

*Electromagnetic Emissions Test Report
and
Application for Grant of Equipment Authorization
pursuant to
FCC Part 15, Subpart C Specifications for an
Intentional Radiator on the
Cellnet Data Systems
Model: SLAMM Beta 2*

FCC ID: H6NCMM1102

GRANTEE: Cellnet Data Systems
125 Shoreway Road
San Carlos, CA 94070

TEST SITE: Elliott Laboratories, Inc.
684 W. Maude Avenue
Sunnyvale, CA 94086

REPORT DATE: December 17, 1998

FINAL TEST DATE: November 24, 1998

AUTHORIZED SIGNATORY:

Mark Briggs
Manager, EMC Consulting Services

This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

TABLE OF CONTENTS

COVER PAGE	1
TABLE OF CONTENTS.....	2
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	4
EMISSION TEST RESULTS	5
LIMITS OF CONDUCTED INTERFERENCE VOLTAGE.....	5
LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH.....	5
MEASUREMENT UNCERTAINTIES	6
COMPLIANCE EXPLANATION	6
EQUIPMENT UNDER TEST (EUT) DETAILS.....	7
GENERAL.....	7
INPUT POWER.....	7
PRINTED WIRING BOARDS.....	7
SUBASSEMBLIES.....	7
ENCLOSURE	7
SUPPORT EQUIPMENT.....	7
TEST SOFTWARE	7
TEST SITE.....	8
GENERAL INFORMATION.....	8
CONDUCTED EMISSIONS CONSIDERATIONS.....	8
RADIATED EMISSIONS CONSIDERATIONS	8
MEASUREMENT INSTRUMENTATION	9
INSTRUMENT CONTROL COMPUTER	9
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	9
POWER METER.....	10
FILTERS/ATTENUATORS.....	10
ANTENNAS.....	10
ANTENNA MAST AND EQUIPMENT TURNTABLE.....	10
INSTRUMENT CALIBRATION.....	10
TEST PROCEDURES.....	11
EUT AND CABLE PLACEMENT	11
CONDUCTED EMISSIONS	11
RADIATED EMISSIONS	11
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS.....	12
CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207	12
RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209.....	12
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	13
SAMPLE CALCULATIONS - RADIATED EMISSIONS	14
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Data Log Sheets.....	2
EXHIBIT 3: Radiated Emissions Test Configuration Photographs.....	3
EXHIBIT 4: Conducted Emissions Test Configuration Photographs	5
EXHIBIT 5: Proposed FCC ID Label & Label Location.....	7
EXHIBIT 6: Detailed Photographs of Cellnet Data Systems Model SLAMM Beta 2 Construction	8
EXHIBIT 7: Operator's Manual for Cellnet Data Systems Model SLAMM Beta 2	9
EXHIBIT 8: Block Diagram of Cellnet Data Systems Model SLAMM Beta 2	10
EXHIBIT 9: Schematic Diagrams for Cellnet Data Systems Model SLAMM Beta 2.....	11
EXHIBIT 10: Theory of Operation for Cellnet Data Systems Model SLAMM Beta 2.....	12

SCOPE

An electromagnetic emissions test has been performed on the Cellnet Data Systems electric meter module model SLAMM Beta 2 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Cellnet Data Systems model SLAMM Beta 2 and therefore apply only to the tested sample. The sample was selected and prepared by Glen Chu of Cellnet Data Systems.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 of the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Cellnet Data Systems model SLAMM Beta 2 complied with the requirements of Subpart C of Part 15 of the FCC Rules for low power intentional radiators.

Maintenance of FCC compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

EMISSION TEST RESULTS

The following emissions tests were performed on the Cellnet Data Systems model SLAMM Beta 2. The actual test results are contained in an exhibit of this report.

LIMITS OF CONDUCTED INTERFERENCE VOLTAGE

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.207.

The following measurement was extracted from the data recorded during the conducted emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Conducted Emissions, 0.45 - 30 MHz, 240V/60Hz

Frequency MHz	Level dBuV	Power Lead	FCC B Limit	FCC B Margin	Detector Function	Comments
0.4500	32.1	Neutral	48.0	-15.9	QP	

LIMITS OF RADIATED INTERFERENCE FIELD STRENGTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247 and 15.209 in the case of emissions falling within the frequency bands specified in Section 15.205.

The following measurement was extracted from the data recorded during the radiated electric field emissions scan and represents the highest amplitude emission relative to the specification limit. The actual test data and any correction factors are contained in an exhibit of this report.

Frequency MHz	Level dBuV/m	Pol v/h	FCC B Limit	FCC B Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments
2752.941	64.8	v	74.0	-9.2	Peak	320	1.3	

LIMITS OF POWER AND BANDWIDTH

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The maximum power output was calculated from a radiated field strength measurement to be 18.6 dBm.

The power density was calculated from a radiated field strength measurement to be -0.5 dBm in a 3kHz bandwidth averaged over a 1 second period.

The 6 dB bandwidth was 1.35 MHz.

The actual test data and any correction factors are contained in an exhibit of this report.

PROCESSING GAIN

The EUT tested complied with the limits detailed in FCC Rules Part 15 Section 15.247.

The lowest processing gain was measured by Cellnet to be 14.0 dB. The actual test data and any correction factors are contained in an exhibit of this report.

MEASUREMENT UNCERTAINTIES

ISO Guide 25 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.2

COMPLIANCE EXPLANATION

When the measurement uncertainties (see above section) associated with the emission test methods and equipment used are taken into consideration there are four possible results as detailed below:

Complied

All measurements recorded were below the specification limit by a margin greater than the measurement uncertainty.

Probably Complied

One or more measurements recorded were below the specification limit by a margin less than the measurement uncertainty. It is not possible to determine that the unit complied with a 95% confidence level from the results. There is a high probability that the product tested does comply.

Probably Did Not Comply

One or more measurements recorded were above the specification limit by a margin less than the measurement uncertainty. It is not possible to determine that the unit failed to comply with a 95% confidence level from the results. There is a high probability that the product tested does not comply.

