

Specific Absorption Rate (SAR) Test Report

for

Honeywell International Inc.

on the

Dolphin 9900 Mobile computer

Report No.	:	FA830601A
Trade Name	:	Honey well
Model Name	:	Dolphin 9900
FCC ID	:	HD59900LUP
Date of Testing	:	Apr. 30, 2008 ~ May 12, 2008
Date of Report	:	May 14, 2008
Date of Review	:	May 14, 2008

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 04

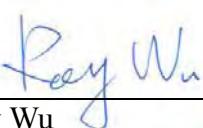
SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Table of Contents

1. Statement of Compliance	1
2. Administration Data	2
2.1 Testing Laboratory	2
2.2 Detail of Applicant	2
2.3 Detail of Manufacturer	2
2.4 Application Details	2
3. General Information	3
3.1 Description of Device Under Test (DUT)	3
3.2 Basic Description of Device under Test	4
3.3 Product Photos	4
3.4 Applied Standards	4
3.5 Device Category and SAR Limits	5
3.6 Test Conditions	5
3.6.1 Ambient Condition	5
3.6.2 Test Configuration	5
4. Specific Absorption Rate (SAR)	6
4.1 Introduction	6
4.2 SAR Definition	6
5. SAR Measurement Setup	7
5.1 DASY5 E-Field Probe System	8
5.1.1 ET3DV6 E-Field Probe Specification	9
5.1.2 ET3DV6 E-Field Probe Calibration	9
5.2 DATA Acquisition Electronics (DAE)	10
5.3 Robot	10
5.4 Measurement Server	10
5.5 SAM Twin Phantom	11
5.6 Device Holder for SAM Twin Phantom	12
5.7 Data Storage and Evaluation	13
5.7.1 Data Storage	13
5.7.2 Data Evaluation	13
5.8 Test Equipment List	15
6. Tissue Simulating Liquids	16
7. Uncertainty Assessment	18
8. SAR Measurement Evaluation	20
8.1 Purpose of System Performance check	20
8.2 System Setup	20
8.3 Validation Results	22
9. Description for DUT Testing Position	23
10. Measurement Procedures	25
10.1 Spatial Peak SAR Evaluation	25
10.2 Scan Procedures	26
10.3 SAR Averaged Methods	26
11. SAR Test Results	27
11.1 Right Cheek for Rear Side	27
11.2 Right Tilted for Rear Side	27
11.3 Left Cheek for Rear Side	27
11.4 Left Tilted for Rear Side	27
11.5 Right Cheek for Front Side	28
11.6 Right Tilted for Front Side	28
11.7 Left Cheek for Front Side	28
11.8 Left Tilted for Front Side	28
11.9 Front Face With Holster Touch	29
11.10 Rear Face With Holster Touch	29
11.11 Rear Face With 1.5cm Gap	30
12. References	31
Appendix A - System Performance Check Data	
Appendix B - SAR Measurement Data	
Appendix C - Calibration Data	
Appendix D - Product Photos	
Appendix E - Test Setup Photos	

1. Statement of Compliance


The Specific Absorption Rate (SAR) maximum results found during testing for the Honeywell International Inc. Dolphin 9900 Mobile computer are as follows (with expanded uncertainty 21.9%):

Position	GSM850 (W/kg)	PCS1900 (W/Kg)
Head	0.48	0.528
Body (1.5cm Gap)	0.179	0.158
Body (Holster)	0.253	0.239

Configuration	Sum of the 1-g SAR(W/Kg)			Ant.-Sep. (cm)	SAR-to-Ant.-Sep. ratio
	Head	Body (1.5cm Gap)	Body (Holster)		
GSM850 to WLAN	0.492	0.191	0.289	2.32	< 0.3
GSM1900 to WLAN	0.572	0.17	0.275	2.32	< 0.3
GSM850 to BT	0.554	0.179	0.2530213	3.39	< 0.3
GSM1900 to BT	0.52919	0.158	0.2390213	3.39	< 0.3
WLAN to BT	0.086	0.012	0.0360213	2.59	< 0.3

Only stand-alone SAR of GSM/GPRS/EDGE, Bluetooth and WLAN were evaluated respectively, and no simultaneous transmission SAR was required, because the sum of the 1-g SAR was less than SAR limit (1.6W/kg) for all simultaneous transmitting antennas and the SAR-to-antenna-separation ratio, as defined in KDB 648474, was less than 0.3 for any simultaneous transmitting antenna pair. They are in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Roy Wu
Manager

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc.
Department : Antenna Design/SAR
Address : No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang,
TaoYuan Hsien, Taiwan, R.O.C.
Telephone Number : 886-3-327-3456
Fax Number : 886-3-328-4978

2.2 Detail of Applicant

Company Name : Honeywell International Inc.
Address : 700 Vision Drive, PO Box 208 Skeneateles Falls, NY 13513

2.3 Detail of Manufacturer

Company Name : 1. Universal Scientific Industrial Co., Ltd.
2. Universal Scientific (Shanghai) Co., Ltd.
Address : 1. 141, Lane 351, Taiping Road, Sec.1, Tsao Tuen, Nan-Tou, Taiwan
2. No. 1558, Zhangdong Road Pudong, Shanghai China. P.O. 201203

2.4 Application Details

Date of reception of application: Mar. 06, 2008
Start of test : Apr. 30, 2008
End of test : May 12, 2008

3. General Information

3.1 Description of Device Under Test (DUT)

Product Feature & Specification	
DUT Type :	Dolphin 9900 Mobile computer
Trade Name :	Honey well
Model Name :	Dolphin 9900
FCC ID :	HD59900LUP
Tx Frequency :	GSM850 : 824 ~ 849 MHz PCS1900 : 1850 ~ 1910 MHz
Rx Frequency :	GSM850 : 869 ~ 894 MHz PCS1900 : 1930 ~ 1990 MHz
Channel Spacing :	GSM : 200 KHz
Maximum Output Power to Antenna :	GSM850 : 32.66 dBm (GSM) / 32.68 dBm (GPRS8) / 30.92 dBm (GPRS10) / 27.14 dBm (GPRS12) / 26.25 dBm (EDGE8) / 24.10 dBm (EDGE10) / 19.99 dBm (EDGE12) PCS1900 : 29.28 dBm (GSM) / 29.22 dBm (GPRS8) / 27.33 dBm (GPRS10) / 23.48 dBm (GPRS12) / 24.91 dBm (EDGE8) / 23.24 dBm (EDGE10) / 19.25 dBm (EDGE12)
Type of Antenna Connector :	N/A
Antenna Type :	GSM : PIFA Antenna
Antenna Gain :	850MHz : Peak: -2.15dBi, Average: -6.33dBi 1900MHz : Peak 3.76dBi, Average: -2.18dBi
GPRS / EGPRS Multislot class :	12
HW Version :	4
SW Version :	16.00B4
Type of Modulation :	GSM / GPRS : GMSK EDGE : 8PSK
DUT Stage :	Identical Prototype
Application Type :	Certification

3.2 Basic Description of Device under Test

DUT Name	Dolphin 9900 Mobile computer
Trade Name	Honey well
Model Name	Dolphin 9900
FCC ID	HD59900LUP
AC Adapter	Brand Name DVE
	Model Name DSA-01510-09.5
	Power Rating I/P:100-240Vac, 47-63Hz, 0.4A; O/P: 9.5Vdc, 1.8A
	AC Power Cord Type 1.85 meter shielded cable without ferrite core
Cradle	Brand Name DVE
	Model Name DSA-0421S-09.1
	Power Rating I/P:100-240Vac, 50-60Hz, 1.2A; O/P: 9.5Vdc, 4A,
Battery	Brand Name Honeywell
	Model Name 200002586
	Power Rating 7.4Vdc, 2400mAh
	Type Li-ion
Holster	Brand Name Honeywell
	Model Name N/A
	P/N No N/A
Earphone	Brand Name AATC
	Model Name AEP-HA36D-01
	Signal Line Type 1.1 meter shielded cable without ferrite core

Remark: Above EUT's information was declared by manufacturer. Please refer to the specifications of manufacturer or User's Manual for more detailed features description.

3.3 Product Photos

Please refer to Appendix D

3.4 Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this Dolphin 9900 Mobile computer is in accordance with the following standards:

47 CFR Part 2 (2.1093),
IEEE C95.1-1999,
IEEE C95.3-2002,
IEEE P1528-2003, and
OET Bulletin 65 Supplement C (Edition 01-01)
KDB648474 D01 V01R02

3.5 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.6 Test Conditions

3.6.1 Ambient Condition

Item	HSL_850	MSL_850	HSL_1900	MSL_1900
Test Date	May 01, 2008	May 01, 2008	May 01, 2008	May 01, 2008
Ambient Temperature (°C)			20-24°C	
Tissue simulating liquid temperature (°C)	21.2°C	21.6°C	21.5°C	21.7°C
Humidity (%)			<60%	

Item	HSL_850	HSL_1900	-	-
Test Date	May 12, 2008	May 08, 2008	-	-
Ambient Temperature (°C)			20-24°C	
Tissue simulating liquid temperature (°C)	21.3°C	21.2°C	-	-
Humidity (%)			<60%	

3.6.2 Test Configuration

The DUT was set from the emulator to radiate maximum output power during all tests.

The device was controlled by using a base station emulator R&S CMU200. Communication between the device and the emulator was established by air link. The distance between the DUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of DUT.

Measurements were performed on the lowest, middle, and highest channel for each testing position. However, measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

For head SAR testing, EUT is in GSM link mode, and its crest factor is 8.3.

For body SAR testing, EUT is in GPRS/EDGE link mode. In GPRS/EDGE link mode, its crest factor is 2, because EUT is GPRS/EDGE class 12 device.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density, ρ . The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific heat capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

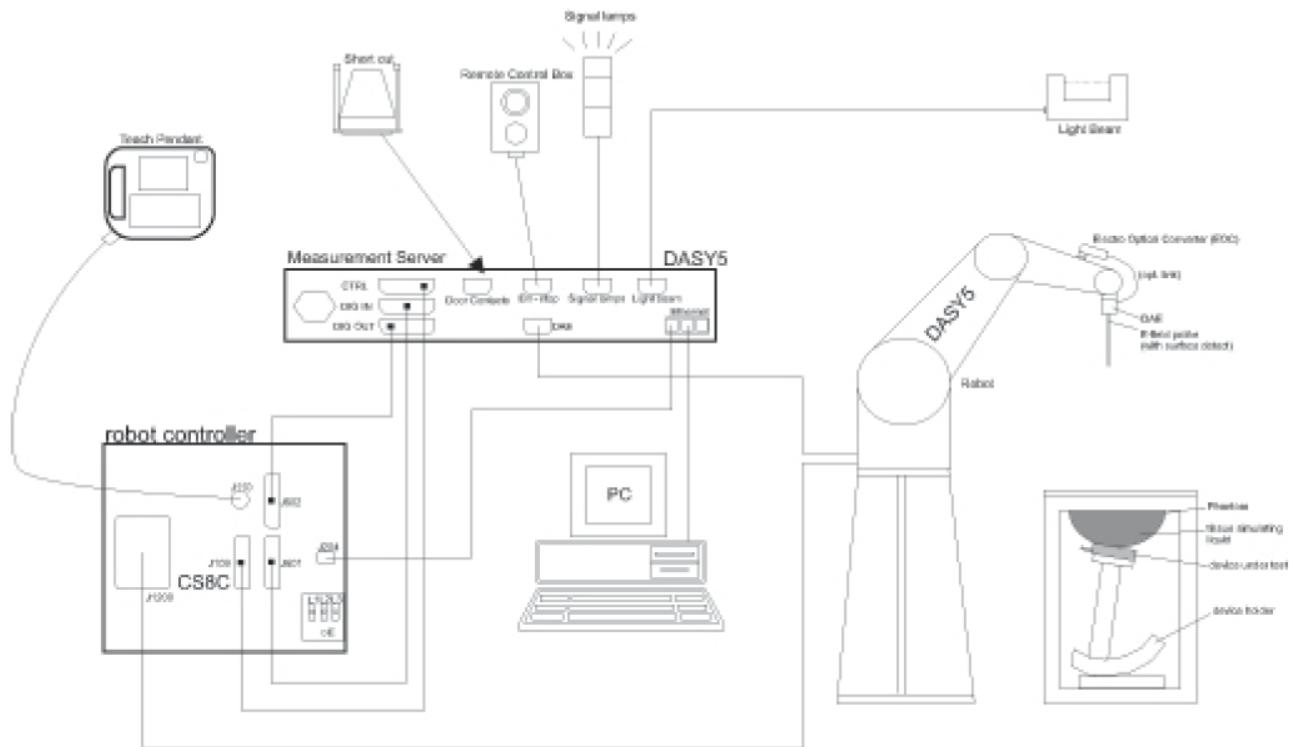


Fig. 5.1 DASY5 System

The DASY5 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY5 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY5 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

<ET3DV6>

Construction

Symmetrical design with triangular core
 Built-in optical fiber for surface detection system
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic solvents)

Frequency

10 MHz to 3 GHz

Directivity

± 0.2 dB in brain tissue (rotation around probe axis)
 ± 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range5 μ W/g to 100mW/g; Linearity: ± 0.2 dB**Surface Detection**

± 0.2 mm repeatability in air and clear liquids on reflecting surface

Dimensions

Overall length: 330mm
 Tip length: 16mm
 Body diameter: 12mm
 Tip diameter: 6.8mm
 Distance from probe tip to dipole centers: 2.7mm

Application

General dosimetry up to 3GHz
 Compliance tests for mobile phones and Wireless LAN
 Fast automatic scanning in arbitrary phantoms

Fig. 5.2 Probe Setup on Robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy shall be evaluated and within ± 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

➤ ET3DV6 sn1788

Sensitivity	X axis : 1.72 μ V		Y axis : 1.66 μ V		Z axis : 1.70 μ V	
Diode compression point	X axis : 91 mV		Y axis : 93 mV		Z axis : 94 mV	
Conversion factor (Head / Body)	Frequency (MHz)	X axis		Y axis		Z axis
	800~1000	6.54 / 6.37		6.54 / 6.37		6.54 / 6.37
	1710~1910	5.28 / 4.75		5.28 / 4.75		5.28 / 4.75
Boundary effect (Head / Body)	Frequency (MHz)	Alpha		Depth		
	800~1000	0.22 / 0.28		3.28 / 2.94		
	1710~1910	0.59 / 0.63		2.15 / 2.39		

NOTE: The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY5 system uses the high precision robots TX90 XL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASY5 system, the CS8C robot controller version from Stäubli is used. The XL robot series have many features that are important for our application:

- High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- 6-axis controller

5.4 Measurement Server

The DASY5 measurement server is based on a PC/104 CPU board with
400 MHz CPU
128 MB chipdisk and
128 MB RAM.

