

TEST REPORT

Report No.: **BCTC2412280581E**

Applicant: **SHENZHEN FENDA TECHNOLOGY CO., LTD.**

Product Name: **Wireless Microphone**

Test Model: **U1**

Tested Date: **2025-05-26 to 2025-05-29**

Issued Date: **2025-05-29**

Shenzhen BCTC Testing Co., Ltd.

FCC ID:HBO-U1

Product Name: Wireless Microphone

Trademark:

Model/Type Reference: U1

Prepared For: SHENZHEN FENDA TECHNOLOGY CO., LTD.

Address: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen City, Guangdong, China

Manufacturer: SHENZHEN FENDA TECHNOLOGY CO., LTD.

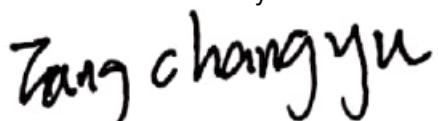
Address: Fenda Hi-Tech Park, Zhoushi Road, Shiyan Town, Baoan District, Shenzhen City, Guangdong, China

Prepared By: Shenzhen BCTC Testing Co., Ltd.

Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Sample Received Date: 2025-05-26

Sample Tested Date: 2025-05-26 to 2025-05-29


Issue Date: 2025-05-29

Report No.: BCTC2412280581E

Test Standards: FCC Part15.236

Test Results: PASS

Tested by:

Tang Changyu/ Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Table Of Content

Test Report Declaration	Page
1. Version	5
2. Test Summary	6
3. Measurement Uncertainty	7
4. Product Information And Test Setup	8
4.1 Product Information.....	8
4.2 Test Setup Configuration	8
4.3 Support Equipment	8
4.4 Channel List.....	8
4.5 Test Mode	9
5. Test Facility And Test Instrument Used.....	10
5.1 Test Facility.....	10
5.2 Test Instrument Used.....	10
6. Conducted Emissions.....	12
6.1 Block Diagram Of Test Setup.....	12
6.2 Limit	12
6.3 Test Procedure	12
6.4 EUT Operating Conditions	12
6.5 Test Result.....	13
7. Radiated Emissions.....	15
7.1 Block Diagram Of Test Setup.....	15
7.2 Limit	16
7.3 Test Procedure	17
7.4 EUT Operating Conditions	17
7.5 Test Result.....	18
8. RF Output Power (EIRP).....	22
8.1 Block Diagram Of Test Setup.....	22
8.2 Limit	22
8.3 Test Procedure	22
8.4 Test Result.....	22
9. Occupied Bandwidth	23
9.1 Block Diagram Of Test Setup.....	23
9.2 Limit	23
9.3 Test Procedure	23
9.5 Test Result.....	24
10. Emission Mask (Necessary Bandwidth)	26
10.1 Block Diagram Of Test Setup.....	26
10.2 Limit	26
10.3 Test Procedure	27
10.5 Test Result.....	28
11. Frequency Tolerance	30
11.1 Block Diagram Of Test Setup.....	30
11.2 Limit	30
11.3 Test Procedure	30
11.5 Test Result.....	30

12. EUT Photographs.....	32
13. EUT Test Setup Photographs.....	33

(Note: N/A Means Not Applicable)

1. Version

Report No.	Issue Date	Description	Approved
BCTC2412280581E	2025-05-29	Original	Valid

A circular red stamp is located in the bottom right corner. The text "STAMP" is curved along the top inner edge, and "ED" is curved along the bottom right inner edge. The center of the stamp contains a large, faint, circular dotted pattern.

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No.	Results
1	Conducted Emission	15.207	PASS
2	Radiated Spurious Emission	15.236(g)	PASS
3	RF Output Power (EIRP)	15.236(d)	PASS
4	99% Occupied Bandwidth	15.236(f)(2)	PASS
5	Emission Mask (Necessary Bandwidth)	15.236(g)	PASS
6	Frequency Tolerance	15.236(f)(3)	PASS

Note: "N/A" means not applicable.

 CO.LTS

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=2$.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(9kHz-30MHz)	$U=3.7\text{dB}$
2	3m chamber Radiated spurious emission(30MHz-1GHz)	$U=4.3\text{dB}$
3	3m chamber Radiated spurious emission(1GHz-18GHz)	$U=4.5\text{dB}$
4	3m chamber Radiated spurious emission(18GHz-40GHz)	$U=3.34\text{dB}$
5	Conducted Emission(150kHz-30MHz)	$U=3.20\text{dB}$
6	Conducted output power uncertainty Above 1G	$U=1.576\text{dB}$
7	Conducted output power uncertainty below 1G	$U=1.28\text{dB}$
8	humidity uncertainty	$U=5.3\%$
9	Temperature uncertainty	$U=0.59^\circ\text{C}$

4. Product Information And Test Setup

4.1 Product Information

Model/Type Reference: U1
 Model Differences: N/A
 Hardware Version: N/A
 Software Version: N/A
 Operation Frequency: 657.5MHz-659.5MHz

Type of Modulation: FM
 Number Of Channel: 5CH
 Antenna installation: Internal Antenna

3.02 dBi

Remark:

Antenna Gain: The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.
 The antenna gain of the product is provided by the customer, and the test data is affected by the customer information.

Ratings: DC 3.7V From Battery, DC 5V From USB

4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-1	Wireless Microphone		U1	N/A	EUT
E-2	Adapter	UGREEN	CD289	N/A	Auxiliary

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

Channel No.	1	2	3	4	5
Frequency (MHz)	657.5	658	658.1	659	659.5

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	Charging (Conducted emission)
Mode 2	Transmitting (CH01: 657.5 MHz)
Mode 3	Transmitting (CH03: 658.1 MHz)
Mode 4	Transmitting (CH05: 659.5 MHz)

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) Fully-charged battery is used during the test

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address: 1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

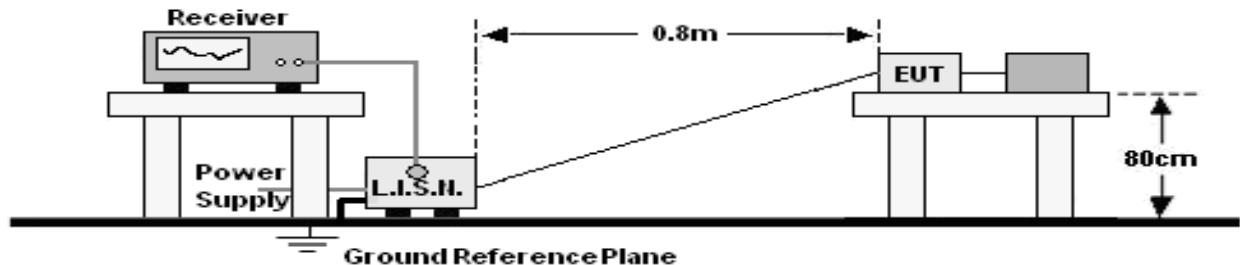
A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

5.2 Test Instrument Used

Conducted Emissions Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Receiver	R&S	ESR	102075	May 08, 2025	May 07, 2026
LISN	R&S	ENV216	101375	May 14, 2025	May 13, 2026
Software	Frad	EZ-EMC	EMC-CON 3A1	\	\
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	May 14, 2025	May 13, 2026