Did Not Comply

One or more measurements recorded exceeded the specification limit by a margin greater than the measurement uncertainty.

EQUIPMENT UNDER TEST (EUT) DETAILS**GENERAL**

The Cellnet Data Systems model SLAMM Beta 2 is a spread spectrum electric meter module which operate in the 900MHz ISM band. The sample was received on November 21, 1998 and tested on November 24, 1998. The EUT consisted of the following component(s):

Manufacturer/Model/Description	Serial Number
Cellnet/ SLAMM/ Electric Meter Module	301

INPUT POWER

The EUT input is rated at 240V, 60 Hz. The EUT contained the following input power components during emissions testing:

Description	Manufacturer	Model
120/240 VAC transformer	Cellnet	Meter Box # 1

PRINTED WIRING BOARDS

The EUT contained the following printed wiring boards during emissions testing:

Manufacturer/Description	Assembly #	Rev.	Serial #	Crystals (MHz)
Cellnet/ SLAMM meter module	25-0055	4	301	14.564762

SUBASSEMBLIES

The EUT contained the following subassembly modules during emissions testing:

Manufacturer/Description	Assembly #	Rev.	Serial Number
Cellnet/ LCD daughter board	25-0056	3	301

ENCLOSURE

The EUT enclosure is primarily constructed of molded plastic. It measures approximately 15 cm wide by 10 cm deep by 15 cm high.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Cellnet Meter Box 1	1	none

TEST SOFTWARE

The EUT was set to transmit once every second.

TEST SITE**GENERAL INFORMATION**

Final test measurements were taken on November 24, 1998 at the Elliott Laboratories Open Area Test Site #3 located at 684 West Maude Avenue, Sunnyvale, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION**RECEIVER SYSTEM**

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers, allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and thermister mount are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors which are programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS, SECTION 15.207

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

RADIATED EMISSIONS SPECIFICATION LIMITS, SECTION 15.209

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
0.009-0.490	$2400/F_{\text{KHz}} @ 300\text{m}$	$67.6-20*\log_{10}(F_{\text{KHz}}) @ 300\text{m}$
0.490-1.705	$24000/F_{\text{KHz}} @ 30\text{m}$	$87.6-20*\log_{10}(F_{\text{KHz}}) @ 30\text{m}$
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

Radiated limits applied to emissions in the restricted bands. Emissions not in restricted bands were subject to a limit 20dB below the peak fundamental level.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

$$C - S = M$$

where:

R_r = Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20 \cdot \text{LOG10} (D_m/D_s)$$

where:

F_d = Distance Factor in dB

D_m = Measurement Distance in meters

D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

R_r = Receiver Reading in dBuV/m

F_d = Distance Factor in dB

R_c = Corrected Reading in dBuV/m

L_s = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

Test Equipment List - SVOATS#3

<u>Manufacturer/Description</u>		<u>Model</u>	<u>Asset #</u>	<u>Interval</u>	<u>Last Cal</u>	<u>Cal Due</u>
<input checked="" type="checkbox"/> Elliott Laboratoires	300-1000 MHz Log Periodic	EL300.1000	55, (F130)	12	9/26/98	9/26/99
<input checked="" type="checkbox"/> Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54, (F131)	12	11/24/97	11/24/98
<input type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18 GHz	3115	Metric, 953	12	10/21/98	10/21/99
<input type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	487	12	6/18/98	6/18/99
<input checked="" type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	786	12	11/13/97	5/13/99
<input type="checkbox"/> Fischer	LISN	FCC-LISN-50/2	810	12	1/29/98	1/29/99
<input checked="" type="checkbox"/> Hewlett Packard	EMC Receiver /Analyzer	8595EM	780	24	10/24/97	10/24/99
<input type="checkbox"/> Hewlett Packard	EMC Receiver /Analyzer	8595EM	787	12	10/27/97	11/30/98
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5	8449B	Metric, 644	12	9/15/98	9/15/99
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263, (F303)	12	6/8/98	6/8/99
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	11/10/97	12/10/98
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12	11/12/98	11/12/99
<input type="checkbox"/> Hewlett Packard	Power Meter	432A	259, (F304)	12	3/10/98	3/10/99
<input type="checkbox"/> Hewlett Packard	Spectrum Analyzer	8563E	284, (F194)	24	1/14/98	1/14/2000
<input type="checkbox"/> Hewlett Packard	Spectrum Analyzer, 9 KHz-6.5 GHz	8595E-041-103-	Metric, 885	12	5/11/98	5/11/99
<input type="checkbox"/> Hewlett Packard	Thermistor Mount	478A	652	12	3/10/98	3/10/99
<input type="checkbox"/> Narda-West	EMI Filter 2.4 GHz, High Pass	60583 HPF-161	248	12	8/10/98	8/10/99
<input type="checkbox"/> Narda-West	EMI Filter 5.6 GHz, High Pass	60583 HXF370	247	12	8/10/98	8/10/99
<input type="checkbox"/> Rohde& Schwarz	Pulse Limiter	ESH3Z2	812	12	2/5/98	2/5/99
<input type="checkbox"/> Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	274	12	4/8/98	4/8/99
<input checked="" type="checkbox"/> Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	213, (F196)	12	10/4/98	10/4/99