Communication with
the DAE4 electronic box
the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- Right head
- Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

Fig. 5.3 Top View of Twin Phantom

Fig. 5.4 Bottom View of Twin Phantom

5.6 Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\epsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Fig. 5.5 Device Holder

5.7 Data Storage and Evaluation

5.7.1 Data Storage

The DASY5 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA5. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-less media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.7.2 Data Evaluation

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software :

Probe parameters :	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters :	- Frequency	f
	- Crest factor	cf
Media parameters :	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY4 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as :

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

V_i = compensated signal of channel i ($i = x, y, z$)

U_i = input signal of channel i ($i = x, y, z$)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated :

$$\text{E-field probes : } E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$$

$$\text{H-field probes : } H_i = \sqrt{V_i} \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with

V_i = compensated signal of channel i ($i = x, y, z$)

$Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)

$\mu \text{ V}/(\text{V}/\text{m})^2$ for E-field Probes

$ConvF$ = sensitivity enhancement in solution

a_{ij} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i = electric field strength of channel i in V/m

H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude) :

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$\text{SAR} = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

E_{tot} = total field strength in V/m

σ = conductivity in [mho/m] or [Siemens/m]

ρ = equivalent tissue density in g/cm³

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770} \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with

P_{pwe} = equivalent power density of a plane wave in mW/cm²

E_{tot} = total electric field strength in V/m

H_{tot} = total magnetic field strength in A/m

5.8 Test Equipment List

Manufacture	Name of Equipment	Type/Model	Serial Number	Calibration	
				Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 26, 2007	Sep. 26, 2008
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 17, 2008	Mar. 17, 2010
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 28, 2008	Mar. 28, 2010
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 16, 2007	Nov. 16, 2008
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1303	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1383	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY5 V5.0 Build 91	N/A	NCR	NCR
SPEAG	Software	SEMCAD V12.4 Build 52	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071B	MY42403579	Apr. 09, 2008	Apr. 09, 2009
Agilent	Wireless Communication Test Set	E5515C	GB46311322	Dec. 22, 2006	Dec. 22, 2008
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
Agilent	Power Meter	E4416A	GB41292344	Feb. 21, 2008	Feb. 20, 2009
Agilent	Power Sensor	E9327A	US40441548	Feb. 21, 2008	Feb. 20, 2009

Table 5.1 Test Equipment List

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY5, the phantom must be filled with around 25 liters of homogeneous tissue simulating liquid. The liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is (head SAR) or from the flat phantom to the liquid top surface (body SAR) is 15.2cm.

The following ingredients for tissue simulating liquid are used:

- **Water:** deionized water (pure H₂O), resistivity $\geq 16 M\Omega$ - as basis for the liquid
- **Sugar:** refined sugar in crystals, as available in food shops – to reduce relative permittivity
- **Salt:** pure NaCl – to increase conductivity
- **Cellulose:** Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- **Preservative:** Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- **DGMBE:** Deithlenglycol-monobutyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 – to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of head and body tissue simulating liquid for frequency band 850MHZ and 1900 MHz.

Ingredient	HSL-850	MSL-850	HSL-1900	MSL-1900
Water	532.98 g	631.68 g	552.42 g	716.56 g
Cellulose	0 g	0 g	0 g	0 g
Salt	18.3 g	11.72 g	3.06 g	4.0 g
Preventol D-7	2.4 g	1.2 g	0 g	0 g
Sugar	766.0 g	600.0 g	0 g	0 g
DGMBE	0 g	0 g	444.52 g	300.67 g
Total amount	1 liter (1.3 kg)	1 liter (1.3 kg)	1 liter (1.0 kg)	1 liter (1.0 kg)
Dielectric Parameters at 22°	$f = 835 \text{ MHz}$ $\epsilon_r = 41.5 \pm 5\%$, $\sigma = 0.90 \pm 5\% \text{ S/m}$	$f = 835 \text{ MHz}$ $\epsilon_r = 55.2 \pm 5\%$, $\sigma = 0.97 \pm 5\% \text{ S/m}$	$f = 1900 \text{ MHz}$ $\epsilon_r = 40.0 \pm 5\%$, $\sigma = 1.4 \pm 5\% \text{ S/m}$	$f = 1900 \text{ MHz}$ $\epsilon_r = 53.3 \pm 5\%$, $\sigma = 1.52 \pm 5\% \text{ S/m}$

Table 6.1 Recipes for Tissue Simulating Liquid

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for head and muscle simulating liquid.

Band	Position	Frequency (MHz)	Permittivity (ϵ_r)	Conductivity (σ)	Measurement Date
GSM850 (824 ~ 849 MHz)	Head	824.2	40.5	0.895	May 01, 2008
		836.4	40.5	0.906	
		848.8	40.3	0.915	
		824.2	40.8	0.900	May 12, 2008
		836.4	40.7	0.911	
		848.8	40.5	0.920	
	Body	824.2	56.3	0.955	May 01, 2008
PCS1900 (1850 ~ 1910 MHz)	Head	836.4	56.3	0.967	
		848.8	56.1	0.976	
		1850.2	39.1	1.38	May 01, 2008
		1880.0	39.0	1.40	
		1909.8	38.9	1.43	
		1850.2	39.3	1.38	May 08, 2008
		1880.0	39.2	1.40	
		1909.8	39.2	1.43	
	Body	1850.2	51.2	1.47	May 01, 2008
	1880.0	51.1	1.50		
	1909.8	51.0	1.53		

Table 6.2 Measuring Results for Simulating Liquid

The measuring data are consistent with $\epsilon_r = 41.5 \pm 5\%$ and $\sigma = 0.9 \pm 5\%$ for head GSM850 band, $\epsilon_r = 55.2 \pm 5\%$ and $\sigma = 0.97 \pm 5\%$ for body GSM850 band, $\epsilon_r = 40.0 \pm 5\%$ and $\sigma = 1.4 \pm 5\%$ for head PCS1900 band, and $\epsilon_r = 53.3 \pm 5\%$ and $\sigma = 1.52 \pm 5\%$ for body PCS1900 band.

7. Uncertainty Assessment

The component of uncertainty may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainty by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacturer's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	$1/k$ ^(b)	$1/\sqrt{3}$	$1/\sqrt{6}$	$1/\sqrt{2}$

(a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

(b) κ is the coverage factor

Table 7.1 Multiplying Factors for Various Distributions

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY5 uncertainty Budget is showed in Table 7.2.

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci (1g)	Standard Unc. (1g)	vi or Veff
Measurement Equipment						
Probe Calibration	±5.9 %	Normal	1	1	±5.9 %	∞
Axial Isotropy	±4.7 %	Rectangular	$\sqrt{3}$	0.7	±1.9 %	∞
Hemispherical Isotropy	±9.6 %	Rectangular	$\sqrt{3}$	0.7	±3.9 %	∞
Boundary Effects	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Linearity	±4.7 %	Rectangular	$\sqrt{3}$	1	±2.7 %	∞
System Detection Limits	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Readout Electronics	±0.3 %	Normal	1	1	±0.3 %	∞
Response Time	±0.8 %	Rectangular	$\sqrt{3}$	1	±0.5 %	∞
Integration Time	±2.6 %	Rectangular	$\sqrt{3}$	1	±1.5 %	∞
RF Ambient Noise	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
RF Ambient Reflections	±3.0 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Probe Positioner	±0.4 %	Rectangular	$\sqrt{3}$	1	±0.2 %	∞
Probe Positioning	±2.9 %	Rectangular	$\sqrt{3}$	1	±1.7 %	∞
Max. SAR Eval.	±1.0 %	Rectangular	$\sqrt{3}$	1	±0.6 %	∞
Test Sample Related						
Device Positioning	±2.9 %	Normal	1	1	±2.9	145
Device Holder	±3.6 %	Normal	1	1	±3.6	5
Power Drift	±5.0 %	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom Uncertainty	±4.0 %	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid Conductivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid Conductivity (meas.)	±2.5 %	Normal	1	0.64	±1.6	∞
Liquid Permittivity (target)	±5.0 %	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid Permittivity (meas.)	±2.5 %	Normal	1	0.6	±1.5	∞
Combined Standard Uncertainty						
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)					±21.9	

Table 7.2 Uncertainty Budget of DASY5

8. SAR Measurement Evaluation

Each DASY5 system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY5 software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 835 MHz and 1900 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

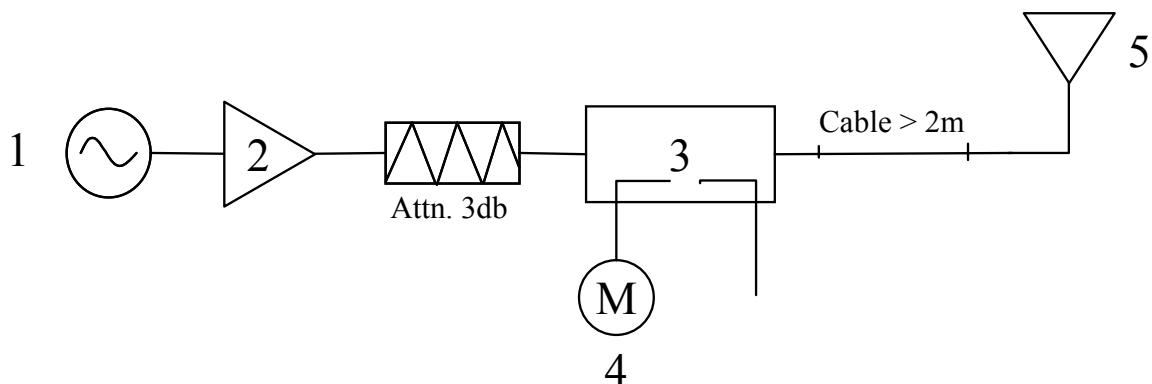


Fig. 8.1 System Setup for System Evaluation

1. Signal Generator
2. Amplifier
3. Directional Coupler
4. Power Meter
5. 835 MHz or 1900 MHz Dipole

The output power on dipole port must be calibrated to 20dBm (100mW) before dipole is connected.

Fig 8.2 Dipole Setup

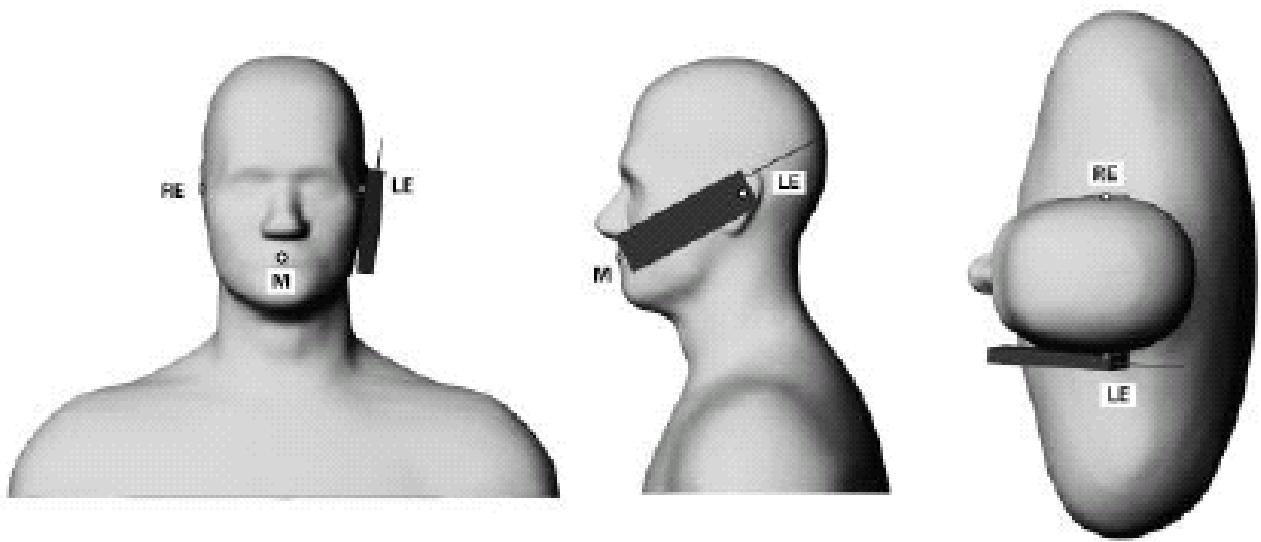
8.3 Validation Results

Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

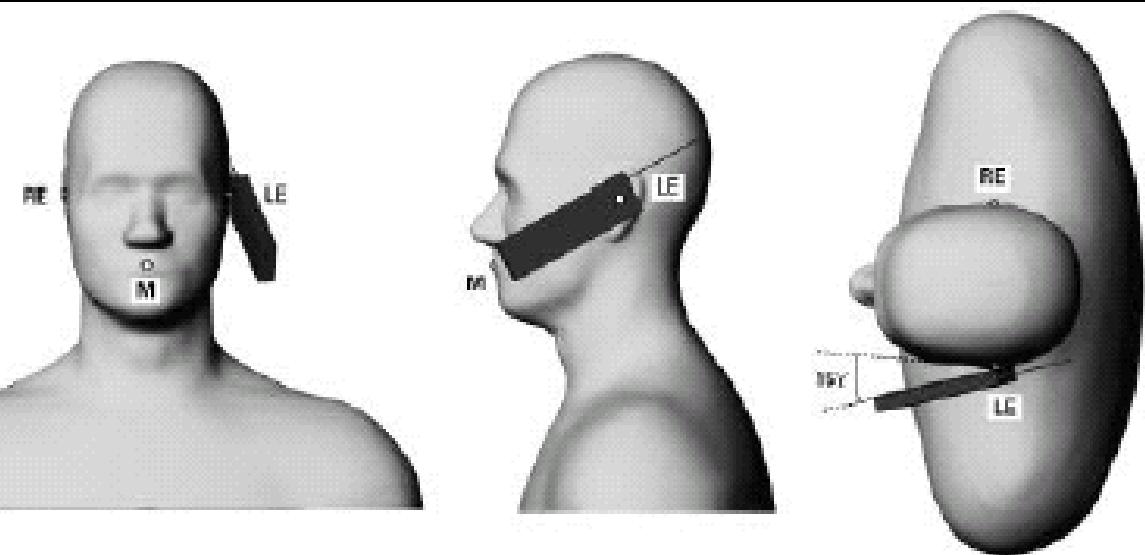
Band	Position	SAR	Target (W/kg)	Measurement data (W/kg)	Variation	Measurement Date
GSM850 (835MHz)	Head	SAR (1g)	9.16	9.75	6.4 %	May 01, 2008
		SAR (10g)	6.0	6.38	6.3 %	
		SAR (1g)	9.16	9.8	7.0 %	May 12, 2008
		SAR (10g)	6.0	6.39	6.5 %	
	Body	SAR (1g)	9.52	9.38	-1.5 %	May 01, 2008
		SAR (10g)	6.37	6.17	-3.1 %	
PCS1900 (1900MHz)	Head	SAR (1g)	39.5	42.8	8.4 %	May 01, 2008
		SAR (10g)	20.6	22.2	7.8 %	
		SAR (1g)	39.5	38.8	-1.8 %	May 08, 2008
		SAR (10g)	20.6	20.3	-1.5 %	
	Body	SAR (1g)	40.1	40.7	1.5 %	May 01, 2008
		SAR (10g)	21.3	21.8	2.3 %	

Table 8.1 Target and Measurement Data Comparison

The table above indicates the system performance check can meet the variation criterion.