RF Conducted Test					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Power meter	Keysight	E4419	\	May 14, 2025	May 13, 2026
Power Sensor (AV)	Keysight	E9300A	\	May 14, 2025	May 13, 2026
Signal Analyzer 20kHz - 26.5GHz	Keysight	N9020A	MY49100060	May 14, 2025	May 13, 2026
Spectrum Analyzer 9kHz - 40GHz	R&S	FSP40	100363	May 14, 2025	May 13, 2026

Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R&S	ESR	102075	May 08, 2025	May 07, 2026
Receiver	R&S	ESRP	101154	May 14, 2025	May 13, 2026
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 14, 2025	May 13, 2026
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 24, 2025	May 23, 2026
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 24, 2025	May 23, 2026
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 14, 2025	May 13, 2026
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 24, 2025	May 23, 2026
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35-HG	2034381	May 24, 2025	May 23, 2026
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 24, 2025	May 23, 2026
Spectrum Analyzer9kHz-40GHz	R&S	FSP40	100363	May 14, 2025	May 13, 2026
Software	Frad	EZ-EMC	FA-03A2 RE	\	\

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

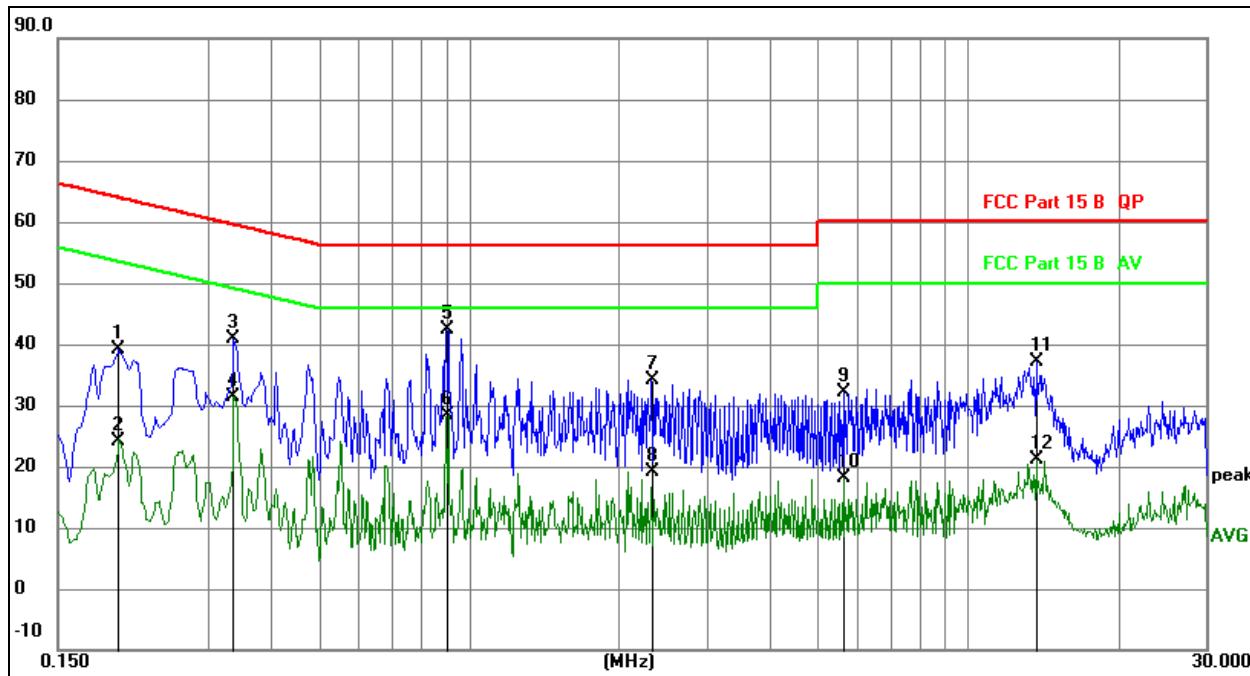
FREQUENCY (MHz)	Limit (dBuV)	
	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.
2. The lower limit shall apply at the transition frequencies.

6.3 Test Procedure

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

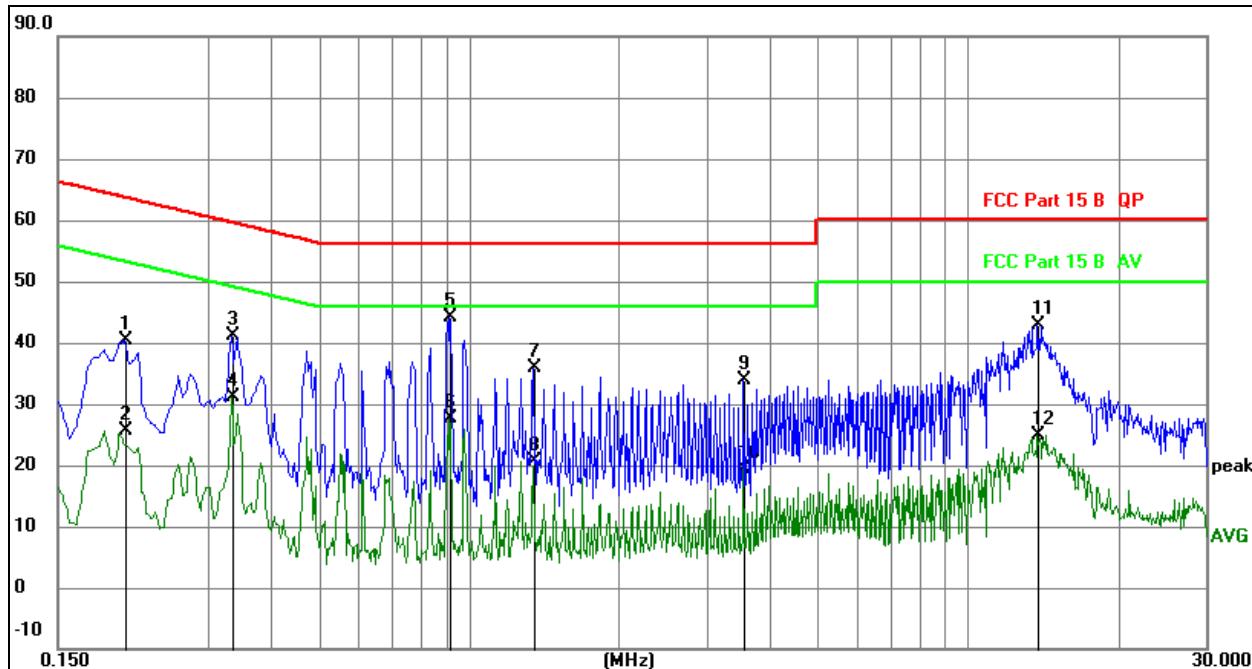

- The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).
- The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.
- For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

6.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Phase :	L
Test Mode:	Mode 1	Remark:	N/A



