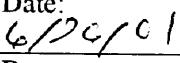
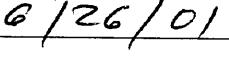


*Specific Absorption Rate (SAR) Test Report*  
for  
**Symbol Technologies, Inc.**  
on the  
**Spread Spectrum Radio Card**  
**Model: LA 4137**

Test Report: 20520091  
Date of Report: June 22, 2001

Job #: 20052009  
Date of Test: June 11-12, 2001

Total number of pages in report: 47



**NVLAP**<sup>®</sup>

NVLAP Laboratory Code 200201-0  
Accredited for testing to FCC Parts 15

Warrick Harsay

S

EMC

|              |                                                                                     |                                        |              |                                                                                       |
|--------------|-------------------------------------------------------------------------------------|----------------------------------------|--------------|---------------------------------------------------------------------------------------|
| Tested by:   |  | Xi-Ming Yang                           | Review Date: |  |
| Reviewed by: |  | David Chernomordik<br>EMC Site Manager | Review Date: |  |

All services undertaken are subject to the following general policy: Reports are submitted for exclusive use of the client to whom they are addressed. Their significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations or surveys made. This report shall not be reproduced except in full, without written consent of Intertek Testing Services, NA Inc. This report must not be used to claim product endorsement by NVLAP, NIST nor any other agency of the U.S. Government.

emc

GS

CE



Intertek Testing Services NA, Inc.  
1365 Adams Court, Menlo Park, CA 94025  
Telephone 650-463-2900 Fax 650-463-2910 Home Page [www.etlsemko.com](http://www.etlsemko.com)



**Table of Contents**

|            |                                                          |           |
|------------|----------------------------------------------------------|-----------|
| <b>1.0</b> | <b>JOB DESCRIPTION</b>                                   | <b>2</b>  |
| 1.1        | Client Information.....                                  | 2         |
| 1.2        | Equipment under test (EUT) .....                         | 2         |
| 1.3        | Test plan reference.....                                 | 3         |
| 1.4        | System test configuration.....                           | 3         |
| 1.4.1      | System block diagram & Support equipment .....           | 3         |
| 1.4.3      | Test Position for Muscle .....                           | 4         |
| 1.4.4      | Test Condition.....                                      | 6         |
| 1.5        | Modifications required for compliance.....               | 6         |
| 1.6        | Additions, deviations and exclusions from standards..... | 6         |
| <b>2.0</b> | <b>SAR EVALUATION</b> .....                              | <b>7</b>  |
| 2.1        | SAR Limits.....                                          | 7         |
| 2.2        | Configuration Photographs .....                          | 8         |
| 2.3        | System Verification .....                                | 18        |
| 2.4        | Evaluation Procedures .....                              | 18        |
| 2.5        | Test Results .....                                       | 19        |
| <b>3.0</b> | <b>EQUIPMENT</b> .....                                   | <b>21</b> |
| 3.1        | Equipment List .....                                     | 21        |
| 3.2        | Tissue Simulating Liquid .....                           | 22        |
| 3.3        | E-Field Probe Calibration .....                          | 23        |
| 3.4        | Measurement Uncertainty .....                            | 24        |
| 3.5        | Measurement Traceability .....                           | 24        |
| <b>4.0</b> | <b>WARNING LABEL INFORMATION - USA</b> .....             | <b>25</b> |
| <b>5.0</b> | <b>REFERENCES</b> .....                                  | <b>26</b> |
| <b>6.0</b> | <b>Document History</b> .....                            | <b>27</b> |
|            | <b>APPENDIX A - SAR Evaluation Data</b> .....            | <b>28</b> |
|            | <b>APPENDIX B - E-Field Probe Calibration Data</b> ..... | <b>38</b> |

**1.0 JOB DESCRIPTION**

## 1.1 Client Information

The EUT has been tested at the request of:

**Company:** Symbol Technologies, Inc.  
**Address:** 6480 Via Del Oro  
San Jose, CA 95119-1208  
USA  
**Name of contact:** Mr. Norm Nelson  
**Telephone:** (408) 528-2649  
**Fax:** (408) 528-2740

## 1.2 Equipment under test (EUT)

**Product Descriptions:**

| Equipment                | Spread Spectrum WLAN Compact Flash Card            |             |                          |
|--------------------------|----------------------------------------------------|-------------|--------------------------|
| Trade Name               | Symbol Technologies, Inc.                          | Model No:   | LA 4137                  |
| FCC ID                   | H9PLA4137P                                         | S/N No.     | Not Labeled              |
| Category                 | Portable                                           | RF Exposure | Uncontrolled Environment |
| Frequency Band (up link) | 2412 - 2462 MHz                                    | System      | DSSS                     |
| Antenna Type             | Integrated, PCB Chip, Model Trilogy CF, 2 dBi gain |             |                          |
| Location:                | Installed in a Laptop Computer                     |             |                          |

Note: For details on antennas see Appendix C

**Use of Product :** Wireless Data Communications

**Manufacturer:** Symbol Technologies, Inc.

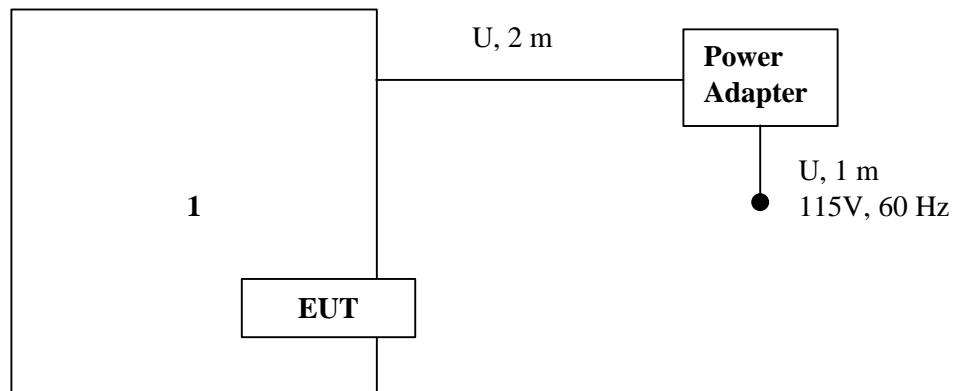
**Production is planned**  Yes,  No

**EUT receive date:** June 6, 2001

**EUT received condition:** Prototype in good condition.

**Test start date:** June 11, 2001

**Test end date:** June 12, 2001


1.3 Test plan reference

FCC rule part 2.1093, FCC Docket 96-326 & Supplement C to OET Bulletin 65

1.4 System test configuration

1.4.1 System block diagram & Support equipment

| Item # | Description            | Model No.   | Serial No.           |
|--------|------------------------|-------------|----------------------|
| 1      | Compaq Laptop Computer | Armada E500 | AE5 P3700T5X12VC64N2 |



