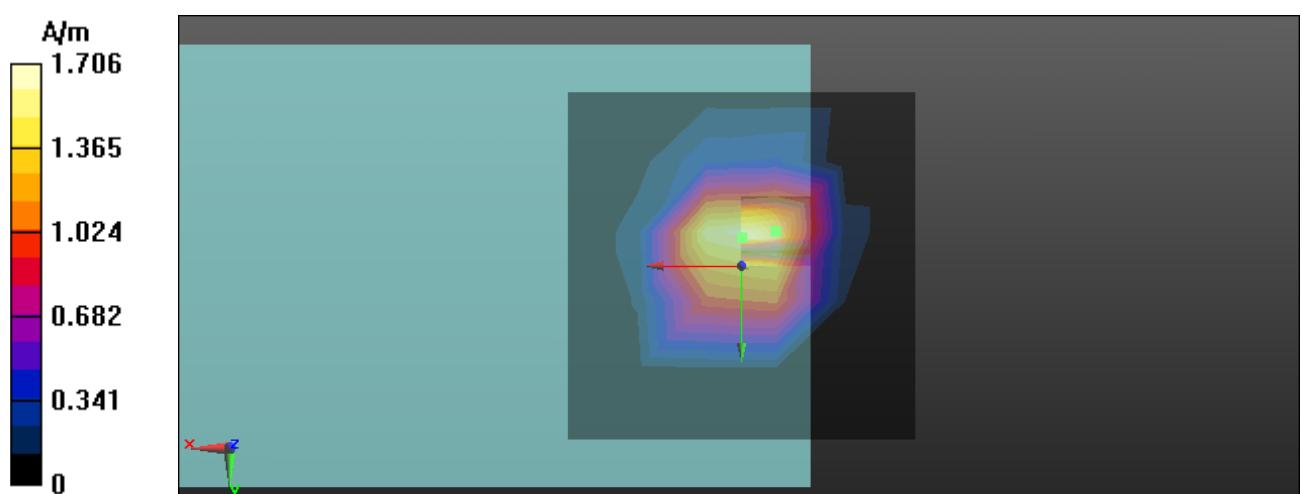
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.79 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 27.20 dB

ABM1 comp = 3.81 dB A/m

BWC Factor = 10.79 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 05:35:55

PCS1900-Ch661 / Axial

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.59 dB A/m

BWC Factor = 0.16 dB

Location: -5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z)

(6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.15 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.54 dB A/m

BWC Factor = 0.15 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 31.94 dB

ABM1 comp = 7.54 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

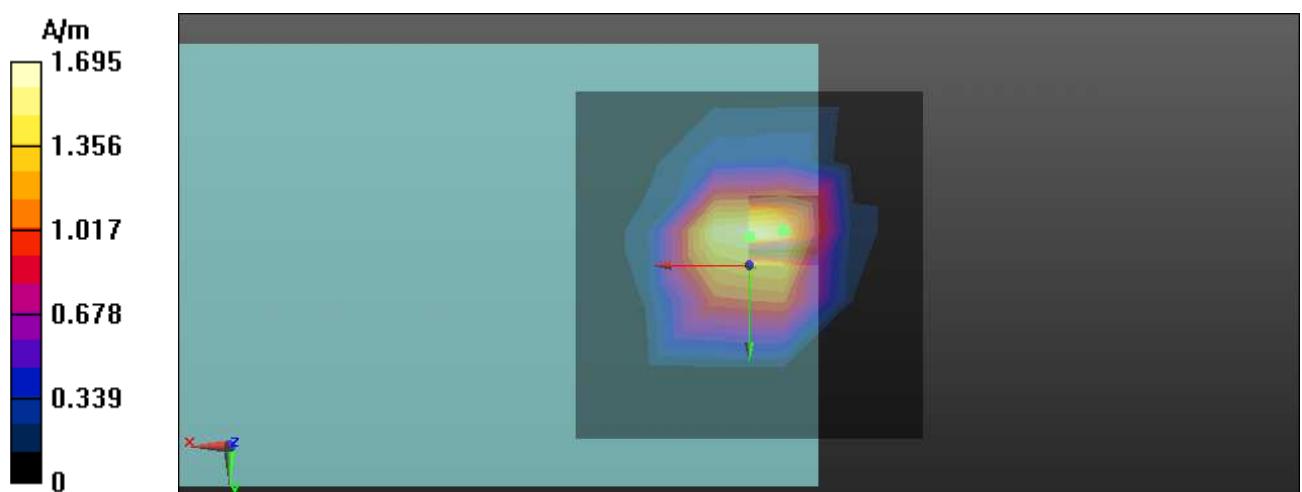
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 27.15 dB