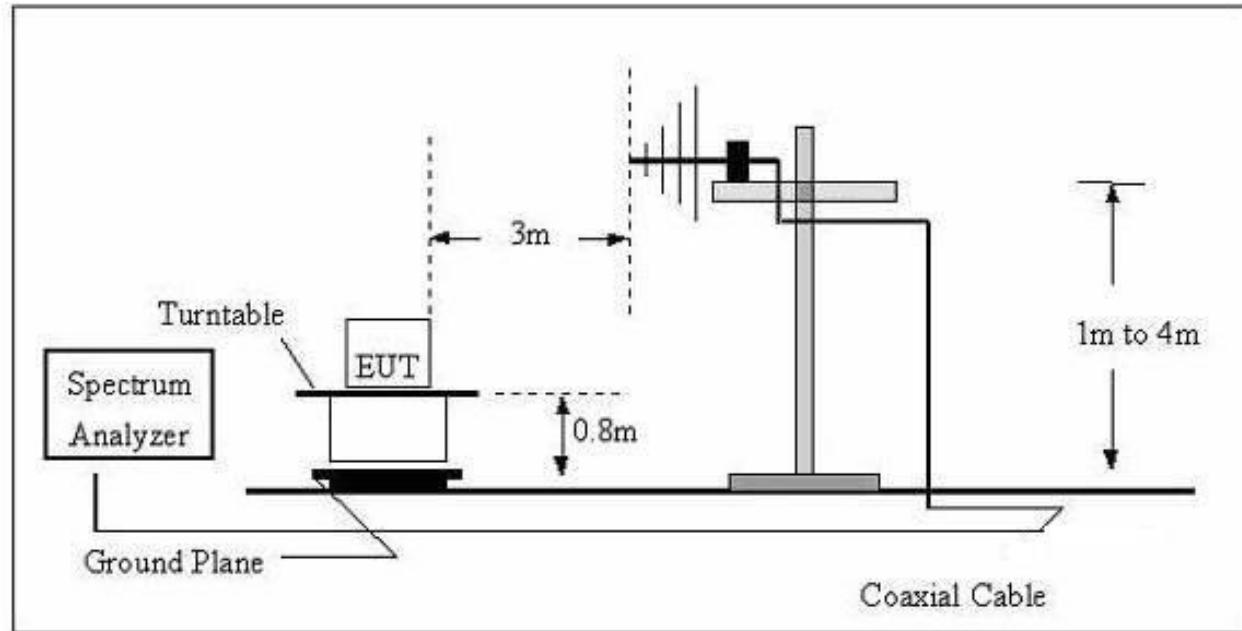
Remark:

1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. Measurement=Reading Level+ Correct Factor
4. Over=Measurement-Limit

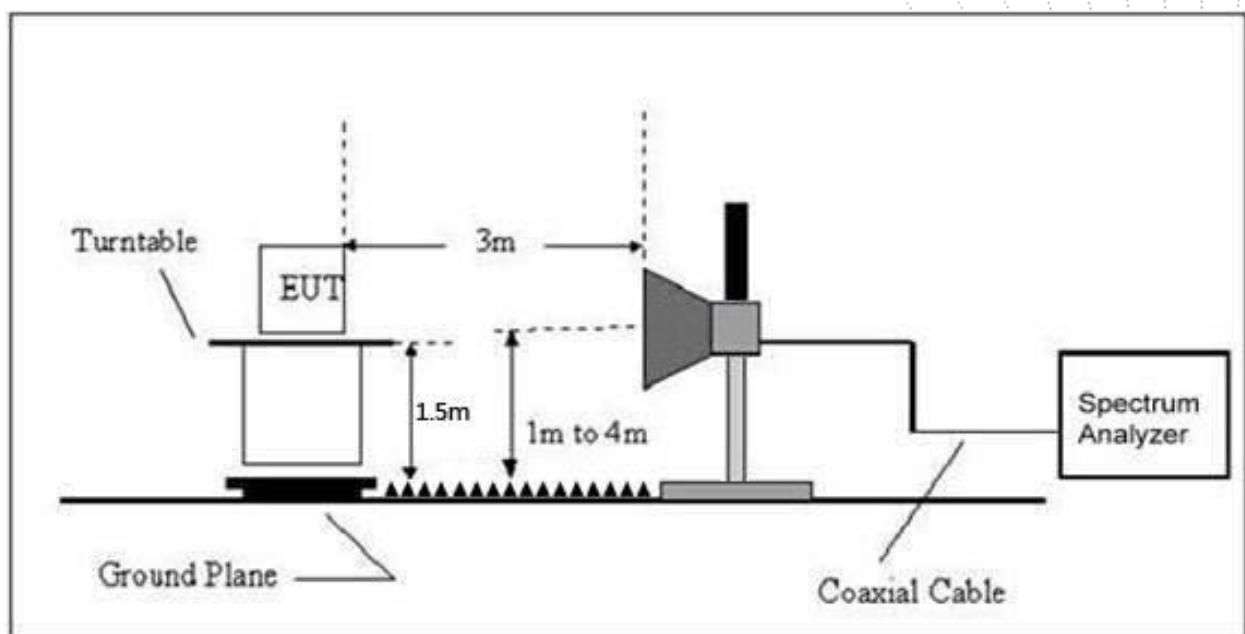
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector
			Level	Factor	ment			
			MHz	dB	dBuV	dB		
1		0.1986	18.99	20.07	39.06	63.67	-24.61	QP
2		0.1986	4.18	20.07	24.25	53.67	-29.42	AVG
3		0.3373	20.84	20.07	40.91	59.27	-18.36	QP
4		0.3373	11.36	20.07	31.43	49.27	-17.84	AVG
5	*	0.8992	22.40	20.09	42.49	56.00	-13.51	QP
6		0.8992	8.18	20.09	28.27	46.00	-17.73	AVG
7		2.3213	14.03	20.11	34.14	56.00	-21.86	QP
8		2.3213	-0.93	20.11	19.18	46.00	-26.82	AVG
9		5.6234	12.00	20.15	32.15	60.00	-27.85	QP
10		5.6234	-2.08	20.15	18.07	50.00	-31.93	AVG
11		13.6952	16.82	20.27	37.09	60.00	-22.91	QP
12		13.6952	0.83	20.27	21.10	50.00	-28.90	AVG

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Phase :	N
Test Mode:	Mode 1	Remark:	N/A

Remark:


1. All readings are Quasi-Peak and Average values.
2. Factor = Insertion Loss + Cable Loss.
3. Measurement=Reading Level+ Correct Factor
4. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure-ment	Limit	Over	Detector
		MHz		dB	dBuV	dBuV	dB	
1		0.2040	20.27	20.07	40.34	63.45	-23.11	QP
2		0.2040	5.54	20.07	25.61	53.45	-27.84	AVG
3		0.3345	21.18	20.07	41.25	59.34	-18.09	QP
4		0.3345	11.14	20.07	31.21	49.34	-18.13	AVG
5	*	0.9150	24.08	20.09	44.17	56.00	-11.83	QP
6		0.9150	7.61	20.09	27.70	46.00	-18.30	AVG
7		1.3470	15.86	20.09	35.95	56.00	-20.05	QP
8		1.3470	0.54	20.09	20.63	46.00	-25.37	AVG
9		3.5565	13.70	20.13	33.83	56.00	-22.17	QP
10		3.5565	-0.83	20.13	19.30	46.00	-26.70	AVG
11		13.7805	22.53	20.28	42.81	60.00	-17.19	QP
12		13.7805	4.61	20.28	24.89	50.00	-25.11	AVG


7. Radiated Emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency 30MHz~1GHz

(B) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

According to FCC 15.236(g)(4), Emissions outside of the emission masks listed in paragraphs (g)(1) through (g)(3) shall comply with the limits specified in section 4.2.4.1.2 of ETSI EN 300 422-1 V2.2.1 (2021-11), (incorporated by reference, see § 15.38).