U: Unshielded Cable

m: Length in meters

#### 1.4.3 Test Position for Muscle

The LA 4131 was configured for testing in a typical fashion (as a customer would normally use it), and in the confines as outlined in C95.1 (1992) and Supplement C of OET 65 (1998). Please refer to figures 1 – 3 below for the position details:

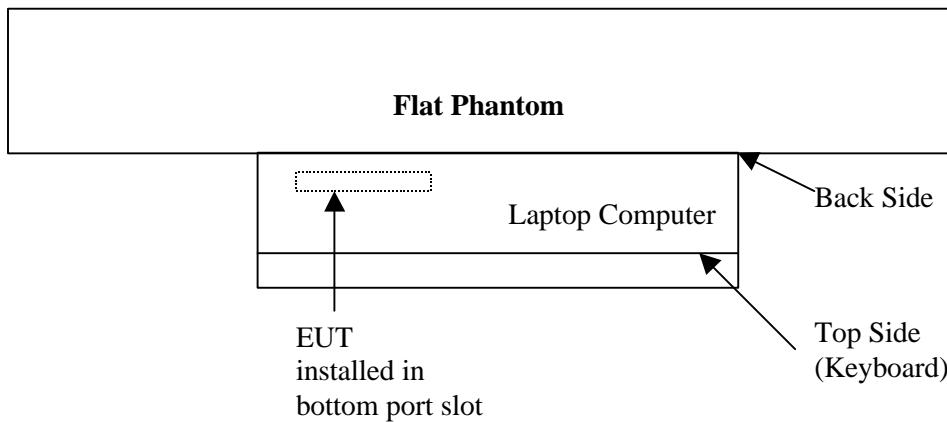



Figure 1: laptop upside down (face down, closed)

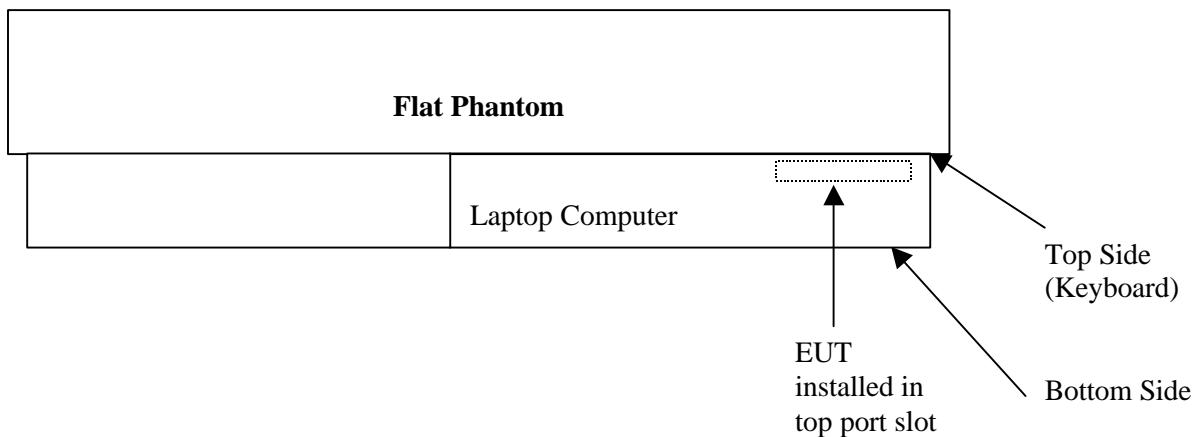



Figure 2: laptop in normal position (face up, open)

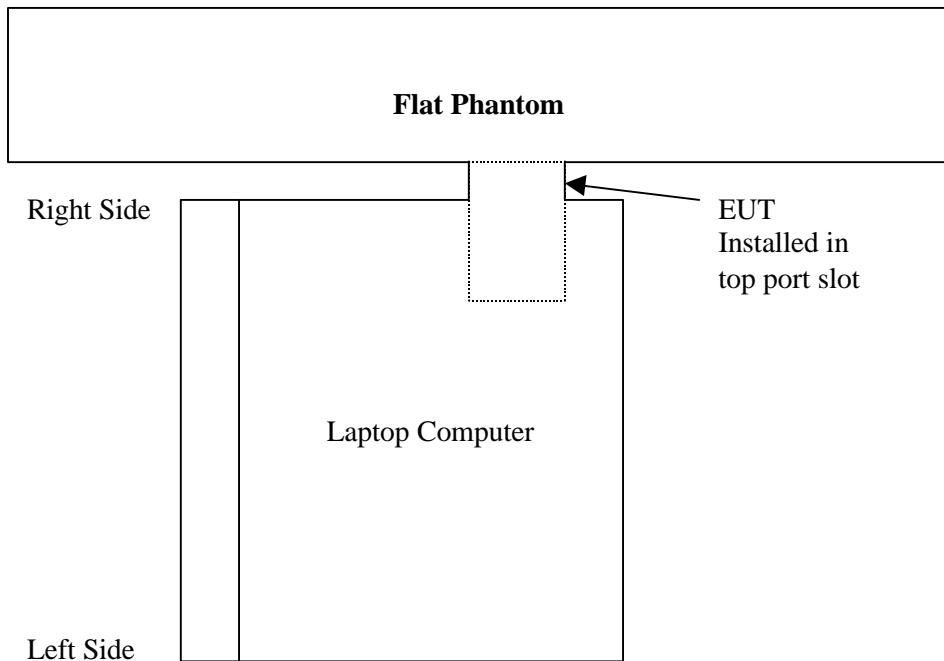



Figure 3: laptop in vertical position

## 1.4.4 Test Condition

During tests, the worst case data (max. RF coupling) was determined with following conditions:

| EUT Antenna           | Internal                           | Orientation                                       | Flat (Muscle)                                                                                                                   |
|-----------------------|------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Usage                 | Body                               | Distance between antenna and the phantom surface: | 19.8 mm with laptop in upside down position.<br>1.3 mm with laptop in normal position.<br>0 mm with laptop in vertical position |
| Simulating human hand | Not Used                           | EUT power                                         | EUT is powered from laptop                                                                                                      |
| Power output          | 19.5 dBm – output, 21.5 dBm - EIRP |                                                   |                                                                                                                                 |

The spatial peak SAR values were accessed for lowest, middle and highest operating channels defined by the manufacturer.

## 1.5 Modifications required for compliance

No modifications were implemented by Intertek Testing Services.

## 1.6 Additions, deviations and exclusions from standards

No additions, deviations or exclusions have been made from standard.