File Number: T29300

Date: 11/21/98
Engr: Anil A

Test Equipment List - SVOATS#3

<u>Manufacturer/Description</u>		<u>Model</u>	<u>Asset #</u>	<u>Interval</u>	<u>Last Cal</u>	<u>Cal Due</u>
<input type="checkbox"/> Elliott Laboratories	300-1000 MHz Log Periodic	EL300.1000	55, (F130)	12	9/26/98	9/26/99
<input type="checkbox"/> Elliott Laboratories	Biconical Antenna, 30-300 MHz	EL30.300	54, (F131)	12	11/24/97	11/24/98
<input type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18 GHz	3115	Metric, 953	12	10/21/98	10/21/99
<input checked="" type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	487	12	6/18/98	6/18/99
<input type="checkbox"/> EMCO	D. Ridge Horn Antenna, 1-18GHz	3115	786	12	11/13/97	5/13/99
<input type="checkbox"/> Fischer	LISN	FCC-LISN-50/2	810	12	1/29/98	1/29/99
<input type="checkbox"/> Hewlett Packard	EMC Receiver /Analyzer	8595EM	780	24	10/24/97	10/24/99
<input type="checkbox"/> Hewlett Packard	EMC Receiver /Analyzer	8595EM	787	12	11/23/98	11/23/99
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5	8449B	Metric, 644	12	9/15/98	9/15/99
<input checked="" type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263, (F303)	12	6/8/98	6/8/99
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	12	11/10/97	12/10/98
<input type="checkbox"/> Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12	11/12/98	11/12/99
<input type="checkbox"/> Hewlett Packard	Power Meter	432A	259, (F304)	12	3/10/98	3/10/99
<input checked="" type="checkbox"/> Hewlett Packard	Spectrum Analyzer	8563E	284, (F194)	24	1/14/98	1/14/2000
<input type="checkbox"/> Hewlett Packard	Spectrum Analyzer, 9 KHz-6.5 GHz	8595E-041-103-	Metric, 885	12	5/11/98	5/11/99
<input type="checkbox"/> Hewlett Packard	Thermistor Mount	478A	652	12	3/10/98	3/10/99
<input checked="" type="checkbox"/> Narda-West	EMI Filter 2.4 GHz, High Pass	60583 HPF-161	247 833	12	8/10/98	8/10/99
<input type="checkbox"/> Narda-West	EMI Filter 5.6 GHz, High Pass	60583 HXF370	247	12	8/10/98	8/10/99
<input type="checkbox"/> Rohde & Schwarz	Pulse Limiter	ESH3Z2	812	12	2/5/98	2/5/99
<input type="checkbox"/> Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	274	12	4/8/98	4/8/99
<input type="checkbox"/> Rohde & Schwarz	Test Receiver, 20-1300MHz	ESVP	213, (F196)	12	10/4/98	10/4/99

T29341

11/24/98
Rudy Sney

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T 29300 11 Pages

T 29341 6 Pages

Processing Gain Measurements 5 Pages

EMC Test Log

Client:	Cellnet Data Systems	Date:	11/21/98	Test Engr:	Anil Allamaneni
Product:	SLAMM	File:	T29300	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS # 3	Contact:	Val Hyjek
Spec:	FCCB	Page:	1 of 3	Approved:	
Revision	1.0				

Ambient Conditions
Temperature: 15 °C
Humidity: 85 %

Test Objective

The objective of this test session is to perform final qualification testing the EUT defined below relative to the specification(s) defined above.

Test Summary

Run #1 - Transmitted power Measurements @ 917.58 MHz in accordance with §15.247 (b)

PASS Results: Output power was measured and calculated from the radiated field strength to be 18.6 dBm, 11.4 dBm below the maximum permitted output of 30dBm (1 Watt).

Run #2 - 6 dB Bandwidth measurement @ 917.58 MHz in accordance with §15.247 (a) (2)

PASS Results: 6 dB bandwidth was measured to be 1.35 MHz, meeting the minimum requirement of 500 kHz.

Run #3 - Power Density Measurements @ 917.58 MHz in accordance with §15.247 (d).

PASS Results: Output power density in 3 kHz bandwidth was calculated from the radiated field strength to be -0.5 dBm, 8.5 dBm below the maximum permitted density of 8 dBm/3 kHz.

Run #4 - Unmaximized Preliminary Radiated Emissions Scan, 30-902 MHz and 928-1000 MHz.

Results: §15.209 -11.3 dB QP @ 974.898 MHz Vertical

EMC Test Log

Client:	Cellnet Data Systems	Date:	11/21/98	Test Engr:	Anil Allamaneni
Product:	SLAMM	File:	T29300	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS # 3	Contact:	Val Hyjek
Spec:	FCCB	Page:	2 of 3	Approved:	
Revision	1.0				

Run #5 - Maximized Radiated Emissions from Run #4

PASS Results: §15.209 -10.3 dB QP @ 974.898 MHz Vertical

Emissions lying in the restricted bands was compared to FCC Class B Limits. The limits at all other frequencies were 20dB below the fundamental emission of 121.1 dBuV/m

Equipment Under Test (EUT) General Description

The EUT is an electric meter module. Normally, the EUT would be placed on a table top during operation. The EUT was, therefore, placed in this position during emissions testing to simulate the end user environment. The electrical rating of the EUT is **120/240 V, 60 Hz**.

Equipment Under Test (EUT)

Manufacturer/Model/Description	Serial Number	FCC ID Number
Cellnet/ SLAMM/ Electric Meter Module	301	

Power Supply and Line Filters

The following information was provided by the manufacturer:

Description	Manufacturer	Model
120/240 VAC transformer	Cellnet	Meter Box # 1

Printed Wiring Boards in EUT

The following information was provided by the manufacturer:

Manufacturer/Description	Assembly #	Rev.	Serial Number	Crystals (MHz)
Cellnet/ SLAMM meter module	25-0055	4	301	14.564762

Subassemblies in EUT

The following information was provided by the manufacturer:

Manufacturer/Description	Assembly Number	Rev.	Serial Number
Cellnet/ LCD daughter board	25-0056	3	301

EMC Test Log

Client:	Cellnet Data Systems	Date:	11/21/98	Test Engr:	Anil Allamaneni
Product:	SLAMM	File:	T29300	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS # 3	Contact:	Val Hyjek
Spec:	FCCB	Page:	3 of 3	Approved:	
Revision	1.0				

EUT Enclosure(s)

The EUT enclosure is primarily constructed of fabricated sheet steel. It measures approximately 22 cm wide by 20 cm deep by 28 cm high.