**Table 4: Transmitter unwanted emission limits
(from ERC Recommendation 74-01 [2])**

Frequency range	Maximum power	RBW
9 kHz - 150 kHz	-36 dBm	1 kHz
150 kHz - 30 MHz	-36 dBm	10 kHz
30 MHz - 1 GHz	-36 dBm	$F_c + 2,5 B \leq f \leq F_c + 4 B$: 1 kHz $F_c + 4 B < f \leq F_c + 10 B$: 10 kHz $f > F_c + 10 B$: 100 kHz $f < F_c - 10 B$: 100 kHz $F_c - 10 B \leq f < F_c - 4 B$: 10 kHz $F_c - 4 B \leq f \leq F_c - 2,5 B$: 1 kHz
except:		
47 MHz - 74 MHz 87,5 MHz - 118 MHz	-54 dBm	100 kHz
174 MHz - 230 MHz 470 MHz - 862 MHz	-54 dBm	$F_c + 2,5 B \leq f \leq F_c + 4 B$: 1 kHz $F_c + 4 B < f \leq F_c + 10 B$: 10 kHz $f > F_c + 10 B$: 100 kHz $f < F_c - 10 B$: 100 kHz $F_c - 10 B \leq f < F_c - 4 B$: 10 kHz $F_c - 4 B \leq f \leq F_c - 2,5 B$: 1 kHz
1 GHz < $f \leq F_{upper}$	-30 dBm	$F_c + 2,5 B \leq f \leq F_c + 10 B$: 30 kHz $F_c + 10 B < f \leq F_c + 12 B$: 300 kHz $f > F_c + 12 B$: 1 MHz $f < F_c - 12 B$: 1 MHz $F_c - 12 B \leq f < F_c - 10 B$: 300 kHz $F_c - 10 B \leq f \leq F_c - 2,5 B$: 30 kHz

7.3 Test Procedure

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel.

Note: Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

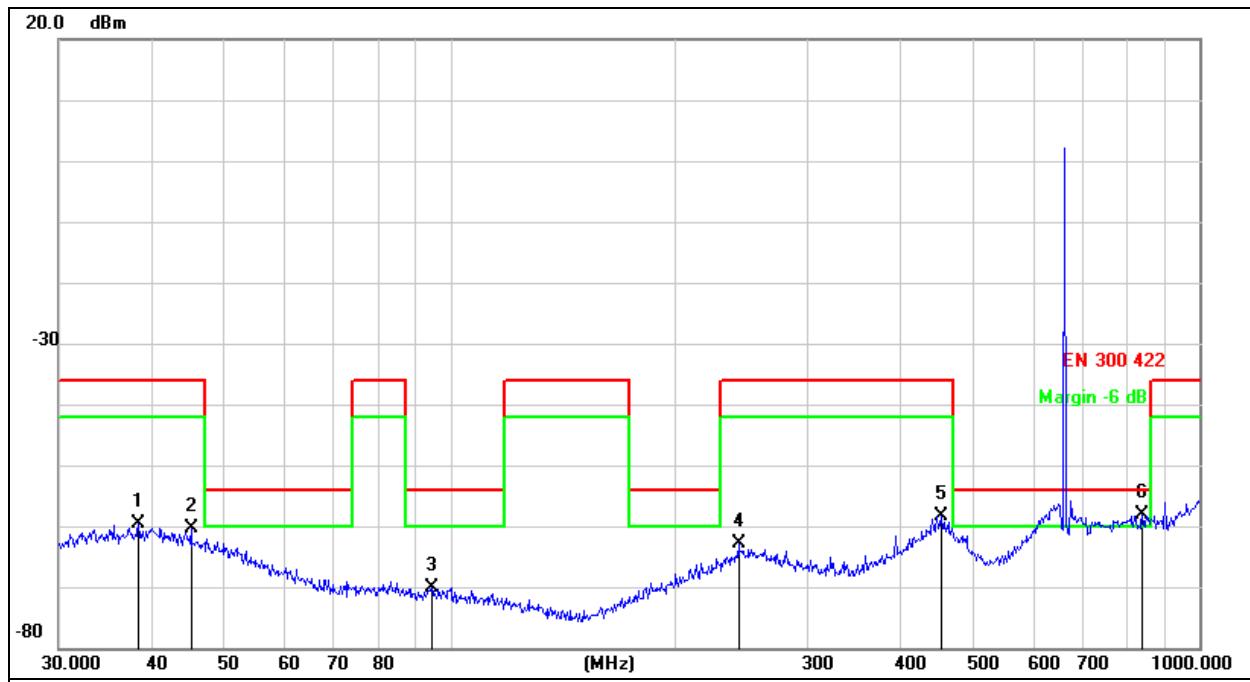
7.4 EUT Operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

7.5 Test Result

9KHz – 30MHz

Temperature:	26°C	Relative Humidity:	54%
Pressure:	101 kPa	Test Voltage :	DC 3.7V
Test Mode :	Mode 1(The Worst data)	Polarization :	--