**2.0 SAR EVALUATION****2.1 SAR Limits**

The following FCC limits for SAR apply to devices operate in General Population/Uncontrolled Exposure environment:

| <b>EXPOSURE<br/>(General Population/Uncontrolled Exposure environment)</b> | <b>SAR<br/>(W/kg)</b> |
|----------------------------------------------------------------------------|-----------------------|
| Average over the whole body                                                | 0.08                  |
| Spatial Peak (1g)                                                          | 1.60                  |
| Spatial Peak for hands, wrists, feet and ankles (10g)                      | 4.00                  |

2.2 Configuration Photographs

**SAR measurement Test Setup**  
Laptop in normal position



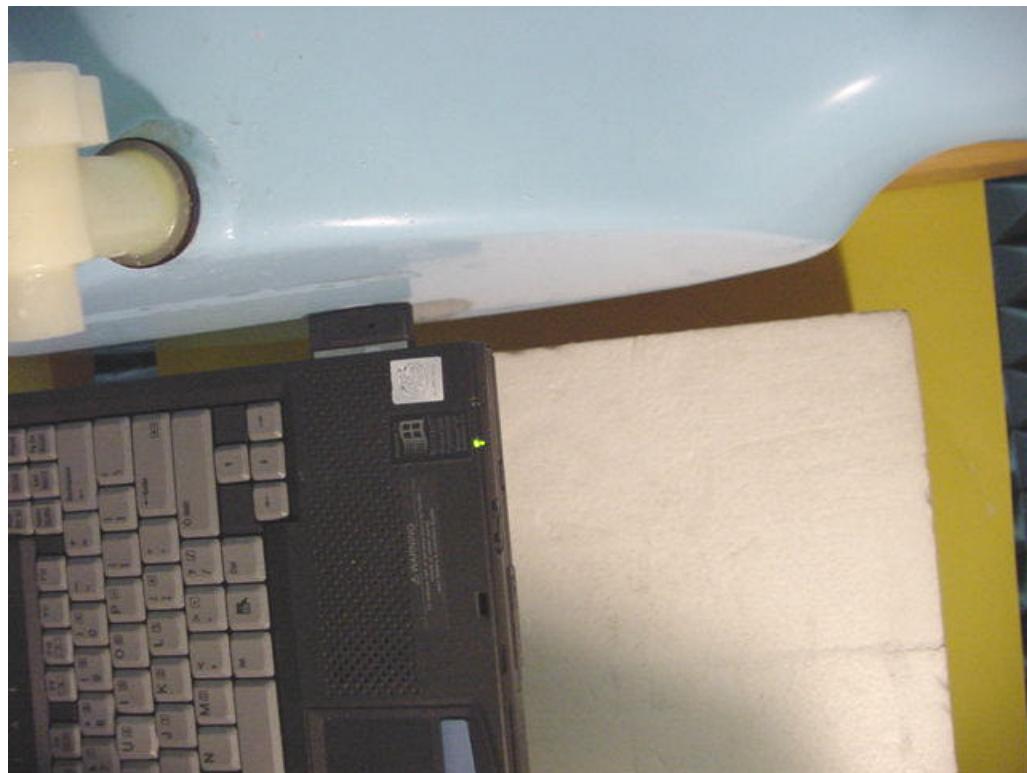
2.2 Configuration Photographs Continued

**SAR Measurement Test Setup**  
Laptop in normal position



.2 Configuration Photographs – Continued

**SAR Measurement Test Setup**


Laptop upside down



2.2 Configuration Photographs – Continued

**SAR Measurement Test Setup**

Laptop in vertical position



## 2.2 Configuration Photographs Continued

**SAR Measurement Test Setup**  
**Picture of EUT**

2.2 Configuration Photographs Continued

**SAR Measurement Test Setup**  
**Picture of EUT**



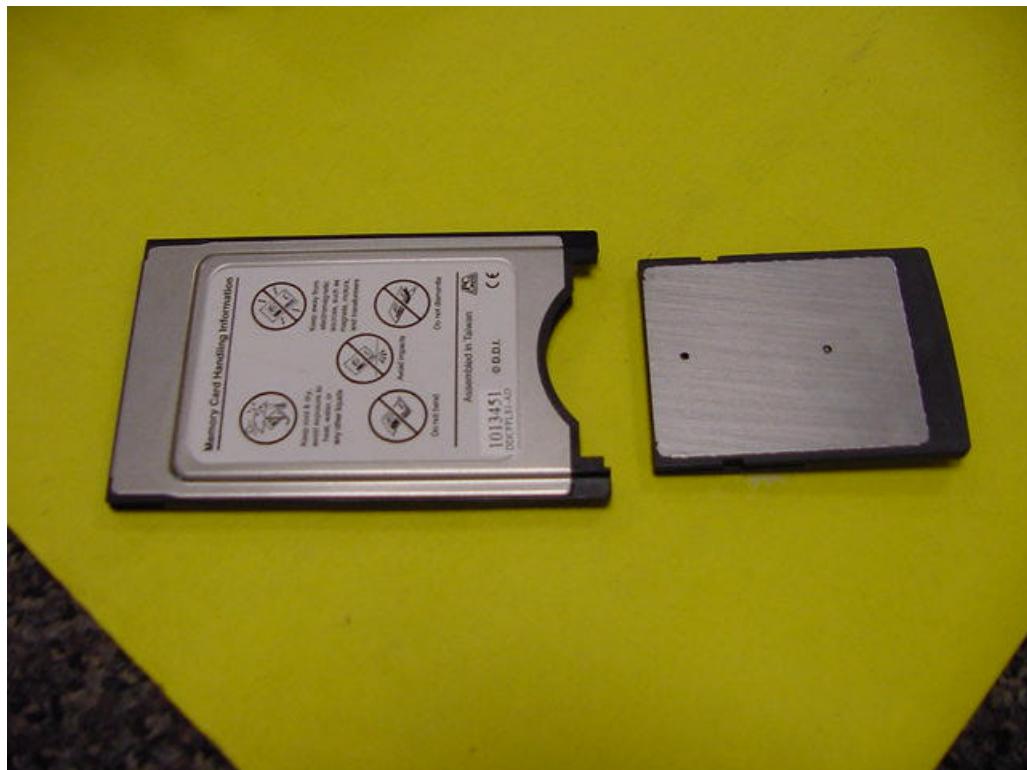
## 2.2 Configuration Photographs Continued

**SAR Measurement Test Setup**  
**Picture of EUT**

## 2.2 Configuration Photographs Continued

Date of Test: June 11-12, 2001

## SAR Measurement Test Setup Picture of EUT




2.2 Configuration Photographs Continued

**SAR Measurement Test Setup**  
**Picture of EUT**



## 2.2 Configuration Photographs Continued

**SAR Measurement Test Setup  
Picture of EUT**

### 2.3 System Verification

Prior to the assessment, the system was verified to the  $\pm 5\%$  of the specifications by using the system validation kit. The validation was performed at 1800 MHz.