EMI Suppression Devices (filters, gaskets, etc.)

The following information was provided by the manufacturer:

Description	Manufacturer	Part Number
None		

Local Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
None		

Remote Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
None		

Interface Cabling

Cable Description	Length (m)	From Unit/Port	To Unit/Port
None			

Test Software

The transmit rate is once every second.

General Test Conditions

During radiated testing, the EUT was connected to 240V/60 Hz through a step up transformer which was connected to 120V, 60Hz power input. The EUT was located on the turntable for radiated testing.

Test Data Tables

See attached data

Emissions Test Data

Client:	Cellnet Data Systems	Date:	11/21/98	Test Engr:	Anil Allamaneni
Product:	SLAMM	File:	T29300	Proj. Engr:	Mark Briggs
Objective	Final Qualification	Site:	SVOATS # 3	Contact:	Val Hyjek
Spec:	FCCB	Distance:	3 m	Approved:	

Ambient Conditions

Temperature: 15 °C

Humidity: 60 %

Run #0a: Readings from the Cellnet small site standard source.

Frequency	Level	Pol	Resolution	Video	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Bandwidth	Bandwidth	Pk/QP/Avg	degrees	meters	
900.000	60.9	v	1 MHz	1 MHz	Pk	0	1.0	
920.000	65.3	v	1 MHz	1 MHz	Pk	0	1.0	
2740.000	56.2	v	1 MHz	1 MHz	Pk	0	1.0	

Run #0b: Transmitted Power Measurements @ 917.58 MHz in accordance with 15.247 (b)

On the ESVP.

Frequency	Level	Pol	EIRP	15.247 (b)	15.247 (b)	Azimuth	Height	Comments
MHz	dBuV/m	v/h	dBm	Limit	Margin	degrees	meters	
917.580	116.3	v	21.1	30.0	-8.9	345	1.0	RBW = VBW = 1 MHz
917.580	115.4	h	20.2	30.0	-9.8	303	1.0	RBW = VBW = 1 MHz

Emissions Test Data

Client:	Cellnet Data Systems	Date:	11/21/98	Test Engr:	Anil Allamaneni
Product:	SLAMM	File:	T29300	Proj. Engr:	Mark Briggs
Objective	Final Qualification	Site:	SVOATS # 3	Contact:	Val Hyjek
Spec:	FCCB	Distance:	3 m	Approved:	

Run #1: Transmitted Power Measurements @ 917.58 MHz in accordance with 15.247 (b)

On the 8595EM with the Spectrum Analyzer mode.

Frequency	Level	Pol	EIRP	15.247 (b)	15.247 (b)	Azimuth	Height	Comments
MHz	dBuV/m	v/h	dBm	Limit	Margin	degrees	meters	
917.580	113.8	v	18.6	30.0	-11.4	345	1.0	RBW = VBW = 3 MHz
917.580	112.5	h	17.3	30.0	-12.7	303	1.0	RBW = VBW = 3 MHz

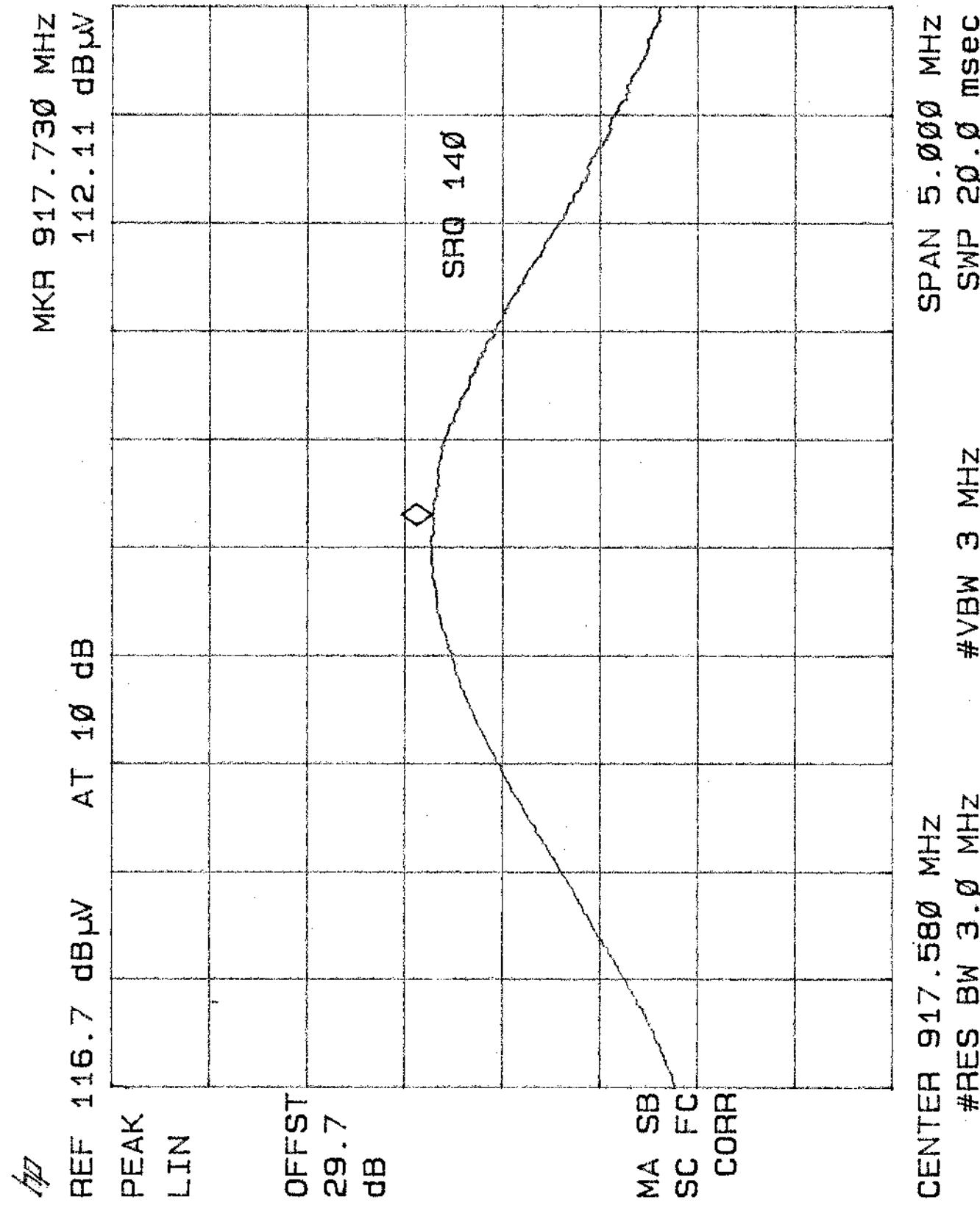
Run #2: 6 dB Bandwidth Measurements @ 917.58 MHz in accordance with 15.247 (a) (2)

