

Engineering Test Report No. 2301687-06

Report Date	January 5, 2024	
Manufacturer Name	The Chamberlain Group LLC	
Manufacturer Address	300 Windsor Dr Oak Brook, IL 60523	
Test Item Name Model No.	CBG24DCW	
Date Received	December 20, 2023	
Test Dates	December 20, 2023 through January 4, 2024	
Specifications	FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 Innovation, Science, and Economic Development Canada, RSS-GEN Innovation, Science, and Economic Development Canada, RSS-247	
Test Facility	Elite Electronic Engineering, Inc. 1516 Centre Circle, Downers Grove, IL 60515	FCC Reg. Number: 269750 IC Reg. Number: 2987A CAB Identifier: US0107
Signature		
Tested by	Javier Cardenas	
Signature		
Approved by	Raymond J. Klouda, Registered Professional Engineer of Illinois – 44894	
PO Number	4900092248	
<p>This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.</p> <p>This report shall not be reproduced, except in full, without the written approval of Elite Electronic Engineering Inc.</p> <p>Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT on the test dates specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the Federal Government.</p>		

Table of Contents

1.	Report Revision History	3
2.	Introduction	4
2.1.	Scope of Tests	4
2.2.	Purpose.....	4
2.3.	Identification of the EUT.....	4
3.	Power Input.....	4
4.	Grounding	4
5.	Support Equipment	4
6.	Interconnect Leads.....	5
7.	Modifications Made to the EUT	5
8.	Modes of Operation.....	5
8.1.	Tx	5
8.2.	Rx.....	5
9.	Test Specifications	5
10.	Test Plan	6
11.	Deviation, Additions to, or Exclusions from Test Specifications	6
12.	Laboratory Conditions	6
13.	Summary.....	6
14.	Sample Calculations	7
15.	Statement of Conformity	7
16.	Certification	7
17.	Photographs of EUT.....	8
18.	Equipment List	10
19.	Block Diagram of Test Setup	11
20.	Receiver Radiated Emissions	12
21.	20dB Bandwidth	22
22.	Occupied Bandwidth (99%)	26
23.	Carrier Frequency Separation.....	30
24.	Number of Carrier Channels	32
25.	Average Time of Occupancy.....	34
26.	Maximum Peak Conducted Output Power.....	36
27.	Effective Isotropic Radiated Power (EIRP)	40
28.	Duty Cycle Factor Measurements.....	42
29.	Case Spurious Radiated Emissions.....	44
30.	Band-Edge Compliance	58
32.	Scope of Accreditation	64

This report shall not be reproduced, except in full,
without the written approval of Elite Electronic Engineering Inc.

1. Report Revision History

Revision	Date	Description
–	9 JAN 2024	Initial Release of Engineering Test Report No. 2301687-06

2. Introduction

2.1. Scope of Tests

This document presents the results of a series of RF emissions tests that were performed on The Chamberlain Group LLC Gate Operator (hereinafter referred to as the Equipment Under Test (EUT)). The EUT was manufactured and submitted for testing by The Chamberlain Group LLC located in Oak Brook, IL.

2.2. Purpose

The test series was performed to determine if the EUT meets the RF emission requirements of the FCC "Code of Federal Regulations" Title 47, Part 15, Subpart B, §15.107 and §15.109 for Receivers and Subpart C, §15.247 for a Frequency Hopping Spread Spectrum intentional radiator operating within the 902 – 928MHz, band.

The test series was also performed to determine if the EUT meets the RF emission requirements of the Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-Gen and Innovation, Science, and Economic Development Canada Radio Standards Specification RSS-247 for a Frequency Hopping Spread Spectrum intentional radiator operating within the 902 – 928MHz band.

Testing was performed in accordance with ANSI C63.10-2013.

2.3. Identification of the EUT

The EUT was identified as follows:

EUT Identification	
Product Description	Project Gandalf gate operator with wireless capabilities
Model/Part No.	CBG24DCW
Serial No.	Prototype
Size of EUT	41.5cm x 36.5 Base x 119.5cm Height
Software/Firmware Version	esarm2_v2_1_na_radio_test_no_timeout
Device Type	Frequency Hopping Transmission Device
Band of Operation	902 – 928MHz
Modulation Type	GFSK
Antenna Type	Dipole Antenna
Peak Conducted Output Power	21.3mW (13.28dBm)
Peak EIRP	239.9mW (23.8dBm)
20dB Bandwidth	139.9kHz
Occupied Bandwidth (99% CBW)	185.6kHz
Emission Classification	186KF1D

The EUT listed above was used throughout the test series.

3. Power Input

The EUT obtained 115V 60Hz power via a 3-wire, 1-meter, unshielded power cord.

4. Grounding

The EUT was connected to ground through the third wire of its input power cord.

5. Support Equipment

No support equipment was used during the tests.

6. Interconnect Leads

The following interconnect cables were submitted with the test item:

Item	Description
UART to USB	Used to configure the onboard FHSS radio

7. Modifications Made to the EUT

No modifications were made to the EUT during the testing.

8. Modes of Operation

The EUT and all peripheral equipment were energized. The unit was programmed to transmit in one of the following modes:

8.1. Tx

The onboard FHSS radio was configured to transmit in the following frequencies:

- 902.245MHz
- 914.745MHz
- 926.745MHz
- Hopping Enabled

8.2. Rx

Receiver hopping between all 50 channels.

9. Test Specifications

The tests were performed to selected portions of, and in accordance with, the test specifications.

- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart B
- Federal Communications Commission "Code of Federal Regulations", Title 47, Chapter I, Subchapter A, Part 15, Subpart C
- ANSI C63.4-2014, "American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz"
- ANSI C63.10-2013, "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices"
- Federal Communications Commission Office of Engineering and Technology Laboratory Division, Guidance For Compliance Measurements On Digital Transmission Systems, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 April 2, 2019 KDB 558074 D01v05r02
- RSS-Gen Issue 5, February 2020, Amendment 2, Innovation, Science, and Economic Development Canada, "General Requirements for Compliance of Radio Apparatus"
- RSS-247 Issue 2, February 2017, "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and License-Exempt Local Area Network (LE-LAN) Devices"

10. Test Plan

No test plan was provided. Instructions were provided by personnel from The Chamberlain Group LLC and used in conjunction with the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247, Innovation, Science, and Economic Development Canada, RSS-247, and ANSI C63.4-2014 specifications.

11. Deviation, Additions to, or Exclusions from Test Specifications

There were no deviations, additions to, or exclusions from the test specifications during this test series.

12. Laboratory Conditions

The ambient parameters of the laboratory during testing were as follows:

Ambient Parameters	Value
Temperature	23°C
Relative Humidity	32%
Atmospheric Pressure	1017.9mb

13. Summary

The following EMC tests were performed and the results are shown below:

Test Description	Requirements	Test Method	S/N	Results
Receiver Radiated Emissions	FCC 15.109 RSS-GEN	ANSI C63.4:2014	Prototype	Conforms
20dB Bandwidth	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Occupied Bandwidth (99%)	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Carrier Frequency Separation	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Number of Carrier Channels	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Average Time of Occupancy	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Maximum Peak Conducted Output Power	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Effective Isotropic Radiated Power (EIRP)	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Duty Cycle Factor Measurements	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	—
Case Spurious Radiated Emissions	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms
Band-Edge Compliance	FCC 15.247 ISED RSS-247	ANSI C63.10:2013	Prototype	Conforms

14. Sample Calculations

For Powerline Conducted Emissions:

The resultant voltage level (VL) is a summation in decibels (dB) of the receiver meter reading (MTR) and the cable loss factor (CF).

$$\text{Formula 1: } VL (\text{dB}\mu\text{V}) = MTR (\text{dB}\mu\text{V}) + CF (\text{dB}).$$

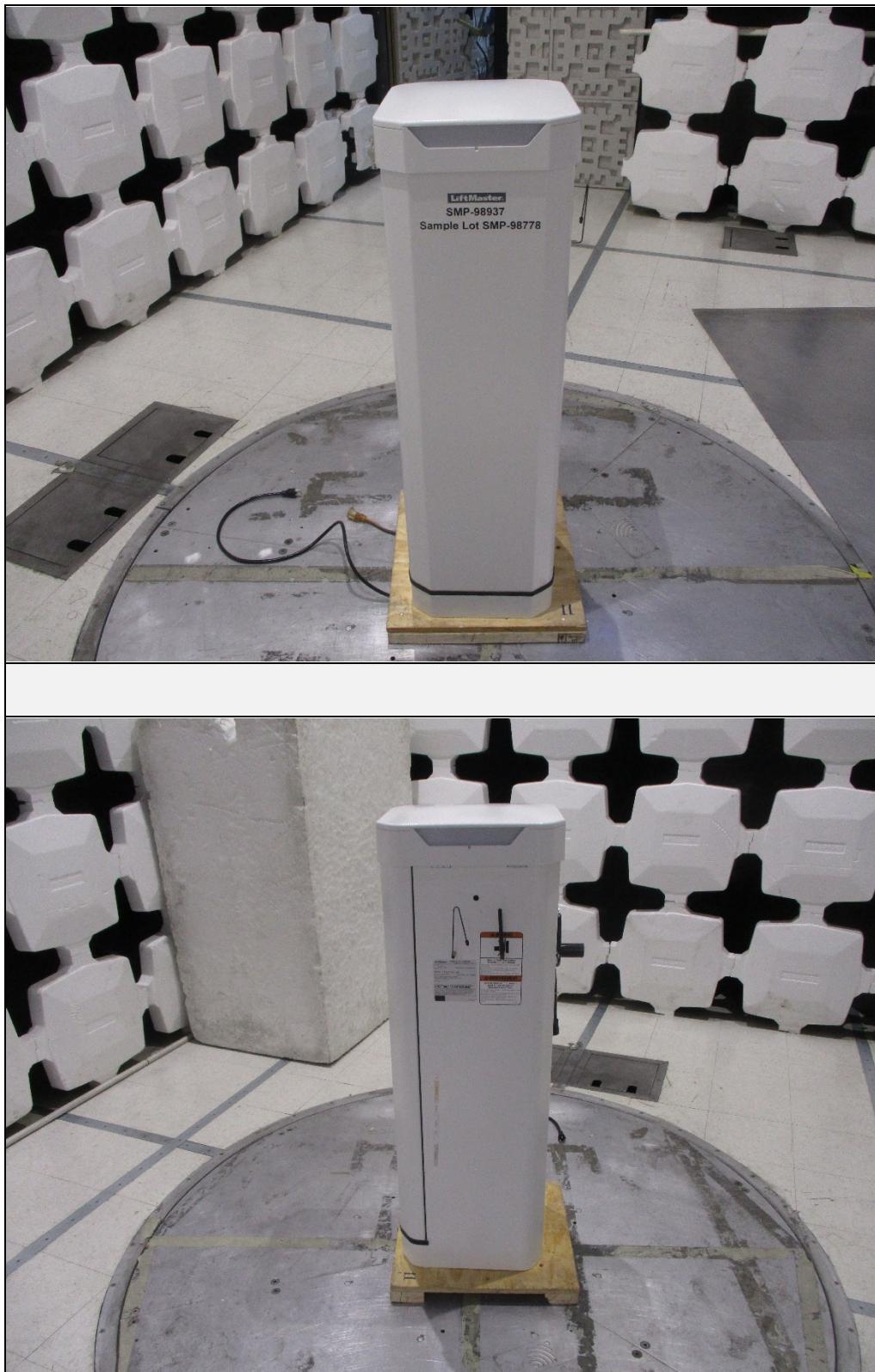
For Radiated Emissions:

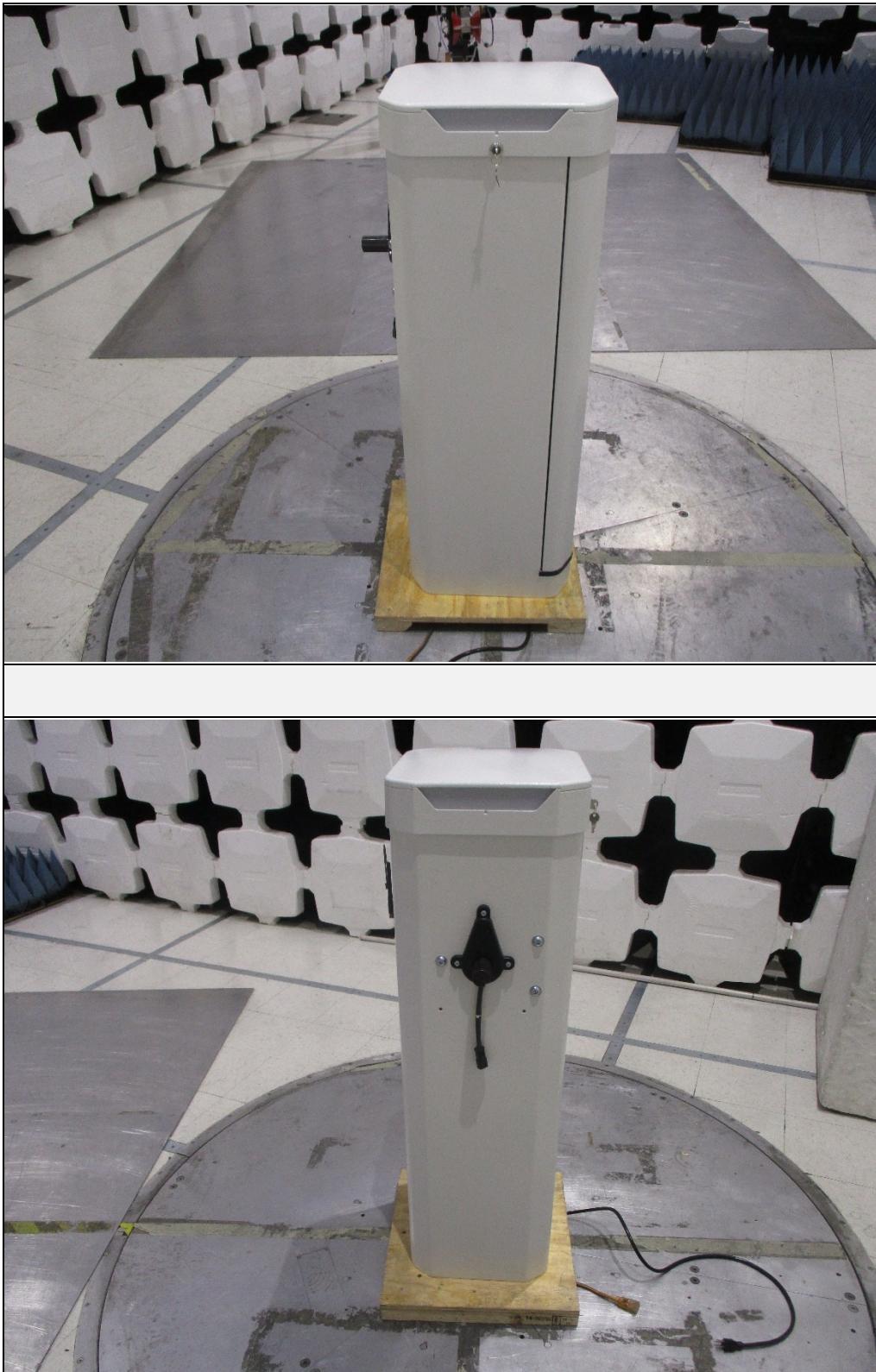
The resultant field strength (FS) is a summation in decibels (dB) of the receiver meter reading (MTR), the antenna correction factor (AF), and the cable loss factor (CF). If an external preamplifier is used, the total is reduced by its gain (-PA). If a distance correction (DC) is required, it is added to the total.

$$\text{Formula 1: } FS (\text{dB}\mu\text{V}/\text{m}) = MTR (\text{dB}\mu\text{V}) + AF (\text{dB}/\text{m}) + CF (\text{dB}) + (-PA (\text{dB})) + DC (\text{dB})$$

To convert the Field Strength $\text{dB}\mu\text{V}/\text{m}$ term to $\mu\text{V}/\text{m}$, the $\text{dB}\mu\text{V}/\text{m}$ is first divided by 20. The Base 10 AntiLog is taken of this quotient. The result is the Field Strength value in $\mu\text{V}/\text{m}$ terms.

$$\text{Formula 2: } FS (\mu\text{V}/\text{m}) = \text{AntiLog} [(FS (\text{dB}\mu\text{V}/\text{m}))/20]$$


15. Statement of Conformity


The The Chamberlain Group LLC Gate Operator (Model No. CBG24DCW, Serial No. Prototype) did fully conform to the selected requirements of FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247.

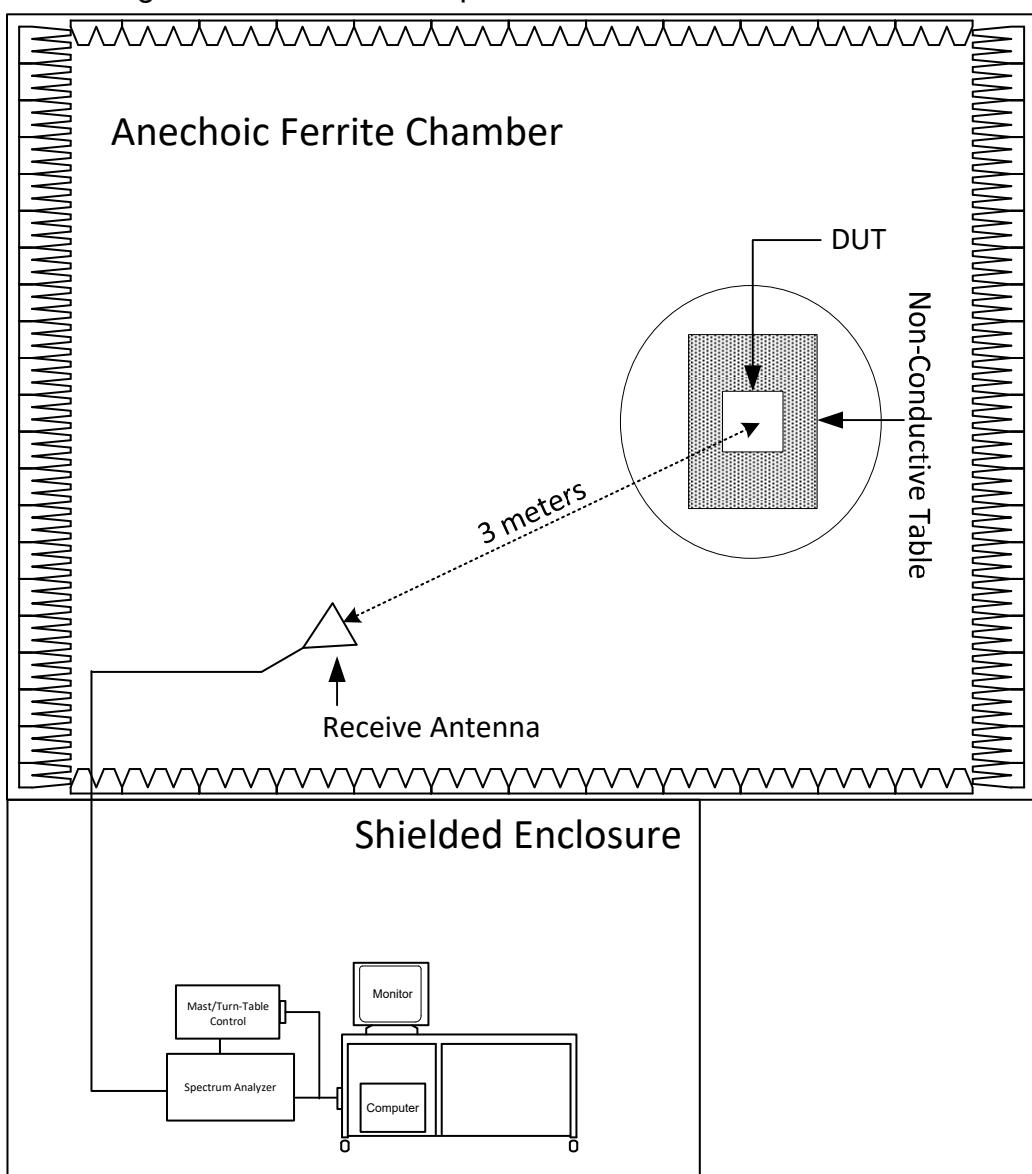
16. Certification

Elite Electronic Engineering Incorporated certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the FCC "Code of Federal Regulations" Title 47 Part 15, Subpart C, Section 15.247 and Innovation, Science, and Economic Development Canada, RSS-247 test specifications. The data presented in this test report pertains to the EUT as received by the customer on the test date specified. Any electrical or mechanical modifications made to the EUT subsequent to the specified test date will serve to invalidate the data and void this certification.