9. Description for DUT Testing Position


This DUT was tested in 8 different positions. They are right cheek, right tilted, left cheek, left tilted, Front Face with 1.5cm Gap, Front Face with Holster Touch, Rear Face with 1.5cm Gap and Rear Face with Holster Touch as illustrated below:

- 1) "Cheek Position"
 - i) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M, RE and LE) and align the center of the ear piece with the line RE-LE.
 - ii) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see Fig. 9.1).
- 2) "Tilted Position"
 - i) To position the device in the "cheek" position described above.
 - ii) While maintaining the device the reference plane described above and pivoting against the ear, move it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see Fig. 9.2).
- 3) "Body Worn"
 - i) To position the device parallel to the phantom surface.
 - ii) To adjust the phone parallel to the flat phantom.
 - iii) To adjust the distance between the EUT surface and the flat phantom to 1.5 cm or holster surface and the flat phantom to 0 cm.

Remark: Please refer to Appendix E for the test setup photos.

Fig. 9.1 Phone Position 1, "Cheek" or "Touch" Position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

Fig. 9.2 Phone Position 2, "Tilted Position". The reference point for the right ear (RE), left ear (LE) and mouth (M), which define the plane for phone positioning, are indicated.

10. Measurement Procedures

The measurement procedures are as follows:

- Linking DUT with base station emulator CMU200 in middle channel
- Setting CMU200 to allow DUT to radiate maximum output power
- Measuring output power through RF cable and power meter
- Placing the DUT in the positions described in the last section
- Setting scan area, grid size and other setting on the DASY5 software
- Taking data for the middle channel on each testing position
- Finding out the largest SAR result on these testing positions of each band
- Measuring output power and SAR results for the low and high channels in this worst case testing position

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, IEEE P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values from the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY5, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Right Cheek for Rear Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	-0.051	0.412	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	-0.174	0.459	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.2 Right Tilted for Rear Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-0.164	0.48	1.6	Pass
	189	836.4 (Mid)	GMSK	32.56	-0.035	0.478	1.6	Pass
	251	848.8 (High)	GMSK	32.66	0.016	0.314	1.6	Pass
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	-0.028	0.279	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.3 Left Cheek for Rear Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	0.149	0.319	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	0.027	0.528	1.6	Pass
	661	1880.0 (Mid)	GMSK	29.12	-0.125	0.464	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-0.077	0.507	1.6	Pass

11.4 Left Tilted for Rear Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	-0.119	0.369	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	-0.041	0.258	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.5 Right Cheek for Front Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	-0.13	0.325	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	-0.125	0.00518	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.6 Right Tilted for Front Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	0.043	0.27	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	-0.164	0.00869	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.7 Left Cheek for Front Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	0.074	0.386	1.6	Pass
	189	836.4 (Mid)	GMSK	32.56	-0.092	0.413	1.6	Pass
	251	848.8 (High)	GMSK	32.66	0.041	0.237	1.6	Pass
PCS1900	512	1850.2 (Low)	GMSK	29.28	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.12	0.122	0.00543	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	-	-	-	-

11.8 Left Tilted for Front Side

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	-0.062	0.351	1.6	Pass
	251	848.8 (High)	GMSK	32.66	-	-	-	-
PCS1900	512	1850.2 (Low)	GMSK	29.28	0.131	0.0084	1.6	Pass
	661	1880.0 (Mid)	GMSK	29.12	0.153	0.00871	1.6	Pass
	810	1909.8 (High)	GMSK	29.00	0.12	0.012	1.6	Pass

Note: Only the EUT's GSM supports voice function at both front and rear side, and the worst head SAR more is at the back side of the mobile.

11.9 Front Face With Holster Touch

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850 (GPRS12)	189	836.4 (Mid)	GMSK	26.97	-0.00696	0.116	1.6	Pass
PCS1900 (GPRS12)	661	1880.0 (Mid)	GMSK	23.33	0.158	0.00623	1.6	Pass

11.10 Rear Face With Holster Touch

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850 (GPRS8)	128	824.2 (Low)	GMSK	32.44	-	-	-	-
	189	836.4 (Mid)	GMSK	32.56	0.145	0.185	1.6	Pass
	251	848.8 (High)	GMSK	32.68	-	-	-	-
GSM850 (GPRS10)	128	824.2 (Low)	GMSK	30.64	-0.00985	0.25	1.6	Pass
	189	836.4 (Mid)	GMSK	30.80	0.026	0.253	1.6	Pass
	251	848.8 (High)	GMSK	30.92	0.077	0.186	1.6	Pass
GSM850 (GPRS12)	128	824.2 (Low)	GMSK	26.84	-	-	-	-
	189	836.4 (Mid)	GMSK	26.97	0.142	0.214	1.6	Pass
	251	848.8 (High)	GMSK	27.14	-	-	-	-
GSM850 (EDGE8)	128	824.2 (Low)	8PSK	26.25	-	-	-	-
	189	836.4 (Mid)	8PSK	26.21	0.068	0.025	1.6	Pass
	251	848.8 (High)	8PSK	26.09	-	-	-	-
GSM850 (EDGE10)	128	824.2 (Low)	8PSK	24.10	-	-	-	-
	189	836.4 (Mid)	8PSK	24.07	0.0037	0.032	1.6	Pass
	251	848.8 (High)	8PSK	23.97	-	-	-	-
GSM850 (EDGE12)	128	824.2 (Low)	8PSK	19.96	-	-	-	-
	189	836.4 (Mid)	8PSK	19.99	-0.042	0.025	1.6	Pass
	251	848.8 (High)	8PSK	19.82	-	-	-	-
PCS1900 (GPRS8)	512	1850.2 (Low)	GMSK	29.22	-	-	-	-
	661	1880.0 (Mid)	GMSK	29.06	-0.182	0.18	1.6	Pass
	810	1909.8 (High)	GMSK	29.01	-	-	-	-
PCS1900 (GPRS10)	512	1850.2 (Low)	GMSK	27.33	0.155	0.217	1.6	Pass
	661	1880.0 (Mid)	GMSK	27.18	0.138	0.239	1.6	Pass
	810	1909.8 (High)	GMSK	27.15	0.193	0.231	1.6	Pass
PCS1900 (GPRS12)	512	1850.2 (Low)	GMSK	23.48	-	-	-	-
	661	1880.0 (Mid)	GMSK	23.33	0.106	0.205	1.6	Pass
	810	1909.8 (High)	GMSK	23.28	-	-	-	-
PCS1900 (EDGE8)	512	1850.2 (Low)	8PSK	24.91	-	-	-	-
	661	1880.0 (Mid)	8PSK	24.80	0.153	0.071	1.6	Pass
	810	1909.8 (High)	8PSK	24.72	-	-	-	-
PCS1900 (EDGE10)	512	1850.2 (Low)	8PSK	23.24	-	-	-	-
	661	1880.0 (Mid)	8PSK	23.14	0.16	0.101	1.6	Pass
	810	1909.8 (High)	8PSK	23.05	-	-	-	-
PCS1900 (EDGE12)	512	1850.2 (Low)	8PSK	19.25	-	-	-	-
	661	1880.0 (Mid)	8PSK	19.18	-0.106	0.079	1.6	Pass
	810	1909.8 (High)	8PSK	19.08	-	-	-	-

11.11 Rear Face With 1.5cm Gap

Mode	Chan.	Freq. (MHz)	Modulation Type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limit (W/kg)	Result
GSM850 (GPRS10)	128	824.2 (Low)	GMSK	30.64	-0.0024	0.147	1.6	Pass
	189	836.4 (Mid)	GMSK	30.80	-0.078	0.179	1.6	Pass
	251	848.8 (High)	GMSK	30.92	0.00746	0.119	1.6	Pass
PCS1900 (GPRS10)	512	1850.2 (Low)	GMSK	27.33	0.162	0.145	1.6	Pass
	661	1880.0 (Mid)	GMSK	27.18	-0.06	0.126	1.6	Pass
	810	1909.8 (High)	GMSK	27.15	0.102	0.158	1.6	Pass

Test Engineer : A-Rod and Robert Liu

12. References

- [1] FCC 47 CFR Part 2 “Frequency Allocations and Radio Treaty Matters; General Rules and Regulations”
- [2] IEEE Std. P1528-2003, “Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques”, April 21, 2003
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), “Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions”, June 2001
- [4] IEEE Std. C95.3-2002, “IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave”, 2002
- [5] IEEE Std. C95.1-1999, “IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz”, 1999
- [6] Robert J. Renka, “Multivariate Interpolation Of Large Sets Of Scattered Data”, University of North Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DASY5 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

System Check_Head_835MHz

DUT: Dipole 835 MHz

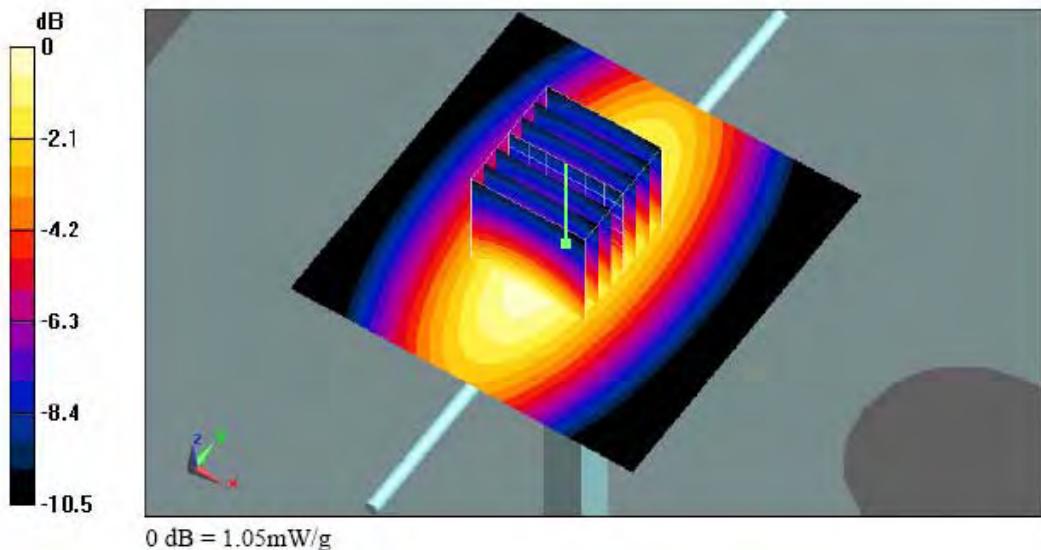
Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.904$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.0 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.07 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 35.6 V/m; Power Drift = -0.022 dB

Peak SAR (extrapolated) = 1.45 W/kg

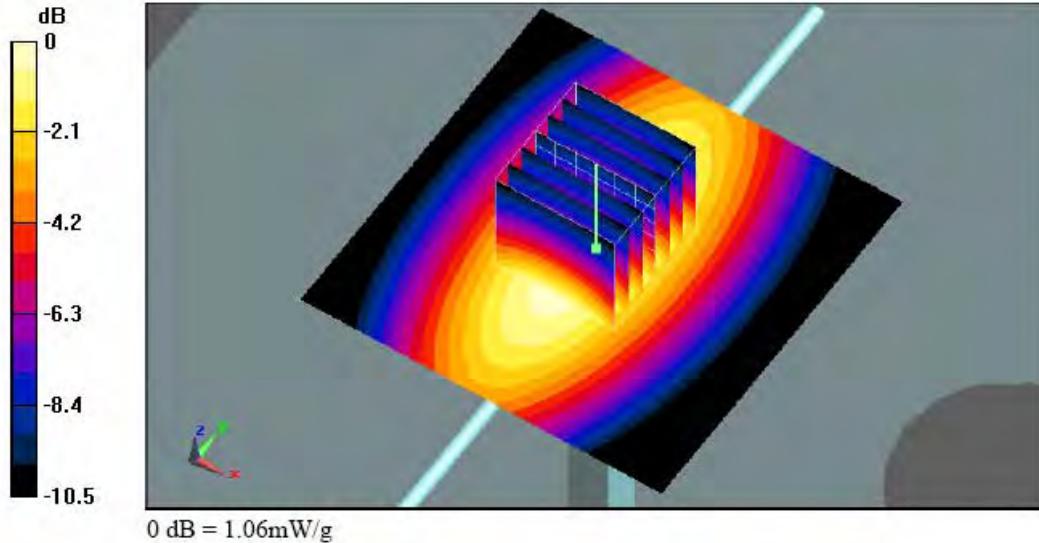
SAR(1 g) = 0.975 mW/g; SAR(10 g) = 0.638 mW/g

Maximum value of SAR (measured) = 1.05 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

System Check_Head_835MHz_20080512**DUT: Dipole 835 MHz**


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL_850 Medium parameters used: $f = 835 \text{ MHz}$; $\sigma = 0.91 \text{ mho/m}$; $\epsilon_r = 40.7$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature : 22.2 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

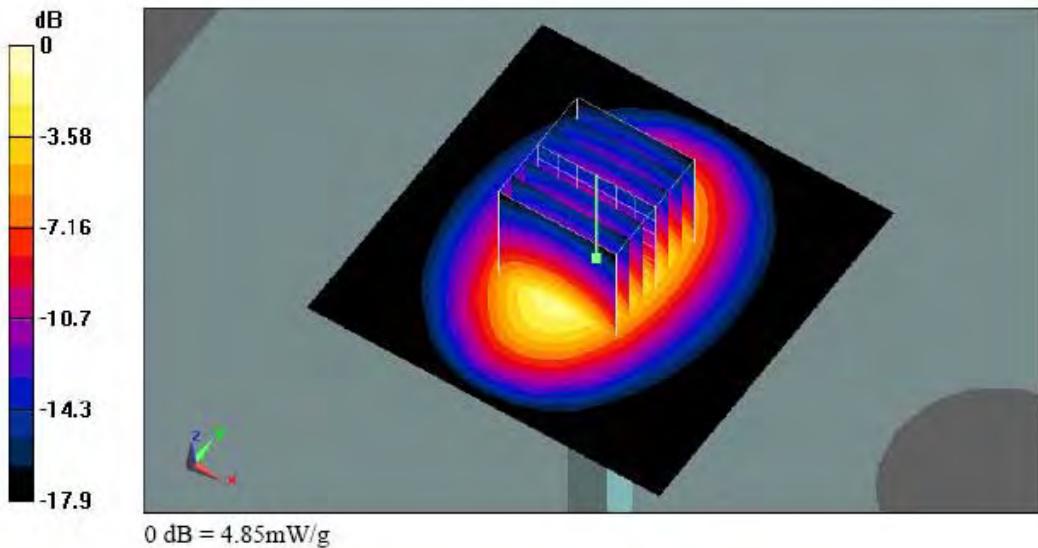
- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$
Maximum value of SAR (interpolated) = 1.06 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: $dx=5\text{mm}$, $dy=5\text{mm}$, $dz=5\text{mm}$
Reference Value = 35 V/m; Power Drift = 0.00653 dB
Peak SAR (extrapolated) = 1.47 W/kg
SAR(1 g) = 0.980 mW/g; SAR(10 g) = 0.639 mW/g
Maximum value of SAR (measured) = 1.06 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