| Validation kit     | Targeted SAR <sub>1g</sub> (mW/g) | Measured SAR <sub>1g</sub> (mW/g) |
|--------------------|-----------------------------------|-----------------------------------|
| D900V2, S/N #: 013 | 9.45                              | 9.30                              |

### 2.4 Evaluation Procedures

The SAR evaluation was performed with the following procedures:

- a. SAR was measured at a fixed location above the ear point and used as a reference value for the assessing the power drop.
- b. The SAR distribution at the exposed side of the head was measured at a distance of 4.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20 mm x 20 mm. Based on this data, the area of the maximum absorption was determined by spline interpolation.
- c. Around this point, a volume of 32 mm x 32 mm x 34 mm was assessed by measuring 5 x 5 x 7 points. Based on this data set, the spatial peak SAR value was evaluated with the following procedure:
  - i) The data at the surface were extrapolated, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measurement point is 1.6 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in Z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.
  - ii) The maximum interpolated value was searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3-D spline interpolation algorithm. The 3-D spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y and z directions). The volume was integrated with the trapezoidal algorithm. 1000 points (10 x 10 x 10) were interpolated to calculate the average.
  - iii) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- d. Re-measurements of the SAR value at the same location as in step a. above. If the value changed by more than 5 %, the evaluation was repeated.

## 2.5 Test Results

The following pages contain data tables with the test results obtained when the device was tested in the condition described in this report. Detailed measurement plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix A.

|                    |                         |                       |              |
|--------------------|-------------------------|-----------------------|--------------|
| <b>Trade Name:</b> | Symbol Technologies Inc | <b>Model No.:</b>     | LA 4137      |
| <b>Serial No.:</b> | Not Labeled             | <b>Test Engineer:</b> | Xi-Ming Yang |

| TEST CONDITIONS              |           |                             |                              |
|------------------------------|-----------|-----------------------------|------------------------------|
| Ambient Temperature          | 22 °C     | Relative Humidity           | 48 %                         |
| Test Signal Source           | Test Mode | Signal Modulation           | CW                           |
| Output Power Before SAR Test | 19.5 dBm  | Output Power After SAR Test | 19.5 dBm                     |
| Test Duration                | 23 Min.   | Number of Battery Change    | Laptop connected to AC power |

| EUT Position: Laptop upside down (face down) |                |              |                                   |                  |             |
|----------------------------------------------|----------------|--------------|-----------------------------------|------------------|-------------|
| Channel MHz                                  | Operating Mode | Crest Factor | Measured SAR <sub>1g</sub> (mW/g) | Limit SAR (W/kg) | Plot Number |
| 2412                                         | DSSS           | 1            | 0.0603                            | 1.6              | 1           |
| 2437                                         | DSSS           | 1            | 0.0326                            | 1.6              | 2           |
| 2462                                         | DSSS           | 1            | 0.0267                            | 1.6              | 3           |

| EUT Position: Laptop in normal position (face up) |                |              |                                   |                  |             |
|---------------------------------------------------|----------------|--------------|-----------------------------------|------------------|-------------|
| Channel MHz                                       | Operating Mode | Crest Factor | Measured SAR <sub>1g</sub> (mW/g) | Limit SAR (W/kg) | Plot Number |
| 2412                                              | DSSS           | 1            | 1.37                              | 1.6              | 4           |
| 2437                                              | DSSS           | 1            | 0.774                             | 1.6              | 5           |
| 2462                                              | DSSS           | 1            | 0.751                             | 1.6              | 6           |

| <b>EUT Position: Laptop in vertical position</b> |                   |              |                                      |                        |                |
|--------------------------------------------------|-------------------|--------------|--------------------------------------|------------------------|----------------|
| Channel<br>MHz                                   | Operating<br>Mode | Crest Factor | Measured SAR <sub>1g</sub><br>(mW/g) | Limit<br>SAR<br>(W/kg) | Plot<br>Number |
| 2412                                             | DSSS              | 1            | 1.47                                 | 1.6                    | 7              |
| 2437                                             | DSSS              | 1            | 0.761                                | 1.6                    | 8              |
| 2462                                             | DSSS              | 1            | 0.712                                | 1.6                    | 9              |

Notes: a) Worst case data reported  
b) Uncertainty of the system is not included

**3.0 EQUIPMENT****3.1 Equipment List**

The Specific Absorption Rate (SAR) tests were performed with the SPEAG model DASY 3 automated near-field scanning system, which is a package, optimized for dosimetric evaluation of mobile radios [3].

The following major equipment/components were used for the SAR evaluations:

| SAR Measurement System                                                                                                                                                                   |                                  |            |                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------|----------------|
| EQUIPMENT                                                                                                                                                                                | SPECIFICATIONS                   | S/N #      | LAST CAL. DATE |
| Robot                                                                                                                                                                                    | <b>Stäubi RX60L</b>              | 597412-01  | N/A            |
| Repeatability: $\pm 0.025\text{mm}$<br>Accuracy: $0.806 \times 10^{-3}$ degree<br>Number of Axes: 6                                                                                      |                                  |            |                |
| E-Field Probe                                                                                                                                                                            | <b>ET3DV4</b>                    | 1122       | 03/19/01       |
| Frequency Range: 10 MHz to 6 GHz<br>Linearity: $\pm 0.2$ dB<br>Directivity: $\pm 0.1$ dB in brain tissue                                                                                 |                                  |            |                |
| Data Acquisition                                                                                                                                                                         | <b>DAE3</b>                      | 317        | N/A            |
| Measurement Range: $1\mu\text{V}$ to $>200\text{mV}$<br>Input offset Voltage: $< 1\mu\text{V}$ (with auto zero)<br>Input Resistance: 200 M                                               |                                  |            |                |
| Phantom                                                                                                                                                                                  | <b>Generic Twin V3.0</b>         | N/A        | N/A            |
| Type: Generic Twin, Homogenous<br>Shell Material: Fiberglass<br>Thickness: $2 \pm 0.1$ mm<br>Capacity: 20 liter<br>Ear spacer: 4 mm (between EUT ear piece and tissue simulating liquid) |                                  |            |                |
| Simulated Tissue                                                                                                                                                                         | <b>Mixture</b>                   | N/A        | 6/10/01        |
| Please see section 6.2 for details                                                                                                                                                       |                                  |            |                |
| Power Meter                                                                                                                                                                              | <b>HP 8900D</b> w/ 84811A sensor | 3607U00673 | 08/01/00       |
| Frequency Range: 100kHz to 18 GHz<br>Power Range: $300\mu\text{W}$ to 3W                                                                                                                 |                                  |            |                |

## 3.2 Tissue Simulating Liquid

| Muscle     |                      |
|------------|----------------------|
| Ingredient | Frequency (2440 MHz) |
| Water      | 55.5 %               |
| Sugar      | 43.5 %               |
| Salt       | 0 %                  |
| Cellulose  | 1.0 %                |

The dielectric parameters were verified prior to assessment using the HP 85070A dielectric probe kit and the HP 8753C network Analyzer. The dielectric parameters were:

| Frequency (MHz) | $\epsilon_r$ * | $\sigma$ *(mho/m) | $\rho$ **(kg/m <sup>3</sup> ) |
|-----------------|----------------|-------------------|-------------------------------|
| 2440            | 52.2 $\pm$ 5%  | 2.15 $\pm$ 10%    | 1000                          |

\* Worst case uncertainty of the HP 85070A dielectric probe kit

\*\* Worst case assumption

Note: The amount of each ingredient specified in the table is not the exact amount of the final test solution. The final test solution was adjusted by adding small amounts of water, sugar, and/or salt to calibrate the solution to meet the proper dielectric parameters.