17. Photographs of EUT

18. Equipment List

Eq ID	Equipment Description	Manufacturer	Model No.	Serial No.	Frequency Range	Cal Date	Due Date
APW11	PREAMPLIFIER	PMI	PE2-35-120-5R0-10-12-SFF	PL11685/1241	1GHZ-20GHZ	5/16/2023	5/16/2024
APW18	PREAMPLIFER	PLANAR	PE2-30-20G20RG6-3R0-10-12-SFF	PL34312/2148	18-26.5GHZ	1/19/2023	1/19/2024
CLT31	LAPTOP COMPUTER	HP	PRO BOOK	5CD7040PCG	---	CNR	
GSFB	OSP120 BASE UNIT	ROHDE & SCHWARZ	OSP120	101071	---	3/30/2023	3/30/2025
GSFE	OSP120	ROHDE & SCHWARZ	OSP120	101288	.01-40GHZ	4/4/2023	4/4/2025
MDC26	MULTIMETER (JAVIER)	FLUKE	179	34720014	I;VDC;VAC;R	8/18/2023	8/18/2024
NDS0	TUNED DIPOLE ANTENNA	STODDART	AT255	1	400-1000MHZ	NOTE 1	
NTA3	BILOG ANTENNA	TESEQ	6112D	32853	25-1000MHz	11/17/2022	11/17/2024
NWQ1	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS-LINDGREN	3117	66655	1GHZ-18GHZ	5/26/2022	5/26/2024
NWQ2	DOUBLE RIDGED WAVEGUIDE ANTENNA	ETS LINDGREN	3117	66659	1GHZ-18GHZ	4/27/2022	4/27/2024
PLF1	CISPR16 50UH LISN	ELITE	CISPR16/70A	001	.15-30MHz	4/7/2023	4/7/2024
PLF3	CISPR16 50UH LISN	ELITE	CISPR16/70A	003	.15-30MHz	4/7/2023	4/7/2024
R23P	ROOM 23			001	---	CNR	
RBD0	EMI ANALYZER	ROHDE & SCHWARZ	ESU40	100010	20Hz-40GHz	10/22/2023	10/22/2024
RBG2	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	101591	2HZ-44GHZ	4/10/2023	4/10/2024
RBG4	EMI ANALYZER	ROHDE & SCHWARZ	ESW44	103007	2HZ-44GHZ	12/8/2022	1/8/2024
SES0	24VDC POWER SUPPLY	P-TRANS	FS-32024-1M	001	18-27VDC	NOTE 1	
T1E11	10DB 25W ATTENUATOR	WEINSCHEL	46-10-43	CM5684	DC-18GHZ	12/19/2023	12/19/2025
T2S0	20DB 25W ATTENUATOR	WEINSCHEL	46-20-34	BV3545	DC-18GHZ	12/20/2023	12/20/2025
VBR8	CISPR EN FCC CE VOLTAGE.exe					N/A	
VBV2	CISPR EN FCC ICES RE.EXE	ELITE	CISPR EN FCC ICES RE.EXE	---	---	N/A	
WKA1	SOFTWARE, UNIVERSAL RCV EMI	ELITE	UNIV_RCV_EMI	1	---	I/O	
XLQU	5W, 50 OHM TERMINATION	JFW INDUSTRIES	50T-052	---	DC-2GHZ	1/4/2024	1/4/2026
XPQ7	HIGH PASS FILTER	K&L MICROWAVE	4IH30-1804/T10000-0	5	1.8-10GHZ	2/2/2023	2/2/2025


N/A: Not Applicable

I/O: Initial Only

CNR: Calibration Not Required

NOTE 1: For the purpose of this test, the equipment was calibrated over the specified frequency range, pulse rate, or modulation prior to the test or monitored by a calibrated instrument.

19. Block Diagram of Test Setup

Radiated Measurements Test Setup

20. Receiver Radiated Emissions

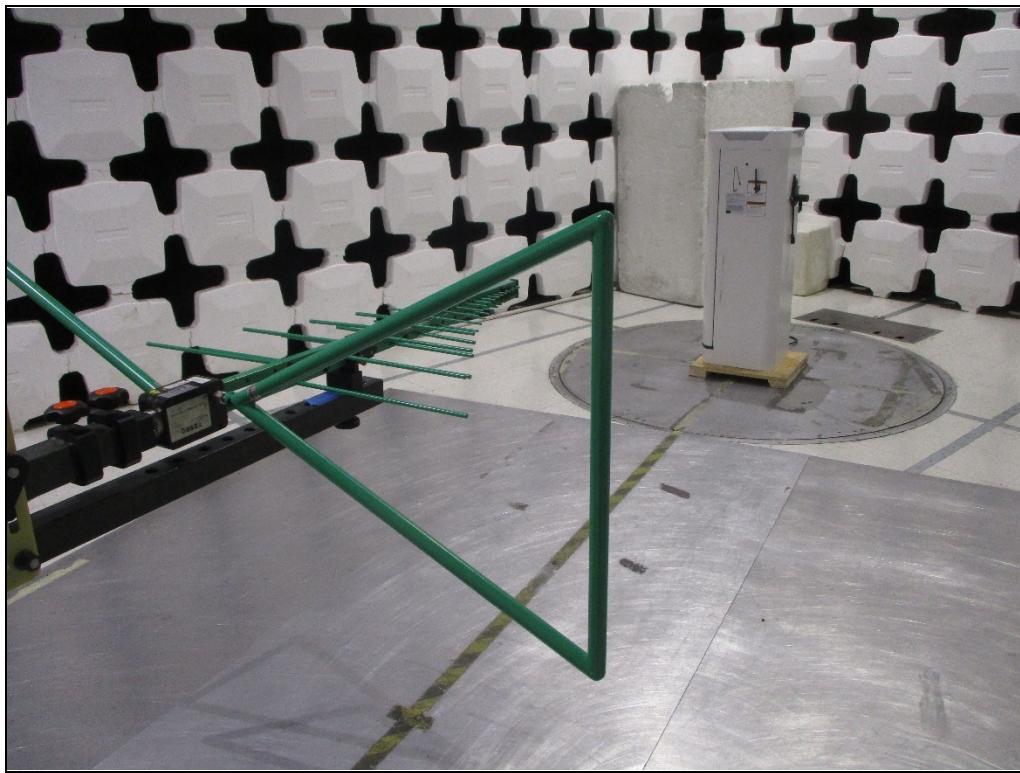
EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Rx

Test Site Information	
Setup Format	Floor Standing
Height of Support	6cm
Type of Test Site	Semi-Anechoic Chamber
Test Site Used	R29F
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-ridged waveguide (or equivalent)
Highest Measurement Frequency	5GHz
Notes	The cables were manually maximized during the preliminary emissions sweeps. The cable arrangement which resulted in the worst-case emissions was utilized.

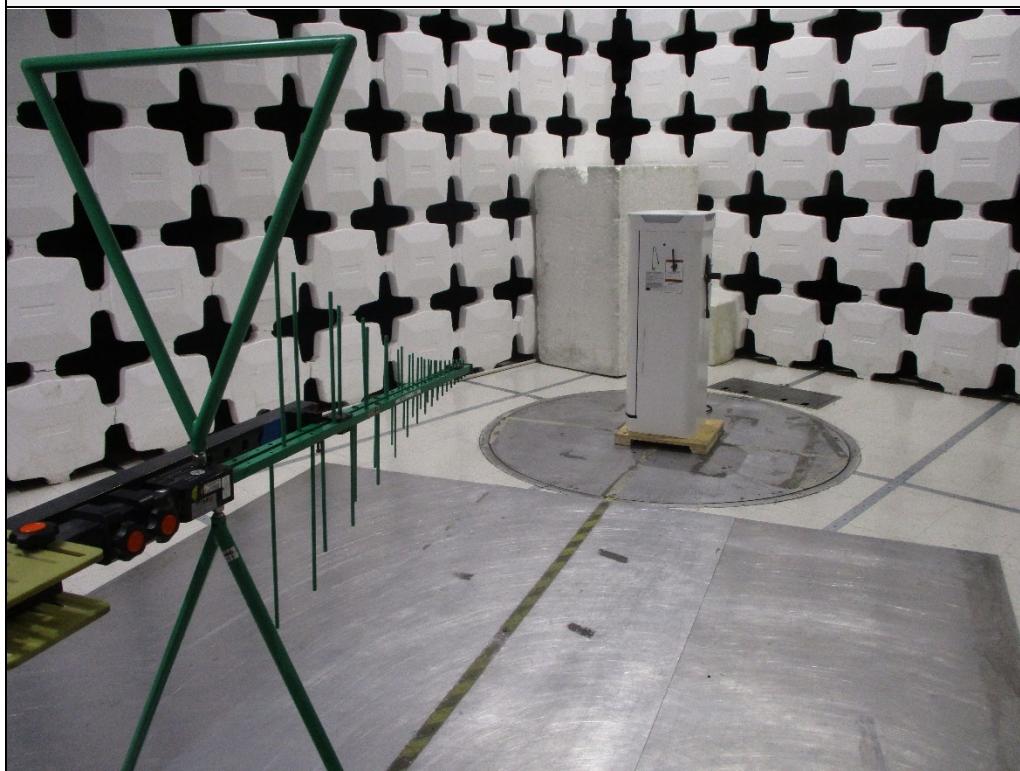
Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2

Requirements
The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the values in the following table.

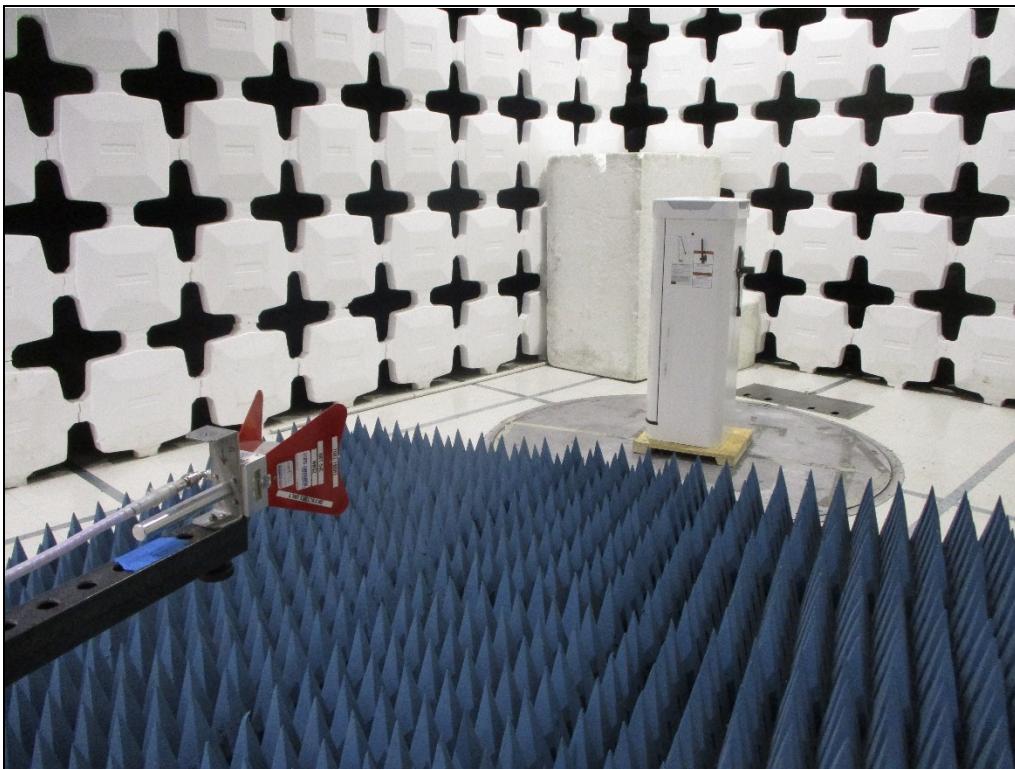
Radiated Emissions Limits (30MHz to 1GHz)		
Frequency of Emission (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)
30 – 88	100	40
88 – 216	150	43.5
216 – 960	200	46
Above 960	500	54
Radiated Emissions Limits (Above 1GHz)		
Frequency of Emission (MHz)	Peak Limit (dBµV/m)	Average Limit (dBµV/m)
Above 1000	74	54

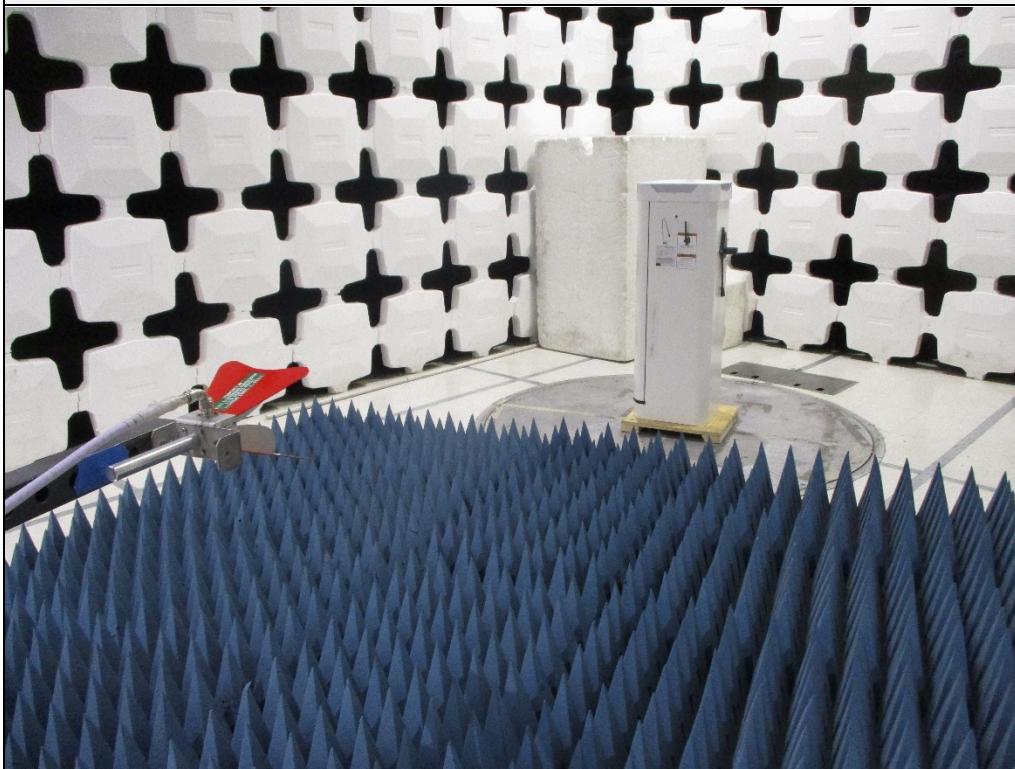

Procedure

Since a quasi-peak detector and an average detector requires long integration times, it is not practical to automatically sweep through the quasi-peak and average levels. Therefore, radiated emissions from the EUT were first scanned using a peak detector and automatically plotted. The frequencies where significant emission levels were noted were then remeasured using the quasi-peak detector or average detector.


The EUT was centered on the turntable. The broadband measuring antenna was positioned at a 3-meter distance from the EUT. The frequency range from 30MHz to 1GHz was investigated using a peak detector function with the bilog antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The frequency range from 1GHz to 5GHz was investigated using a peak detector function with the double ridged waveguide antenna at several heights, horizontal and vertical polarization, and with several different orientations of the EUT with respect to the antenna. The maximum levels for each antenna polarization were plotted.

Final radiated emissions were performed on all significant broadband and narrowband emissions found in the exploratory sweeps using the following methods:


- 1) Measurements from 30MHz to 1GHz were made using a quasi-peak detector and a broadband bilog antenna. Measurements above 1GHz were made using an average detector and a broadband double ridged waveguide antenna.
- 2) To ensure that maximum or worst case, emission levels were measured, the following steps were taken:
 - a) The EUT was rotated so that all sides were exposed to the receiving antenna.
 - b) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - c) The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings.
 - d) For hand-held or body-worn devices, the EUT was rotated through three orthogonal axes to determine which orientation produces the highest emission relative to the limit.


Test Setup for Radiated Emissions: 30MHz to 1GHz, Horizontal Polarization

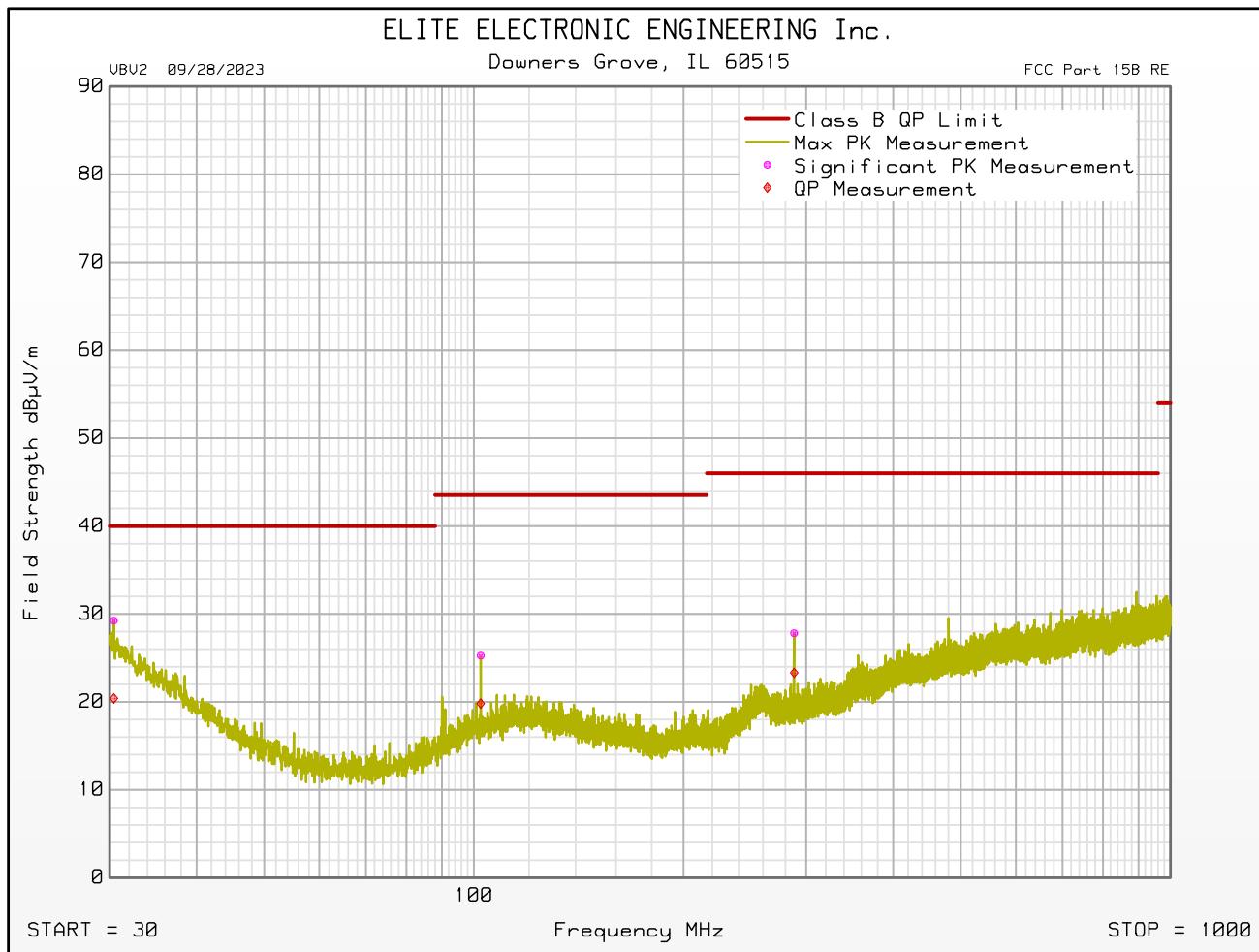
Test Setup for Radiated Emissions: 30MHz to 1GHz, Vertical Polarization