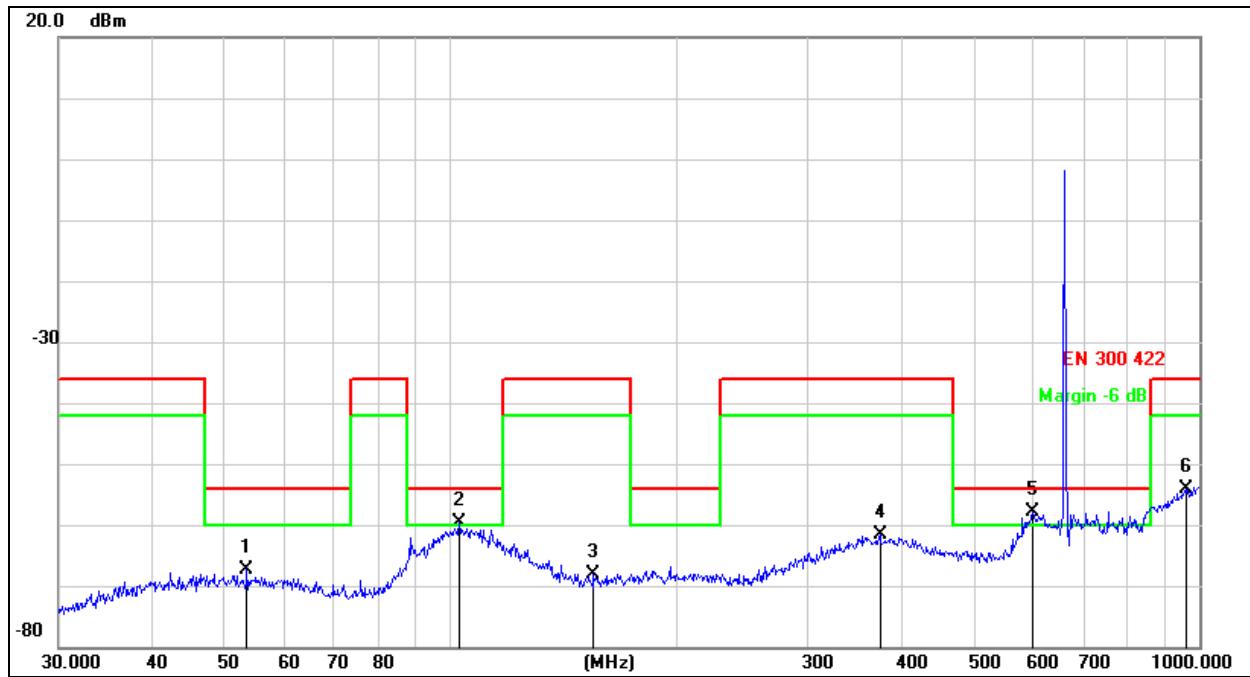

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
--	--	--	--	PASS
--	--	--	--	PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log (\text{specific distance}/\text{test distance})(\text{dB})$;
 Limit line = specific limits(dBuV) + distance extrapolation factor.

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Horizontal
Frequency	The worst data(Mode 3)	Remark:	N/A



Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBm	dB	dBm	dB	Detector	
1	38.3462	-62.22	2.50	-59.72	-36.00	-23.72	QP	
2	45.0583	-61.67	1.31	-60.36	-36.00	-24.36	QP	
3	94.4284	-62.90	-7.26	-70.16	-54.00	-16.16	QP	
4	242.5253	-61.01	-1.81	-62.82	-36.00	-26.82	QP	
5	452.7197	-61.97	3.49	-58.48	-36.00	-22.48	QP	
6	*	839.1816	-66.18	8.01	-58.17	-54.00	-4.17	QP

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Phase :	Vertical
Frequency	The worst data(Mode 3)	Remark:	N/A

Remark:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.
2. Measurement=Reading Level+ Correct Factor
3. Over=Measurement-Limit

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over
			Level	Factor	ment		
		MHz	dBm	dB	dBm	dB	Detector
1		53.5052	-61.81	-5.63	-67.44	-54.00	-13.44 QP
2	!	102.7192	-62.01	2.34	-59.67	-54.00	-5.67 QP
3		155.3643	-62.90	-5.18	-68.08	-36.00	-32.08 QP
4		374.6225	-62.12	0.51	-61.61	-36.00	-25.61 QP
5	*	599.3212	-62.27	4.34	-57.93	-54.00	-3.93 QP
6		962.1621	-61.61	7.42	-54.19	-36.00	-18.19 QP

Above 1GHz

Frequency	Receiver Reading	Polar	Correct	Absolute Level	Result	
			Factor		Limit	Margin
(MHz)	(dBm)	(H/V)	(dB)	(dBm)	(dBm)	(dB)
657.5 MHz						
1315.00	-11.04	V	-28.11	-39.15	-30	-9.15
1972.50	-24.66	H	-26.66	-51.32	-30	-21.32
1315.00	-20.59	H	-28.11	-48.70	-30	-18.70
1972.50	-26.84	V	-26.66	-53.50	-30	-23.50
658.1 MHz						
1316.20	-21.17	V	-28.10	-49.27	-30	-19.27
1974.30	-24.38	H	-26.66	-51.04	-30	-21.04
1316.20	-20.53	H	-28.1	-48.63	-30	-18.63
1974.30	-26.63	V	-26.66	-53.29	-30	-23.29
659.5 MHz						
1319.00	-21.05	V	-28.10	-49.15	-30	-19.15
1978.50	-24.40	H	-26.65	-51.05	-30	-21.05
1319.00	-20.71	H	-28.1	-48.81	-30	-18.81
1978.50	-26.91	V	-26.65	-53.56	-30	-23.56

Remark:

Absolute Level = Receiver Reading + Factor

Factor = Antenna Factor + Cable Loss – Pre-amplifier.

8. RF Output Power (EIRP)

8.1 Block Diagram Of Test Setup

8.2 Limit

According to FCC 15.236 (d)(2)

In the 600 MHz guard band and the 600 MHz duplex gap: 20 mW EIRP.

8.3 Test Procedure

The EUT was directly connected to the Power meter.

8.4 Test Result

Temperature:	26°C	Relative Humidity:	54%
Test Mode:	FM	Test Voltage:	DC 3.7V

Frequency (MHz)	Conducted Output Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	EIRP (mW)	FCC Limit (mW)	Result
657.5	5.315	3.02	8.325	7.000	20	PASS
658.1	5.170	3.02	8.190	6.592	20	PASS
659.5	4.915	3.02	7.935	6.216	20	PASS

Remark:

EIRP (dBm) = Conducted Output Power (dBm) + Antenna Gain (dBi)

9. Occupied Bandwidth

9.1 Block Diagram Of Test Setup

9.2 Limit

According to FCC 15.236(f)(ii)

One or more adjacent 25 kHz segments within the assignable frequencies may be combined to form a channel whose maximum bandwidth shall not exceed 200 kHz. The operating bandwidth shall not exceed 200 kHz.


9.3 Test Procedure

According to TIA-603 for additional Test Set-Up procedures, the occupied bandwidth of emission was measured with a Spectrum Analyzer connected to the antenna terminal while EUT was operating in 2.5kHz tone at an input level 16 dB greater than that necessary to produce 50 percent modulation. Then mark the 99% Occupied Bandwidth and record it.

9.5 Test Result

Temperature:	26°C	Relative Humidity:	54%
Test Mode:	FM	Test Voltage:	DC 3.7V

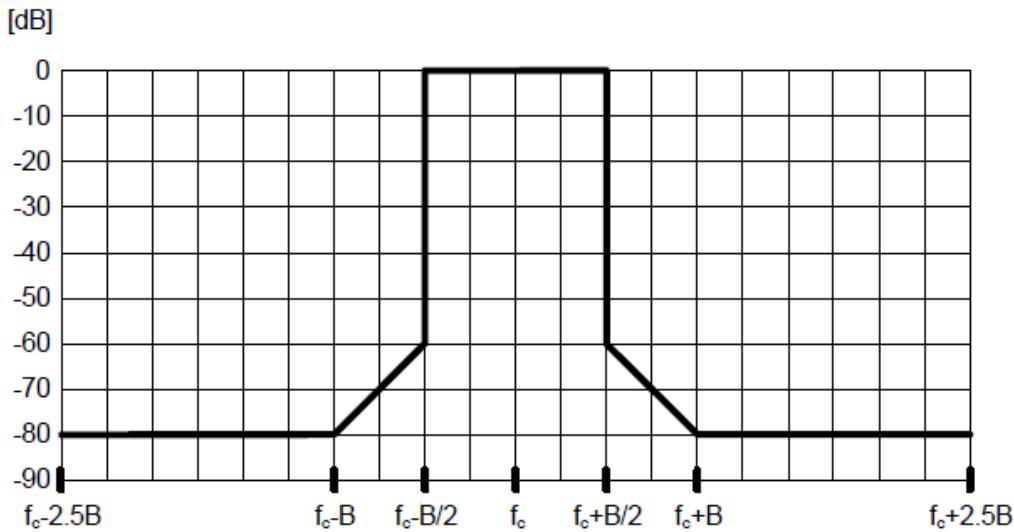
Frequency(MHz)	99% Bandwidth(kHz)	Limit(kHz)	Result
657.5	86.422	200	PASS
658.1	88.362	200	PASS
659.5	82.069	200	PASS