System Check_Head_1900MHz**DUT: Dipole 1900 MHz**


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 4.92 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 61.4 V/m; Power Drift = -0.038 dB
Peak SAR (extrapolated) = 7.79 W/kg
SAR(1 g) = 4.28 mW/g; SAR(10 g) = 2.22 mW/g
Maximum value of SAR (measured) = 4.85 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

System Check_Head_1900MHz**DUT: Dipole 1900 MHz**

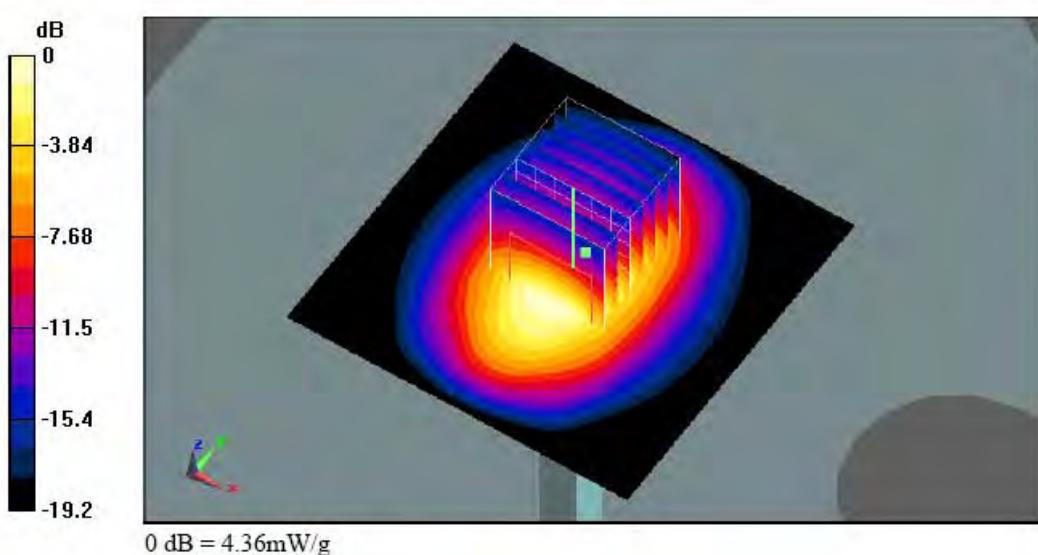
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.42$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52


Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 4.6 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.5 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 6.96 W/kg

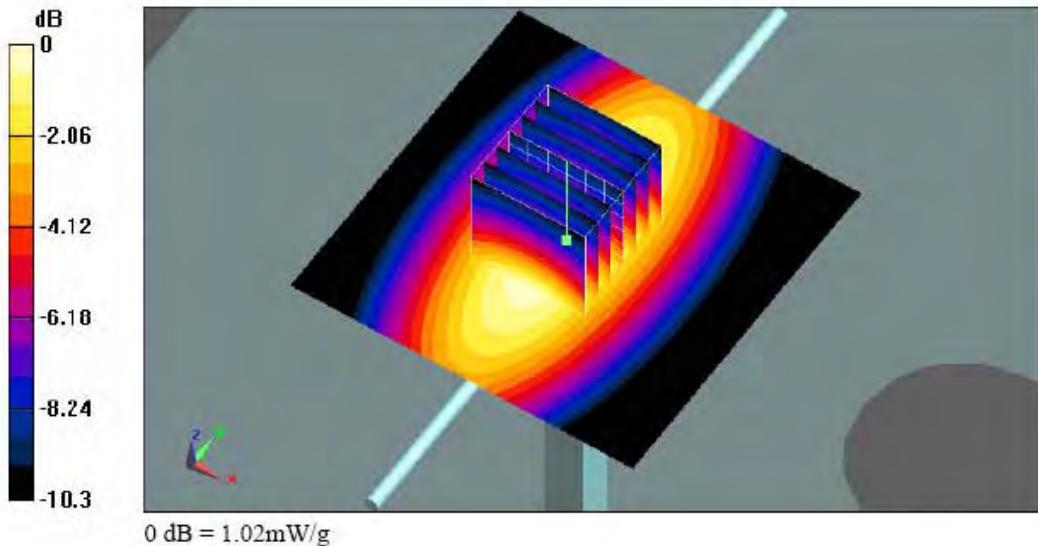
SAR(1 g) = 3.88 mW/g; SAR(10 g) = 2.03 mW/g

Maximum value of SAR (measured) = 4.36 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

System Check_Body_835MHz**DUT: Dipole 835 MHz**


Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL_850 Medium parameters used: $f = 835$ MHz; $\sigma = 0.965$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

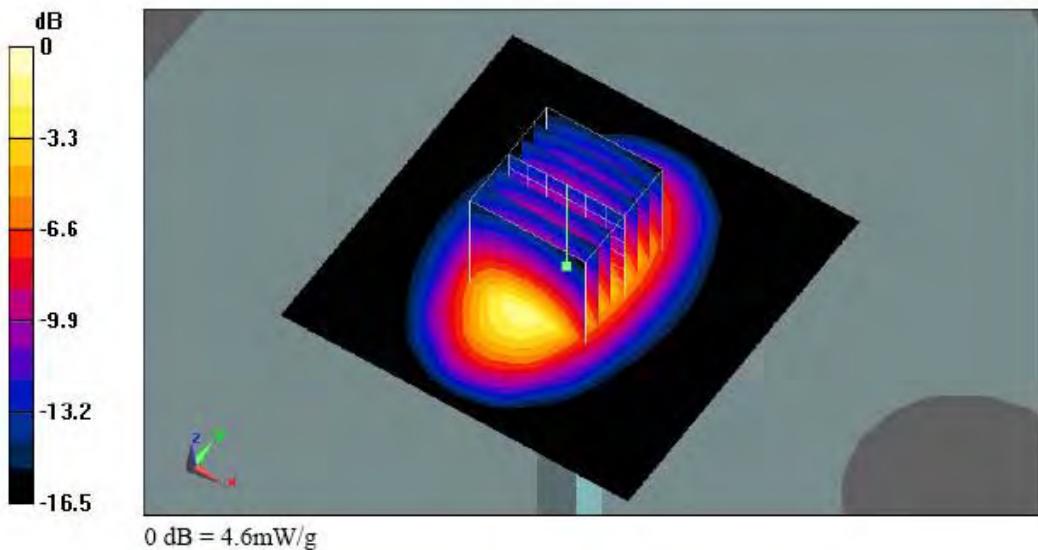
- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 1.01 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 33.8 V/m; Power Drift = -0.00262 dB
Peak SAR (extrapolated) = 1.34 W/kg
SAR(1 g) = 0.938 mW/g; SAR(10 g) = 0.617 mW/g
Maximum value of SAR (measured) = 1.02 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

System Check_Body_1900MHz**DUT: Dipole 1900 MHz**


Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL_1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm
Maximum value of SAR (interpolated) = 4.78 mW/g**Pin=100mW/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 59 V/m; Power Drift = -0.102 dB
Peak SAR (extrapolated) = 6.92 W/kg
SAR(1 g) = 4.07 mW/g; SAR(10 g) = 2.18 mW/g
Maximum value of SAR (measured) = 4.6 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Right Cheek_GSM850 Ch189_Rear

DUT: 802998

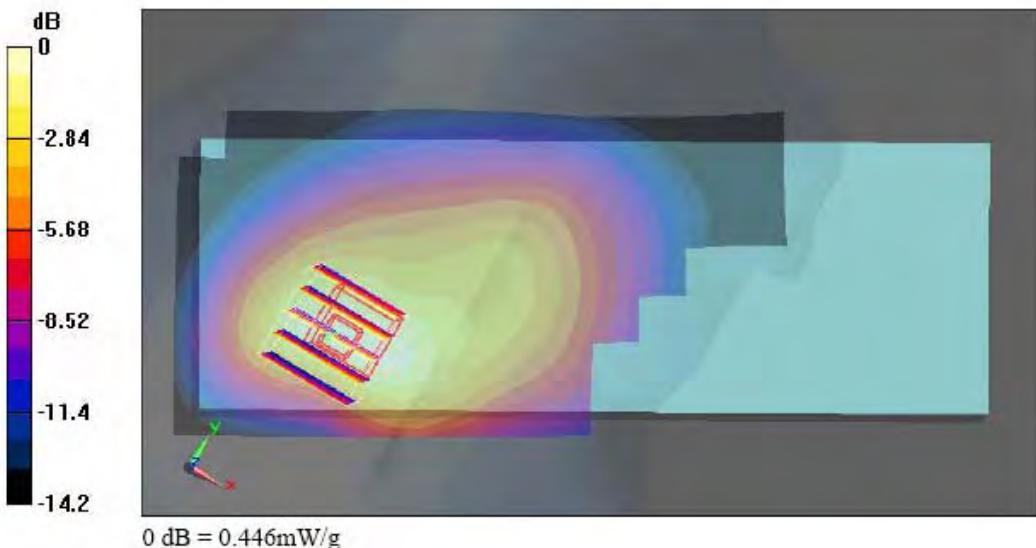
Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.906$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.0 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52


Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.458 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 16.5 V/m; Power Drift = -0.051 dB

Peak SAR (extrapolated) = 0.727 W/kg

SAR(1 g) = 0.412 mW/g; SAR(10 g) = 0.256 mW/g

Maximum value of SAR (measured) = 0.446 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Right Tilted_GSM850 Ch128_Rear**DUT: 802998**

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : $f = 824.2$ MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

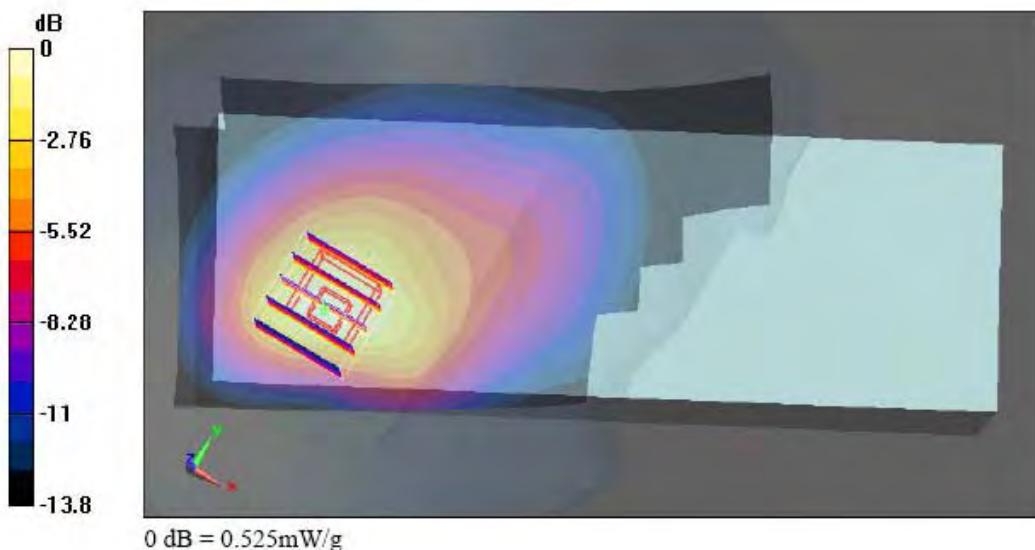
Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.554 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 0.846 W/kg

SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.287 mW/g

Maximum value of SAR (measured) = 0.525 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Left Cheek_GSM850 Ch189_Rear**DUT: 802998**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.906$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

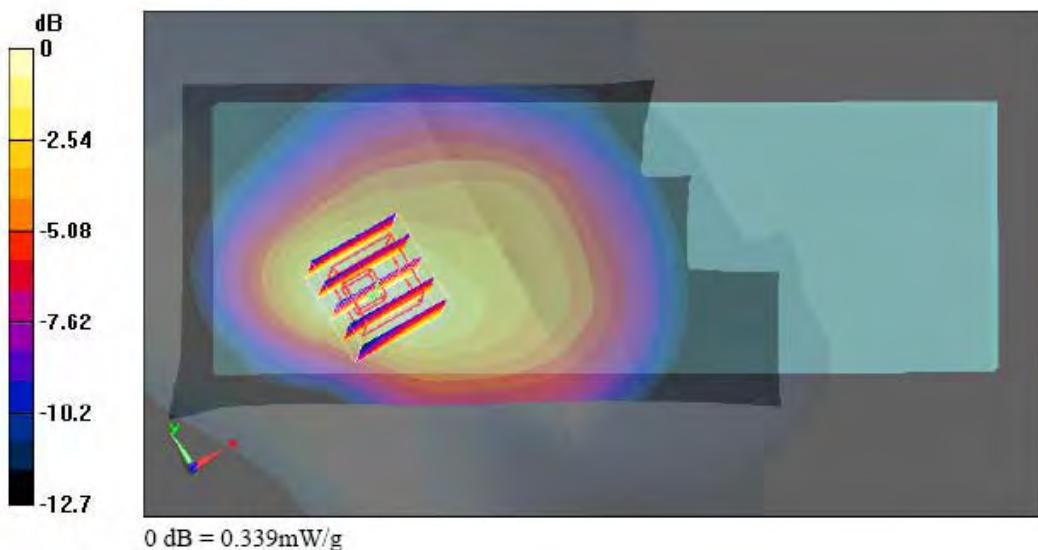
Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.366 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.8 V/m; Power Drift = 0.149 dB

Peak SAR (extrapolated) = 0.491 W/kg

SAR(1 g) = 0.319 mW/g; SAR(10 g) = 0.207 mW/g

Maximum value of SAR (measured) = 0.339 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Left Tilted_GSM850 Ch189_Rear**DUT: 802998**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.906$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

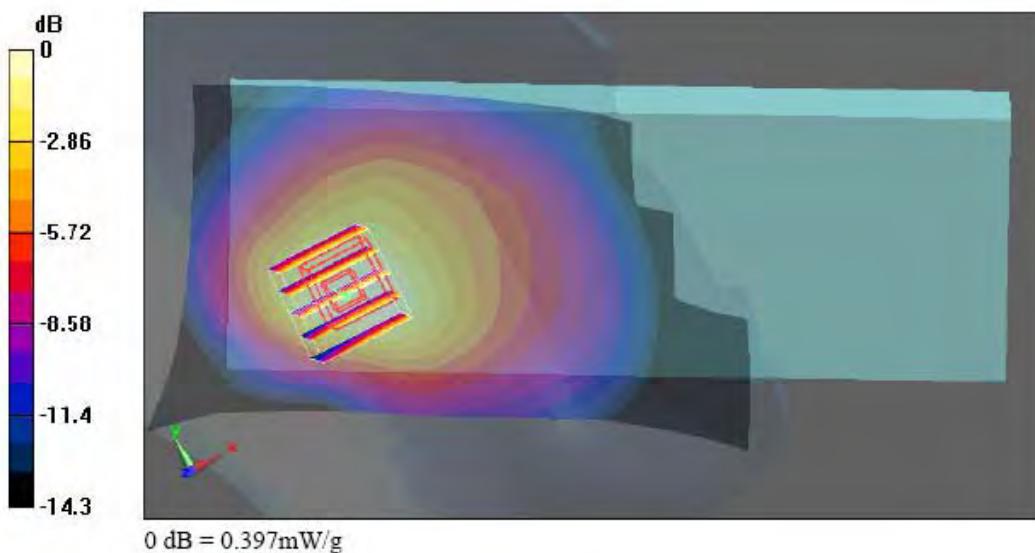
Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.421 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.119 dB