Test Setup for Radiated Emissions: 1GHz to 18GHz, Horizontal Polarization

Test Setup for Radiated Emissions: 1GHz to 18GHz, Vertical Polarization

FCC Part 15B Class B Radiated RF Emissions Test

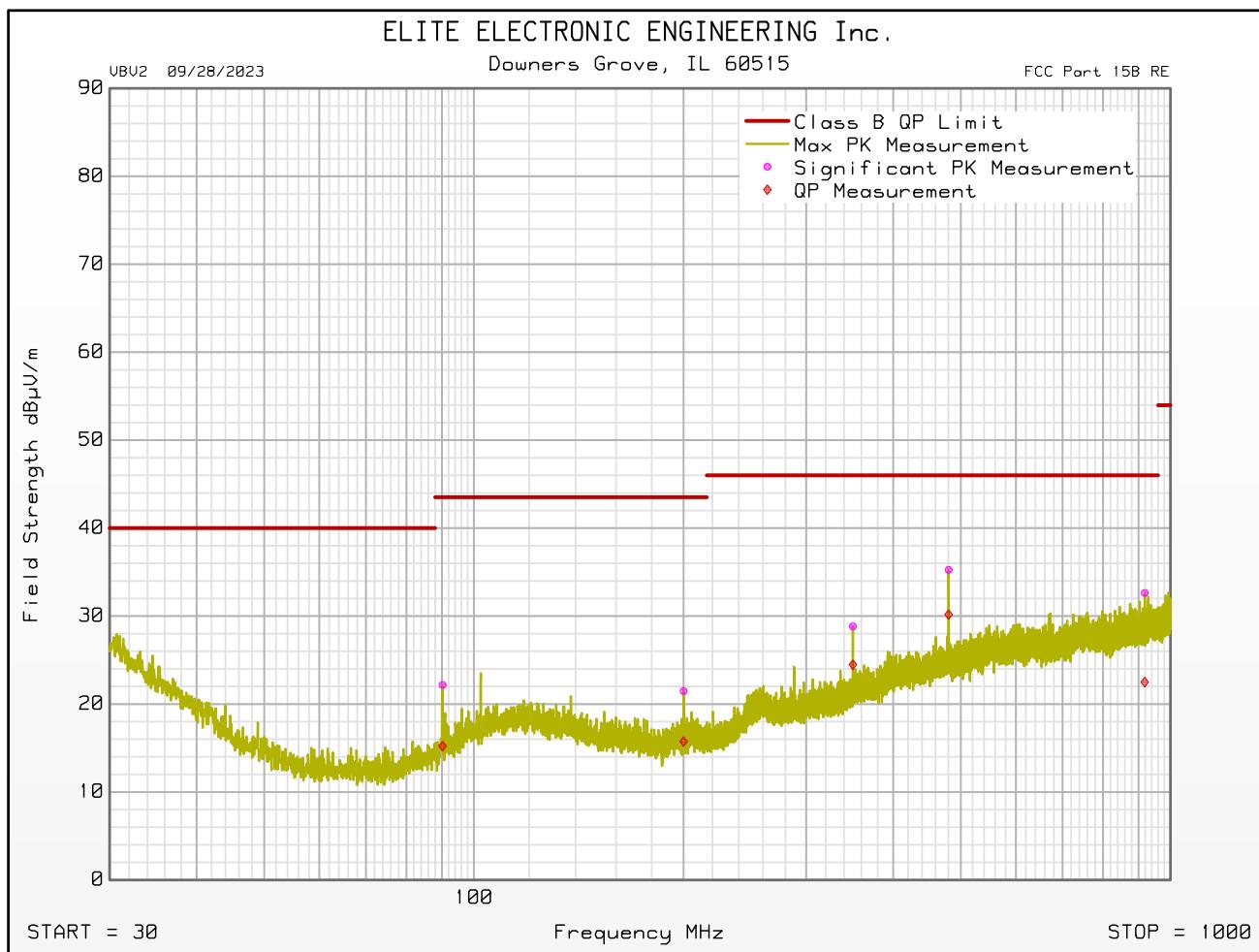
SW ID/Rev: VBV2 09/28/2023


Manufacturer : The Chamberlain Group LLC
 Model : CBG24DCW
 Serial Number : Prototype
 DUT Mode : Rx
 Turntable Step Angle (°) : 45
 Mast Positions (cm) : 120, 200, 340
 Scan Type : Stepped Scan
 Test RBW : 120 kHz
 Prelim Dwell Time (s) : 0.0001
 Notes : Receiver Hopping Between All 50 Channels
 Test Engineer : J. Cardenas
 Test Date : Jan 03, 2024 08:08:03 AM

Freq MHz	Peak Mtr Rdg dBuV	QP Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	QP Total dB μ V/m	QP Limit dB μ V/m	QP Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °	Excessive QP Level
30.420	4.6	-4.2	24.2	0.0	0.4	0.0	29.2	20.4	40.0	-19.6	Horizontal	120	225	
90.160	6.9	-0.1	14.9	0.0	0.4	0.0	22.2	15.2	43.5	-28.3	Vertical	200	225	
102.280	7.7	2.2	17.2	0.0	0.4	0.0	25.3	19.8	43.5	-23.7	Horizontal	340	135	
200.020	5.3	-0.4	15.4	0.0	0.8	0.0	21.5	15.7	43.5	-27.8	Vertical	120	270	
288.240	8.3	3.8	18.7	0.0	0.8	0.0	27.8	23.3	46.0	-22.7	Horizontal	200	270	
349.980	7.5	3.2	20.4	0.0	1.0	0.0	28.8	24.5	46.0	-21.5	Vertical	120	315	
480.360	10.9	5.8	23.2	0.0	1.1	0.0	35.3	30.2	46.0	-15.8	Vertical	200	180	
918.420	4.7	-5.4	26.4	0.0	1.5	0.0	32.6	22.5	46.0	-23.5	Vertical	120	315	

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 09/28/2023


Manufacturer : The Chamberlain Group LLC
Model : CBG24DCW
Serial Number : Prototype
DUT Mode : Rx
Turntable Step Angle (°) : 45
Mast Positions (cm) : 120, 200, 340
Antenna Polarization : Horizontal
Scan Type : Stepped Scan
Test RBW : 120 kHz
Prelim Dwell Time (s) : 0.0001
Notes : Receiver Hopping Between All 50 Channels
Test Engineer : J. Cardenas
Test Date : Jan 03, 2024 08:08:03 AM

FCC Part 15B Class B Radiated RF Emissions Test

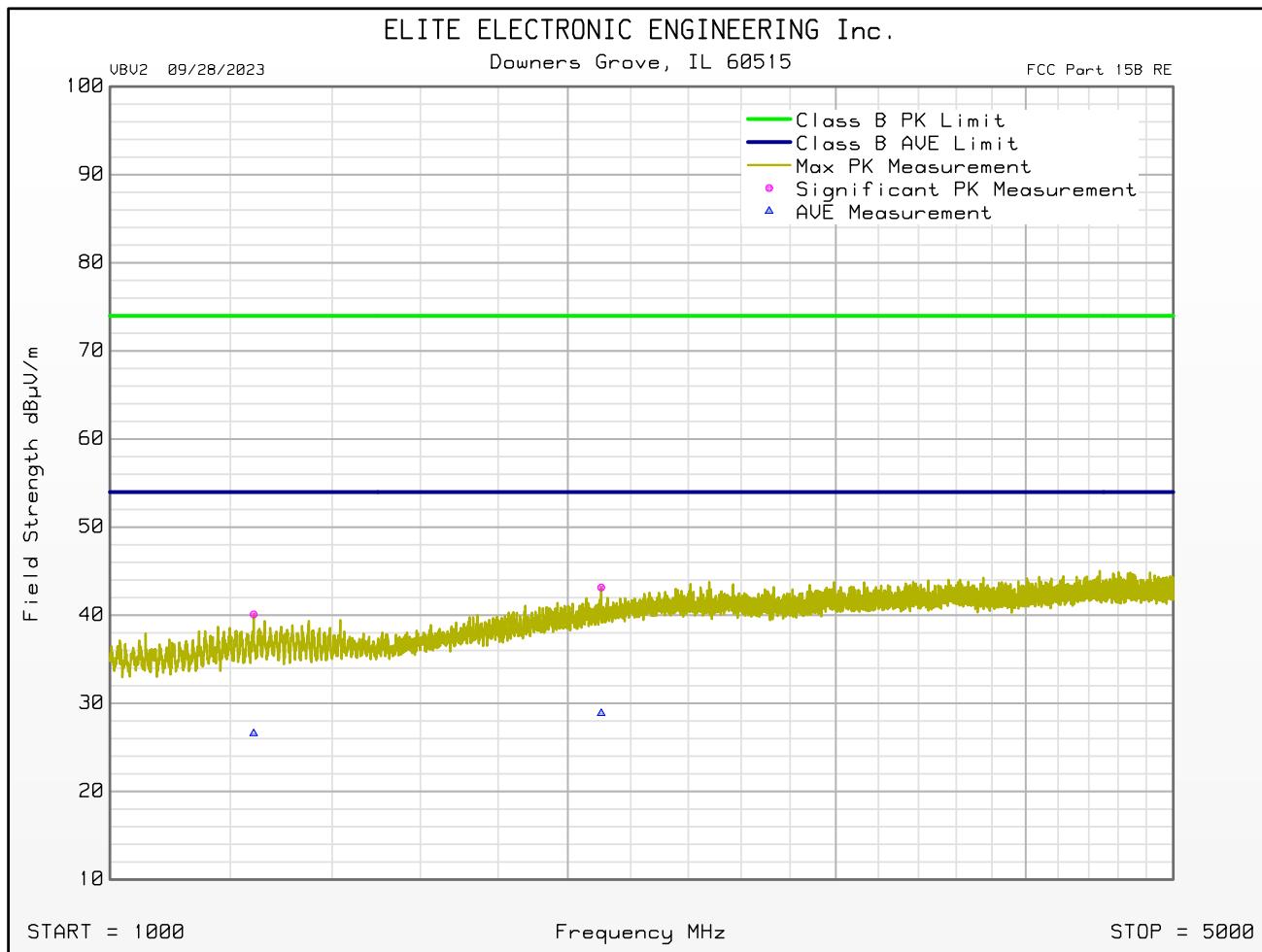
SW ID/Rev: VBV2 09/28/2023

Manufacturer : The Chamberlain Group LLC
Model : CBG24DCW
Serial Number : Prototype
DUT Mode : Rx
Turntable Step Angle (°) : 45
Mast Positions (cm) : 120, 200, 340
Antenna Polarization : Vertical
Scan Type : Stepped Scan
Test RBW : 120 kHz
Prelim Dwell Time (s) : 0.0001
Notes : Receiver Hopping Between All 50 Channels
Test Engineer : J. Cardenas
Test Date : Jan 03, 2024 08:08:03 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 09/28/2023

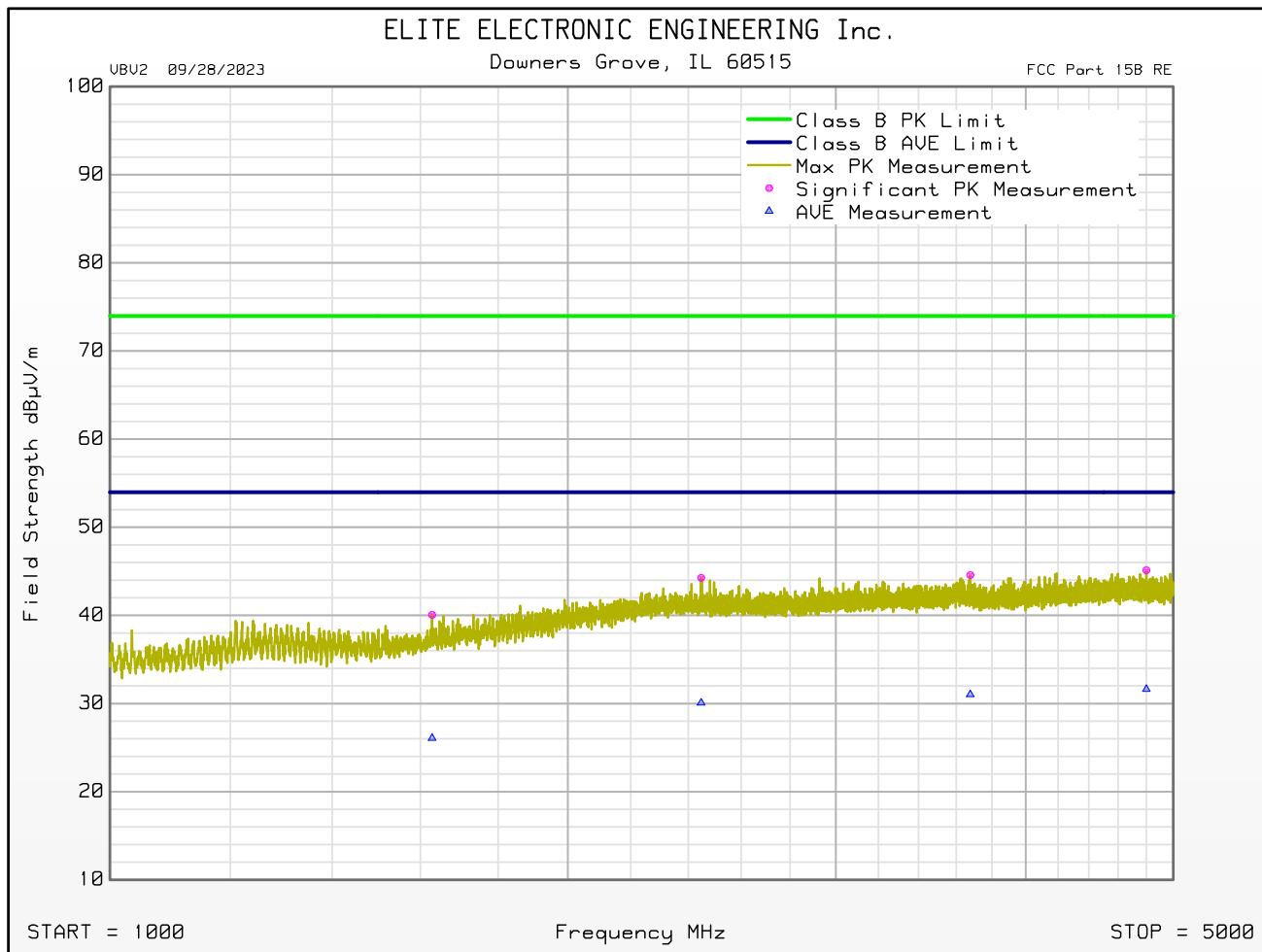
Manufacturer : The Chamberlain Group LLC
 Model : CBG24DCW
 Serial Number : Prototype
 DUT Mode : Rx
 Turntable Step Angle (°) : 45
 Mast Positions (cm) : 120, 200, 340
 Scan Type : Stepped Scan
 Test RBW : 1 MHz
 Prelim Dwell Time (s) : 0.0001
 Notes : Receiver Hopping Between All 50 Channels
 Test Engineer : J. Cardenas
 Test Date : Dec 29, 2023 07:56:15 AM


Freq MHz	Peak Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Peak Total dB μ V/m	Peak Limit dB μ V/m	Peak Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °	Excessive Peak Level
1243.000	50.4	28.8	-40.8	1.8	0.0	40.1	74.0	-33.9	Horizontal	120	180	
1628.500	50.0	29.1	-41.1	2.1	0.0	40.1	74.0	-33.9	Vertical	120	315	
2103.500	49.8	31.7	-40.7	2.4	0.0	43.2	74.0	-30.8	Horizontal	120	225	
2447.000	49.5	32.6	-40.5	2.6	0.0	44.3	74.0	-29.7	Vertical	340	315	
3677.500	48.1	33.5	-40.4	3.3	0.0	44.6	74.0	-29.4	Vertical	200	315	
4801.000	47.6	34.3	-40.5	3.7	0.0	45.1	74.0	-28.9	Vertical	340	45	

Freq MHz	Average Mtr Rdg dBuV	Ant Fac dB/m	Amp Fac dB	Cbl Fac dB	Dist Corr dB	Average Total dB μ V/m	Average Limit dB μ V/m	Average Lim Mrg dB	Ant Pol	Mast Ht cm	Azim °	Excessive Average Level
1243.000	36.8	28.8	-40.8	1.8	0.0	26.6	54.0	-27.4	Horizontal	120	180	
1628.500	36.0	29.1	-41.1	2.1	0.0	26.1	54.0	-27.9	Vertical	120	315	
2103.500	35.5	31.7	-40.7	2.4	0.0	28.9	54.0	-25.1	Horizontal	120	225	
2447.000	35.3	32.6	-40.5	2.6	0.0	30.1	54.0	-23.9	Vertical	340	315	
3677.500	34.6	33.5	-40.4	3.3	0.0	31.0	54.0	-22.9	Vertical	200	315	
4801.000	34.1	34.3	-40.5	3.7	0.0	31.6	54.0	-22.4	Vertical	340	45	

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 09/28/2023

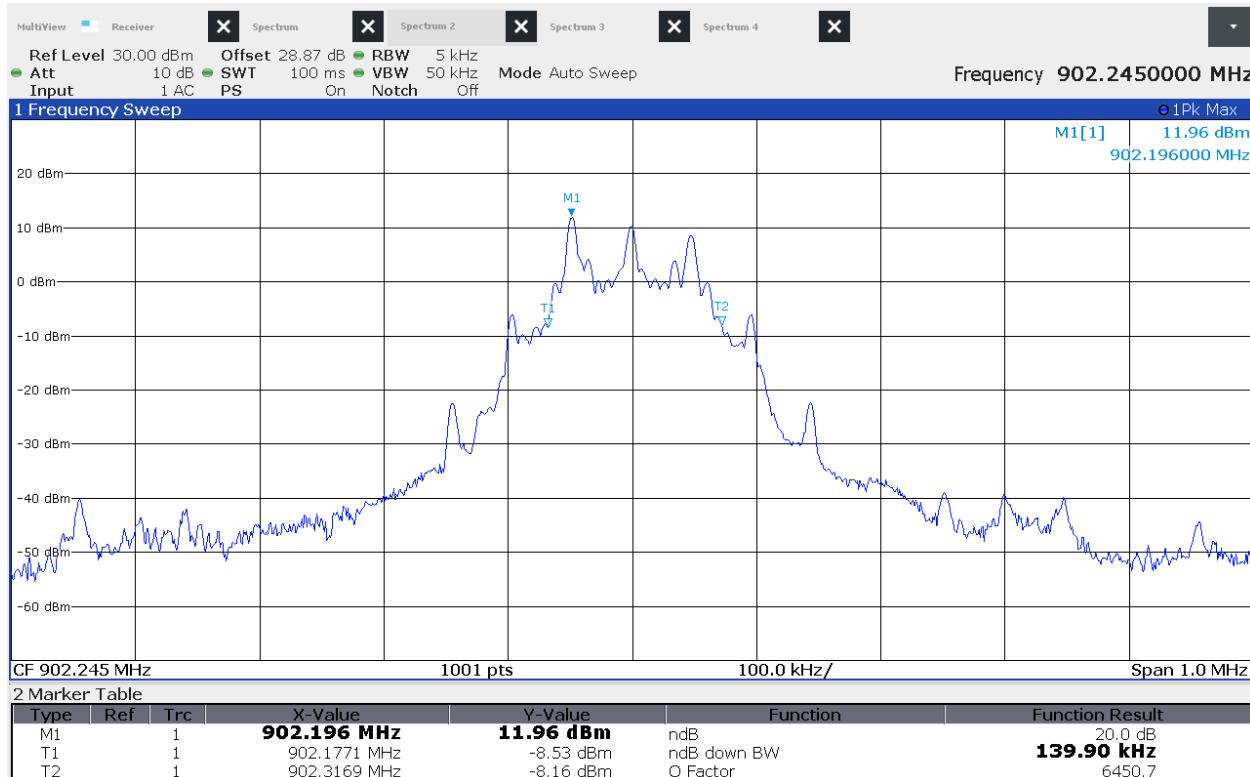

Manufacturer : The Chamberlain Group LLC
Model : CBG24DCW
Serial Number : Prototype
DUT Mode : Rx
Turntable Step Angle (°) : 45
Mast Positions (cm) : 120, 200, 340
Antenna Polarization : Horizontal
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes : Receiver Hopping Between All 50 Channels
Test Engineer : J. Cardenas
Test Date : Dec 29, 2023 07:56:15 AM

FCC Part 15B Class B Radiated RF Emissions Test

SW ID/Rev: VBV2 09/28/2023

Manufacturer : The Chamberlain Group LLC
Model : CBG24DCW
Serial Number : Prototype
DUT Mode : Rx
Turntable Step Angle (°) : 45
Mast Positions (cm) : 120, 200, 340
Antenna Polarization : Vertical
Scan Type : Stepped Scan
Test RBW : 1 MHz
Prelim Dwell Time (s) : 0.0001
Notes : Receiver Hopping Between All 50 Channels
Test Engineer : J. Cardenas
Test Date : Dec 29, 2023 07:56:15 AM