10. Emission Mask (Necessary Bandwidth)

10.1 Block Diagram Of Test Setup

10.2 Limit

According to FCC 15.236(g)(1)


Emissions within the band from $2.5 \times B$ below to $2.5 \times B$ above the carrier frequency, where B is the channel bandwidth, shall comply with the emission mask in Figure 1 of section 4.2.4.2.2 of ETSI EN 300 422-1 V2.2.1 (2021-11) (incorporated by reference, see § 15.38).

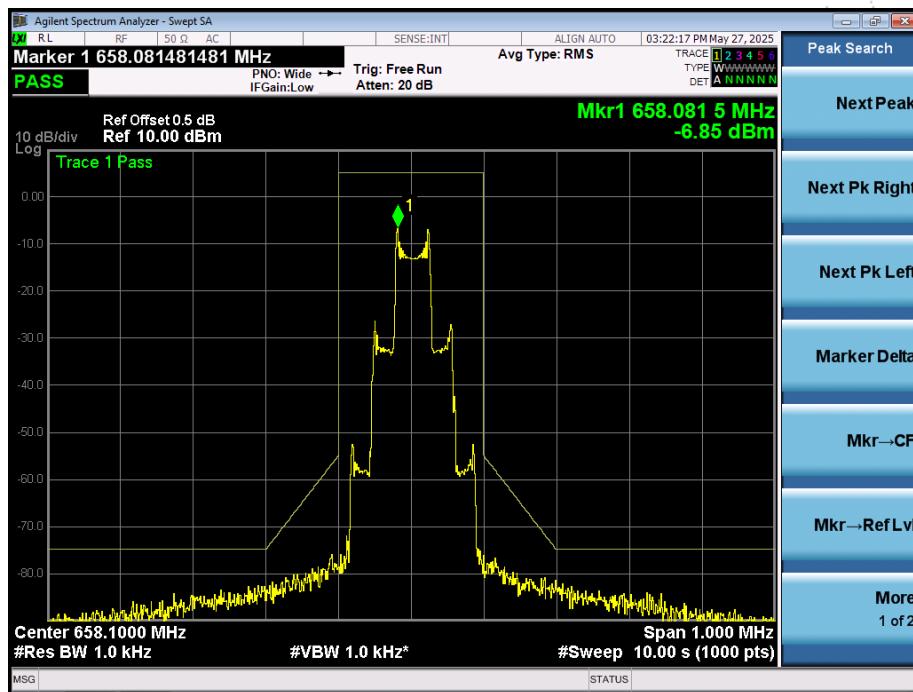
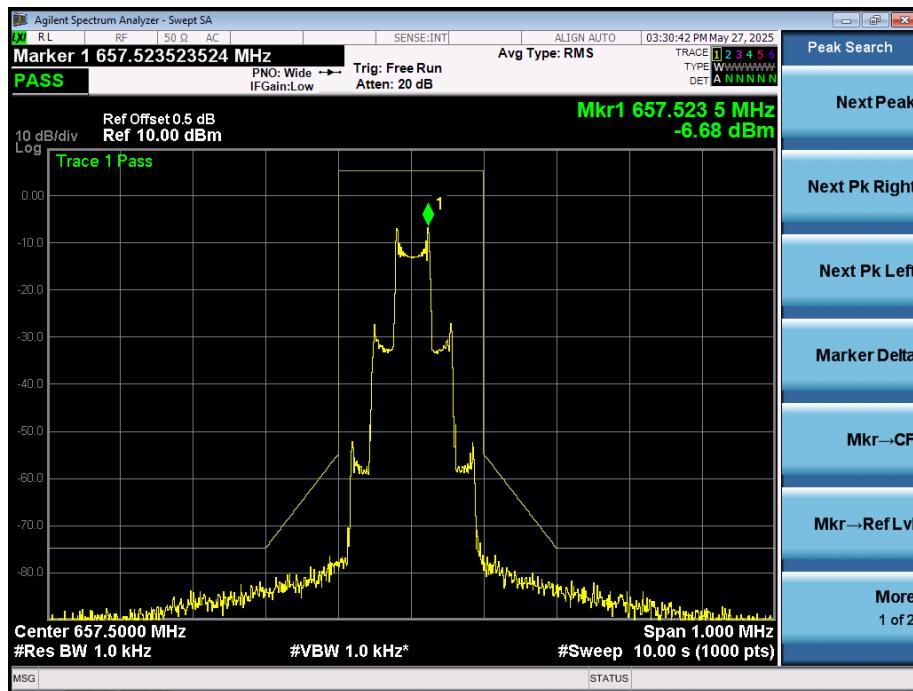
4.2.4.2.2 Limits

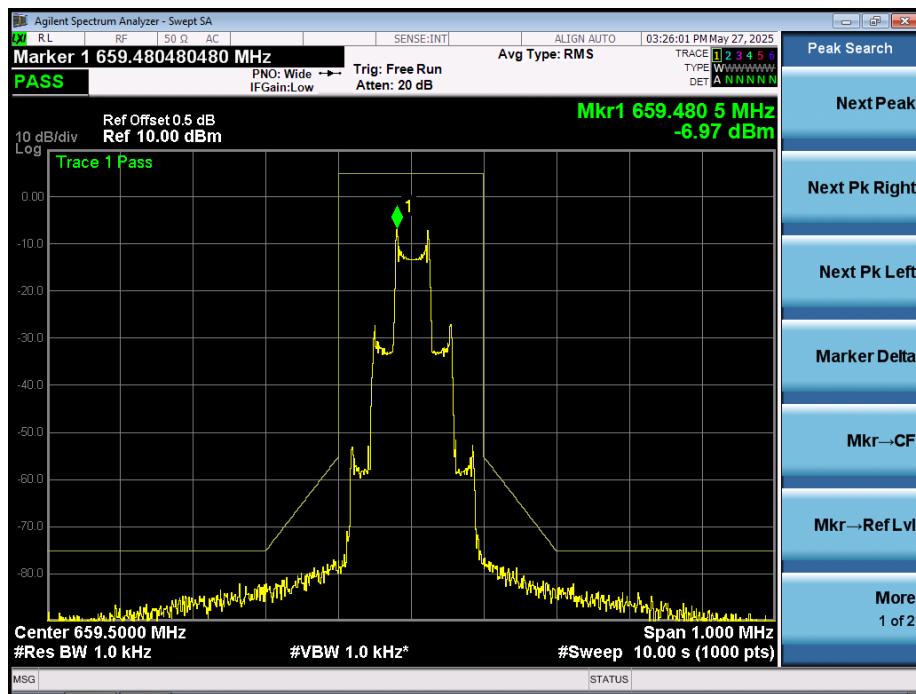
The following limits are applicable, where B is the *Declared Channel Bandwidth*.