Peak SAR (extrapolated) = 0.575 W/kg

SAR(1 g) = 0.369 mW/g; SAR(10 g) = 0.235 mW/g

Maximum value of SAR (measured) = 0.397 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Right Cheek_GSM1900 Ch661_Rear**DUT: 802998**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

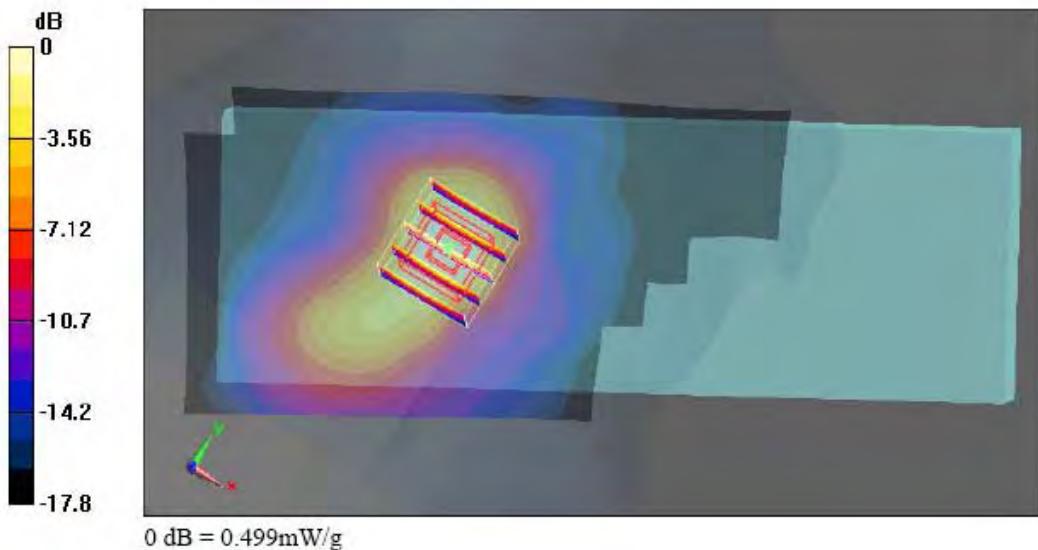
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.570 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.18 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.666 W/kg

SAR(1 g) = 0.459 mW/g; SAR(10 g) = 0.272 mW/g

Maximum value of SAR (measured) = 0.499 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Right Tilted_GSM1900 Ch661_Rear**DUT: 802998**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

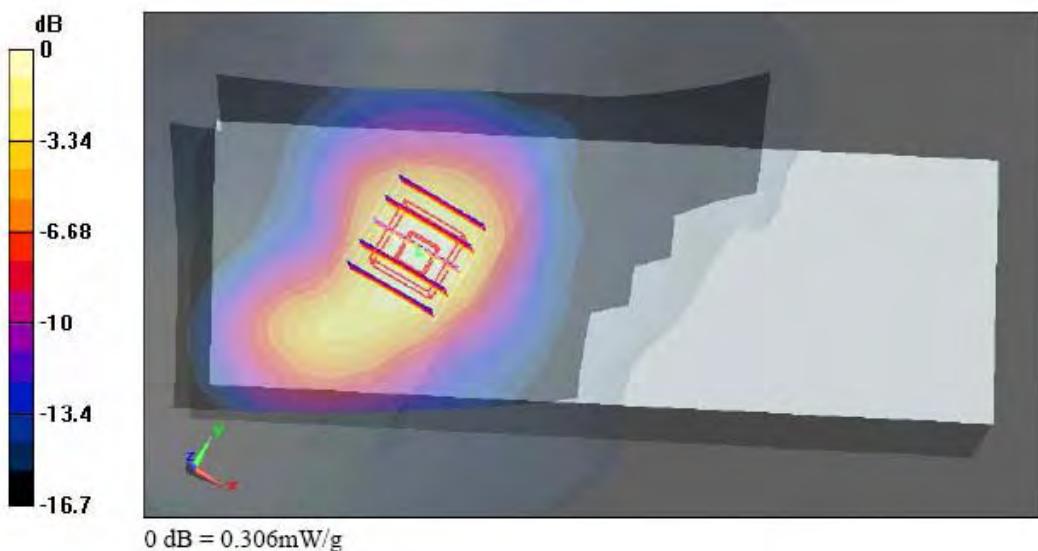
Ambient Temperature : 22.5 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.311 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.5 V/m; Power Drift = -0.028 dB

Peak SAR (extrapolated) = 0.424 W/kg

SAR(1 g) = 0.279 mW/g; SAR(10 g) = 0.168 mW/g

Maximum value of SAR (measured) = 0.306 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Left Cheek_GSM1900 Ch512_Rear**DUT: 802998**

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used : $f = 1850.2$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

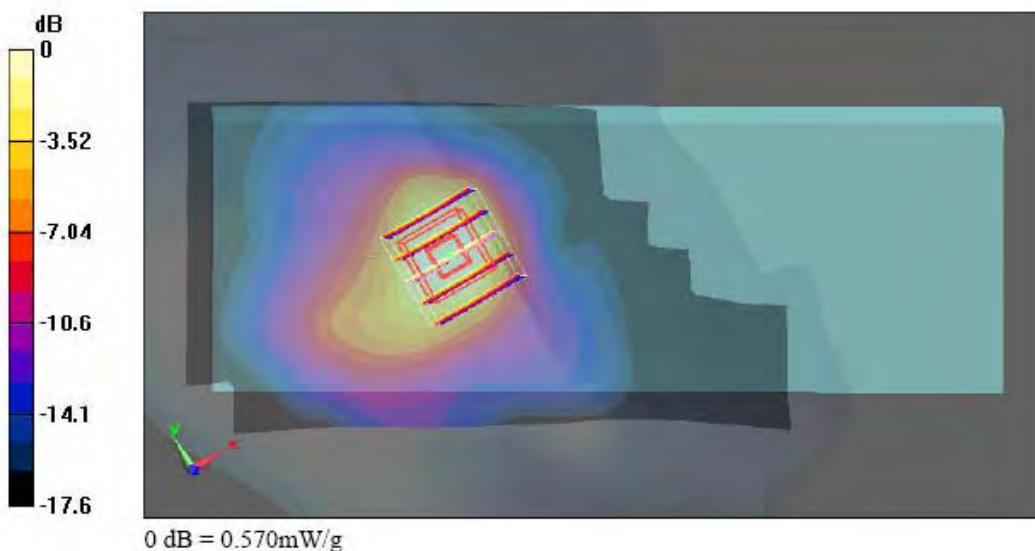
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch512/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.694 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.528 mW/g; SAR(10 g) = 0.320 mW/g

Maximum value of SAR (measured) = 0.570 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Left Tilted_GSM1900 Ch661_Rear**DUT: 802998**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

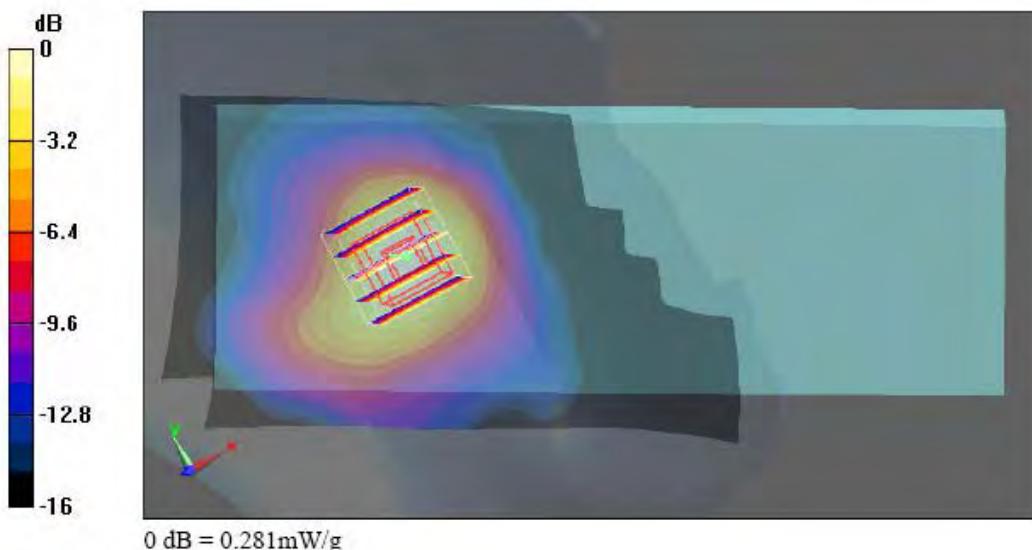
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.290 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.3 V/m; Power Drift = -0.041 dB

Peak SAR (extrapolated) = 0.390 W/kg

SAR(1 g) = 0.258 mW/g; SAR(10 g) = 0.158 mW/g

Maximum value of SAR (measured) = 0.281 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

Right Cheek_GSM850 Ch189_Front**DUT: 805687**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.911$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

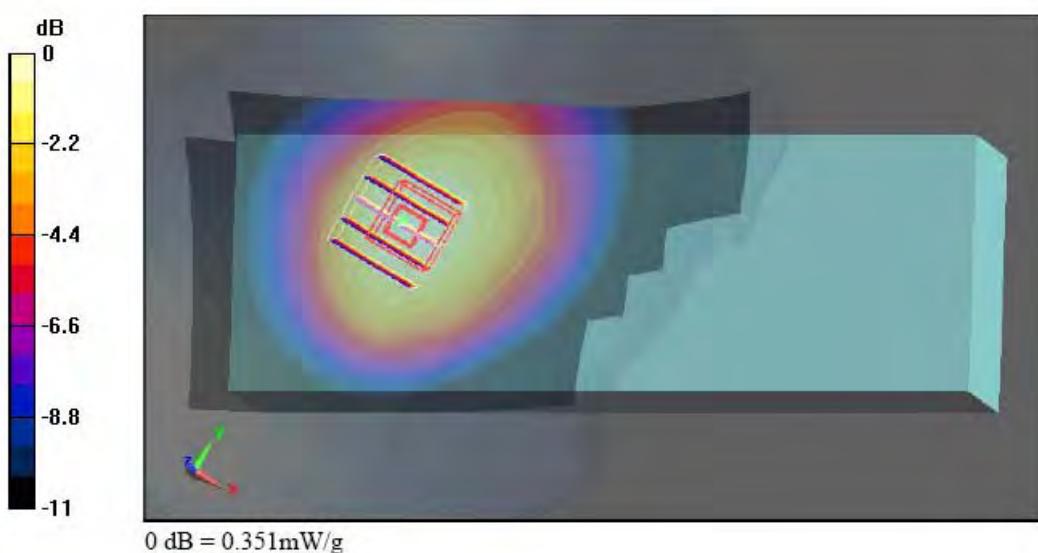
Ambient Temperature : 22.2 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.344 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.9 V/m; Power Drift = -0.130 dB

Peak SAR (extrapolated) = 0.467 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.223 mW/g

Maximum value of SAR (measured) = 0.351 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

Right Tilted_GSM850 Ch189_Front**DUT: 805687**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.911$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

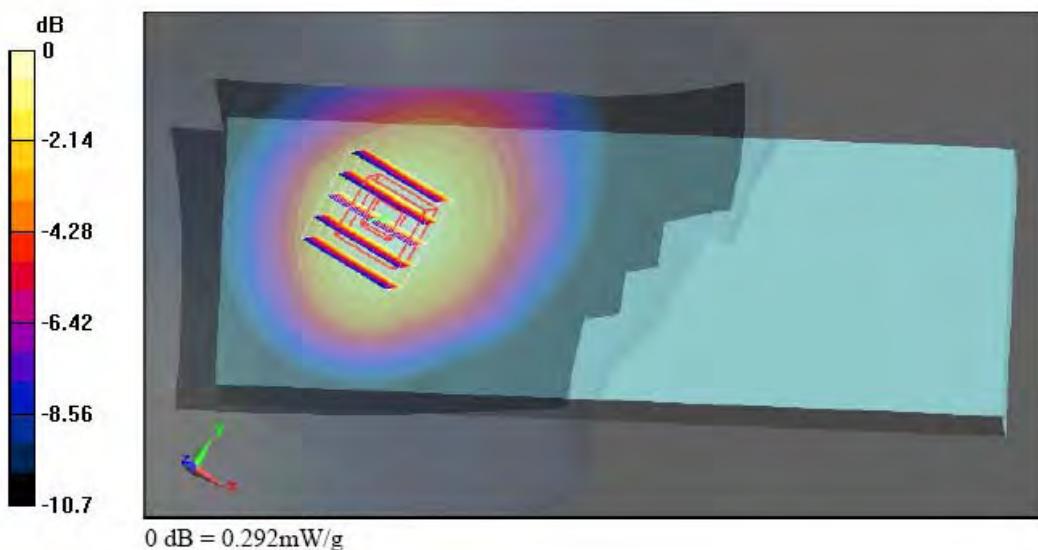
Ambient Temperature : 22.1 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.289 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17 V/m; Power Drift = 0.043 dB

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.270 mW/g; SAR(10 g) = 0.183 mW/g

Maximum value of SAR (measured) = 0.292 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

Left Cheek_GSM850 Ch189_Front**DUT: 805687**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.911$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

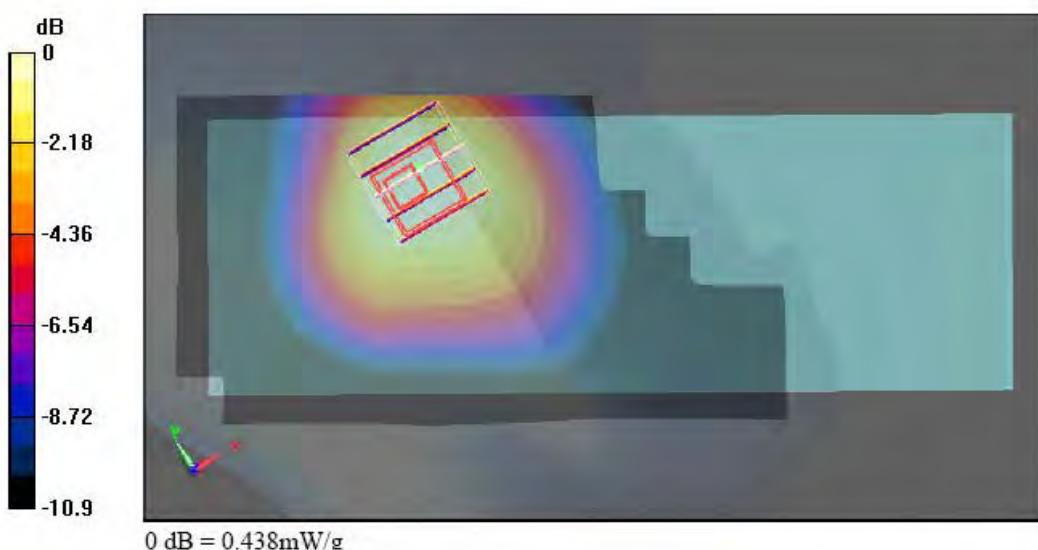
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.434 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.413 mW/g; SAR(10 g) = 0.288 mW/g