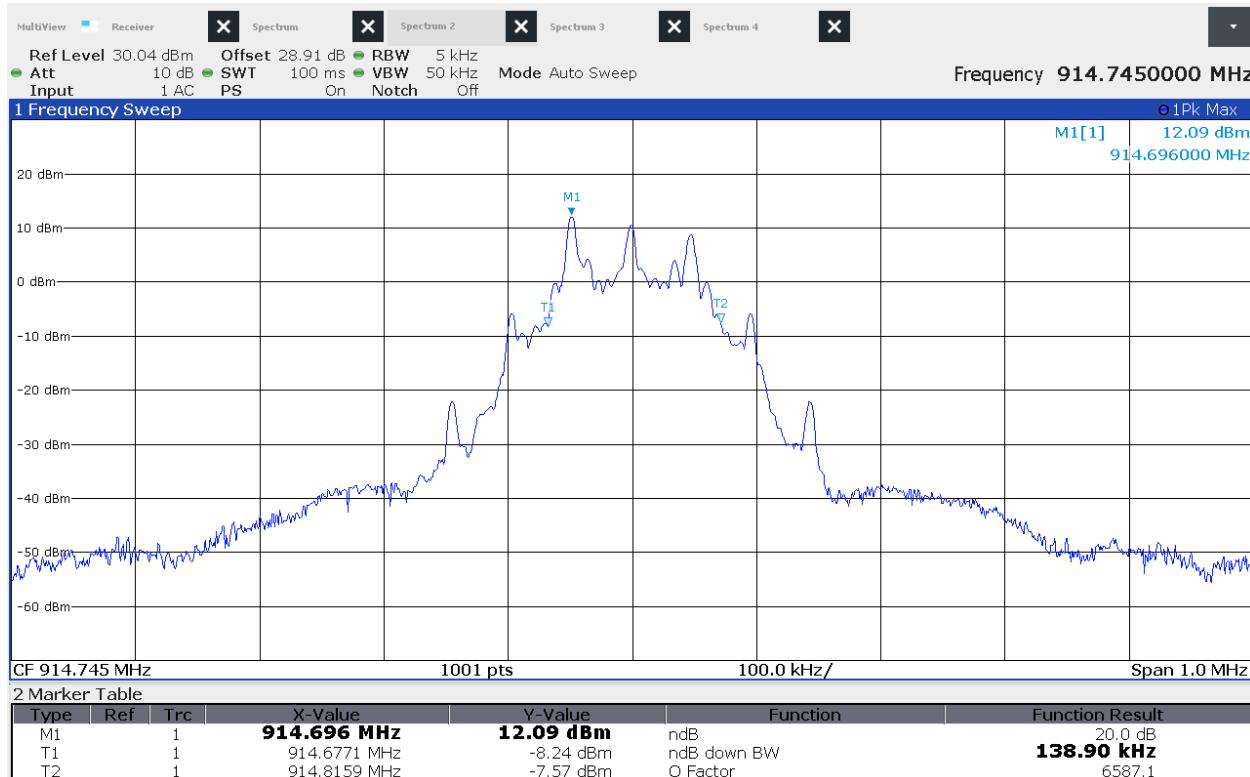
21. 20dB Bandwidth


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Type of Antennas Used	N/A
Notes	None

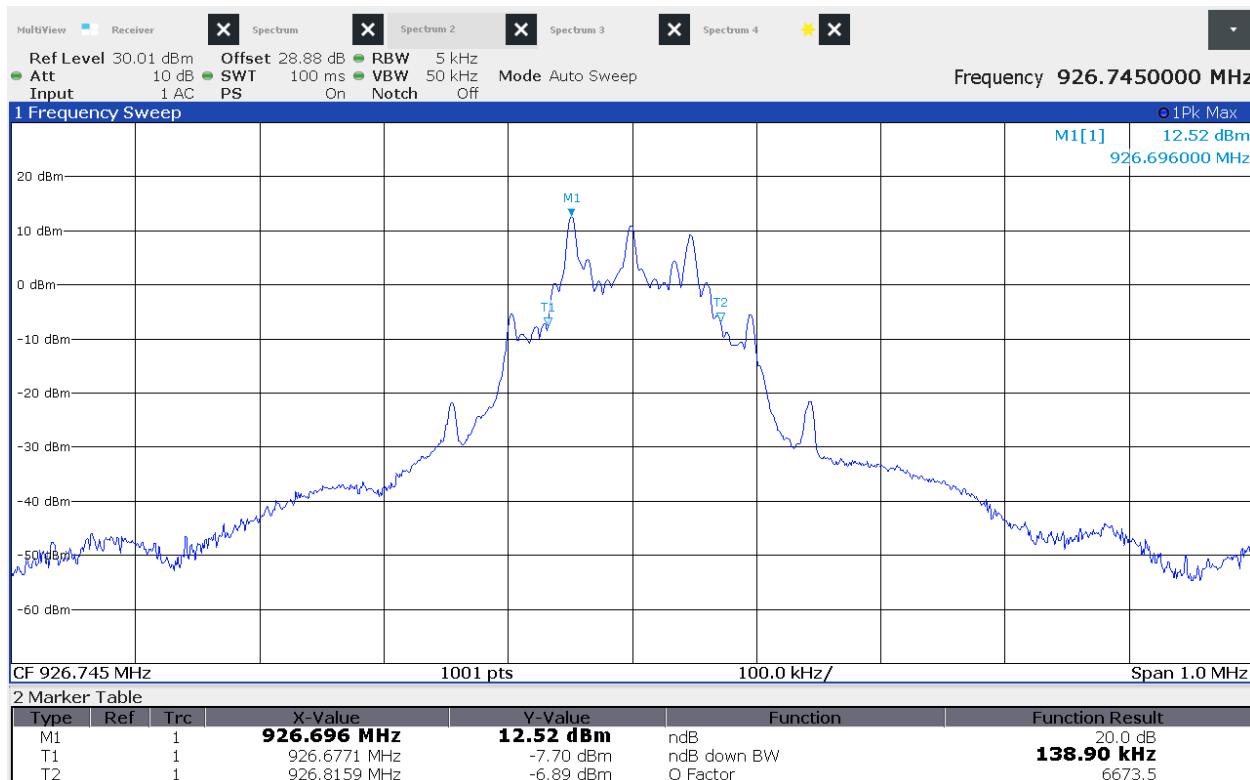
Requirements
For frequency hopping systems operating in the 902-928 MHz band:
Systems using frequency hopping techniques operating in the 902 – 928MHz band are allowed a maximum 20dB bandwidth of 500kHz.

Procedure
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously.
The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to $\geq 1\%$ of the 20dB BW. The span was set to approximately 2 to 3 times the 20dB bandwidth.
The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was then screenshot and saved.


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	20dB BW = 139.9kHz
Notes	None

Occupied Bandwidth

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 20dB BW
 Date : 12/21/2023 7:22:29 AM
 Notes : None


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	20dB BW = 138.9kHz
Notes	None

Occupied Bandwidth

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 20dB BW
 Date : 12/21/2023 8:35:06 AM
 Notes : None

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	926.745MHz
Result	20dB BW = 138.9kHz
Notes	None

Occupied Bandwidth

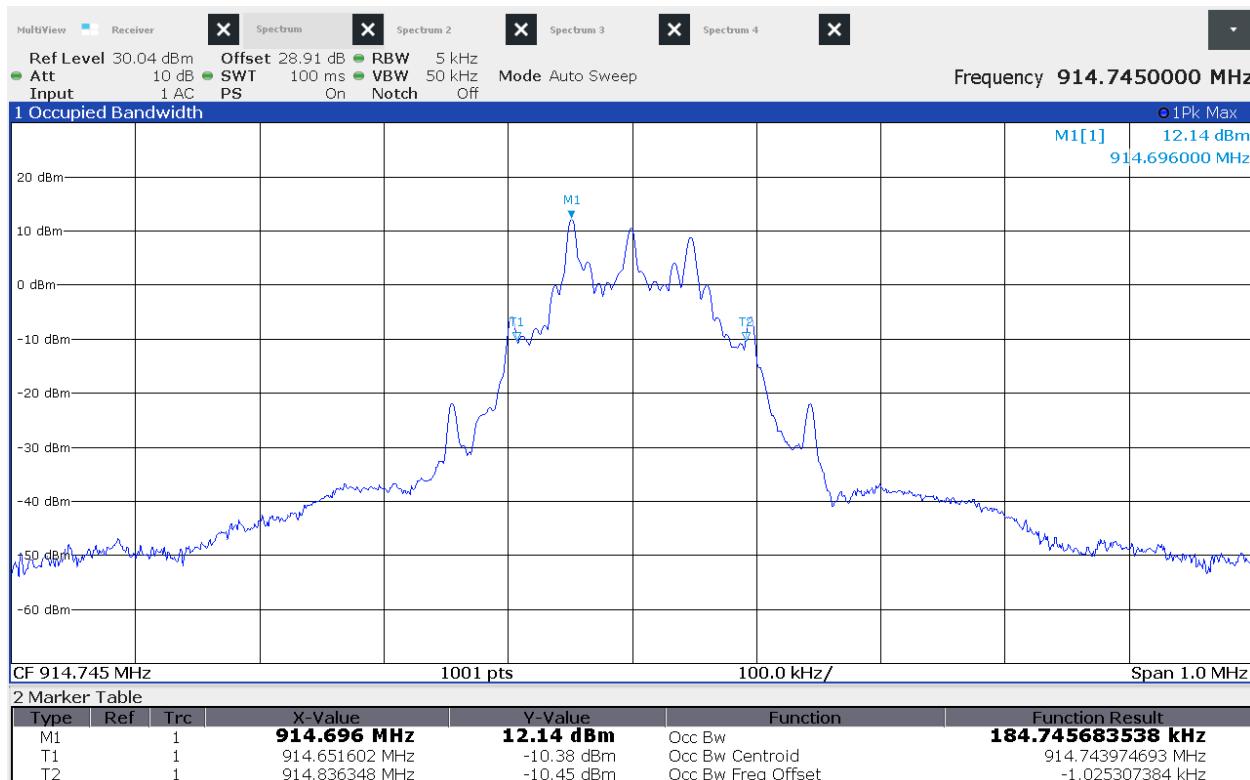
Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 20dB BW
 Date : 12/21/2023 8:39:10 AM
 Notes : None


22. Occupied Bandwidth (99%)

EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

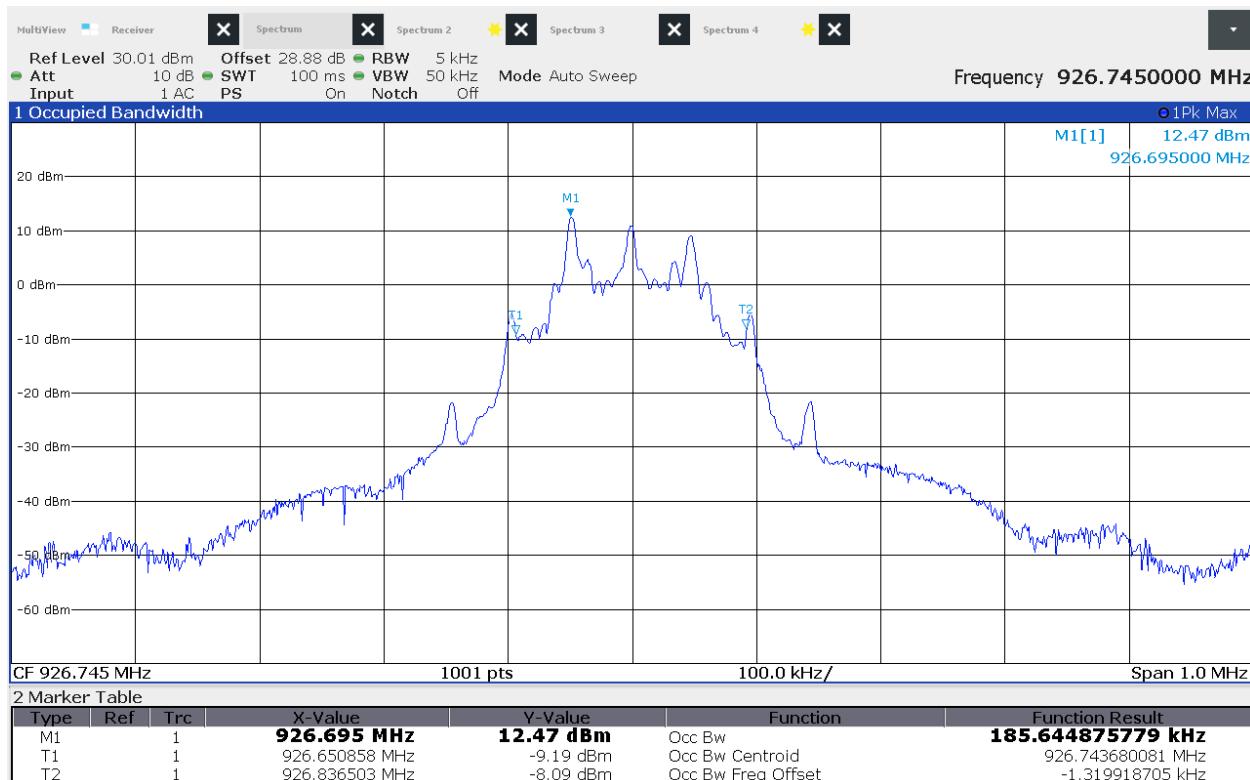
Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Type of Antennas Used	N/A
Notes	None

Procedure
<p>The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. The EUT was allowed to transmit continuously. The transmit channel was set separately to low, middle, and high channels. The resolution bandwidth (RBW) was set to 1% to 5% of the actual occupied / x dB bandwidth, the video bandwidth (VBW) was set 3 times greater than the RBW, and the span was set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency.</p> <p>The 'Max-Hold' function was engaged. The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined. The analyzer's display was plotted using a 'screen dump' utility.</p>


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	902.245MHz
Result	OBW = 184.1kHz
Notes	None

Occupied Bandwidth

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 99% OBW
 Date : 12/21/2023 7:21:56 AM
 Notes : None


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	OBW = 184.7kHz
Notes	None

Occupied Bandwidth

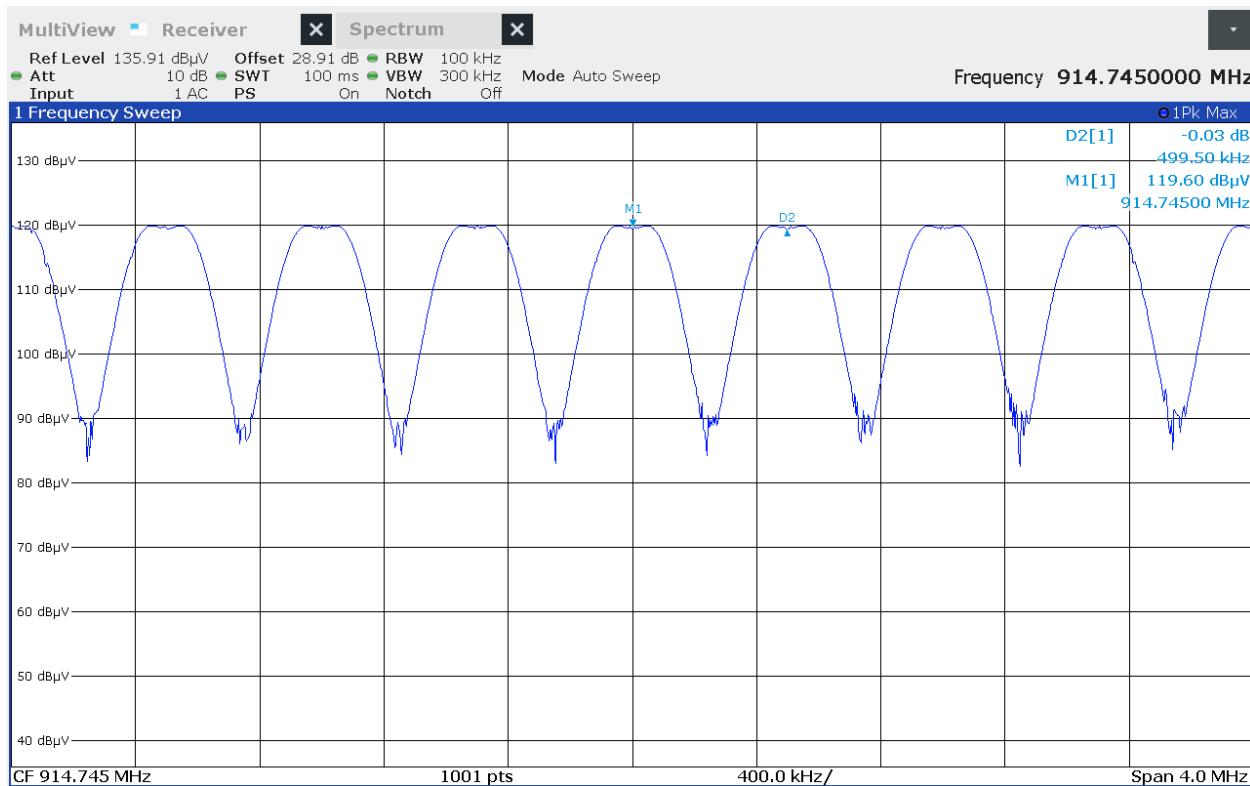
Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 99% OBW
 Date : 12/21/2023 8:29:12 AM
 Notes : None

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	926.745MHz
Result	OBW = 185.6kHz
Notes	None

Occupied Bandwidth

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : 99% OBW
 Date : 12/21/2023 8:38:51 AM
 Notes : None

23. Carrier Frequency Separation


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Type of Antennas Used	N/A
Notes	None

Requirement
Channel carrier frequencies shall be separated by a minimum of 25kHz or the 20dB bandwidth, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125mW.

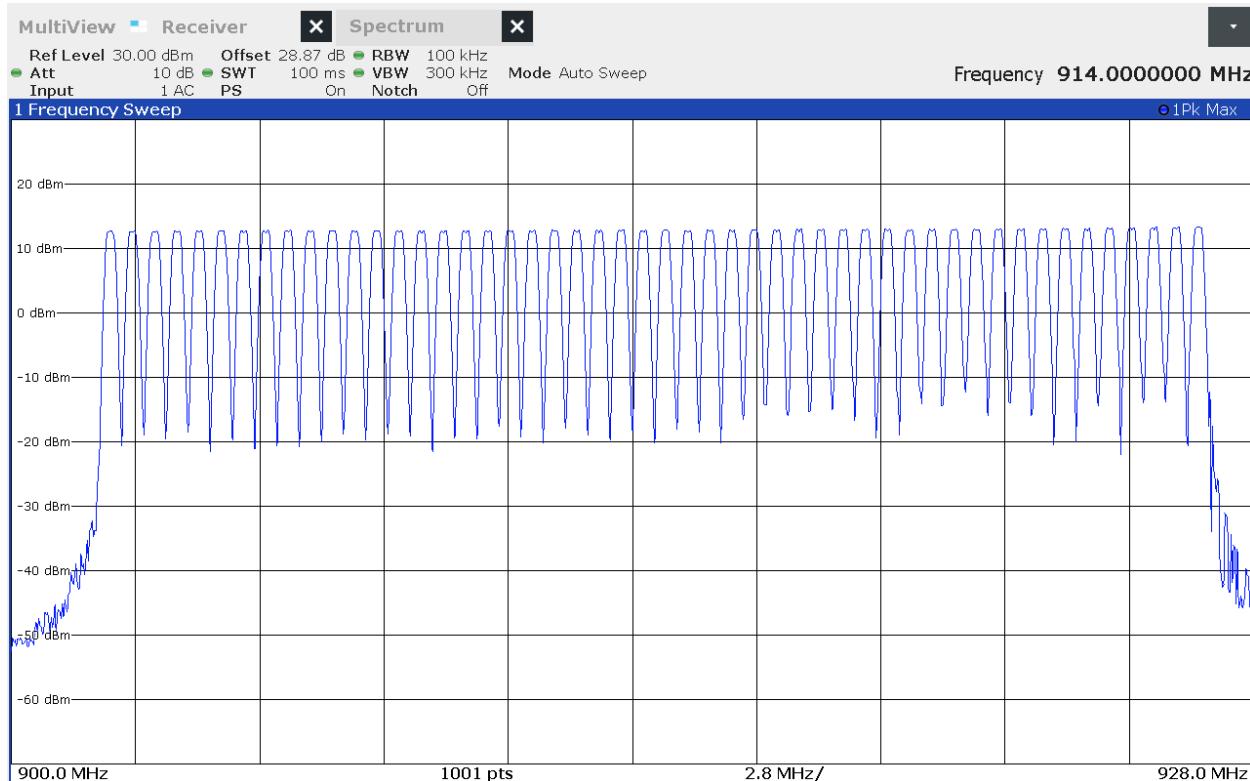
Procedure
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously. Span was set wide enough to capture the peaks of two adjacent channels. The resolution bandwidth was set to approximately 30% of the channel spacing. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the peaks of at least two adjacent channels. When the trace had stabilized after multiple scans, the marker-delta function was used to determine the separation between the peaks of the adjacent channels. The analyzer's display was plotted using a 'screen dump' utility.

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	Separation = 499.5kHz
Notes	None

Carrier Frequency Separation

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Separation = 499.5kHz
 Date : 12/21/2023 8:56:21 AM
 Notes : 169.254.22.119

24. Number of Carrier Channels


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Type of Antennas Used	N/A
Notes	None

Requirements
FOR 902-928 MHz, 20dB BW < 250kHz: The system shall use at least 50 hopping frequencies.