See plots; 6 dB bandwidth was measured to be 1.35 MHz and meeting the minimum requirement of 500 kHz.

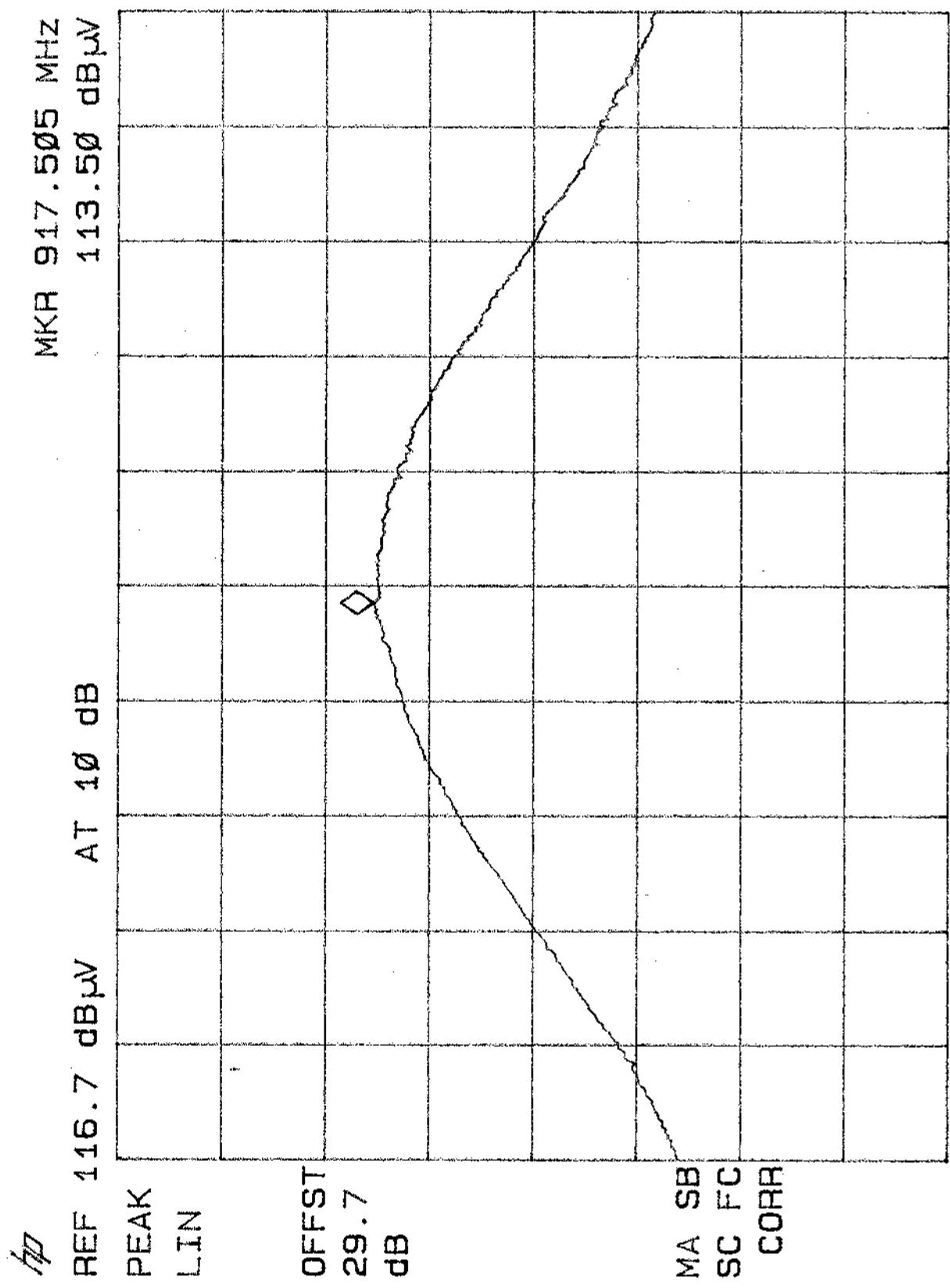
Run #3: Power Density Measurements @ 917.58 MHz in accordance with 15.247 (d)

Frequency	Level	Pol	EIRP	15.247 (d)	15.247 (d)	Azimuth	Height	Comments
MHz	dBuV/m	v/h	dBm	Limit	Margin	degrees	meters	
917.580	94.7	v	-0.5	8.0	-8.5	345	1.0	RBW = VBW = 3 kHz
917.580	93.1	h	-2.1	8.0	-10.1	303	1.0	RBW = VBW = 3 kHz