Maximum value of SAR (measured) = 0.438 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

Left Tilted_GSM850 Ch189_Front**DUT: 805687**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.911$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

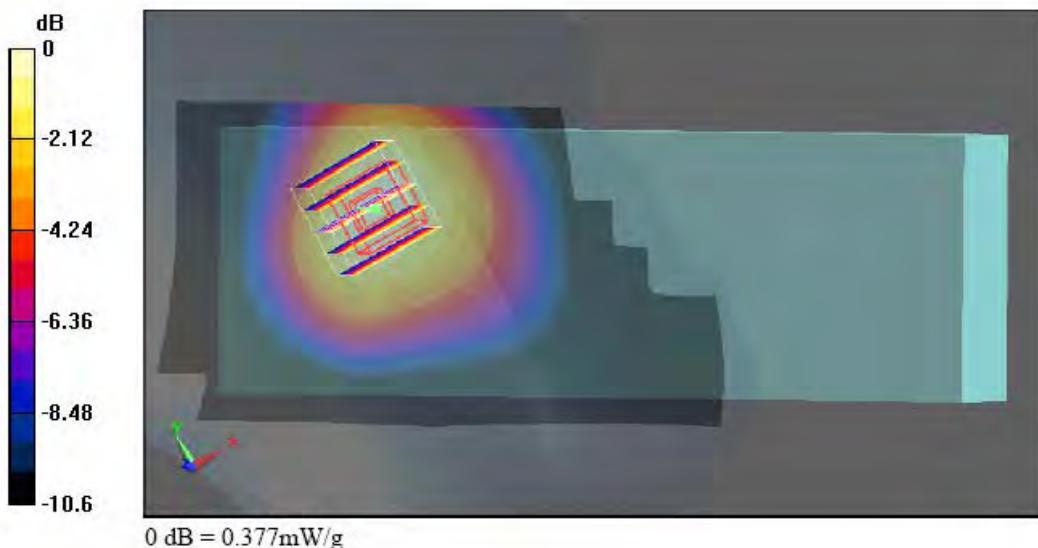
Ambient Temperature : 22.2 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.375 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.5 V/m; Power Drift = -0.062 dB

Peak SAR (extrapolated) = 0.525 W/kg

SAR(1 g) = 0.351 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.377 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

Right Cheek_GSM1900 Ch661_Front**DUT: 805677**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00725 mW/g

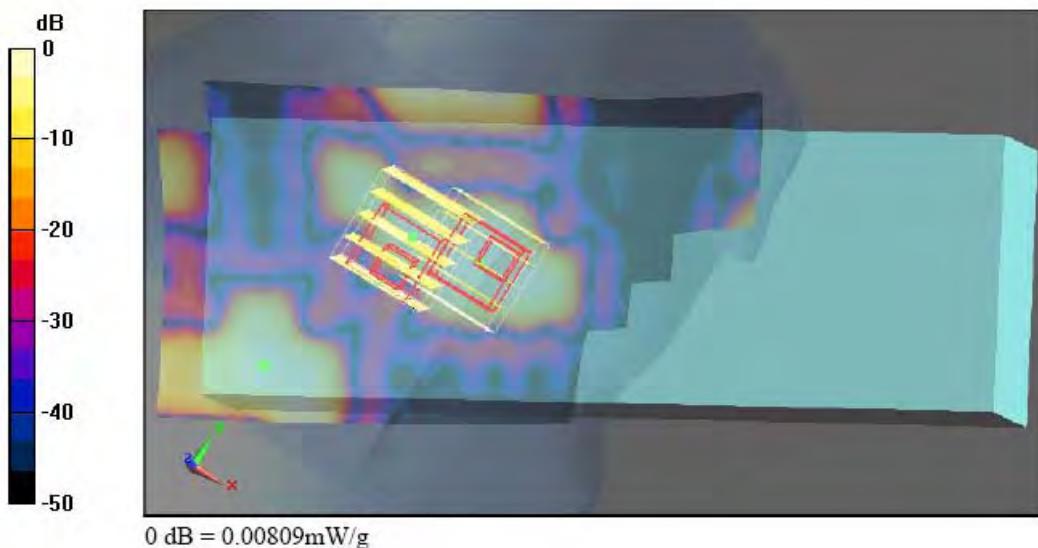
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.17 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.022 W/kg

SAR(1 g) = 0.00518 mW/g; SAR(10 g) = 0.00148 mW/g

Maximum value of SAR (measured) = 0.00718 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.17 V/m; Power Drift = -0.125 dB

Peak SAR (extrapolated) = 0.027 W/kg

SAR(1 g) = 0.00466 mW/g; SAR(10 g) = 0.000946 mW/g

Maximum value of SAR (measured) = 0.00809 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

Right Tilted_GSM1900 Ch661_Front**DUT: 805677**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00784 mW/g

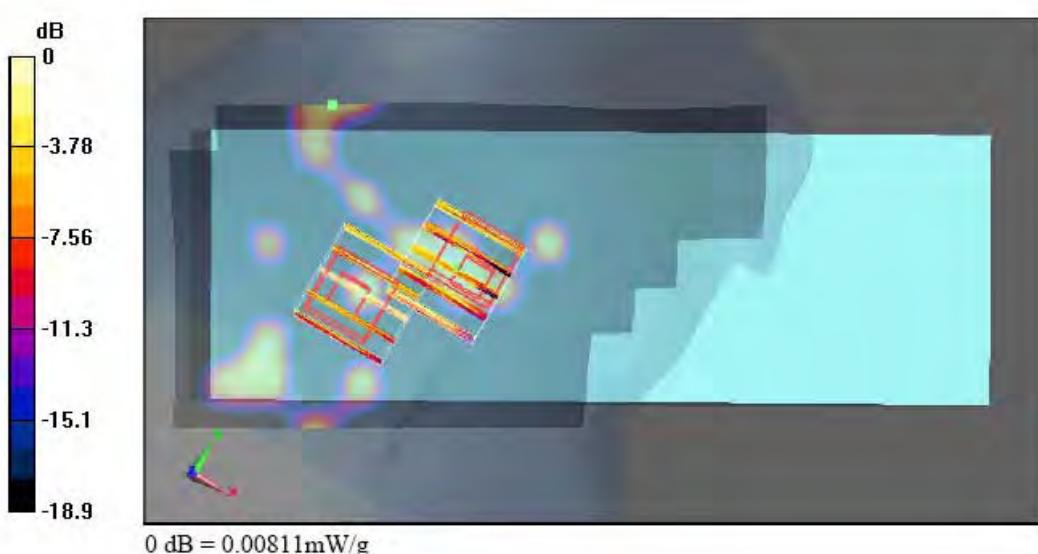
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.35 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 0.021 W/kg

SAR(1 g) = 0.00161 mW/g; SAR(10 g) = 0.000447 mW/g

Maximum value of SAR (measured) = 0.00821 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.35 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 0.044 W/kg

SAR(1 g) = 0.00869 mW/g; SAR(10 g) = 0.00297 mW/g

Maximum value of SAR (measured) = 0.00811 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

Left Cheek_GSM1900 Ch661_Front**DUT: 805677**

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.00684 mW/g

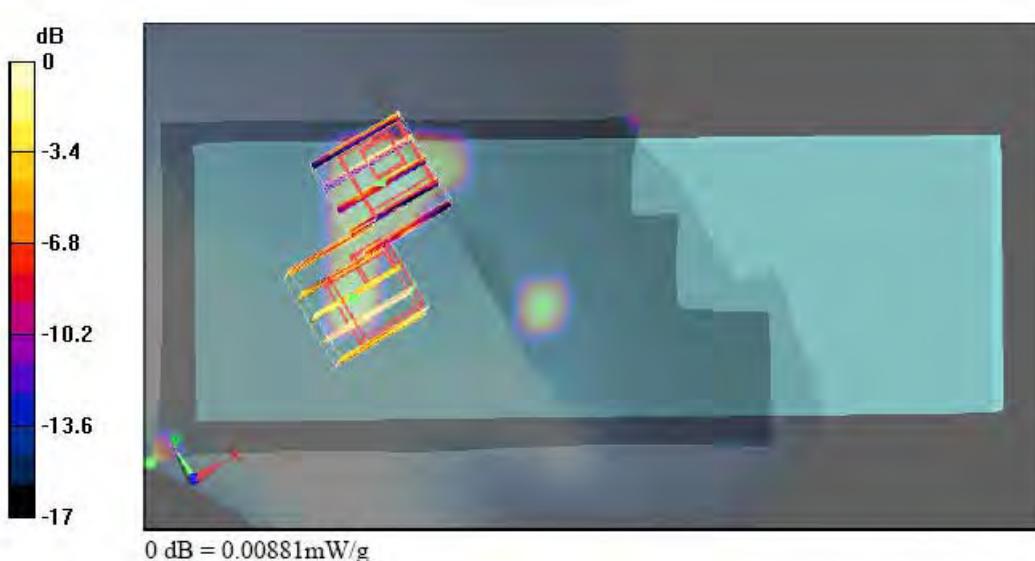
Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.19 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.00757 W/kg

SAR(1 g) = 0.00543 mW/g; SAR(10 g) = 0.00272 mW/g

Maximum value of SAR (measured) = 0.00646 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.19 V/m; Power Drift = 0.122 dB

Peak SAR (extrapolated) = 0.024 W/kg

SAR(1 g) = 0.00485 mW/g; SAR(10 g) = 0.00177 mW/g

Maximum value of SAR (measured) = 0.00881 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

Left Tilted_GSM1900 Ch810_Front**DUT: 805677**

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1910$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

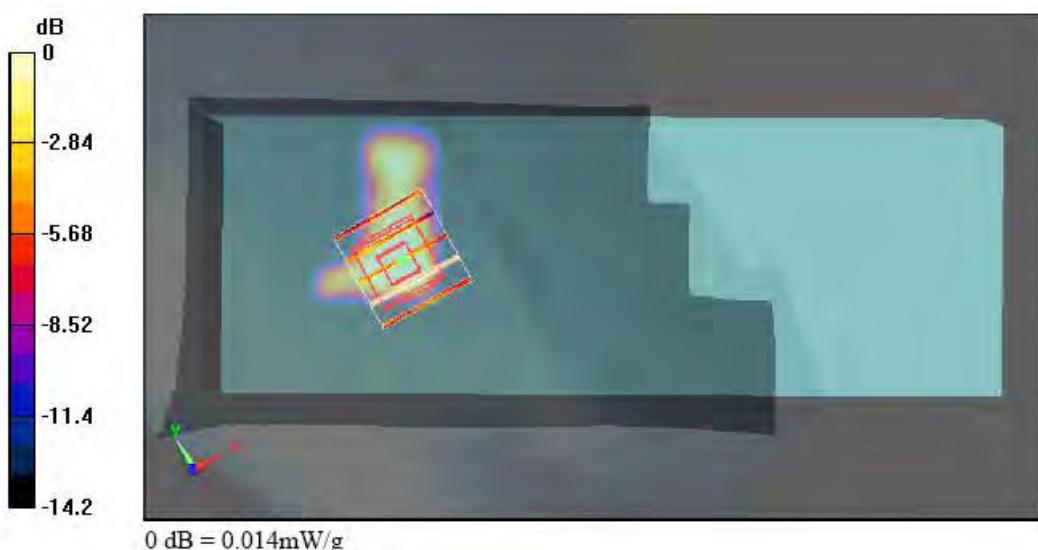
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.034 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.61 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00471 mW/g

Maximum value of SAR (measured) = 0.014 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM850 Ch189_Front Face Holster with 0cm Gap_GPRS12

DUT: 802998

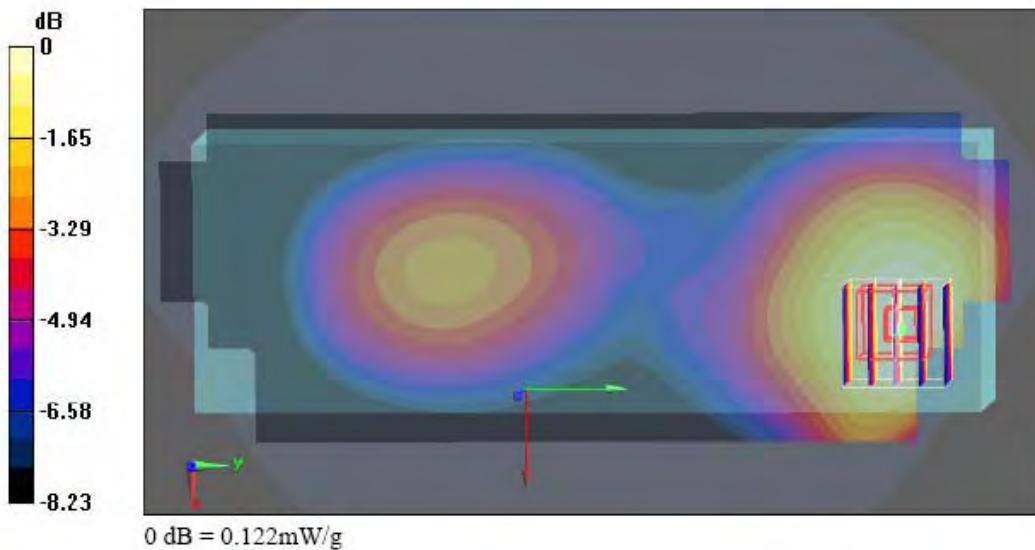
Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:2

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52


Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.126 mW/g

Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 6.78 V/m; Power Drift = -0.00696 dB

Peak SAR (extrapolated) = 0.146 W/kg

SAR(1 g) = 0.116 mW/g; SAR(10 g) = 0.086 mW/g

Maximum value of SAR (measured) = 0.122 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM850 Ch189_Rear Face Holster with 0cm Gap_GPRS10

DUT: 802998

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used : $f = 836.4$ MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