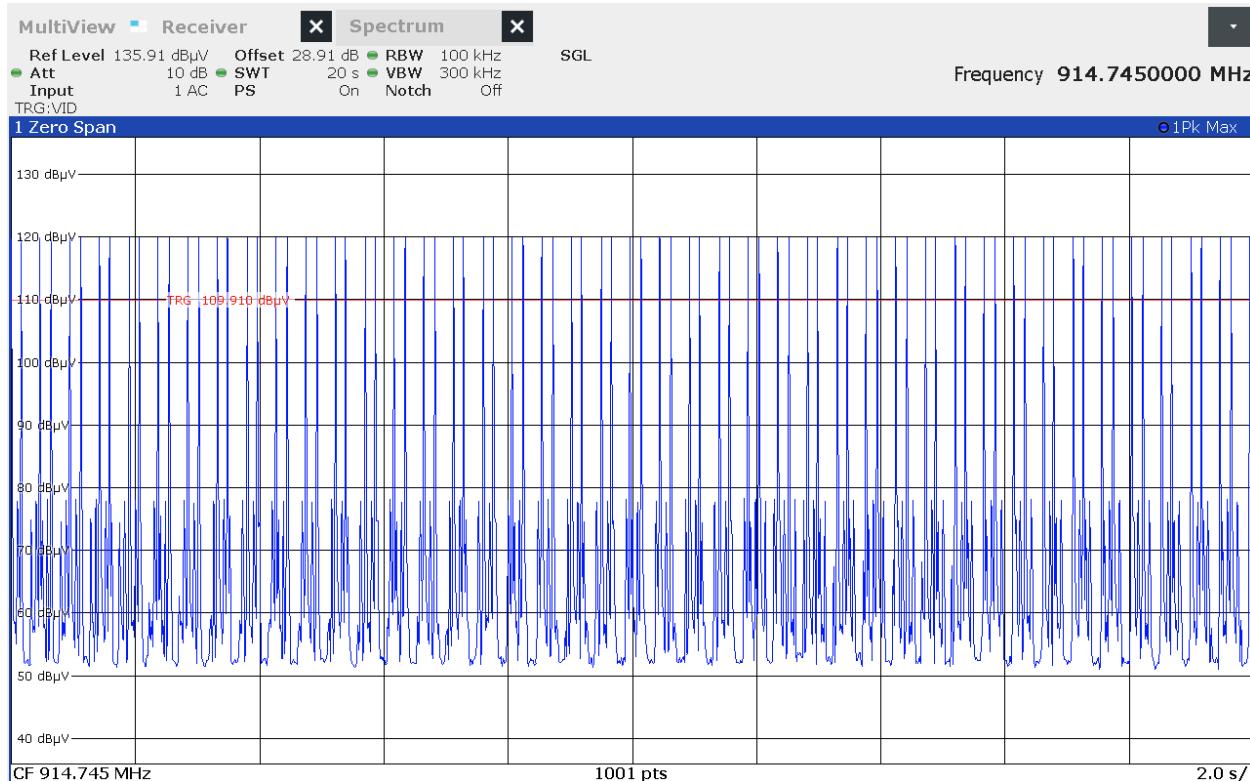
Procedure
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.
The resolution bandwidth (RBW) was set to less than 30% of the channel spacing or the 20dB bandwidth, whichever is smaller. The peak detector and 'Max-Hold' function were engaged. The span was set wide enough to capture the entire frequency band of operation.
The EUT's signal was allowed to stabilize after multiple scans. The number of hopping frequencies was counted. The analyzer's display was plotted using a 'screen dump' utility.

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	Range Observed = 902-928MHz
Result	50 hopping frequencies
Notes	None

Number of Carrier Frequencies

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Hopping Channels = 50
 Date : 12/21/2023 7:59:02 AM
 Notes : None

25. Average Time of Occupancy


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Type of Antennas Used	N/A
Notes	None

Requirements
For 902-928 MHz, 20dB BW < 250kHz: The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

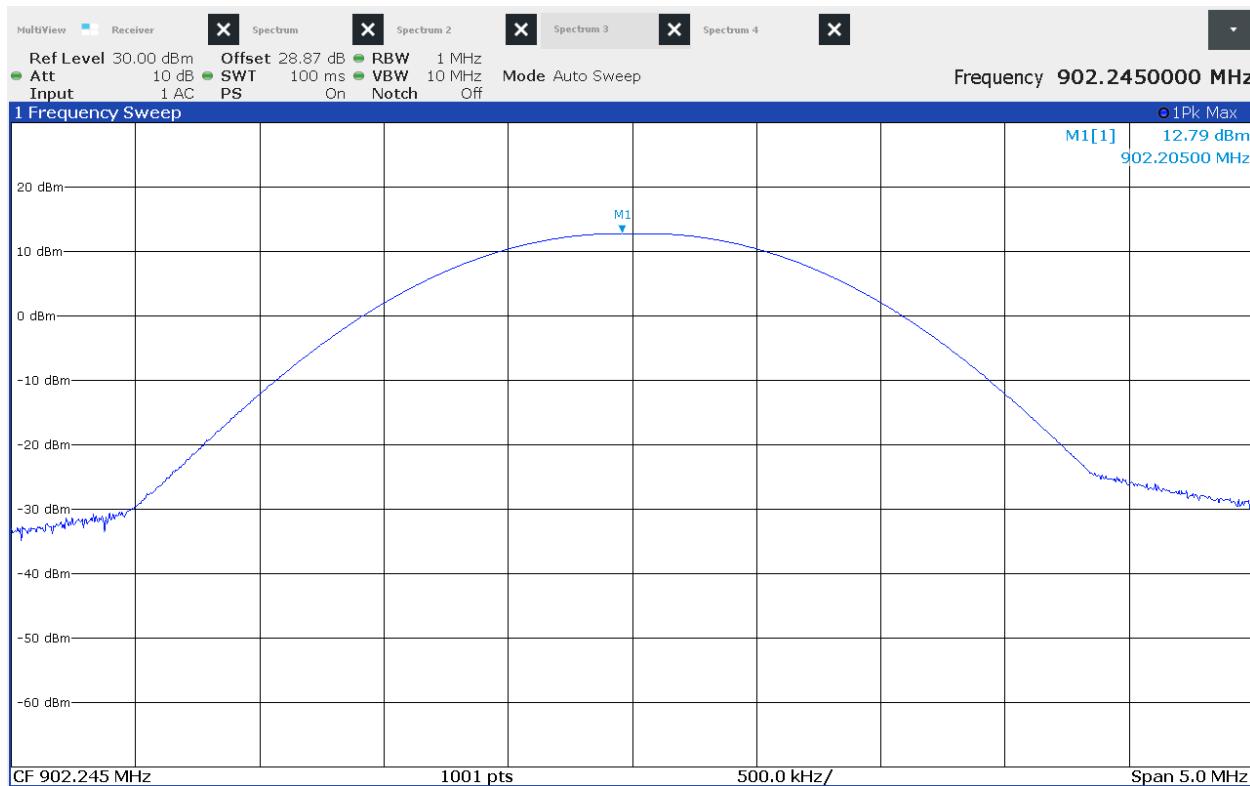
Procedure
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function enabled, the EUT was allowed to transmit continuously.
The spectrum analyzer was set to zero span centered on a hopping channel. The resolution bandwidth (RBW) was set \geq to the channel spacing. The sweep was set to capture the entire dwell time per hopping channel. The peak detector and 'Max-Hold' function were engaged. The analyzer's display was plotted using a 'screen dump' utility.

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	Ave. Time of Occupancy = 0.104s
Notes	None

Time of Occupancy

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Total Time = $87 \times 1.2\text{msec} = 104.4\text{msec}$
 Date : 12/21/2023 9:11:48 AM
 Notes : 169.254.22.119

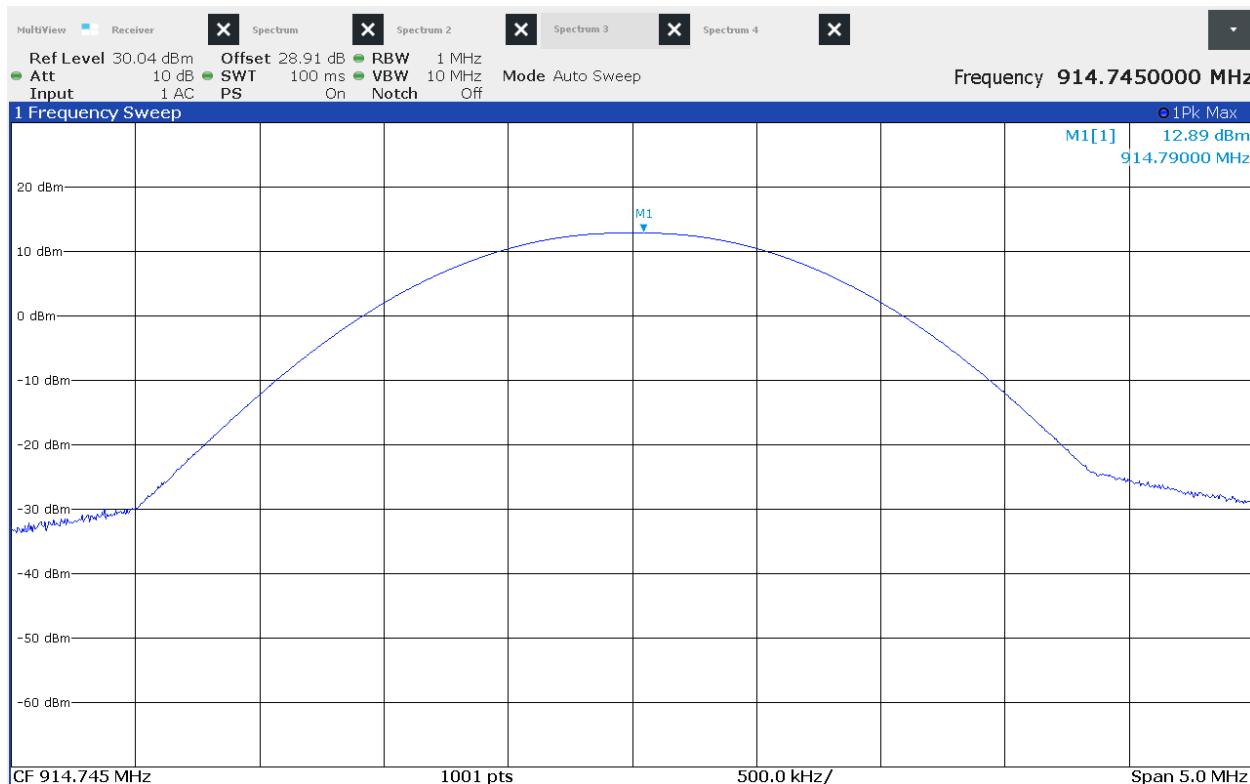
26. Maximum Peak Conducted Output Power


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Test Site Used	N/A
Notes	None

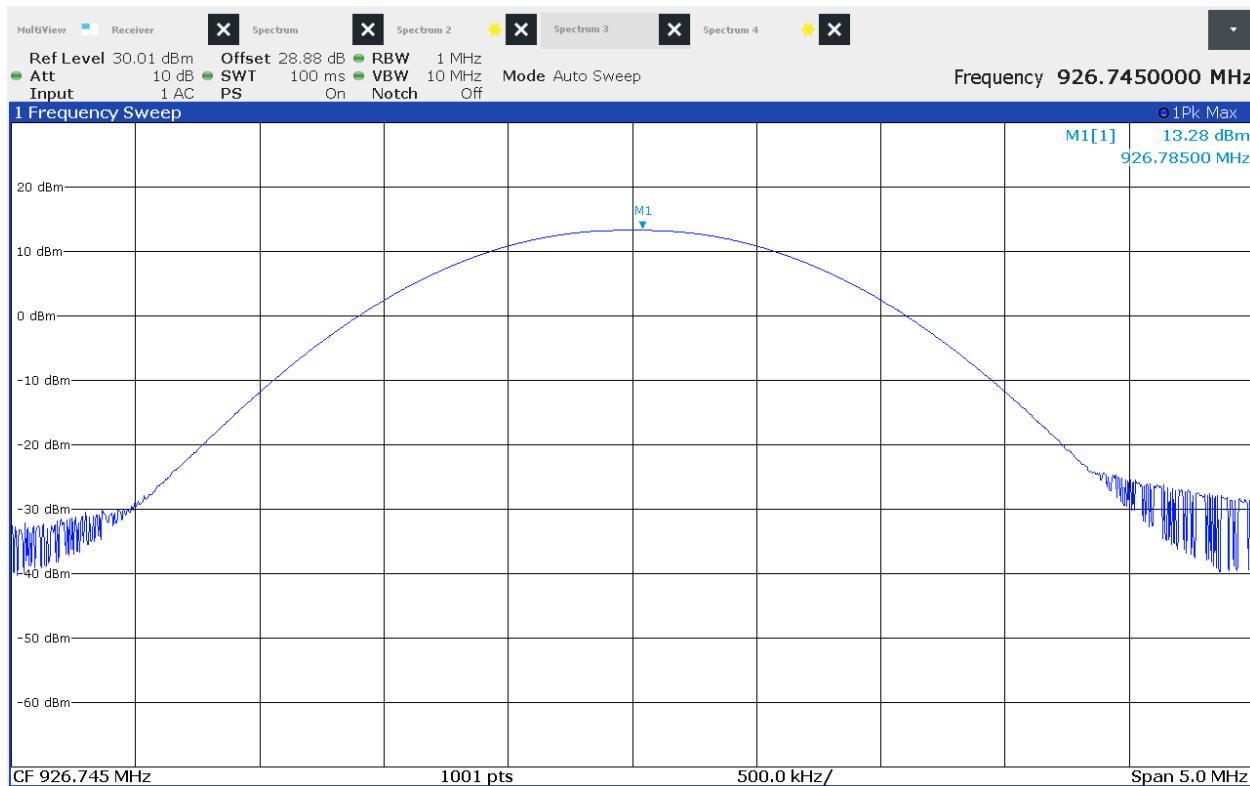
Requirements
FOR FREQUENCY HOPPING SYSTEMS IN THE 902-928 MHz, CHANNELS \geq 50: The output power shall not exceed 1W (30dBm).

Procedure
The antenna port of the EUT was connected to the spectrum analyzer through 30dB of attenuation. With the hopping function disabled, the EUT was allowed to transmit continuously. The frequency hopping channel was set separately to low, middle, and high hopping channels. The resolution bandwidth (RBW) was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20dB bandwidth. The 'Max-Hold' function was engaged. The maximum meter reading was recorded. The peak power output was calculated for the low, middle, and high hopping frequencies.


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	902.245MHz
Result	Output Power = 19mW (12.79dBm)
Notes	None

Peak Output Power

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Output Power
 Date : 12/21/2023 7:23:01 AM
 Notes : None


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	Output Power = 19.5mW (12.89dBm)
Notes	None

Peak Output Power

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Output Power
 Date : 12/21/2023 8:36:04 AM
 Notes : None

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	926.745MHz
Result	Output Power = 21.3mW (13.28dBm)
Notes	None

Peak Output Power

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Output Power
 Date : 12/21/2023 8:38:20 AM
 Notes : None

27. Effective Isotropic Radiated Power (EIRP)

EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Radiated
Type of Test Site	Semi-Anechoic Chamber
Test Site Used	R29F
Type of Antennas Used	Bilog (or equivalent)
Notes	None

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1

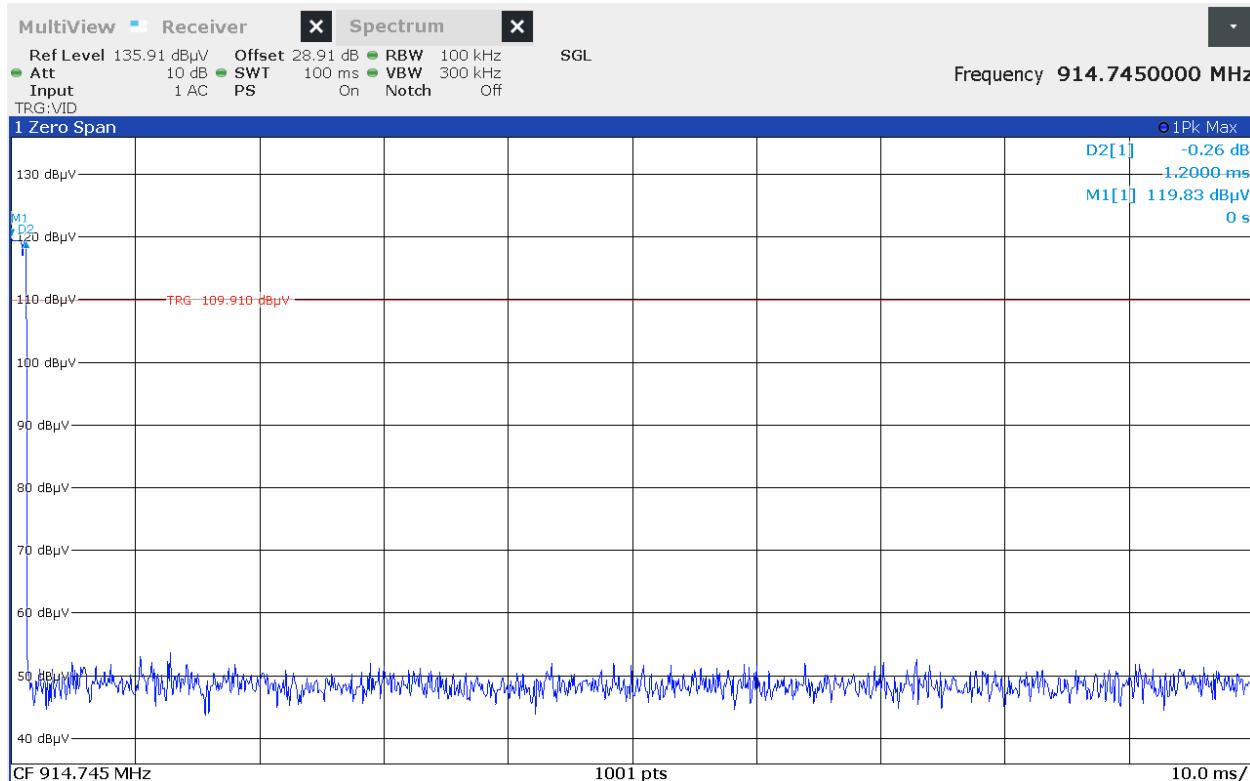
Requirements
FOR FREQUENCY HOPPING SYSTEMS IN THE 902-928 MHz, CHANNELS \geq 50: The output power shall not exceed 4W (36dBm).

Procedure
The EUT was placed on the non-conductive stand and set to transmit. A bilog antenna was placed at a test distance of 3 meters from the EUT. The resolution bandwidth (RBW) of the spectrum analyzer was set to greater than the 20dB bandwidth. The span was set to approximately 5 times the 20 dB bandwidth. The EUT was maximized for worst case emissions (or maximum output power) at the measuring antenna. The maximum meter reading was recorded. The peak power output was measured for the low, middle, and high hopping frequencies.
The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, a dipole antenna (double ridged waveguide antenna for all measurements above 1GHz) was then set in place of the EUT and connected to a calibrated signal generator. The output of the signal generator was adjusted to match the received level at the spectrum analyzer. The signal level was recorded. The reading was then corrected to compensate for cable loss (and antenna gain for all measurements above 1GHz), as required. The peak power output was calculated for low, middle, and high hopping frequencies.

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Result	Max EIRP = 239.9mW (23.8dBm)
Notes	None

Freq (MHz)	Ant Pol	Wide BW Meter Reading (dB μ V)	Matched Sig Gen Reading (dBm)	Equivalent Antenna Gain (dB)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)	Margin (dB)
902.25	H	88.2	20.9	2.2	2.0	21.0	36.0	-15.0
	V	88.4	23.0	2.2	2.0	23.1	36.0	-12.9
914.75	H	89.4	22.1	2.2	2.1	22.2	36.0	-13.8
	V	89.7	23.3	2.2	2.1	23.4	36.0	-12.6
926.75	H	84.9	17.8	2.2	2.1	17.9	36.0	-18.1
	V	89.8	23.7	2.2	2.1	23.8	36.0	-12.2

28. Duty Cycle Factor Measurements


EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Type of Antennas Used	N/A
Notes	None

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1

Procedure
The duty cycle factor is used to convert peak detected readings to average readings when pulsed modulation is employed. This factor is computed from the time domain trace of the pulse modulation signal.
With the transmitter set up to transmit for maximum pulse density, the time domain trace is displayed on the spectrum analyzer. This trace is obtained by tuning center frequency to the transmitter frequency and then setting a zero-span width with 10msec/div. The amplitude settings are adjusted so that the on/off transitions clear the 4 th division from the bottom of the display. The markers are set at the beginning and end of the “on-time”. The trace is recorded.
Next the spectrum analyzer center frequency is set to the transmitter frequency with a zero span width and 10msec/div. This shows if the word is longer than 100msec or shorter than 100msec. If the word period is less than 100msec, the display is set to show at least one word. The on-time and off-time are then measured. The on time is total time signal level exceeds the 4th division. Off-time is time under for the word period.
The duty cycle is then computed as $\frac{\text{On Time}}{\text{Word Period}}$, where $\text{Word Period} = (\text{On Time} + \text{Off Time})$.