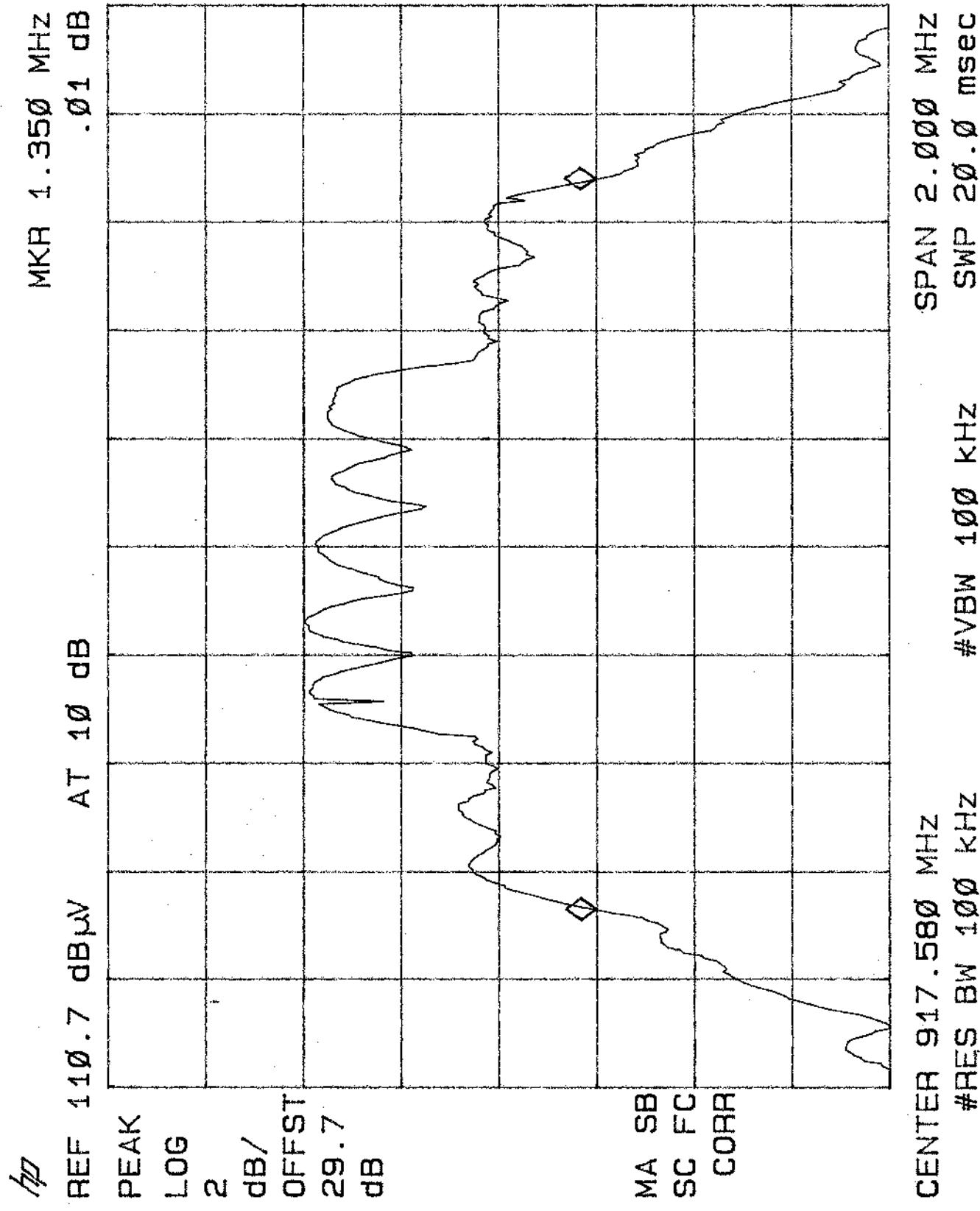
Run #4: Preliminary unmaximized emissions scan, 30 MHz-902 MHz and 928 MHz- 1000 MHz.