ABM1 comp = 2.77 dB A/m

BWC Factor = 10.80 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Date/Time: 2011/2/23 06:00:10

PCS1900-Ch810 / Axial

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium parameters used: $\sigma = 0 \text{ mho/m}$, $\epsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$

Phantom section: TCoil Section

DASY5 Configuration:

- Probe: AM1DV3 - 3060; ; Calibrated: 2011/1/18
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE3 Sn510; Calibrated: 2010/10/4
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA
- Measurement SW: DASY52, Version 52.6 (1); SEMCAD X Version 14.4.2 (2595)

Coarse Scans/z (axial) scan 50 x 50 (grid 10) with noise/ABM [HAC-2007]

Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 4.55 dB A/m

BWC Factor = 0.16 dB

Location: -5, -5, 3 mm

Fine scan/z (axial) scan 10 x 10 (grid 2) with noise/ABM [HAC-2007] Signal(x,y,z) (6x6x1):

Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1 comp = 7.57 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) scan at point with noise/ABM [HAC-2007] SNR(x,y,z) (1x1x1):

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_1kHz_1s.wav

Output Gain: 34.63

Measure Window Start: 0ms

Measure Window Length: 1000ms

BWC applied: 0.16 dB

Device Reference Point: 0, 0, -6.3 mm

- **Cursor:**

ABM1/ABM2 = 32.96 dB

ABM1 comp = 7.52 dB A/m

BWC Factor = 0.16 dB

Location: 0, -4, 3 mm

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] SNR(x,y,z)

(1x1x1):

Measurement grid: dx=10mm, dy=10mm

Signal Type: Audio File (.wav) 48k_voice_300-3000_2s.wav

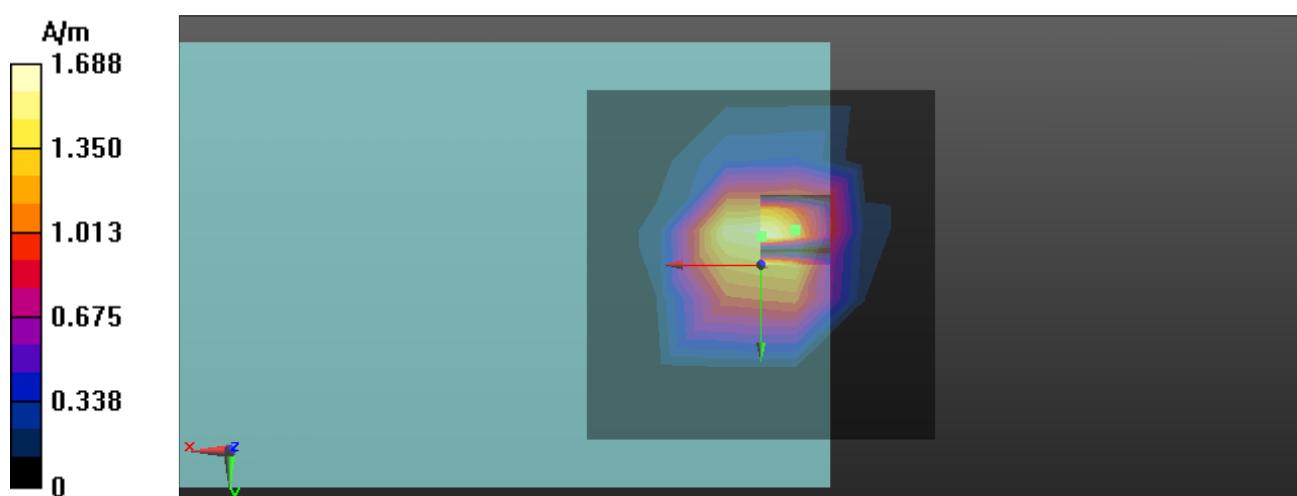
Output Gain: 67.83

Measure Window Start: 2000ms

Measure Window Length: 2000ms

BWC applied: 10.80 dB

Device Reference Point: 0, 0, -6.3 mm


- **Cursor:**

ABM1/ABM2 = 29.10 dB

ABM1 comp = 3.67 dB A/m

BWC Factor = 10.80 dB

Location: 0, -4, 3 mm

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T


Frequency Response Test Plots

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)
Loc: 0, -4, 3 mm Diff: 1.04dB