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	914.745MHz
Result	On Time = 1.2msec
Notes	None

Duty Cycle

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Duty Cycle 100msec
 Date : 12/21/2023 9:11:03 AM
 Notes : None

$$\text{Duty Cycle Factor} = 20 \log \left(\frac{1.2\text{ms}}{100\text{ms}} \right) = -38.4\text{dB}$$

29. Case Spurious Radiated Emissions

EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Type of Test Site	Semi-Anechoic Chamber
Test Site Used	R29F
Type of Antennas Used	Below 1GHz: Bilog (or equivalent) Above 1GHz: Double-Ridged Waveguide (or equivalent)
Notes	None

Measurement Uncertainty	
Measurement Type	Expanded Measurement Uncertainty
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz)	4.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 6 GHz)	3.1
Radiated disturbance (electric field strength on an open area test site or alternative test site) (6 GHz – 18 GHz)	3.2
Radiated disturbance (electric field strength on an open area test site or alternative test site) (18 GHz – 26.5 GHz)	3.3
Radiated disturbance (electric field strength on an open area test site or alternative test site) (26.5 GHz – 40 GHz)	3.4

Procedure

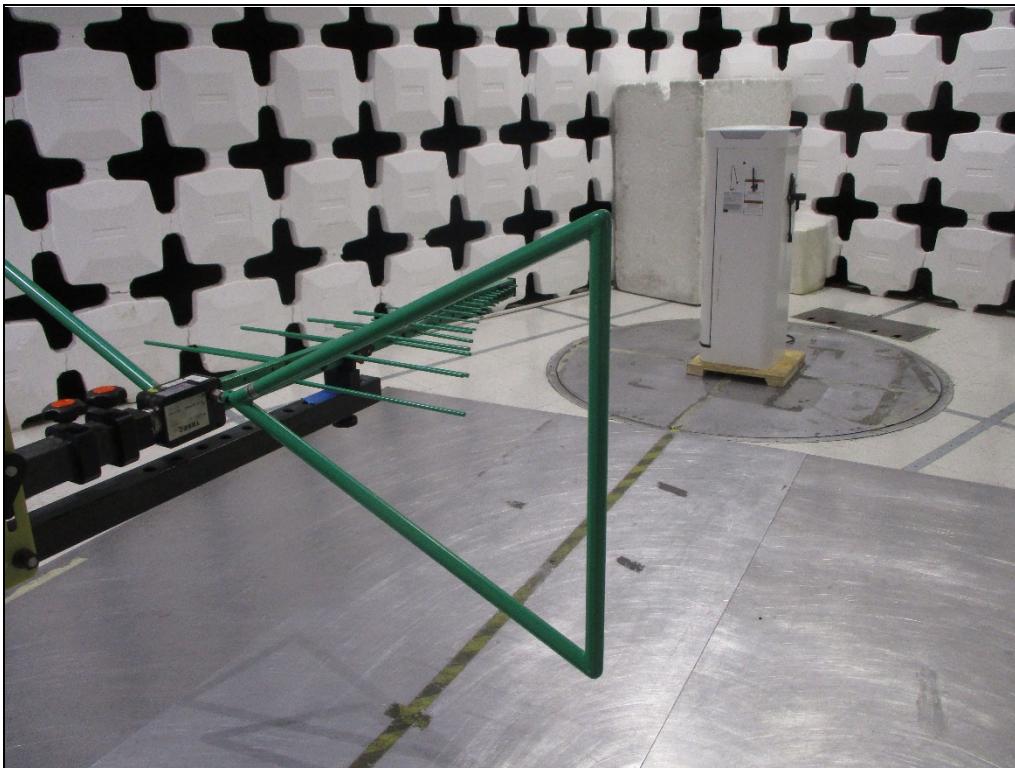
Radiated measurements were performed in a 32ft. x 20ft. x 14ft. high shielded enclosure. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All powerlines and signal lines entering the enclosure pass through filters on the enclosure wall. The powerline filters prevent extraneous signals from entering the enclosure on these leads.

Preliminary radiated emissions tests were performed to determine the emission characteristics of the EUT. For the preliminary test, a broadband measuring antenna was positioned at a 3-meter distance from the EUT. The entire frequency range from 30MHz to 10.0GHz was investigated using a peak detector function.

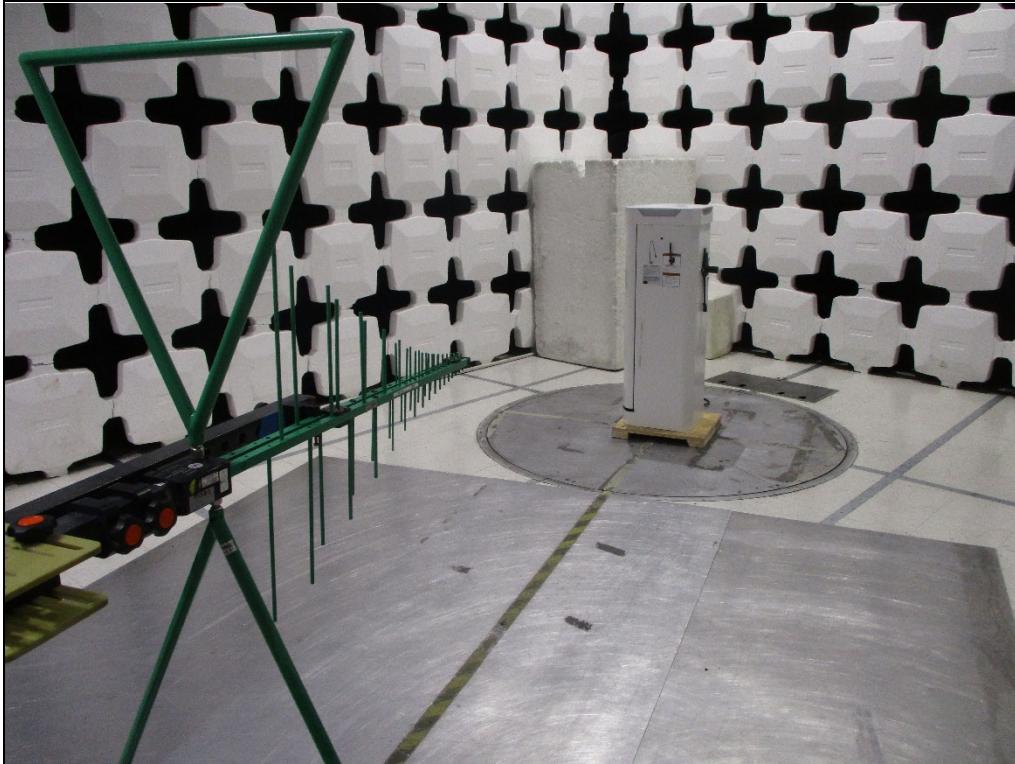
The final open field emission tests were then manually performed over the frequency range of 30MHz to 10.0GHz.

1) For all harmonics not in the restricted bands, the following procedure was used:

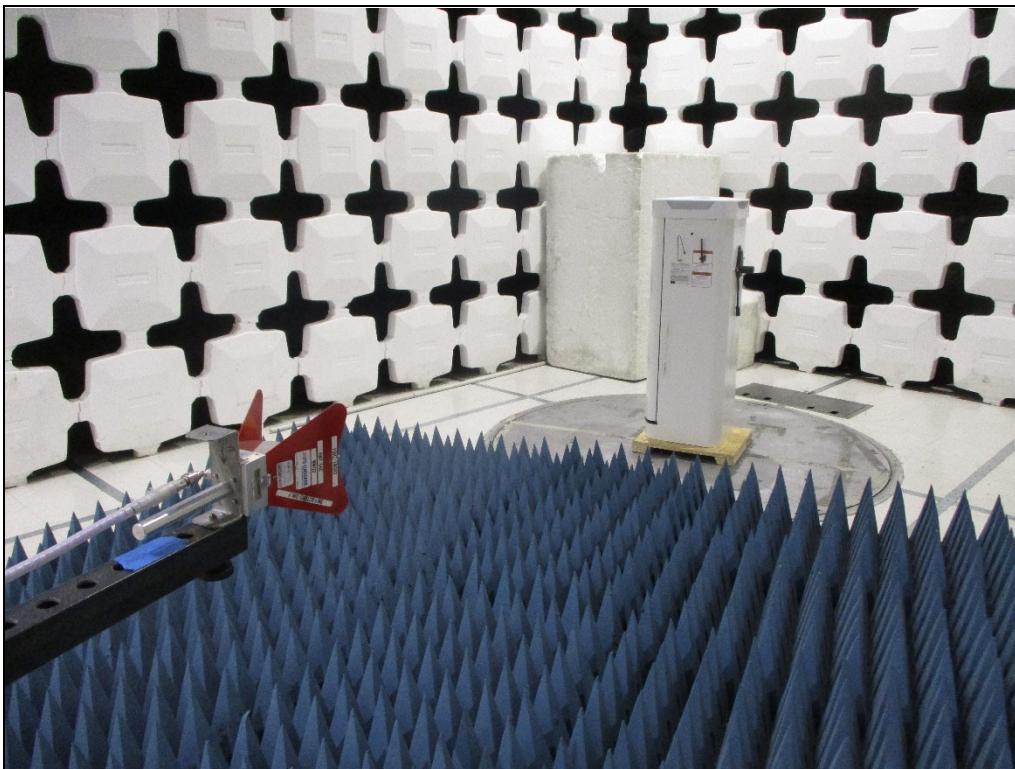
- a) The field strength of the fundamental was measured using a bilog antenna. The bilog antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5 meter high (an 80cm high for 902-928MHz range) non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
- b) The field strengths of all of the harmonics not in the restricted band were then measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 100kHz was used on the spectrum analyzer.
- c) To ensure that maximum or worst-case emission levels at the fundamental and harmonics were measured, the following steps were taken when measuring the fundamental emissions and the spurious emissions:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components were measured.
 - iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
 - iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) All harmonics not in the restricted bands must be at least 20dB below levels measured at the fundamental. However, attenuation below the general limits specified in §15.209(a) is not required.

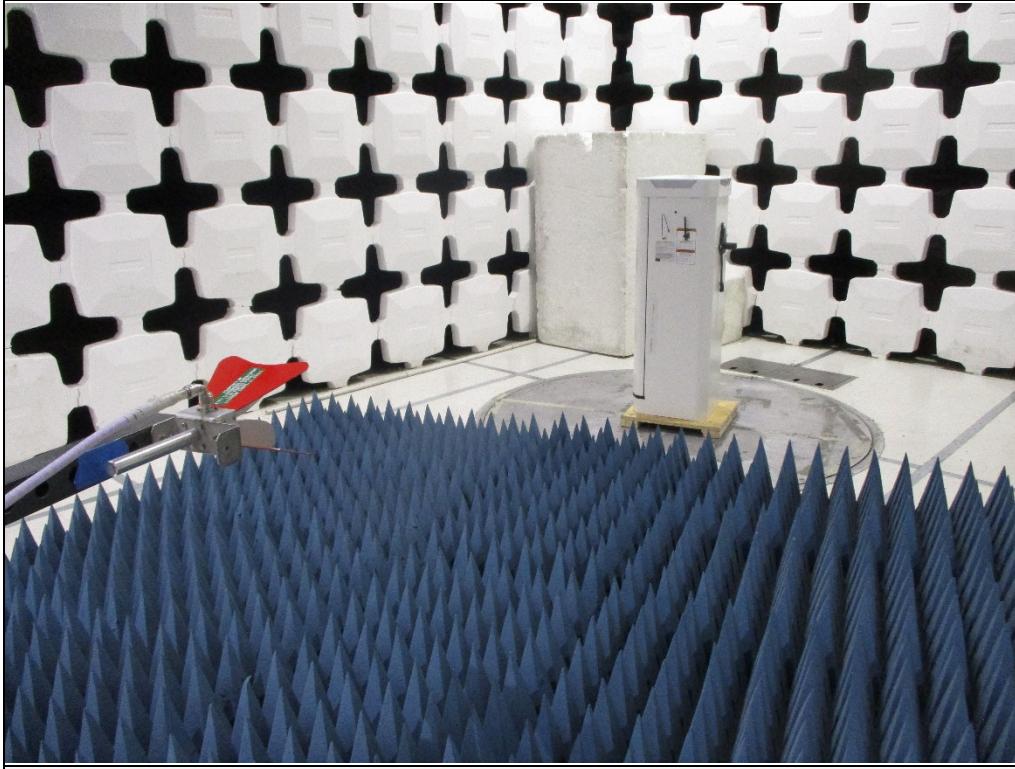

2) For all emissions in the restricted bands, the following procedure was used:

- a) The field strengths of all emissions below 1GHz were measured using a bi-log antenna. The bi-log antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on an 80cm high non-conductive stand. A peak detector with a resolution bandwidth of 100 kHz was used on the spectrum analyzer.
- b) The field strengths of all emissions above 1GHz were measured using a double-ridged waveguide antenna. The waveguide antenna was positioned at a 3-meter distance from the EUT. The EUT was placed on a 1.5-meter-high non-conductive stand. A peak detector with a resolution bandwidth of 1MHz was used on the spectrum analyzer.
- c) To ensure that maximum or worst-case emission levels were measured, the following steps were taken when taking all measurements:
 - i) The EUT was rotated so that all of its sides were exposed to the receiving antenna.
 - ii) Since the measuring antenna is linearly polarized, both horizontal and vertical field components


were measured.

- iii) The measuring antenna was raised and lowered for each antenna polarization to maximize the readings.
- iv) In instances where it was necessary to use a shortened cable between the measuring antenna and the spectrum analyzer, the measuring antenna was not raised or lowered to ensure maximized readings. Instead, the EUT was rotated through all axis to ensure the maximum readings were recorded for the EUT.
- d) For all radiated emissions measurements below 1GHz, if the peak reading is below the limits listed in §15.209(a), no further measurements are required. If, however, the peak readings exceed the limits listed in §15.209(a), then the emissions are remeasured using a quasi-peak detector.
- e) For all radiated emissions measurements above 1GHz, the peak readings must comply with the §15.35(b) limits. §15.35(b) states that when average radiated emissions measurements are specified, there also is a limit on the peak level of the radiated emissions. The limit on the peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. Therefore, all peak readings above 1GHz must be no greater than 20dB above the limits specified in §15.209(a).
- f) Next, for all radiated emissions measurements above 1GHz, the resolution bandwidth was set to 1MHz. The analyzer was set to linear mode with a 10Hz video bandwidth in order to simulate an average detector. An average reading was taken.


If the dwell time per channel of the hopping signal is less than 100msec, then the reading may be further adjusted by a duty cycle correction factor derived from $20 \times \log(\text{dwell time}/100\text{msec})$. These readings must be no greater than the limits specified in §15.209(a).


Test Setup for Spurious Radiated Emissions, 30MHz – 1GHz – Antenna
Polarization Horizontal

Test Setup for Spurious Radiated Emissions, 30MHz – 1GHz – Antenna
Polarization Vertical

Test Setup for Spurious Radiated Emissions, Above 1GHz – Antenna Polarization Horizontal

Test Setup for Spurious Radiated Emissions, Above 1GHz – Antenna Polarization Vertical

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
2706.74	H	66.7		2.8	32.6	-39.5	62.6	1349.4	5000.0	-11.4
	V	67.3		2.8	32.6	-39.5	63.2	1444.3	5000.0	-10.8
3608.98	H	56.0		3.2	33.6	-38.9	54.0	499.0	5000.0	-20.0
	V	55.6		3.2	33.6	-38.9	53.6	480.9	5000.0	-20.3
4511.23	H	50.6	*	3.6	34.3	-38.9	49.5	300.2	5000.0	-24.4
	V	52.1		3.6	34.3	-38.9	51.1	357.2	5000.0	-22.9
5413.47	H	51.3		3.9	34.7	-39.0	50.9	349.9	5000.0	-23.1
	V	53.1		3.9	34.7	-39.0	52.7	431.4	5000.0	-21.3
8120.21	H	48.3	*	4.9	36.8	-39.0	51.0	356.3	5000.0	-22.9
	V	47.5	*	4.9	36.8	-39.0	50.2	324.6	5000.0	-23.8
9022.45	H	48.3	*	4.9	36.6	-38.9	51.0	356.7	5000.0	-22.9
	V	49.4	*	4.9	36.6	-38.9	52.1	404.8	5000.0	-21.8

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Average Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dB μ V/m)	Average Total at 3m (μ V/m)	Average Limit at 3m (μ V/m)	Margin (dB)
2706.74	H	66.74		2.8	32.6	-39.5	-38.4	24.2	16.2	500.0	-29.8
	V	67.33		2.8	32.6	-39.5	-38.4	24.8	17.4	500.0	-29.2
3608.98	H	55.95		3.2	33.6	-38.9	-38.4	15.6	6.0	500.0	-38.4
	V	55.63		3.2	33.6	-38.9	-38.4	15.2	5.8	500.0	-38.7
4511.23	H	50.60	*	3.6	34.3	-38.9	-38.4	11.1	3.6	500.0	-42.8
	V	52.11		3.6	34.3	-38.9	-38.4	12.7	4.3	500.0	-41.3
5413.47	H	51.28		3.9	34.7	-39.0	-38.4	12.5	4.2	500.0	-41.5
	V	53.10		3.9	34.7	-39.0	-38.4	14.3	5.2	500.0	-39.7
8120.21	H	48.30	*	4.9	36.8	-39.0	-38.4	12.6	4.3	500.0	-41.3
	V	47.49		4.9	36.8	-39.0	-38.4	11.8	3.9	500.0	-42.2
9022.45	H	48.33	*	4.9	36.6	-38.9	-38.4	12.6	4.3	500.0	-41.3
	V	49.43		4.9	36.6	-38.9	-38.4	13.7	4.9	500.0	-40.2

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in Non-Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
902.25	H	87.68		1.5	26.5	0.0	115.7	609822.0	NA	NA
	V	88.30		1.5	26.5	0.0	116.3	654942.3	NA	NA
1804.49	H	61.62		2.2	30.4	-39.8	54.5	530.2	65494.2	-41.8
	V	67.22		2.2	30.4	-39.8	60.1	1010.2	65494.2	-36.2
6315.72	H	42.12		4.3	35.8	-39.0	43.1	143.3	65494.2	-53.2
	V	43.68		4.3	35.8	-39.0	44.7	171.5	65494.2	-51.6
7217.96	H	38.58	*	4.6	36.3	-39.0	40.5	105.9	65494.2	-55.8
	V	38.52	*	4.6	36.3	-39.0	40.4	105.2	65494.2	-55.9

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
2744.24	H	68.8		2.8	32.6	-39.5	64.7	1715.5	5000.0	-9.3
	V	69.4		2.8	32.6	-39.5	65.3	1840.3	5000.0	-8.7
3658.98	H	52.5		3.3	33.6	-38.9	50.5	335.9	5000.0	-23.5
	V	58.3		3.3	33.6	-38.9	56.3	651.1	5000.0	-17.7
4573.73	H	51.2	*	3.6	34.3	-38.9	50.2	322.1	5000.0	-23.8
	V	53.2		3.6	34.3	-38.9	52.2	405.1	5000.0	-21.8
7317.96	H	49.2	*	4.7	36.3	-39.0	51.1	360.5	5000.0	-22.8
	V	49.9	*	4.7	36.3	-39.0	51.9	392.1	5000.0	-22.1
8232.71	H	50.2	*	4.9	36.8	-39.0	53.0	445.0	5000.0	-21.0
	V	50.0	*	4.9	36.8	-39.0	52.8	434.9	5000.0	-21.2
9147.45	H	48.9	*	5.0	36.7	-38.9	51.7	384.3	5000.0	-22.3
	V	49.3	*	5.0	36.7	-38.9	52.1	401.5	5000.0	-21.9