## 3.3 E-Field Probe Calibration

Probes were calibrated by the manufacturer in an IFI Model 110 TEM Cell. To ensure consistency, a strict protocol was followed. The conversion factor (ConF) between this calibration and the measurement in the tissue simulation solution was performed by comparison with temperature measurement and computer simulations. Probe calibration factors are included in Appendix B.

### 3.4 Measurement Uncertainty

The uncertainty budget has been determined for the DASY3 measurement system according to the NIS81 [5] and the NIST 1297 [6] documents and is given in the following table. The extended uncertainty (K=2) was assessed to be 23.5 %

| UNCERTAINTY BUDGET                             |         |          |        |                |
|------------------------------------------------|---------|----------|--------|----------------|
| Uncertainty Description                        | Error   | Distrib. | Weight | Std.Dev.       |
| <b>Probe Uncertainty</b>                       |         |          |        |                |
| Axial isotropy                                 | ±0.2 dB | U-shape  | 0.5    | ±2.4 %         |
| Spherical isotropy                             | ±0.4 dB | U-shape  | 0.5    | ±4.8 %         |
| Isotropy from gradient                         | ±0.5 dB | U-shape  | 0      |                |
| Spatial resolution                             | ±0.5 %  | Normal   | 1      | ±0.5 %         |
| Linearity error                                | ±0.2 dB | Rectang. | 1      | ±2.7 %         |
| Calibration error                              | ±3.3 %  | Normal   | 1      | ±3.3 %         |
| <b>SAR Evaluation Uncertainty</b>              |         |          |        |                |
| Data acquisition error                         | ±1 %    | Rectang. | 1      | ±0.6 %         |
| ELF and RF disturbances                        | ±0.25 % | Normal   | 1      | ±0.25 %        |
| Conductivity assessment                        | ±10 %   | Rectang. | 1      | ±5.8 %         |
| <b>Spatial Peak SAR Evaluation Uncertainty</b> |         |          |        |                |
| Extrapol boundary effect                       | ±3 %    | Normal   | 1      | ±3 %           |
| Probe positioning error                        | ±0.1 mm | Normal   | 1      | ±1 %           |
| Integrat. And cube orient                      | ±3 %    | Normal   | 1      | ±3 %           |
| Cube shape inaccuracies                        | ±2 %    | Rectang. | 1      | ±1.2 %         |
| Device positioning                             | ±6 %    | Normal   | 1      | ±6 %           |
| <b>Combined Uncertainties</b>                  |         |          |        | <b>±11.7 %</b> |

### 3.5 Measurement Traceability

All measurements described in this report are traceable to National Institute of Standards and Technology (NIST) standards or appropriate national standards.



Intertek Testing Services  
ETL SEMKO

*1365 Adams Court, Menlo Park, CA 94025*

---

Symbol Technologies, Inc., Model No: LA 4137

Date of Test: June 11-12, 2001

#### **4.0      WARNING LABEL INFORMATION - USA**

See attached users manual.

**5.0 REFERENCES**

- [1] ANSI, ANSI/IEEE C95.1-1991: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3kHz to 300 GHz, The Institute of electrical and Electronics Engineers, Inc., New York, NY 10017, 1992
- [2] Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C. 20554, 1997
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, "Automated E-field scanning system for dosimetric assessments", *IEEE Transaction on Microwave Theory and Techniques*, vol. 44, pp. 105-113, Jan. 1996.
- [4] Niels Kuster, Ralph Kastle, and Thomas Schmid, "Dosimetric evaluation of mobile communications equipment with known precision", *IEICE Transactions on Communications*, vol. E80-B, no. 5, pp.645-652, May 1997.
- [5] NIS81, NAMAS, "The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [6] Barry N. Taylor and Chris E. Kuyatt, "Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994.



## 6.0 Document History

| Revision/<br>Job Number | Writer<br>Initials | Date        | Change            |
|-------------------------|--------------------|-------------|-------------------|
| 1.0 / 2046983A1         | SS                 | May 9, 2001 | Original document |
|                         |                    |             |                   |
|                         |                    |             |                   |
|                         |                    |             |                   |
|                         |                    |             |                   |
|                         |                    |             |                   |



## APPENDIX A - SAR Evaluation Data

Please note that the graphical visualization of the phone position onto the SAR distribution gives only limited information on the current distribution of the device, since the curvature of the head results in graphical distortion. Full information can only be obtained either by H-field scans in free space or SAR evaluation with a flat phantom.

**Power drift** is the measurement of power drift of the device over one complete SAR scan.



Intertek Testing Services  
ETL SEMKO

*1365 Adams Court, Menlo Park, CA 94025*

---

Symbol Technologies, Inc., Model No: LA 4137

Date of Test: June 11-12, 2001

#### **APPENDIX B - E-Field Probe Calibration Data**

See attached pages.

**Schmid & Partner  
Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

**Replacement Probe****Dosimetric E-Field Probe**

Type:

ET3DV4

Serial Number:

1122

Place of Calibration:

Zurich

Date of Calibration:

Mar. 19, 2001

Calibration Interval:

12 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

**ITS**

**Intertek Testing Services**  
ETL SEMKO

Symbol Technologies, Inc., Model No: LA 4137

*1365 Adams Court, Menlo Park, CA 94025*

Date of Test: June 11-12, 2001

**Schmid & Partner  
Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Telephone +41 1 245 97 00, Fax +41 1 245 97 79

# Probe ET3DV4

**SN:1122**

|                   |                    |
|-------------------|--------------------|
| Manufactured:     | February 1, 1996   |
| Last calibration: | September 21, 1999 |
| Recalibrated:     | March 17, 2001     |

Calibrated for System DASY3

ET3DV4 SN:1122

## DASY3 - Parameters of Probe: ET3DV4 SN:1122

## Sensitivity in Free Space

## Diode Compression

|       |                                                 |       |              |
|-------|-------------------------------------------------|-------|--------------|
| NormX | <b>2.28</b> $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP X | <b>99</b> mV |
| NormY | <b>2.53</b> $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Y | <b>99</b> mV |
| NormZ | <b>2.44</b> $\mu\text{V}/(\text{V}/\text{m})^2$ | DCP Z | <b>99</b> mV |