GSM850 Ch128_Axial Frequency Response

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)
Loc: 0, -4, 3 mm Diff: 0.73dB

GSM850 Ch190_Axial Frequency Response

香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

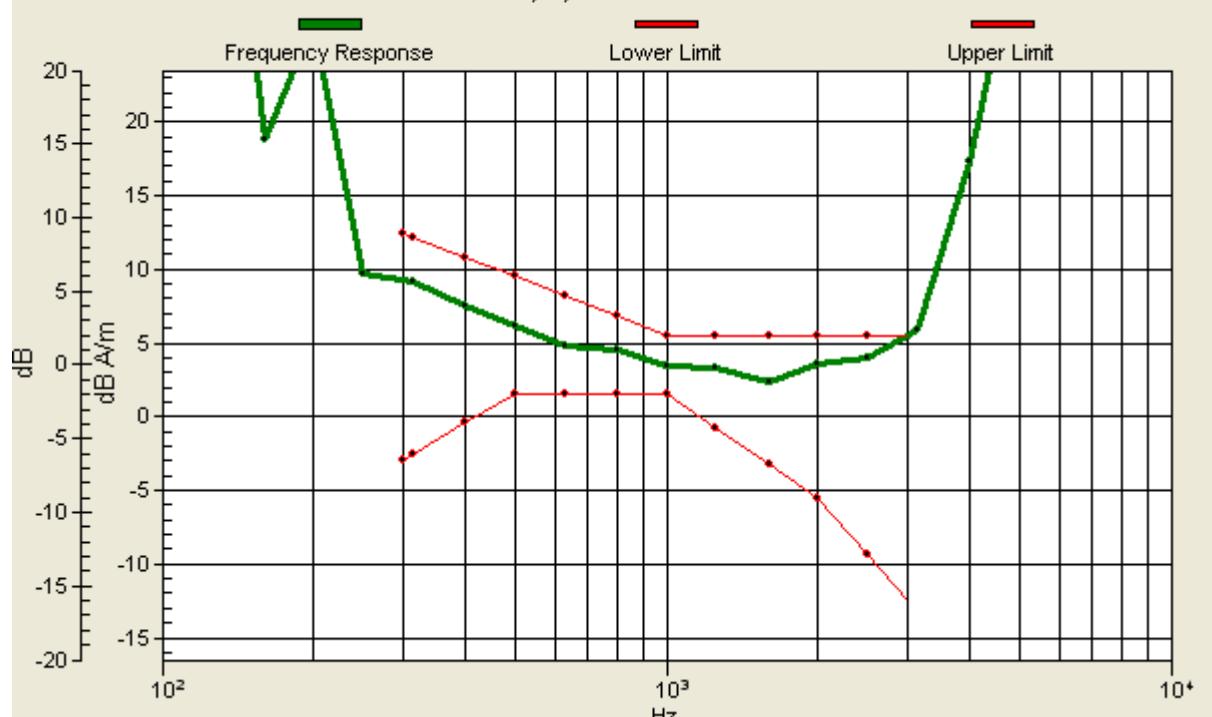
A D T

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)
Loc: 0, -4, 3 mm Diff: 0.36dB

GSM850 Ch251_Axial Frequency Response

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)
Loc: 0, -4, 3 mm Diff: 1.44dB

GSM1900 Ch512_Axial Frequency Response


香港商立德國際商品試驗有限公司桃園分公司

Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

A D T

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)

Loc: 0, -4, 3 mm Diff: 0.07dB

Point scan/z (axial) 300-3k response at max/ABM [HAC-2007] Freq Resp(x,y,z,f)

Loc: 0, -4, 3 mm Diff: 0.55dB