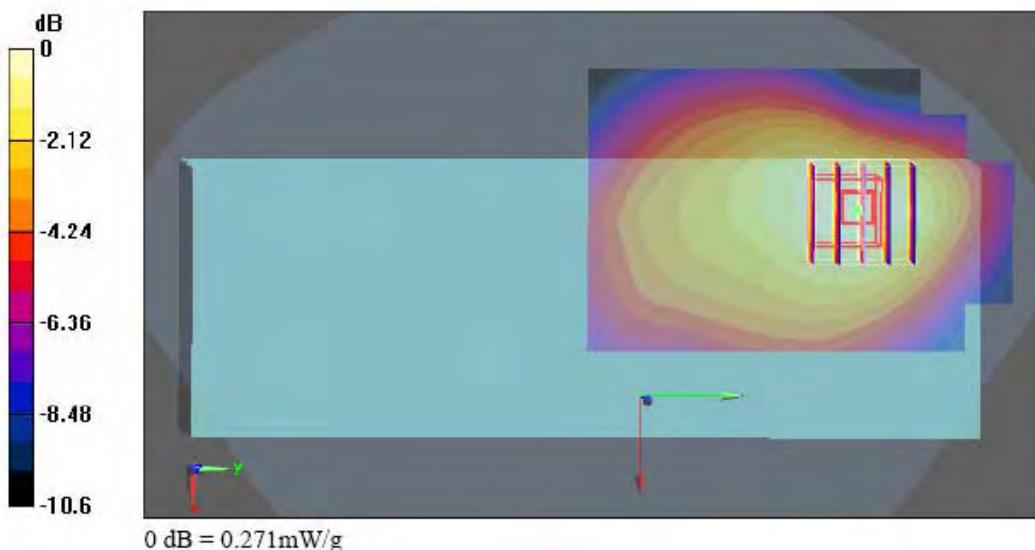
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.275 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.62 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 0.354 W/kg

SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.176 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM1900 Ch661_Front Race Holster with 0cm Gap_GPRS12

DUT: 802998

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:2

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.016 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.51 V/m; Power Drift = 0.158 dB

Peak SAR (extrapolated) = 0.0094 W/kg

SAR(1 g) = 0.00623 mW/g; SAR(10 g) = 0.00325 mW/g

Maximum value of SAR (measured) = 0.0072 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM1900 Ch661_Rear Face Holster with 0cm Gap_GPRS10

DUT: 802998

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

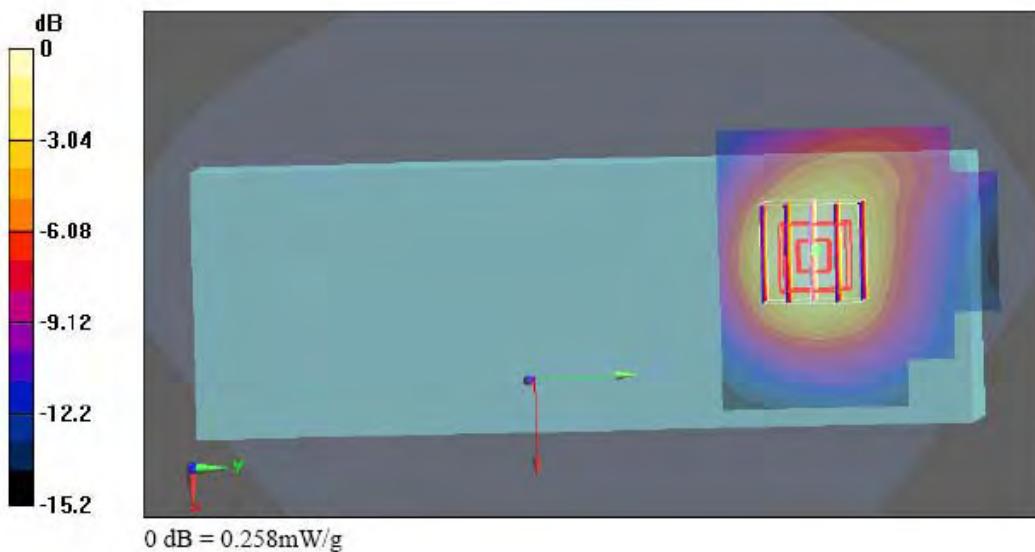
Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.270 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.33 V/m; Power Drift = 0.138 dB

Peak SAR (extrapolated) = 0.361 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Body_GSM850 Ch189_Rear Face with 1.5cm Gap_GPRS10**DUT: 802998**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

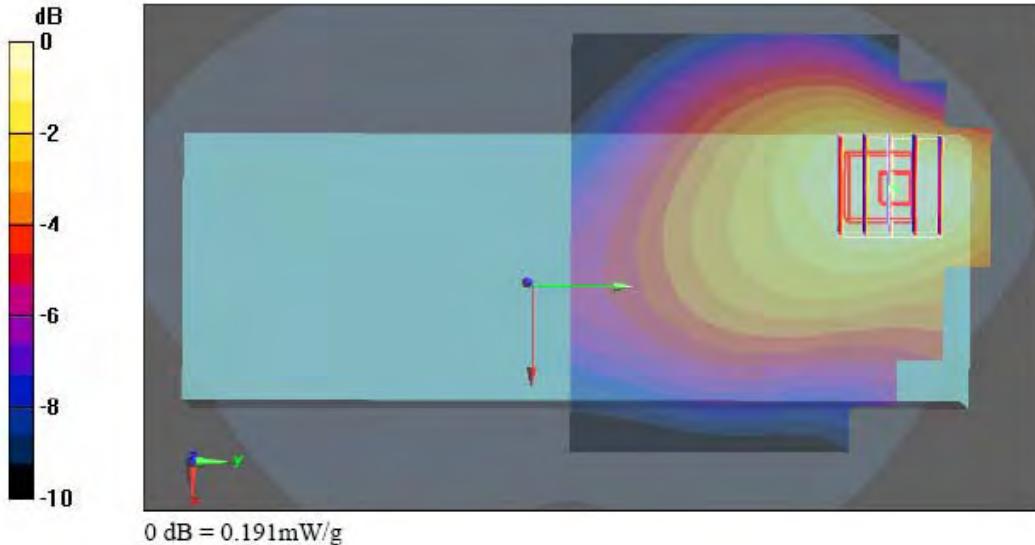
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (91x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.195 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.53 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.126 mW/g

Maximum value of SAR (measured) = 0.191 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM1900 Ch810_Rear Face with 1.5cm Gap_GPRS10

DUT: 802998

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: $f = 1910$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.178 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.73 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.098 mW/g

Maximum value of SAR (measured) = 0.171 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Right Tilted_GSM850 Ch128_Rear_2D**DUT: 802998**

Communication System: GSM850; Frequency: 824.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used : $f = 824.2$ MHz; $\sigma = 0.895$ mho/m; $\epsilon_r = 40.5$; $\rho = 1000$ kg/m³

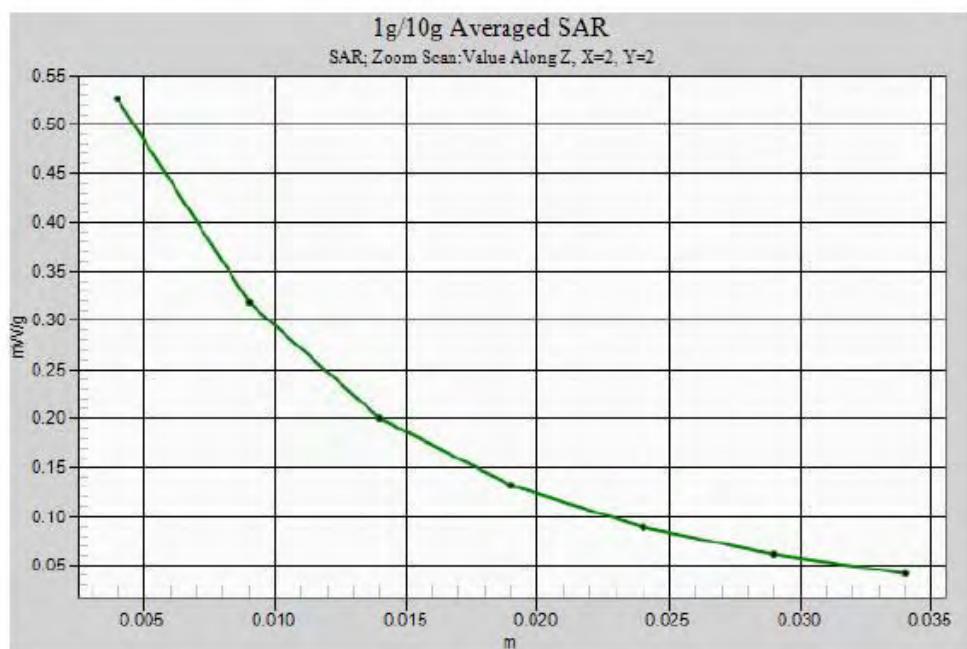
Ambient Temperature : 22.1 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.554 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m; Power Drift = -0.164 dB

Peak SAR (extrapolated) = 0.846 W/kg

SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.287 mW/g

Maximum value of SAR (measured) = 0.525 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Left Cheek_GSM1900 Ch512_Rear_2D**DUT: 802998**

Communication System: PCS; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used : $f = 1850.2$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.1$; $\rho = 1000$ kg/m³

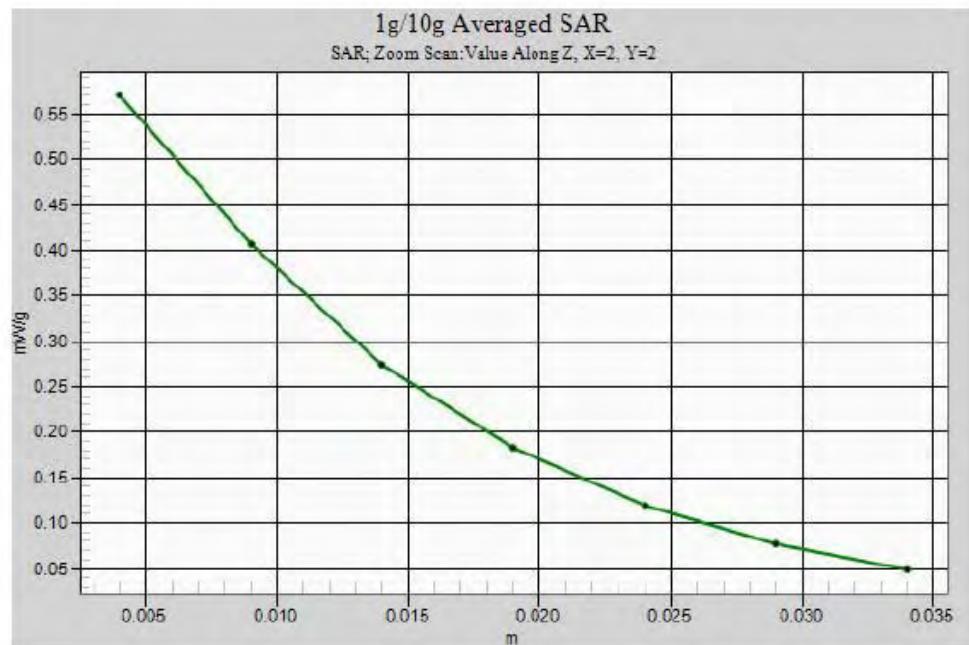
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.5 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch512/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.694 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = 0.027 dB

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.528 mW/g; SAR(10 g) = 0.320 mW/g

Maximum value of SAR (measured) = 0.570 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/12

Left Cheek_GSM850 Ch189_Front_2D**DUT: 805687**

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:8.3

Medium: HSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.911$ mho/m; $\epsilon_r = 40.7$; $\rho = 1000$ kg/m³

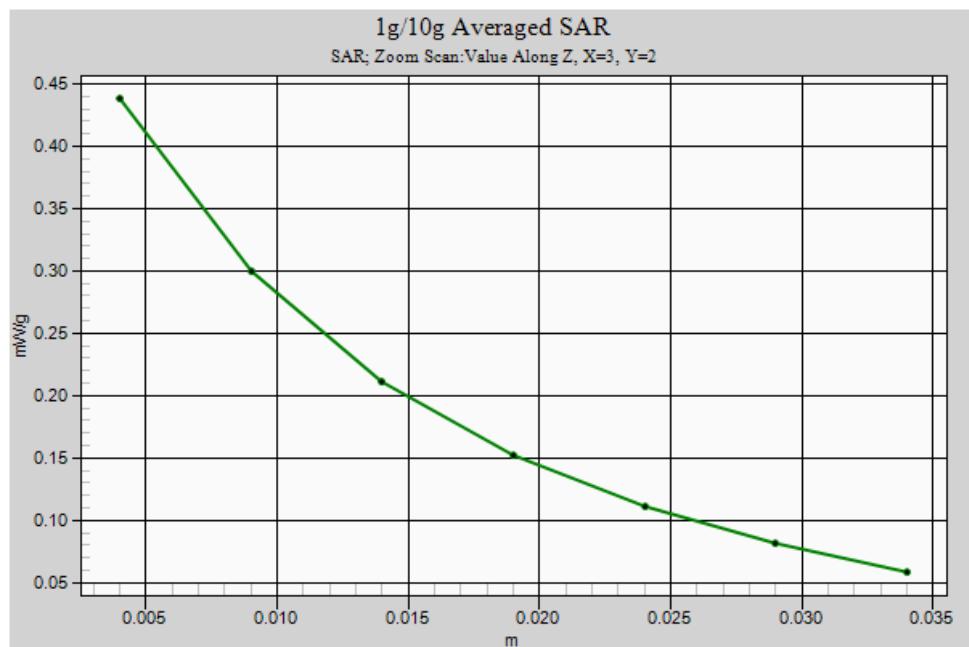
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.3 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.54, 6.54, 6.54); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.434 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = -0.092 dB

Peak SAR (extrapolated) = 0.595 W/kg

SAR(1 g) = 0.413 mW/g; SAR(10 g) = 0.288 mW/g

Maximum value of SAR (measured) = 0.438 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/8

Left Tilted_GSM1900 Ch810_Front_2D**DUT: 805677**

Communication System: PCS; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3

Medium: HSL_1900 Medium parameters used: $f = 1910$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

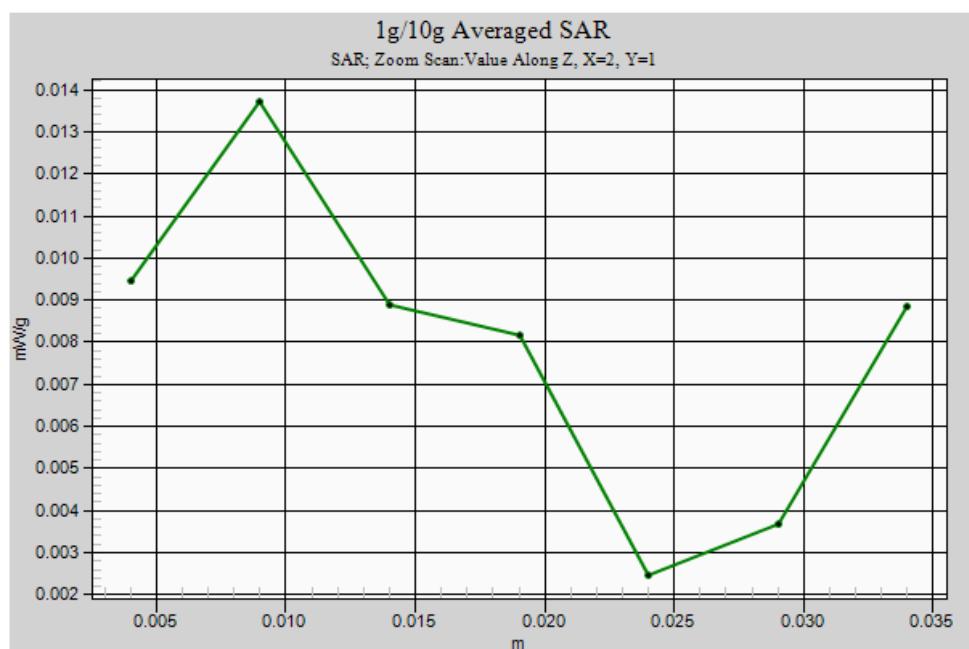
Ambient Temperature : 22.4 °C; Liquid Temperature : 21.2 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(5.28, 5.28, 5.28); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 91; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (71x181x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.034 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.61 V/m; Power Drift = 0.120 dB