The mean Power Density, measured with 1 kHz measurement bandwidth and RMS detector, of the transmitter unwanted emissions shall not exceed the limits of the masks provided in figure 1 for equipment employing analogue modulation and figure 2 for equipment employing digital modulation, but excluding WMAS.

The limits in figures 1 and 2 are relative to the transmitter RF output power according to clauses 4.2.1 and 5.4.1.

Figure 1: Transmit spectral power mask for equipment employing analogue modulation, RBW = 1 kHz



10.3 Test Procedure


Method of Measurement for Analogue Systems in ETSI EN 300 422-1 V2.2.1 (2021-11) section 5.4.3.2

,TC
3C
PPR
Report

10.5 Test Result

Temperature:	26°C	Relative Humidity:	54%
Test Mode:	FM	Test Voltage:	DC 3.7V

11. Frequency Tolerance

11.1 Block Diagram Of Test Setup

11.2 Limit

According to FCC 15.236(f)(3)

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.005\%$ of the operating frequency over a temperature variation of -20 degrees to $+50$ degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. Battery operated equipment shall be tested using a new battery.

11.3 Test Procedure

1, Setup the configuration of the ambient temperature from -20°C to 50°C with sufficient time. And measure the different power of the EUT with an artificial power from highest to end point voltage.

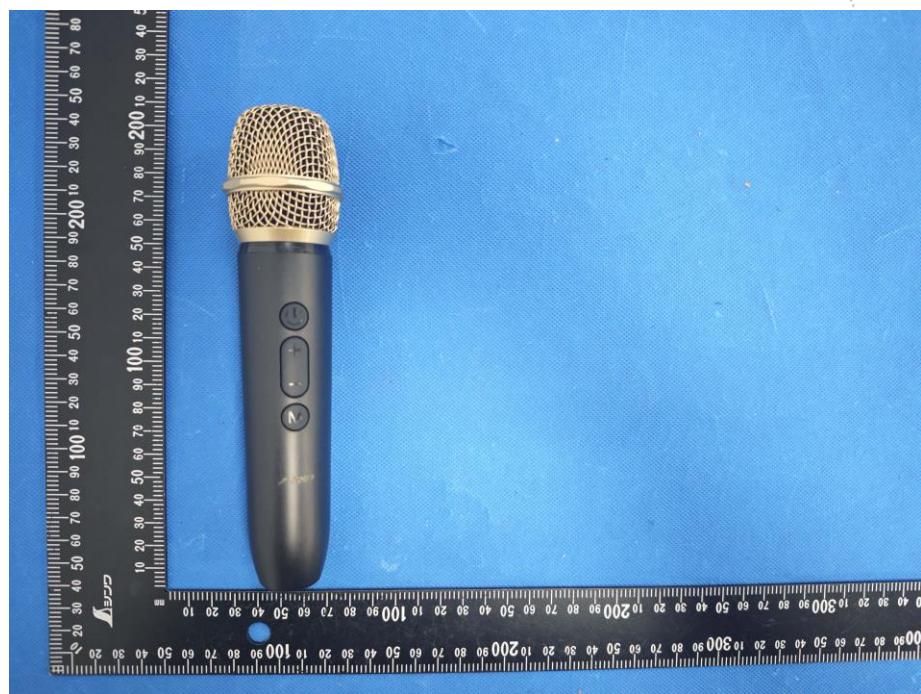
2, Set frequency counter center frequency to the right frequency needs to be measured.

11.5 Test Result

Temperature:	26°C	Relative Humidity:	54%
Test Mode:	Unmodulated	Test Voltage:	DC 3.7V

Test conditions	Frequency Error(MHz)	
	657.5000	
$T_{\min} (-20^{\circ}\text{C})$	$V_{\min}(3.33\text{V})$	657.4984
	$V_{\max}(4.07\text{V})$	657.4949
$T(-20^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4926
$T(-10^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4892
$T(0^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4866
$T(10^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4857
$T_{\text{nom}}(20^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4845
$T(30^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4814
$T(40^{\circ}\text{C})$	$V_{\text{nom}}(3.7\text{V})$	657.4807
$T_{\max}(50^{\circ}\text{C})$	$V_{\min}(3.33\text{V})$	657.4777
	$V_{\max}(4.07\text{V})$	657.4771
Max. frequency error (ppm)		-35
Limit (ppm)		$\pm 50\text{ppm}$

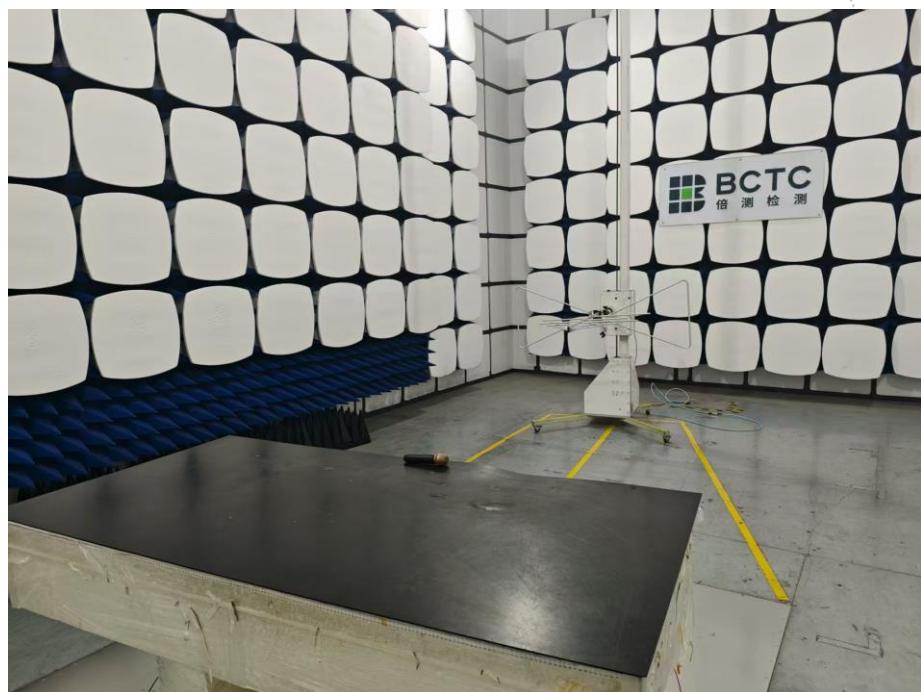
Test conditions		Frequency Error(MHz)
658.1000		
T_{min} (-20°C)	V_{min} (3.33V)	658.0965
	V_{max} (4.07V)	658.0962
T(-20°C)	V_{nom} (3.7V)	658.0961
T(-10°C)	V_{nom} (3.7V)	658.0957
T(0°C)	V_{nom} (3.7V)	658.0944
T(10°C)	V_{nom} (3.7V)	658.0906
T_{nom} (20°C)	V_{nom} (3.7V)	658.0905
T(30°C)	V_{nom} (3.7V)	658.0872
T(40°C)	V_{nom} (3.7V)	658.0858
T_{max} (50°C)	V_{min} (3.33V)	658.0847
	V_{max} (4.07V)	658.0828
Max. frequency error (ppm)		-26
Limit (ppm)		± 50 ppm