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Average Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dB μ V/m)	Average Total at 3m (μ V/m)	Average Limit at 3m (μ V/m)	Margin (dB)
2744.24	H	68.76		2.8	32.6	-39.5	-38.4	26.3	20.6	500.0	-27.7
	V	69.37		2.8	32.6	-39.5	-38.4	26.9	22.1	500.0	-27.1
3658.98	H	52.50		3.3	33.6	-38.9	-38.4	12.1	4.0	500.0	-41.9
	V	58.25		3.3	33.6	-38.9	-38.4	17.9	7.8	500.0	-36.1
4573.73	H	51.16	*	3.6	34.3	-38.9	-38.4	11.8	3.9	500.0	-42.2
	V	53.15		3.6	34.3	-38.9	-38.4	13.8	4.9	500.0	-40.2
7317.96	H	49.19	*	4.7	36.3	-39.0	-38.4	12.7	4.3	500.0	-41.2
	V	49.92		4.7	36.3	-39.0	-38.4	13.5	4.7	500.0	-40.5
8232.71	H	50.17	*	4.9	36.8	-39.0	-38.4	14.6	5.4	500.0	-39.4
	V	49.97		4.9	36.8	-39.0	-38.4	14.4	5.2	500.0	-39.6
9147.45	H	48.88	*	5.0	36.7	-38.9	-38.4	13.3	4.6	500.0	-40.7
	V	49.26		5.0	36.7	-38.9	-38.4	13.7	4.8	500.0	-40.3

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in Non-Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
914.75	H	89.36		1.6	26.3	0.0	117.2	727109.4	NA	NA
	V	89.43		1.6	26.3	0.0	117.3	732992.9	NA	NA
1829.49	H	64.12		2.2	30.5	-39.7	57.1	720.1	73299.3	-40.2
	V	64.28		2.2	30.5	-39.7	57.3	733.5	73299.3	-40.0
5488.47	H	51.59		3.9	34.8	-39.0	51.3	367.2	73299.3	-46.0
	V	53.43		3.9	34.8	-39.0	53.1	453.8	73299.3	-44.2
6403.22	H	39.21	*	4.3	35.7	-39.0	40.2	102.3	73299.3	-57.1
	V	38.58	*	4.3	35.7	-39.0	39.6	95.1	73299.3	-57.7

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
2780.24	H	63.3		2.8	32.6	-39.5	59.2	915.6	5000.0	-14.7
	V	65.0		2.8	32.6	-39.5	61.0	1123.8	5000.0	-13.0
3706.98	H	54.7		3.3	33.4	-38.9	52.5	423.2	5000.0	-21.4
	V	55.5		3.3	33.4	-38.9	53.4	465.1	5000.0	-20.6
4633.73	H	50.3		3.6	34.3	-38.9	49.4	293.8	5000.0	-24.6
	V	50.6		3.6	34.3	-38.9	49.6	302.1	5000.0	-24.4
7413.96	H	48.8	*	4.7	36.3	-39.0	50.8	346.2	5000.0	-23.2
	V	49.1	*	4.7	36.3	-39.0	51.1	358.8	5000.0	-22.9
8340.71	H	49.6	*	4.9	36.7	-39.0	52.3	411.1	5000.0	-21.7
	V	50.1	*	4.9	36.7	-39.0	52.8	436.5	5000.0	-21.2

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Average Measurements in the Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	CBL Fac (dB)	Ant Fac (dB/m)	Pre Amp (dB)	Duty Cycle Factor (dB)	Average Total at 3m (dB μ V/m)	Average Total at 3m (μ V/m)	Average Limit at 3m (μ V/m)	Margin (dB)
2780.24	H	63.26		2.8	32.6	-39.5	-38.4	20.8	11.0	500.0	-33.1
	V	65.04		2.8	32.6	-39.5	-38.4	22.6	13.5	500.0	-31.4
3706.98	H	54.69		3.3	33.4	-38.9	-38.4	14.1	5.1	500.0	-39.8
	V	55.51		3.3	33.4	-38.9	-38.4	15.0	5.6	500.0	-39.0
4633.73	H	50.34		3.6	34.3	-38.9	-38.4	11.0	3.5	500.0	-43.0
	V	50.58		3.6	34.3	-38.9	-38.4	11.2	3.6	500.0	-42.8
7413.96	H	48.76	*	4.7	36.3	-39.0	-38.4	12.4	4.2	500.0	-41.6
	V	49.07		4.7	36.3	-39.0	-38.4	12.7	4.3	500.0	-41.3
8340.71	H	49.59	*	4.9	36.7	-39.0	-38.4	13.9	4.9	500.0	-40.1
	V	50.11		4.9	36.7	-39.0	-38.4	14.4	5.2	500.0	-39.6

Test Details										
Manufacturer	The Chamberlain Group LLC									
EUT	Gate Operator									
Model No.	CBG24DCW									
Serial No.	Prototype									
Mode	Tx									
Frequency Tested										
Notes	Peak Measurements in Non-Restricted Bands									

Freq (MHz)	Ant Pol	Meter Reading (dB μ V)	Ambient	Cable Factor (dB)	Antenna Factor (dB/m)	Pre Amp (dB)	Peak Total at 3m (dB μ V/m)	Peak Total at 3m (μ V/m)	Peak Limit at 3m (μ V/m)	Margin (dB)
926.75	H	84.67		1.6	26.7	0.0	112.9	441329.6	NA	NA
	V	89.32		1.6	26.7	0.0	117.5	753812.0	NA	NA
1853.49	H	61.28		2.3	30.6	-39.7	54.5	528.4	75381.2	-43.1
	V	65.74		2.3	30.6	-39.7	58.9	883.0	75381.2	-38.6
5560.47	H	44.02		4.0	34.9	-39.0	43.9	155.9	75381.2	-53.7
	V	47.76		4.0	34.9	-39.0	47.6	239.8	75381.2	-49.9
6487.22	H	39.46	*	4.3	35.7	-39.0	40.4	105.2	75381.2	-57.1
	V	42.33		4.3	35.7	-39.0	43.3	146.4	75381.2	-54.2
9267.45	H	39.43	*	5.0	36.7	-38.9	42.3	130.9	75381.2	-55.2
	V	40.03		5.0	36.7	-38.9	42.9	140.2	75381.2	-54.6
5562.70	H	41.35		4.0	34.9	-39.0	41.2	114.7	75381.2	-56.4
	V	42.53		4.0	34.9	-39.0	42.4	131.4	75381.2	-55.2

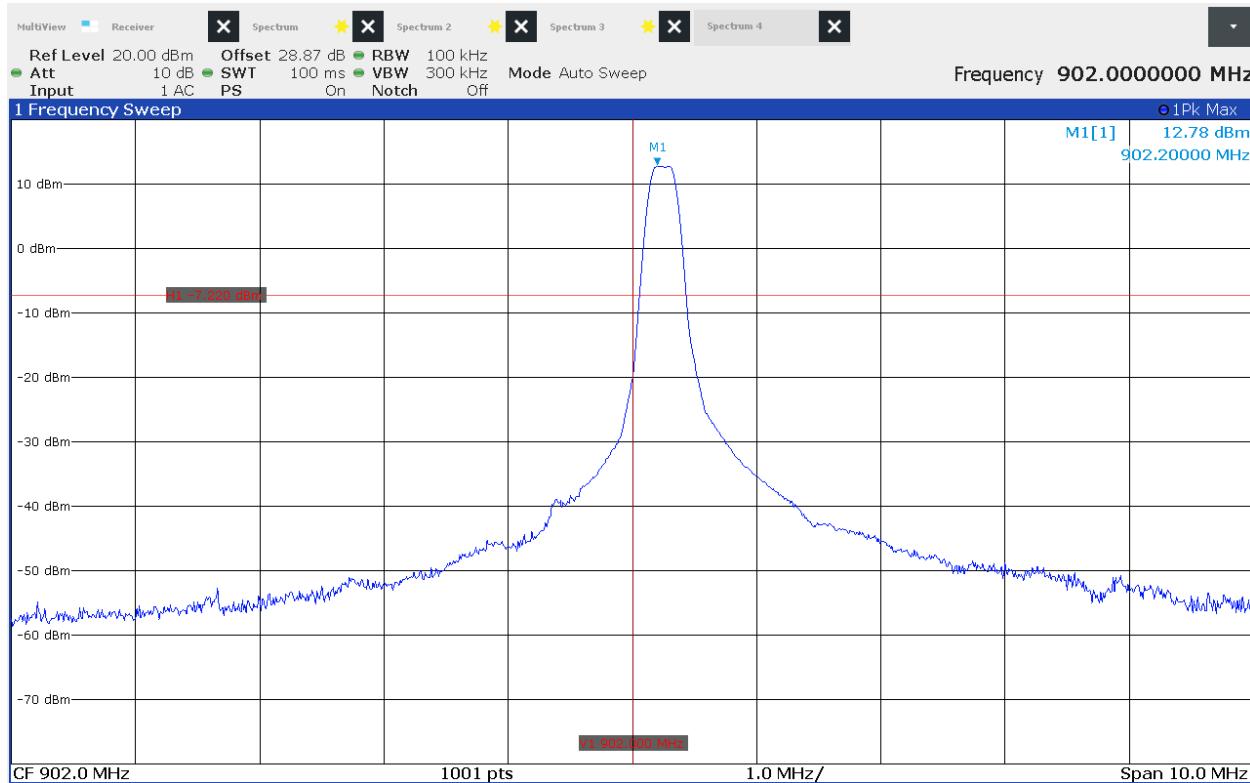
30. Band-Edge Compliance

EUT Information	
Manufacturer	The Chamberlain Group LLC
Product	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx

Test Setup Details	
Setup Format	Floor Standing
Height of Support	6cm
Measurement Method	Antenna Conducted
Type of Test Site	Tabletop
Type of Antennas Used	N/A
Notes	None

Procedure	
1) Low Band Edge:	<p>a) The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.</p> <p>b) The EUT was set to transmit continuously at the channel closest to the low band-edge hopping function disabled.</p> <p>c) To determine the band edge compliance, the following spectrum analyzer settings were used:</p> <ul style="list-style-type: none"> o Center Frequency = 902MHz (low band-edge frequency). o Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation. o Resolution Bandwidth (RBW) = $\geq 1\%$ of the span. o 'Max-Hold' function was engaged. <p>d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.</p> <p>e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)</p> <p>f) The analyzer's display was then screenshot and saved.</p> <p>g) Steps (d) through (f) were repeated with the frequency hopping function enabled.</p>
2) High Band Edge:	<p>a) The antenna port of the EUT was connected to the spectrum analyzer through 40dB of attenuation.</p> <p>b) The EUT was set to transmit continuously at the channel closest to the high band-edge hopping function disabled.</p> <p>c) To determine the band edge compliance, the following spectrum analyzer settings were used:</p> <ul style="list-style-type: none"> o Center Frequency = 928MHz (high band-edge frequency). o Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band-edge, as well as any modulation products which fall outside of the authorized band of operation.

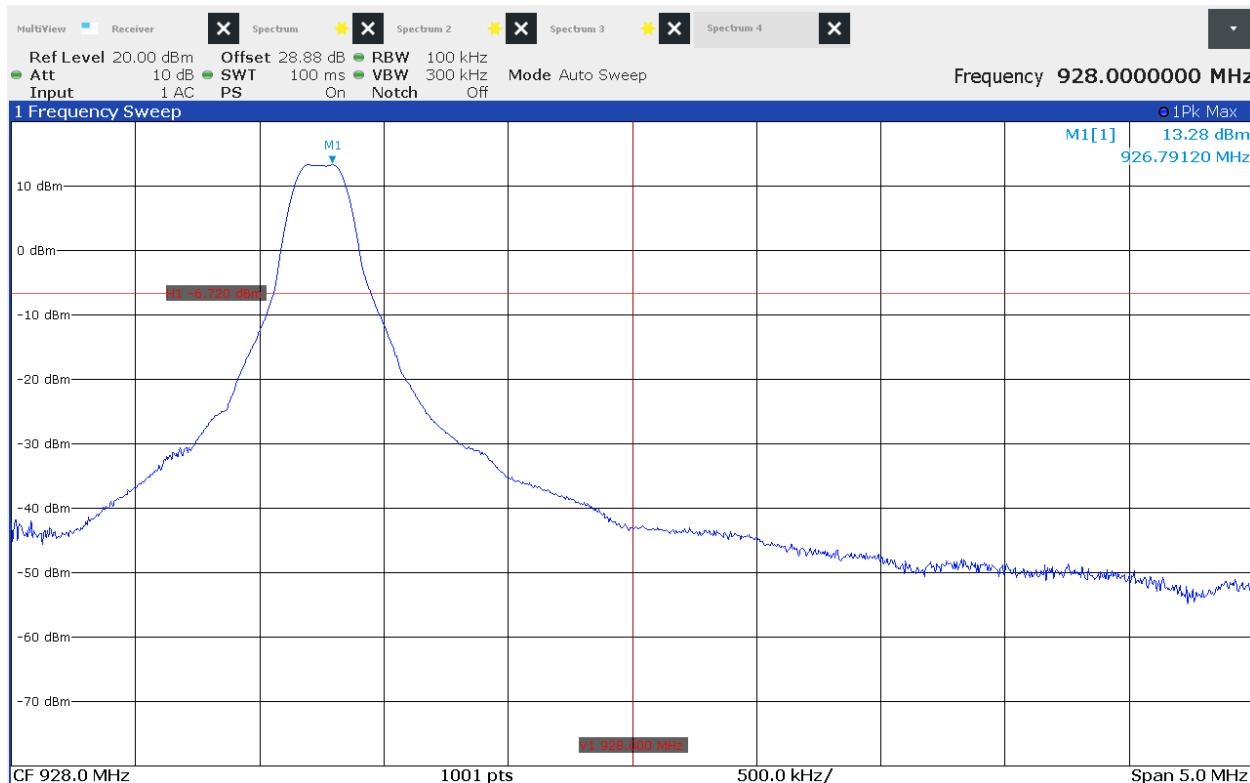
- Resolution Bandwidth (RBW) = $\geq 1\%$ of the span.
- 'Max-Hold' function was engaged.


d) The analyzer was allowed to scan until the envelope of the transmitter bandwidth was defined.

e) The marker was set on the peak of the in-band emissions. A display line was placed 20dB down from the peak of the in-band emissions. All emissions which fall outside of the authorized band of operation must be below the 20dB down display line. (All emissions to the left of the center frequency (band-edge) must be below the display line.)

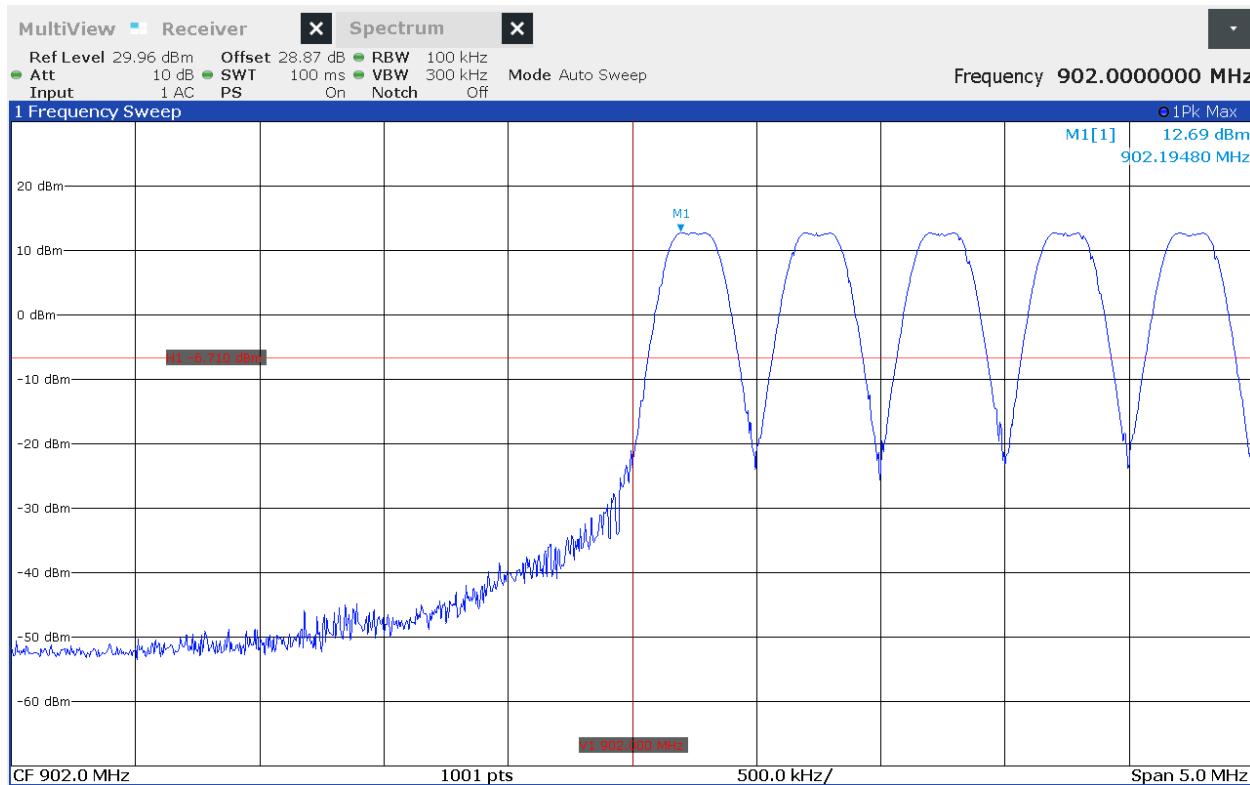
f) The analyzer's display was then screenshot and saved.

g) Steps (d) through (f) were repeated with the frequency hopping function enabled.


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	902.245MHz
Notes	Low Band Edge

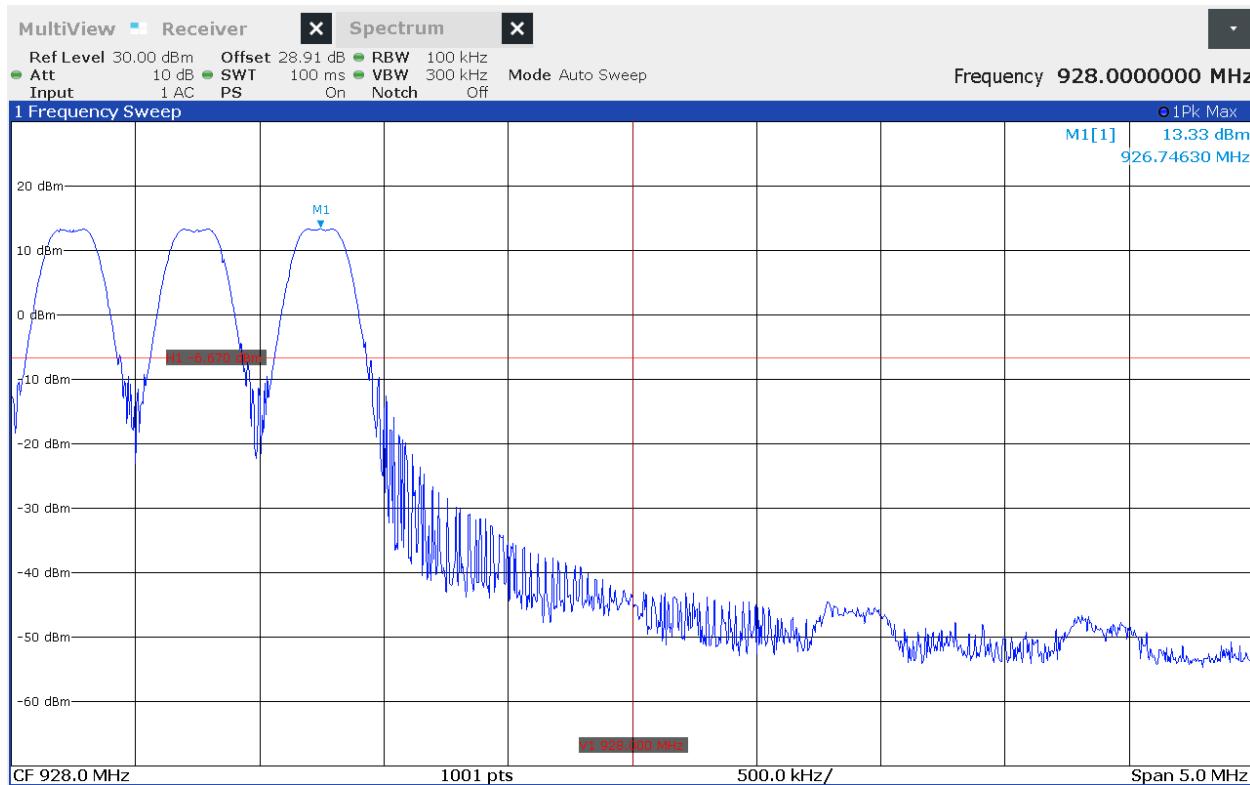
Band edge Compliance

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Low Band edge
 Date : 12/21/2023 7:25:38 AM
 Notes : None


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	926.745MHz
Notes	High Band Edge

Band edge Compliance

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : High Band edge
 Date : 12/21/2023 8:41:57 AM
 Notes : None


Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	902.245MHz
Notes	Low Band Edge - Hopping

Band edge Compliance

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : Low Band edge
 Date : 12/21/2023 9:31:34 AM
 Notes : Hopping