Peak SAR (extrapolated) = 0.039 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00471 mW/g

Maximum value of SAR (measured) = 0.014 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab

Date: 2008/5/1

Body_GSM850 Ch189_Rear Face Holster with 0cm Gap_GPRS10_2D**DUT: 802998**

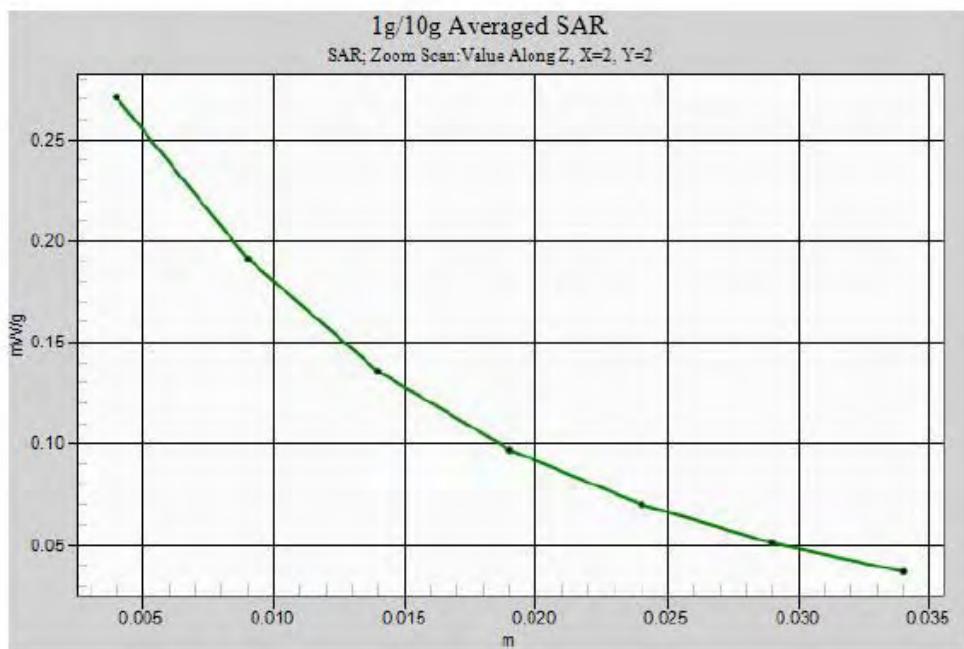
Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52


Ch189/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.275 mW/g**Ch189/Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.62 V/m; Power Drift = 0.026 dB

Peak SAR (extrapolated) = 0.354 W/kg

SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.176 mW/g

Maximum value of SAR (measured) = 0.271 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM1900 Ch661_Rear Face Holster with 0cm Gap_GPRS10_2D

DUT: 802998

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:4

Medium: MSL_1900 Medium parameters used: $f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

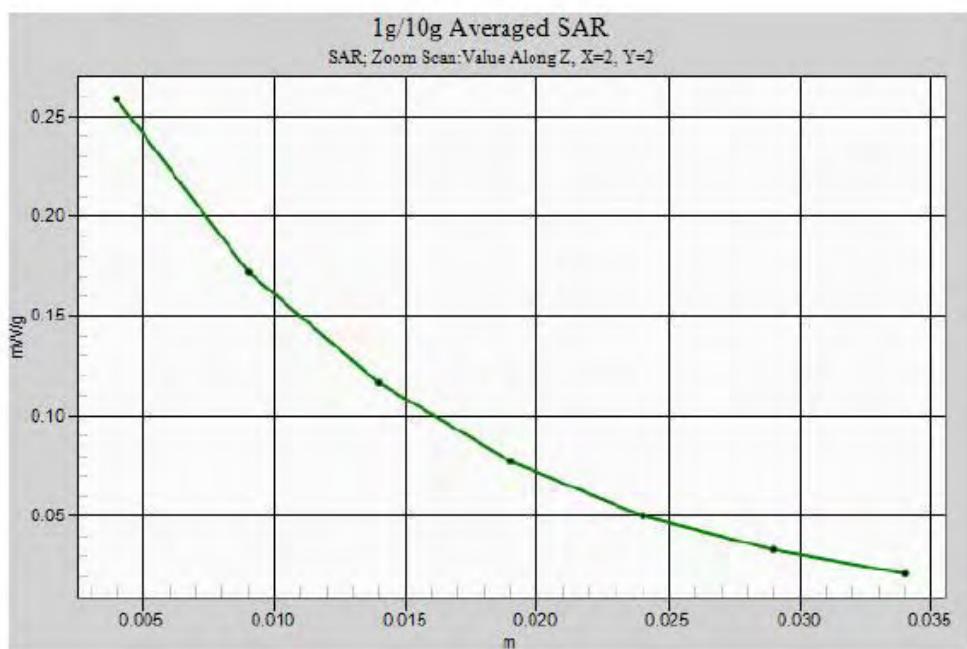
Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch661/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.270 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.33 V/m; Power Drift = 0.138 dB

Peak SAR (extrapolated) = 0.361 W/kg

SAR(1 g) = 0.239 mW/g; SAR(10 g) = 0.147 mW/g

Maximum value of SAR (measured) = 0.258 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM850 Ch189_Rear Face with 1.5cm Gap_GPRS10_2D

DUT: 802998

Communication System: GSM850; Frequency: 836.4 MHz; Duty Cycle: 1:4

Medium: MSL_850 Medium parameters used: $f = 836.4$ MHz; $\sigma = 0.967$ mho/m; $\epsilon_r = 56.3$; $\rho = 1000$ kg/m³

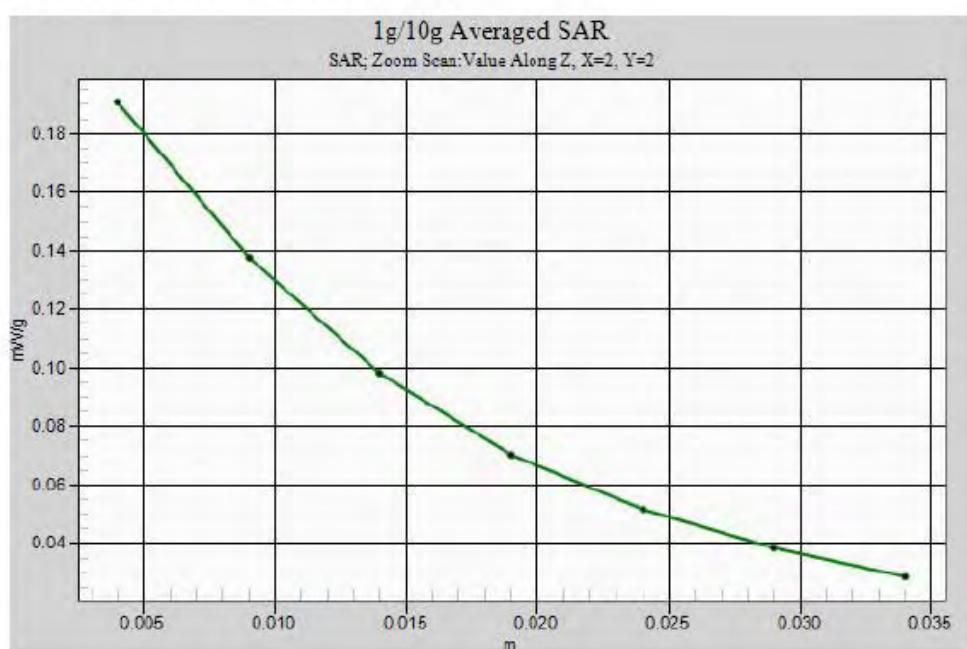
Ambient Temperature : 22.9 °C; Liquid Temperature : 21.6 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(6.37, 6.37, 6.37); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch189/Area Scan (91x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.195 mW/g


Ch189/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.53 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.179 mW/g; SAR(10 g) = 0.126 mW/g

Maximum value of SAR (measured) = 0.191 mW/g

Test Laboratory: Sporton International Inc. SAR/HAC Testing Lab Date: 2008/5/1

Body_GSM1900 Ch810_Rear Face with 1.5cm Gap_GPRS10_2D

DUT: 802998

Communication System: PCS 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:4

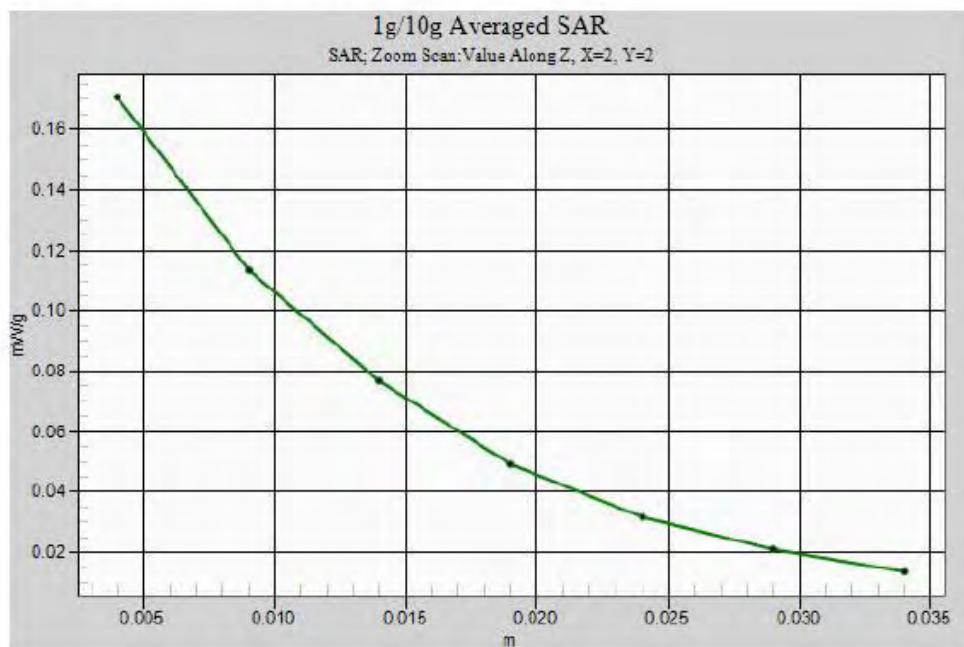
Medium: MSL_1900 Medium parameters used: $f = 1910$ MHz; $\sigma = 1.53$ mho/m; $\epsilon_r = 51$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.6 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: ET3DV6 - SN1788; ConvF(4.75, 4.75, 4.75); Calibrated: 2007/9/26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 2007/11/16
- Phantom: SAM with CRP; Type: SAM; Serial: TP-1446
- Measurement SW: DASY5, V5.0 Build 87; SEMCAD X Version 12.4 Build 52

Ch810/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 0.178 mW/g


Ch810/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.73 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 0.239 W/kg

SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.098 mW/g

Maximum value of SAR (measured) = 0.171 mW/g

Appendix C – Calibration Data

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
SCS Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Sporton (Auden)

Certificate No: D835V2-499_Mar08

CALIBRATION CERTIFICATE

Object	D835V2 - SN: 499		
Calibration procedure(s)	QA CAL-05.v7 Calibration procedure for dipole validation kits		
Calibration date:	March 17, 2008		
Condition of the calibrated item	In Tolerance		
<p>This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility, environment temperature (22 ± 3)°C and humidity < 70%.</p> <p>Calibration Equipment used (M&TE critical for calibration)</p>			
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No. 217-00718)	Aug-08
Reference Probe ES3DV2	SN: 3025	01-Mar-08 (SPEAG, No. ES3-3025_Mar08)	Mar-09
DAE4	SN 909	03-Sep-07 (SPEAG, No. DAE4-909_Sep07)	Sep-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	04-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
Calibrated by:	Name Claudio Leubler	Function Laboratory Technician	Signature
Approved by:	Katja Pokovic	Technical Manager	
Issued: March 17, 2008			
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kaliibrator
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	41.5 \pm 6 %	0.90 mho/m \pm 6 %
Head TSL temperature during test	(22.0 \pm 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.29 mW / g
SAR normalized	normalized to 1W	9.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.16 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.50 mW / g
SAR normalized	normalized to 1W	6.00 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.00 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.0 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C	---	---

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.46 mW / g
SAR normalized	normalized to 1W	9.84 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.52 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.63 mW / g
SAR normalized	normalized to 1W	6.52 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.37 mW / g ± 16.5 % (k=2)

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω - 2.3 $j\Omega$
Return Loss	- 28.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.2 Ω - 3.3 $j\Omega$
Return Loss	- 29.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.392 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 10, 2003

DASY4 Validation Report for Head TSL

Date/Time: 17.03.2008 11:32:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:499

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz;

Medium parameters used: $f = 835$ MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.5$; $\rho = 1000$ kg/m³

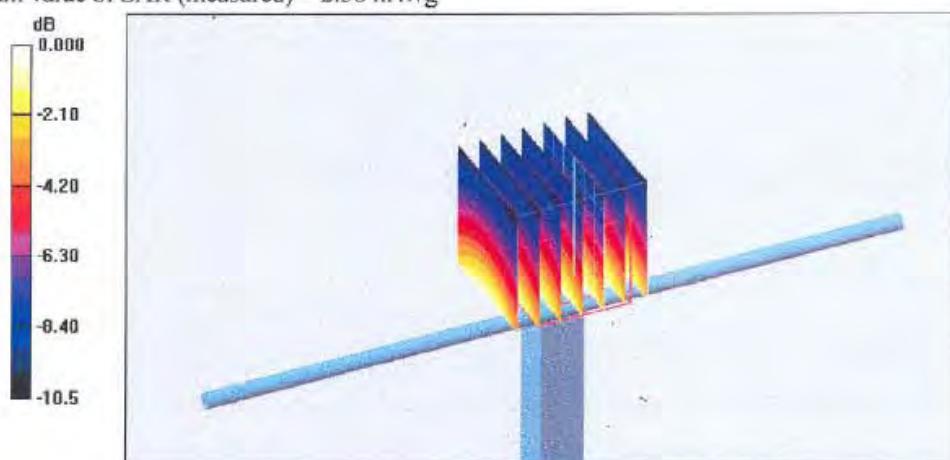
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(6.09, 6.09, 6.09); Calibrated: 01.03.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn909; Calibrated: 03.09.2007
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Unnamed procedure/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.9 V/m; Power Drift = -0.005 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.29 mW/g; SAR(10 g) = 1.5 mW/g

Maximum value of SAR (measured) = 2.58 mW/g

0 dB = 2.58mW/g