## Sensitivity in Tissue Simulating Liquid

Head            450 MHz             $\epsilon_r = 43.5 \pm 5\%$              $\sigma = 0.87 \pm 10\% \text{ mho/m}$ 

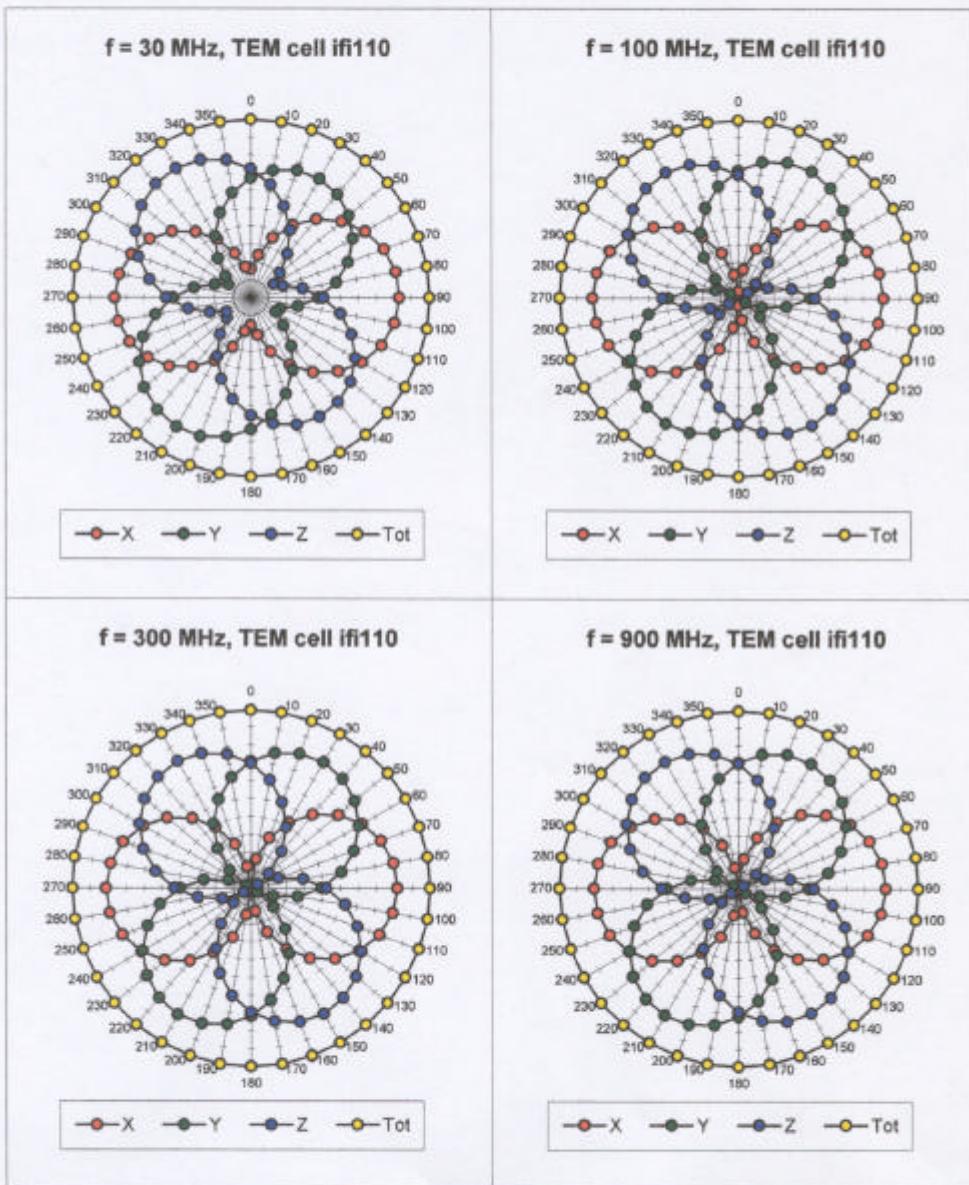
|         |                          |                  |             |
|---------|--------------------------|------------------|-------------|
| ConvF X | <b>6.02</b> extrapolated | Boundary effect: |             |
| ConvF Y | <b>6.02</b> extrapolated | Alpha            | <b>0.24</b> |
| ConvF Z | <b>6.02</b> extrapolated | Depth            | <b>3.20</b> |

Head            900 MHz             $\epsilon_r = 42 \pm 5\%$              $\sigma = 0.97 \pm 10\% \text{ mho/m}$ 

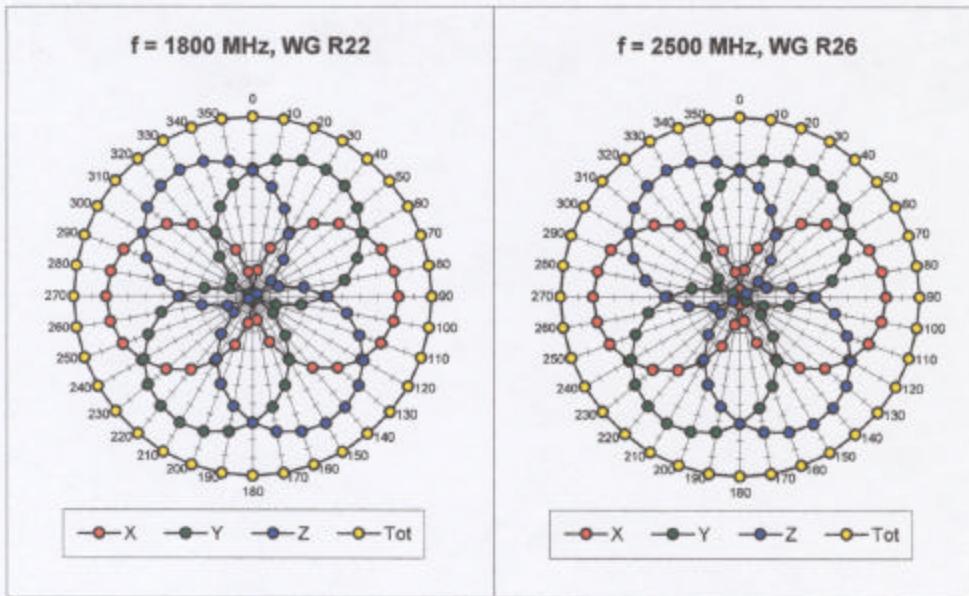
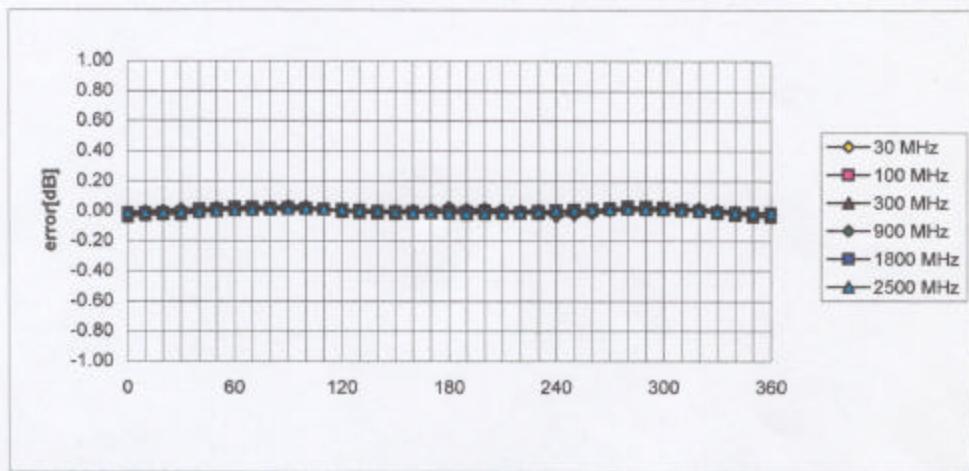
|         |                             |                  |             |
|---------|-----------------------------|------------------|-------------|
| ConvF X | <b>5.65</b> $\pm 7\%$ (k=2) | Boundary effect: |             |
| ConvF Y | <b>5.65</b> $\pm 7\%$ (k=2) | Alpha            | <b>0.37</b> |
| ConvF Z | <b>5.65</b> $\pm 7\%$ (k=2) | Depth            | <b>2.85</b> |