Test Details	
Manufacturer	The Chamberlain Group LLC
EUT	Gate Operator
Model No.	CBG24DCW
Serial No.	Prototype
Mode	Tx
Frequency Tested	926.745MHz
Notes	High Band Edge - Hopping

Band edge Compliance

Manufacturer : The Chamberlain Group LLC
 Model Number : CBG24DCW
 Serial Number : Prototype
 Mode : Tx
 Line Tested : Sub 1GHz Antenna Port
 Parameters : High Band edge
 Date : 12/21/2023 9:28:47 AM
 Notes : Hopping

32. Scope of Accreditation

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

ELITE ELECTRONIC ENGINEERING, INC.
1516 Centre Circle
Downers Grove, IL 60515
Robert Bugielski (QA Manager) Phone: 630 495 9770 ext. 168
Email: rbugielski@elitetest.com
Craig Fanning (EMC Lab Manager) Phone: 630 495 9770 ext. 112
Email: cfanning@elitetest.com
Brandon Lugo (Automotive Team Leader) Phone: 630 495 9770 ext. 163
Email: blugo@elitetest.com
Richard King (FCC/Commercial Team Leader) Phone: 630 495 9770 ext. 123
Email: reking@elitetest.com
Website: www.elitetest.com

ELECTRICAL

Valid To: June 30, 2025

Certificate Number: 1786.01

In recognition of the successful completion of the A2LA Accreditation Program evaluation process, accreditation is granted to this laboratory to perform the following automotive electromagnetic compatibility and other electrical tests:

Test Technology:*Transient Immunity**(Max Voltage 60V/Max current 100A)*Test Method(s)¹:

ISO 7637-2 (including emissions); ISO 7637-3;
ISO 16750-2:2012, Sections 4.6.3 and 4.6.4;
CS-11979, Section 6.4; CS.00054, Section 5.9;
EMC-CS-2009.1 (CI220); FMC1278 (CI220, CI221, CI222);
GMW 3097, Section 3.5; SAE J1113-11; SAE J1113-12;
ECE Regulation 10.06 Annex 10

*Electrostatic Discharge (ESD)**(Up to +/-25kV)*

ISO 10605 (2001, 2008);

CS-11979 Section 7.0; CS.00054, Section 5.10;

EMC-CS-2009.1 (CI 280); FMC1278 (CI280); SAE J1113-13;

GMW 3097 Section 3.6

Conducted Emissions

CISPR 25 (2002, 2008), Sections 6.2 and 6.3;

CISPR 25 (2016), Sections 6.3 and 6.4;

CS-11979, Section 5.1; CS.00054, Sections 5.6.1 and 5.6.2;

GMW 3097, Section 3.3.2;

EMC-CS-2009.1 (CE 420); FMC1278 (CE420, CE421, CE 430, CE440)

(A2LA Cert. No. 1786.01) 08/15/2023

Page 1 of 9

5202 Presidents Court, Suite 220 | Frederick, MD 21703-8515 | Phone: 301 644 3248 | Fax: 240 454 9449 | www.A2LA.org

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Radiated Emissions Anechoic (Up to 6GHz)	CISPR 25 (2002, 2008), Section 6.4; CISPR 25 (2016), Section 6.5; CS-11979, Section 5.3; CS.00054, Section 5.6.3; GMW 3097, Section 3.3.1; EMC-CS-2009.1 (RE 310); FMC1278 (RE310, RE320);
Vehicle Radiated Emissions	CISPR 12; CISPR 36; ICES-002; ECE Regulation 10.06 Annex 5
Bulk Current Injection (BCI) (1 to 400MHz 500mA)	ISO 11452-4; CS-11979, Section 6.1; CS.00054, Section 5.8.1; GMW 3097, Section 3.4.1; SAE J1113-4; EMC-CS-2009.1 (RI112); FMC1278 (RI112); ECE Regulation 10.06 Annex 9
Radiated Immunity Anechoic (Up to 6GHz and 200V/m) (Including Radar Pulse 600V/m)	ISO 11452-2; CS-11979, Section 6.2; CS.00054, Section 5.8.2; GMW 3097, Section 3.4.2; EMC-CS-2009.1 (RI114); FMC1278 (RI114); SAE J1113-21; ECE Regulation 10.06 Annex 9
Radiated Immunity Magnetic Field	ISO 11452-8; FMC 1278 (RI140)
Radiated Immunity Reverb (360MHz to 6GHz and 100V/m)	ISO/IEC 61000-4-21; GMW 3097, Section 3.4.3; EMC-CS-2009.1 (RI114); FMC1278 (RI114); ISO 11452-11
Radiated Immunity (Portable Transmitters) (Up to 6GHz and 20W)	ISO 11452-9; EMC-CS-2009.1 (RI115); FMC1278 (RI115); GMW 3097, Sec 3.4.4
Vehicle Radiated Immunity (ALSE)	ISO 11451-2; ECE Regulation 10.06 Annex 6
Vehicle Product Specific EMC Standards	EN 14982; EN ISO 13309; ISO 13766; EN 50498; EC Regulation No. 2015/208; EN 55012
Electrical Loads	ISO 16750-2
Stripline	ISO 11452-5
Transverse Electromagnetic (TEM) Cell	ISO 11452-3

Test Technology:
Test Method(s)¹:
Emissions

Radiated and Conducted
(3m Semi-anechoic chamber,
up to 40 GHz)

47 CFR, FCC Part 15 B (using ANSI C63.4:2014);
47 CFR, FCC Part 18 (using FCC MP-5:1986);
ICES-001; ICES-003; ICES-005;
IEC/CISPR 11, Ed. 4.1 (2004-06); AS/NZS CISPR 11 (2004);
IEC/CISPR 11 Ed 5 (2009-05) + A1 (2010);
KN 11 (2008-5) with RRL Notice No. 2008-3 (May 20, 2008);
CISPR 11; EN 55011; KS C 9811; CNS 13803 (1997, 2003);
CISPR 14-1; EN 55014-1; AS/NZS CISPR 14.1;
CISPR 16-2-1 (2008); CISPR 16-2-1; KS C 9814-1; KN 14-1;
IEC/CISPR 22 (1997);
EN 55022 (1998) + A1(2000);
EN 55022 (1998) + A1(2000) + A2(2003); EN 55022 (2006);
IEC/CISPR 22 (2008-09); AS/NZS CISPR 22 (2004);
AS/NZS CISPR 22, 3rd Edition (2006); KN 22 (up to 6 GHz);
CNS 13438 (up to 6 GHz); VCCI V-3 (up to 6 GHz);
CISPR 32; EN 55032; KS C 9832; KN 32;
ECE Regulation 10.06 Annex 7 (Broadband);
ECE Regulation 10.06 Annex 8 (Narrowband);
ECE Regulation 10.06 Annex 14 (Conducted)

Cellular Radiated Spurious Emissions

ETSI TS 151 010-1 GSM; 3GPP TS 51.010-1, Sec 12;
ETSI TS 134 124 UMTS; 3GPP TS 34.124;
ETSI TS 136 124 LTE; E-UTRA; 3GPP TS 36.124

Current Harmonics

IEC 61000-3-2; IEC 61000-3-12;
EN 61000-3-2; KN 61000-3-2;
KS C 9610-3-2; ECE Regulation 10.06 Annex 11

Flicker and Fluctuations

IEC 61000-3-3; IEC 61000-3-11;
EN 61000-3-3; KN 61000-3-3;
KS C 9610-3-3; ECE Regulation 10.06 Annex 12

Immunity

Electrostatic Discharge

IEC 61000-4-2, Ed. 1.2 (2001);
IEC 61000-4-2 (1995) + A1(1998) + A2(2000);
EN 61000-4-2 (1995); EN 61000-4-2 (2009-05);
KN 61000-4-2 (2008-5);
RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-2; EN 61000-4-2; KN 61000-4-2;
KS C 9610-4-2; IEEE C37.90.3 2001

Radiated Immunity

IEC 61000-4-3 (1995) + A1(1998) + A2(2000);
IEC 61000-4-3, Ed. 3.0 (2006-02);
IEC 61000-4-3, Ed. 3.2 (2010);
KN 61000-4-3 (2008-5);
RRL Notice No. 2008-4 (May 20, 2008);
IEC 61000-4-3; EN 61000-4-3; KN 61000-4-3;
KS C 9610-4-3; IEEE C37.90.2 2004

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
Immunity (cont'd)	
Electrical Fast Transient/Burst	IEC 61000-4-4, Ed. 2.0 (2004-07); IEC 61000-4-4, Ed. 2.1 (2011); IEC 61000-4-4 (1995) + A1(2000) + A2(2001); KN 61000-4-4 (2008-5); RRL Notice No. 2008-5 (May 20, 2008); IEC 61000-4-4; EN 61000-4-4; KN 61000-4-4; KS C 9610-4-4; ECE Regulation 10.06 Annex 15
Surge	IEC 61000-4-5 (1995) + A1(2000); IEC 61000-4-5, Ed 1.1 (2005-11); EN 61000-4-5 (1995) + A1(2001); KN 61000-4-5 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-5; EN 61000-4-5; KN 61000-4-5; KS C 9610-4-5; IEEE C37.90.1 2012; IEEE STD C62.41.2 2002; ECE Regulation 10.06 Annex 16
Conducted Immunity	IEC 61000-4-6 (1996) + A1(2000); IEC 61000-4-6, Ed 2.0 (2006-05); IEC 61000-4-6 Ed. 3.0 (2008); KN 61000-4-6 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); EN 61000-4-6 (1996) + A1(2001); IEC 61000-4-6; EN 61000-4-6; KN 61000-4-6; KS C 9610-4-6
Power Frequency Magnetic Field Immunity (<i>Down to 3 A/m</i>)	IEC 61000-4-8 (1993) + A1(2000); IEC 61000-4-8 (2009); EN 61000-4-8 (1994) + A1(2000); KN 61000-4-8 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-8; EN 61000-4-8; KN 61000-4-8; KS C 9610-4-8
Voltage Dips, Short Interrupts, and Line Voltage Variations	IEC 61000-4-11, Ed. 2 (2004-03); KN 61000-4-11 (2008-5); RRL Notice No. 2008-4 (May 20, 2008); IEC 61000-4-11; EN 61000-4-11; KN 61000-4-11; KS C 9610-4-11
Ring Wave	IEC 61000-4-12, Ed. 2 (2006-09); EN 61000-4-12:2006; IEC 61000-4-12; EN 61000-4-12; KN 61000-4-12; IEEE STD C62.41.2 2002

Test Technology:

Generic and Product Specific EMC Standards

Test Method(s)¹:

IEC/EN 61000-6-1; AS/NZS 61000-6-1; KN 61000-6-1;
 KS C 9610-6-1; IEC/EN 61000-6-2; AS/NZS 61000-6-2;
 KN 61000-6-2; KS C 9610-6-2; IEC/EN 61000-6-3;
 AS/NZS 61000-6-3; KN 61000-6-3; KS C 9610-6-3;
 IEC/EN 61000-6-4; AS/NZS 61000-6-4; KN 61000-6-4;
 KS C 9610-6-4; EN 50130-4; EN 61326-1; EN 50121-3-2;
 EN 12895; EN 50270; EN 50491-1; EN 50491-2; EN 50491-3;
 EN 55015; EN 60730-1; EN 60945; IEC 60533;
 EN 61326-2-6; EN 61800-3; IEC/CISPR 14-2; EN 55014-2;
 AS/NZS CISPR 14.2; KN 14-2; KS C 9814-2;
 IEC/CISPR 24; AS/NZS CISPR 24; EN 55024; KN 24;
 IEC/CISPR 35; AS/NZS CISPR 35; EN 55035; KN 35;
 KS C 9835; IEC 60601-1-2; IIS T0601-1-2

TxRx EMC Requirements

EN 301 489-1; EN 301 489-3; EN 301 489-9;
 EN 301 489-17; EN 301 489-19; EN 301 489-20

European Radio Test Standards

ETSI EN 300 086-1; ETSI EN 300 086-2;
 ETSI EN 300 113-1; ETSI EN 300 113-2;
 ETSI EN 300 220-1; ETSI EN 300 220-2;
 ETSI EN 300 220-3-1; ETSI EN 300 220-3-2;
 ETSI EN 300 330-1; ETSI EN 300 330-2;
 ETSI EN 300 440-1; ETSI EN 300 440-2;
 ETSI EN 300 422-1; ETSI EN 300 422-2;
 ETSI EN 300 328; ETSI EN 301 893;
 ETSI EN 301 511; ETSI EN 301 908-1;
 ETSI EN 908-2; ETSI EN 908-13;
 ETSI EN 303 413; ETSI EN 302 502;
 EN 303 340; EN 303 345-2; EN 303 345-3; EN 303 345-4

Canadian Radio Tests

RSS-102 measurement (RF Exposure Evaluation);
 RSS-102 measurement (Nerve Stimulation);
 SPR-002; RSS-111; RSS-112; RSS-117; RSS-119; RSS-123;
 RSS-125; RSS-127; RSS-130; RSS-131; RSS-132; RSS-133;
 RSS-134; RSS-135; RSS-137; RSS-139; RSS-140; RSS-141;
 RSS-142; RSS-170; RSS-181; RSS-182; RSS-191; RSS-192;
 RSS-194; RSS-195; RSS-196; RSS-197; RSS-199; RSS-210;
 RSS-211; RSS-213; RSS-215; RSS-216; RSS-220; RSS-222;
 RSS-236; RSS-238; RSS-243; RSS-244; RSS-247; RSS-248;
 RSS-251; RSS-252; RSS-287; RSS-288; RSS-310; RSS-GEN

Mexico Radio Tests

IFT-008-2015; NOM-208-SCFI-2016

Japan Radio Tests

Radio Law No. 131, Ordinance of MPT No. 37, 1981,
 MIC Notification No. 88:2004, Table No. 22-11;
 ARIB STD-T66, Regulation 18

Taiwan Radio Tests

LP-0002 (July 15, 2020)

<u>Test Technology:</u>	<u>Test Method(s)¹:</u>
<i>Australia/New Zealand Radio Tests</i>	AS/NZS 4268; Radiocommunications (Short Range Devices) Standard (2014)
<i>Hong Kong Radio Tests</i>	HKCA 1039 Issue 6; HKCA 1042; HKCA 1033 Issue 7; HKCA 1061; HKCA 1008; HKCA 1043; HKCA 1057; HKCA 1073
<i>Korean Radio Test Standards</i>	KN 301 489-1; KN 301 489-3; KN 301 489-9; KN 301 489-17; KN 301 489-52; KS X 3124; KS X 3125; KS X 3130; KS X 3126; KS X 3129
<i>Vietnam Radio Test Standards</i>	QCVN 47:2015/BTTTT; QCVN 54:2020/BTTTT; QCVN 55:2011/BTTTT; QCVN 65:2013/BTTTT; QCVN 73:2013/BTTTT; QCVN 74:2020/BTTTT; QCVN 112:2017/BTTTT; QCVN 117:2020/BTTTT
<i>Vietnam EMC Test Standards</i>	QCVN 18:2014/BTTTT; QCVN 86:2019/BTTTT; QCVN 96:2015/BTTTT; QCVN 118:2018/BTTTT
<i>Unlicensed Radio Frequency Devices (3 Meter Semi-Anechoic Room)</i>	47 CFR FCC Part 15C, 15D, 15E, 15F, 15G, 15H (using ANSI C63.10:2013, ANSI C63.17:2013 and FCC KDB 905462 D02 (v02))
<i>Licensed Radio Service Equipment</i>	47 CFR FCC Parts 20, 22, 24, 25, 27, 30, 73, 74, 80, 87, 90, 95, 96, 97, 101 (using ANSI/TIA-603-E, TIA-102.CAAA-E, ANSI C63.26:2015)
<i>OIA (Over the Air) Performance</i> GSM, GPRS, EGPRS UMTS (W-CDMA) LTE including CAT M1 A-GPS for UMTS/GSM LTS A-GPS, A-GLONASS, SIB8/SIB16 Large Device/Laptop/Tablet Testing Integrated Device Testing WiFi 802.11 a/b/g/n/a	CTIA Test Plan for Wireless Device Over-the-Air Performance (Method for Measurement for Radiated Power and Receiver Performance) V3.8.2; CTIA Test Plan for RF Performance Evaluation of WiFi Mobile Converged Devices V2.1.0

Test Technology: Test Method(s)¹:

Electrical Measurements and Simulation

AC Voltage / Current
 (1mV to 5kV) 60 Hz
 (0.1V to 250V) up to 500 MHz
 (1µA to 150A) 60 Hz

FAA AC 150/5345-10H;
 FAA AC 150/5345-43J;
 FAA AC 150/5345-44K;
 FAA AC 150/5345-46E;
 FAA AC 150/5345-47C;

DC Voltage / Current
 (1mV to 15 kV) / (1µA to 10A)

FAA EB 67D

Power Factor / Efficiency / Crest Factor
 (Power to 30kW)

Resistance
 (1mΩ to 4000MΩ)

Surge
 (Up to 10 kV / 5 kA) (Combination Wave and Ring Wave)

On the following products and materials:

Telecommunications Terminal Equipment (TTE), Radio Equipment, Network Equipment, Information Technology Equipment (ITE), Automotive Electronic Equipment, Automotive Hybrid Electronic Devices, Maritime Navigation and Radio Communication Equipment and Systems, Vehicles, Boats and Internal Combustion Engine Driven Devices, Automotive, Aviation, and General Lighting Products, Medical Electrical Equipment, Motors, Industrial, Scientific and Medical (ISM) Radio-Frequency Equipment, Household Appliances, Electric Tools, Low-voltage Switchgear and Control gear, Programmable Controllers, Electrical Equipment for Measurement, Control and Laboratory Use, Base Materials, Power and Data Transmission Cables and Connectors

¹ When the date, edition, version, etc. is not identified in the scope of accreditation, laboratories may use the version that immediately precedes the current version for a period of one year from the date of publication of the standard measurement method, per part C., Section 1 of A2LA R101 - *General Requirements- Accreditation of ISO-IEC 17025 Laboratories*.

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unintentional Radiators</u> Part 15B	ANSI C63.4:2014	40000
<u>Industrial, Scientific, and Medical Equipment</u> Part 18	FCC MP-5 (February 1986)	40000
<u>Intentional Radiators</u> Part 15C	ANSI C63.10:2013	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Page 7 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Unlicensed Personal Communication Systems Devices</u>		
Part 15D	ANSI C63.17:2013	40000
<u>U-NII without DFS Intentional Radiators</u>		
Part 15E	ANSI C63.10:2013	40000
<u>U-NII with DFS Intentional Radiators</u>		
Part 15E	FCC KDB 905462 D02 (v02)	40000
<u>UWB Intentional Radiators</u>		
Part 15F	ANSI C63.10:2013	40000
<u>BPL Intentional Radiators</u>		
Part 15G	ANSI C63.10:2013	40000
<u>White Space Device Intentional Radiators</u>		
Part 15H	ANSI C63.10:2013	40000
<u>Commercial Mobile Services (FCC Licensed Radio Service Equipment)</u>		
Parts 22 (cellular), 24, 25 (below 3 GHz), and 27	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>General Mobile Radio Services (FCC Licensed Radio Service Equipment)</u>		
Parts 22 (non-cellular), 90 (below 3 GHz), 95, 97, and 101 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Citizens Broadband Radio Services (FCC Licensed Radio Service Equipment)</u>		
Part 96	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Maritime and Aviation Radio Services</u>		
Parts 80 and 87	ANSI/TIA-603-E; ANSI C63.26:2015	40000
<u>Microwave and Millimeter Bands Radio Services</u>		
Parts 25, 30, 74, 90 (above 3 GHz), 97 (above 3 GHz), and 101	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000

(A2LA Cert. No. 1786.01) 08/15/2023

Page 8 of 9

Testing Activities Performed in Support of FCC Certification in Accordance with 47 Code of Federal Regulations and FCC KDB 974614, Appendix A, Table A.1²

Rule Subpart/Technology	Test Method	Maximum Frequency (MHz)
<u>Broadcast Radio Services</u>		
Parts 73 and 74 (below 3 GHz)	ANSI/TIA-603-E; TIA-102.CAAA-E; ANSI C63.26:2015	40000
<u>Signal Boosters</u>		
Part 20 (Wideband Consumer Signal Boosters, Provider-specific signal boosters, and Industrial Signal Boosters) Section 90.219	ANSI C63.26:2015	40000

² Accreditation does not imply acceptance to the FCC equipment authorization program. Please see the FCC website (<https://apps.fcc.gov/oetcf/eas/>) for a listing of FCC approved laboratories.

Accredited Laboratory

A2LA has accredited

ELITE ELECTRONIC ENGINEERING INC.

Downers Grove, IL

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017
General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates
technical competence for a defined scope and the operation of a laboratory quality management system
(refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 15th day of August 2023.

Mr. Trace McInturff, Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 1786.01
Valid to June 30, 2025

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.