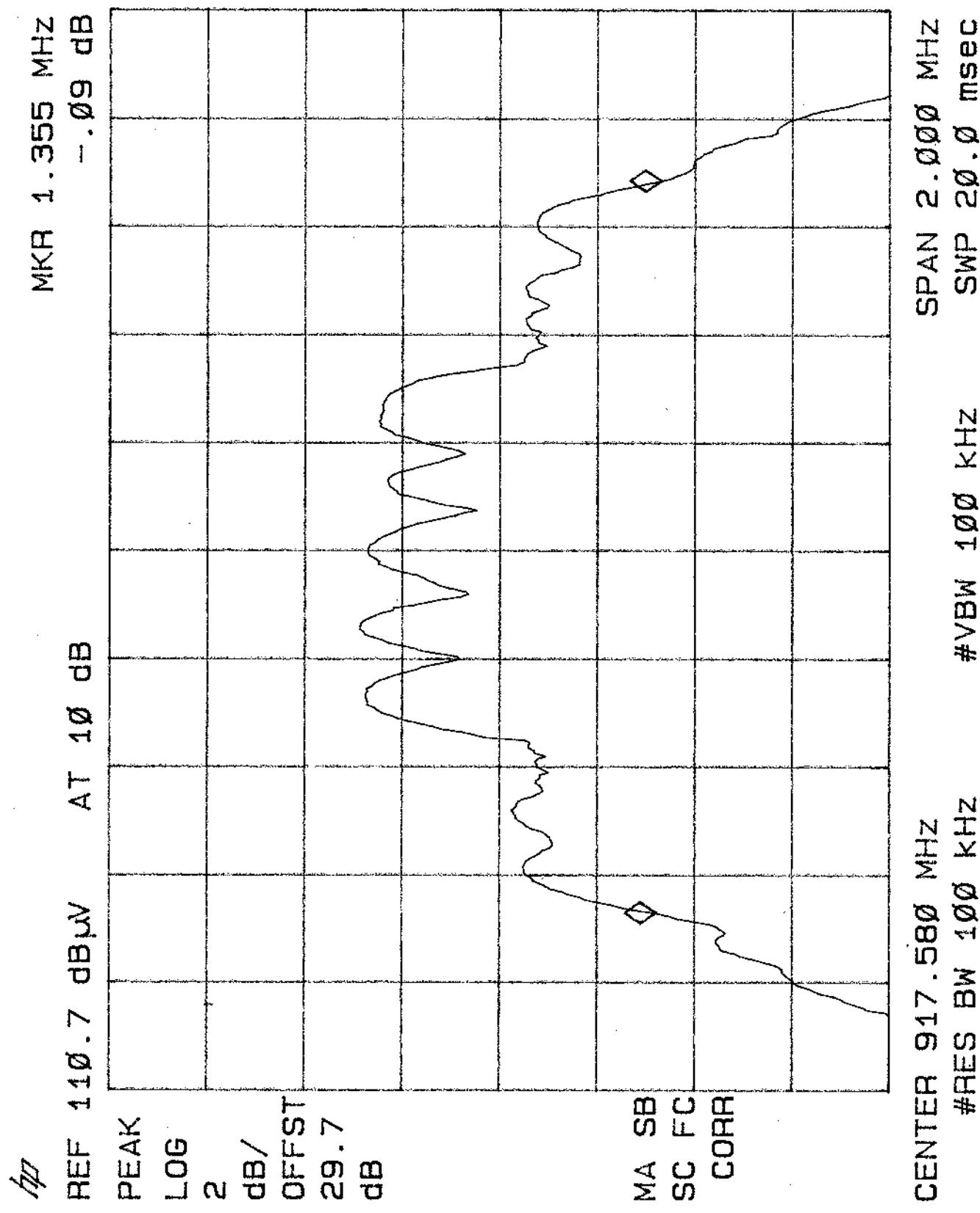

Limits for signals not in the restricted bands is 20dB below the fundamental emission level of 110 dBuV/m in 100KHz.

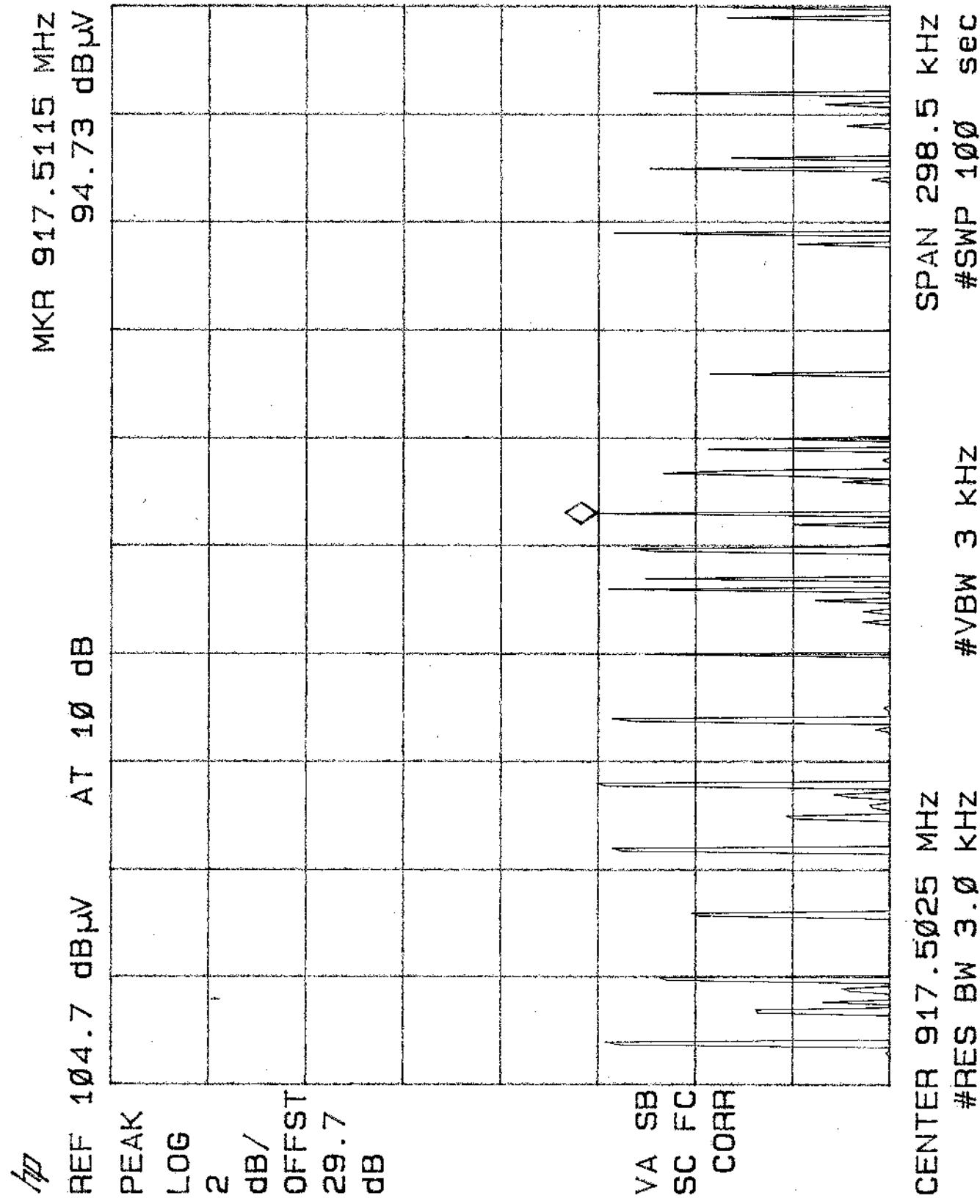
Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
974.898	42.7	v	54.0	-11.3	QP	68	1.0	In restricted band
974.898	38.9	h	54.0	-15.1	QP	157	1.0	In restricted band
401.441	26.1	v	46.0	-19.9	QP	0	1.1	In restricted band
401.441	25.2	h	46.0	-20.8	QP	48	1.0	In restricted band
928.500	61.2	v	90.0	-28.8	QP	348	1.2	Not in restricted band.
928.500	57.1	h	90.0	-32.9	QP	260	1.7	Not in restricted band.
895.227	50.2	v	90.0	-39.8	QP	0	1.2	Not in restricted band.
895.227	45.2	h	90.0	-44.8	QP	0	1.0	Not in restricted band.
458.790	42.8	v	90.0	-47.2	QP	334	1.5	Not in restricted band.