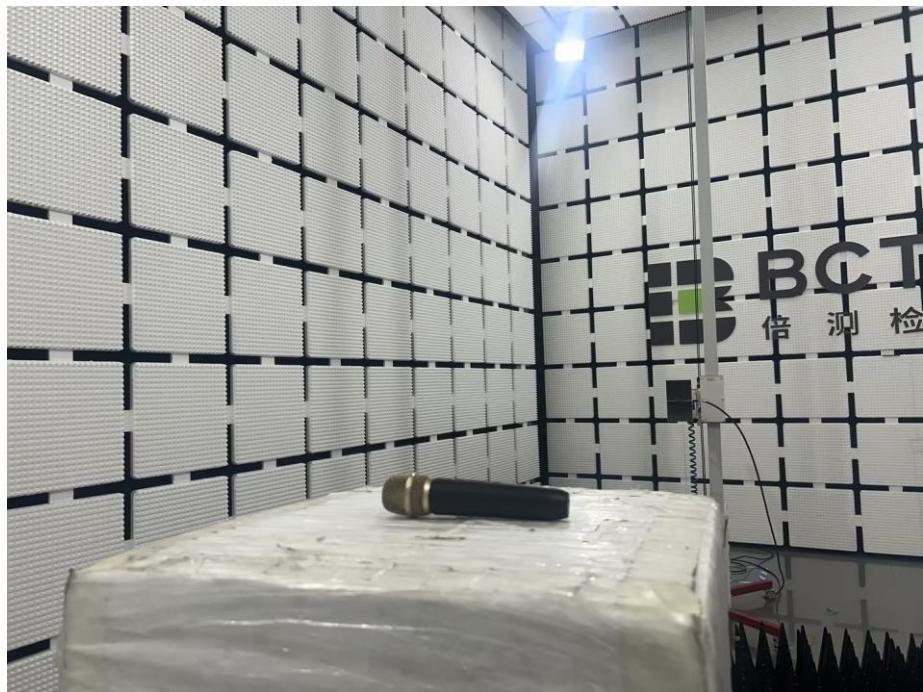

Test conditions		Frequency Error(MHz)
659.5000		
T_{min} (-20°C)	V_{min} (3.33V)	659.4966
	V_{max} (4.07V)	659.4933
T(-20°C)	V_{nom} (3.7V)	659.4928
T(-10°C)	V_{nom} (3.7V)	659.4912
T(0°C)	V_{nom} (3.7V)	659.4908
T(10°C)	V_{nom} (3.7V)	659.4902
T_{nom} (20°C)	V_{nom} (3.7V)	659.4898
T(30°C)	V_{nom} (3.7V)	659.4896
T(40°C)	V_{nom} (3.7V)	659.4883
T_{max} (50°C)	V_{min} (3.33V)	659.4861
	V_{max} (4.07V)	659.4835
Max. frequency error (ppm)		-25
Limit (ppm)		± 50 ppm

12. EUT Photographs

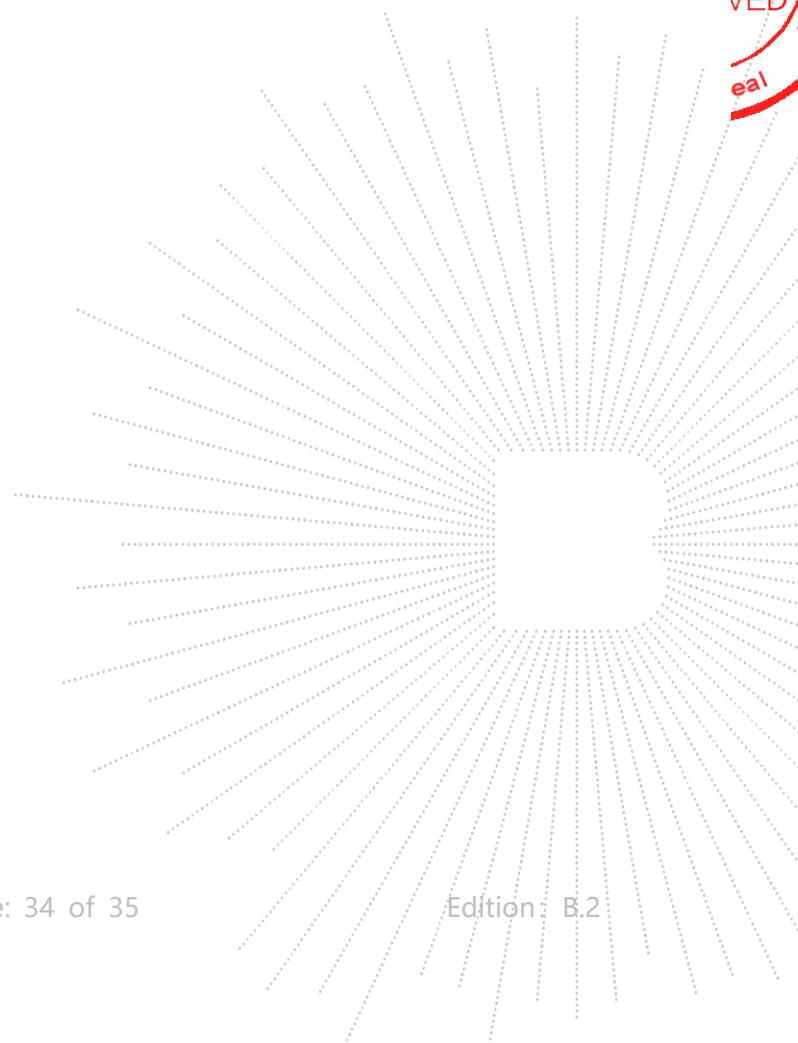
EUT Photo 1

EUT Photo 2


NOTE: Appendix-Photographs Of EUT Constructional Details.


13. EUT Test Setup Photographs

Conducted Measurement Photo



Radiated Measurement Photos

ESTIN
C
VED
eal

STATEMENT

1. The equipment lists are traceable to the national reference standards.
2. The test report can not be partially copied unless prior written approval is issued from our lab.
3. The test report is invalid without the "special seal for inspection and testing".
4. The test report is invalid without the signature of the approver.
5. The test process and test result is only related to the Unit Under Test.
6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
7. The quality system of our laboratory is in accordance with ISO/IEC17025.
8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: <http://www.chnbctc.com>

Consultation E-mail: bctc@bctc-lab.com.cn

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****