Brain            1500 MHz             $\epsilon_r = 41 \pm 5\%$              $\sigma = 1.32 \pm 10\% \text{ mho/m}$ 

|         |                          |                  |             |
|---------|--------------------------|------------------|-------------|
| ConvF X | <b>5.16</b> interpolated | Boundary effect: |             |
| ConvF Y | <b>5.16</b> interpolated | Alpha            | <b>0.53</b> |
| ConvF Z | <b>5.16</b> interpolated | Depth            | <b>2.40</b> |


Brain            1800 MHz             $\epsilon_r = 41 \pm 5\%$              $\sigma = 1.69 \pm 10\% \text{ mho/m}$ 

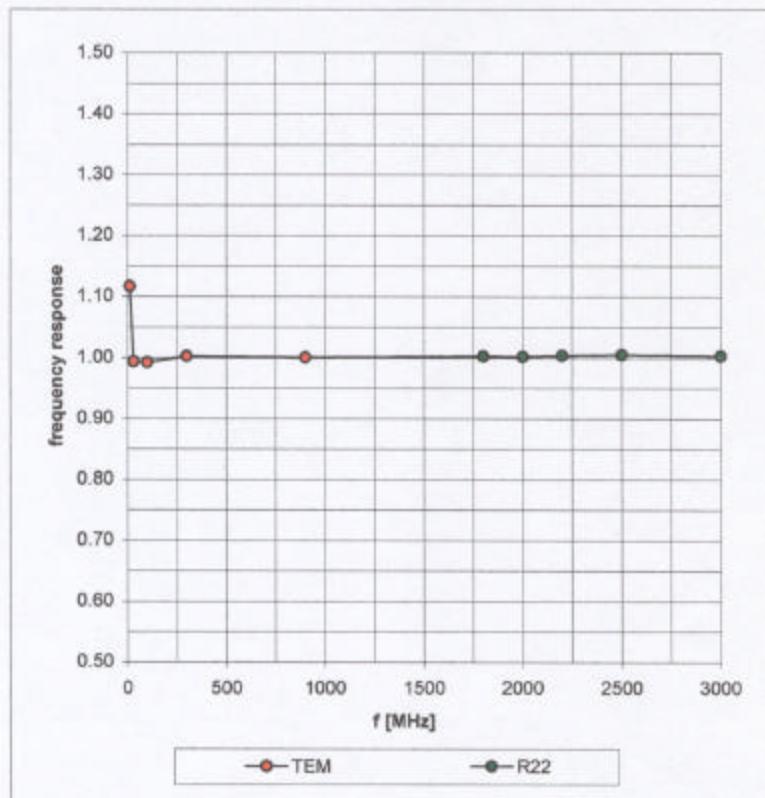
|         |                             |                  |             |
|---------|-----------------------------|------------------|-------------|
| ConvF X | <b>4.92</b> $\pm 7\%$ (k=2) | Boundary effect: |             |
| ConvF Y | <b>4.92</b> $\pm 7\%$ (k=2) | Alpha            | <b>0.61</b> |
| ConvF Z | <b>4.92</b> $\pm 7\%$ (k=2) | Depth            | <b>2.17</b> |



## Sensor Offset

|                            |                                 |    |
|----------------------------|---------------------------------|----|
| Probe Tip to Sensor Center | <b>2.7</b>                      | mm |
| Optical Surface Detection  | <b>1.5 <math>\pm</math> 0.2</b> | mm |

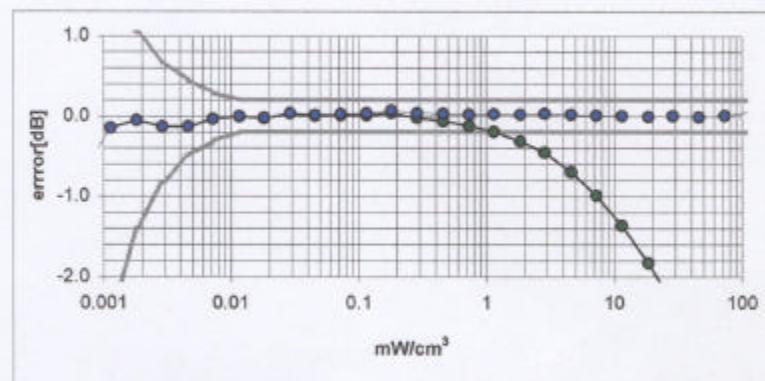
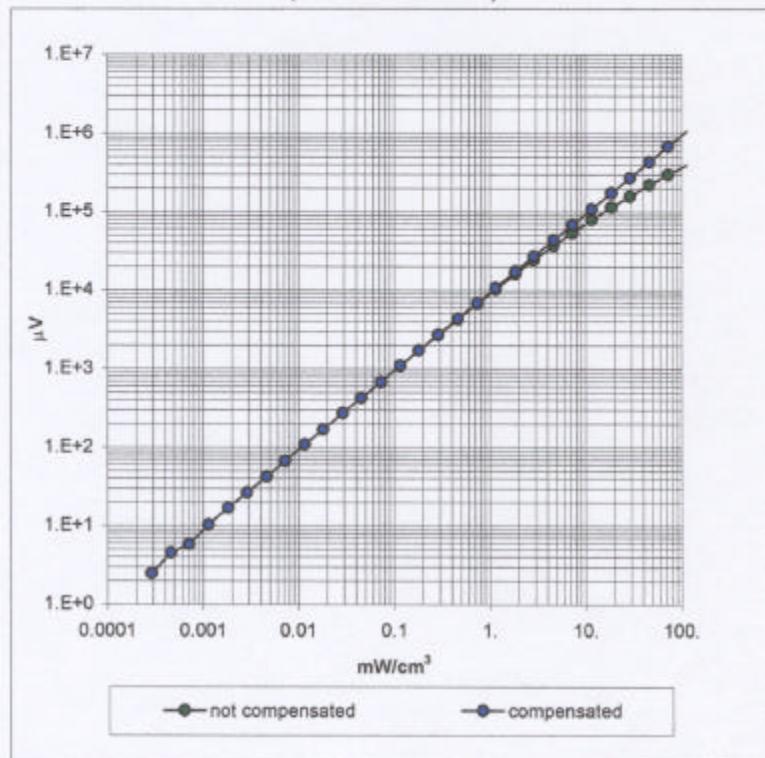
ET3DV4 SN:1122

Receiving Pattern ( $\phi$ ),  $\theta = 0^\circ$ 


ET3DV4 SN:1122

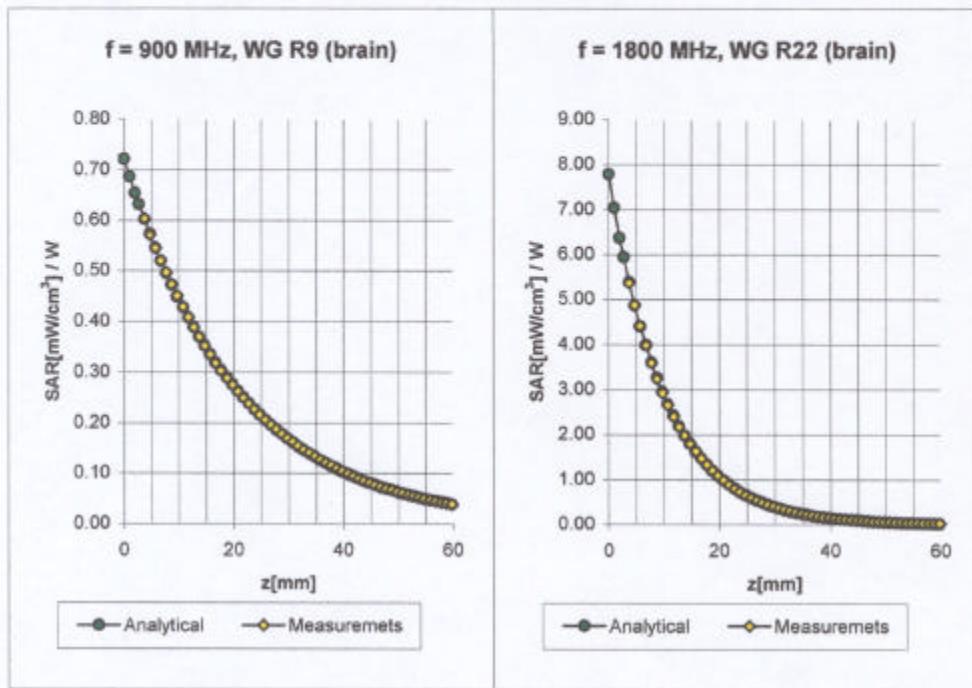
Isotropy Error ( $\phi$ ),  $\theta = 0^\circ$ 

ET3DV4 SN:1122



## Frequency Response of E-Field

( TEM-Cell:ifi110, Waveguide R22)




ET3DV4 SN:1122

### Dynamic Range f(SAR<sub>brain</sub>) ( TEM-Cell:ifi110 )

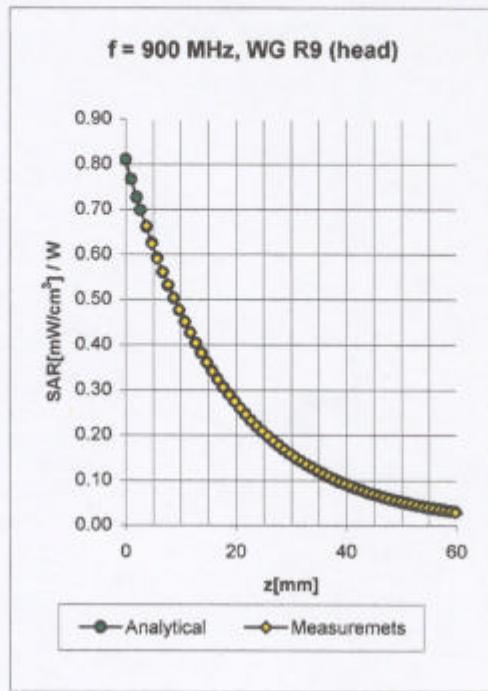


ET3DV4 SN:1122

## Conversion Factor Assessment



Brain                    900 MHz                     $\epsilon_r = 42.5 \pm 5\%$                      $\sigma = 0.86 \pm 10\% \text{ mho/m}$


|         |                             |                               |
|---------|-----------------------------|-------------------------------|
| ConvF X | <b>5.62</b> $\pm 7\%$ (k=2) | Boundary effect:              |
| ConvF Y | <b>5.62</b> $\pm 7\%$ (k=2) | Alpha                    0.39 |
| ConvF Z | <b>5.62</b> $\pm 7\%$ (k=2) | Depth                    2.63 |

Brain                    1800 MHz                     $\epsilon_r = 41 \pm 5\%$                      $\sigma = 1.69 \pm 10\% \text{ mho/m}$

|         |                             |                               |
|---------|-----------------------------|-------------------------------|
| ConvF X | <b>4.92</b> $\pm 7\%$ (k=2) | Boundary effect:              |
| ConvF Y | <b>4.92</b> $\pm 7\%$ (k=2) | Alpha                    0.61 |
| ConvF Z | <b>4.92</b> $\pm 7\%$ (k=2) | Depth                    2.17 |

ET3DV4 SN:1122

## Conversion Factor Assessment



Head

900 MHz

 $\epsilon_r = 42 \pm 5\%$  $\sigma = 0.97 \pm 10\% \text{ mho/m}$ ConvF X      **5.65**  $\pm 7\%$  (k=2)

Boundary effect:

ConvF Y      **5.65**  $\pm 7\%$  (k=2)Alpha      **0.37**ConvF Z      **5.65**  $\pm 7\%$  (k=2)Depth      **2.85**