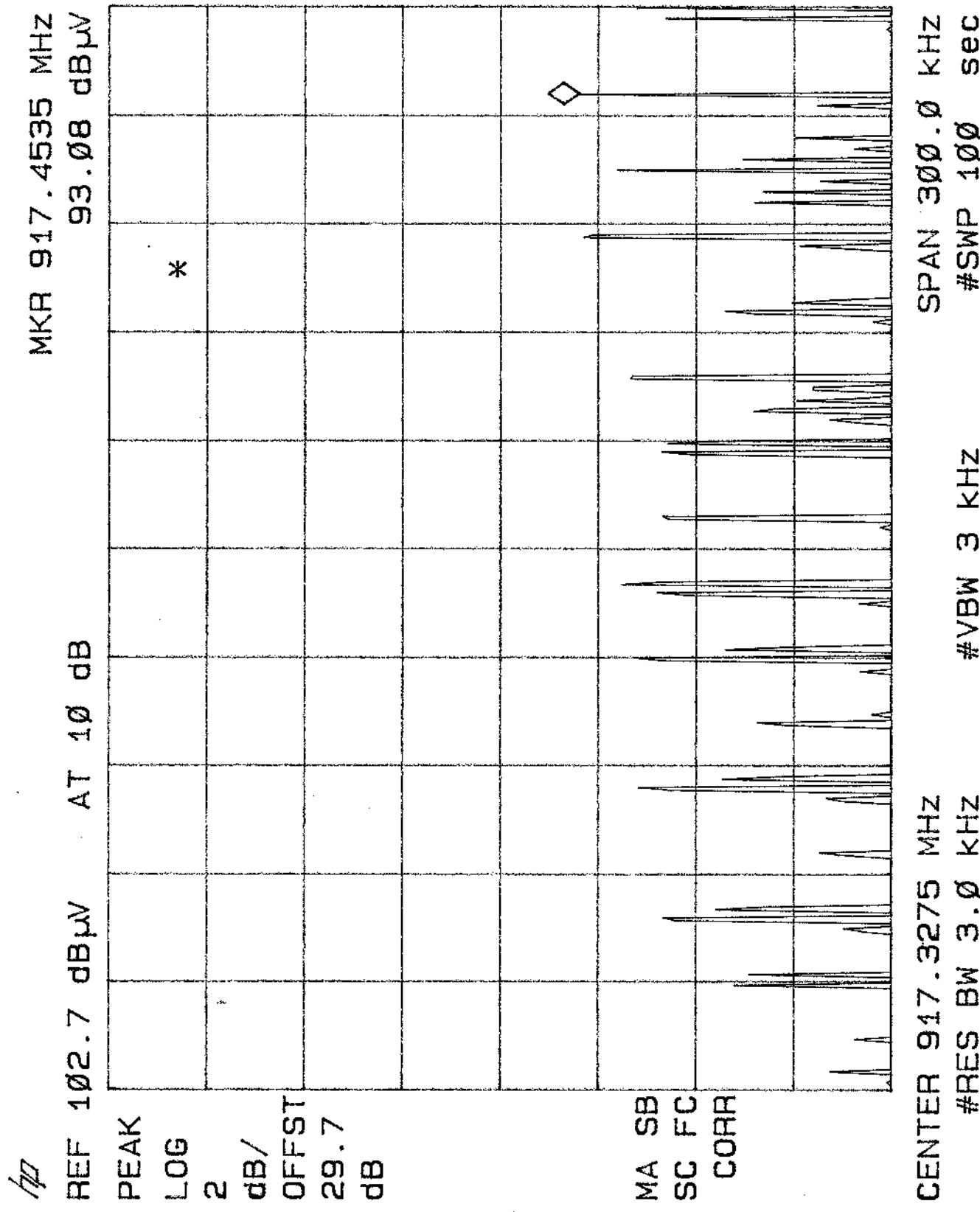

Run #5: Maximized radiated emissions from Run #4.

Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
974.898	43.7	v	54.0	-10.3	QP	68	1.0	In restricted band
974.898	42.1	h	54.0	-11.9	QP	43	1.9	In restricted band
401.441	26.1	v	46.0	-19.9	QP	0	1.1	In restricted band
401.441	25.2	h	46.0	-20.8	QP	48	1.0	In restricted band
928.500	61.2	v	90.0	-28.8	QP	348	1.2	Not in restricted band.
928.500	57.1	h	90.0	-32.9	QP	260	1.7	Not in restricted band.


T29300 OUTPUT POWER
HORIZONTAL


T29300 POWER OUTPUT
VERTICAL


T29300 6 dB Bandwidth
VERTICAL


TE9300 6 dB Bandwidth
HOR/VERTICAL

29300 POWER DENSITY
VERTICAL

T29300 POWER DENSITY
HORIZONTAL

EMC Test Log

Client:	Cellnet Data	Date:	11/24/98	Test Engr:	Rudy Suy
Product:	SLAMM Beta 2	File:	T29341	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Val Hyjek
Spec:	FCC	Page:	1 of 3	Approved:	
Revision	1.0				

Ambient Conditions
Temperature: 10 °C
Humidity: 73 %

Test Objective

The objective of this test session is to perform final qualification testing the EUT defined below relative to the specification(s) defined above. According to the Client the rest of the testing was already done.

Test Summary

Run #1 - Maximized Radiated Emissions Scan, 1-10 GHz

PASS Results: FCC -9.2 dB QP @ 2752.941 MHz Vertical

Run #2 - Conducted Emissions Scan of EUT, 0.45-30.00 MHz, 240V, 60Hz

PASS Results: FCC B -15.9 dB QP @ 0.4500 MHz Neutral

Equipment Under Test (EUT) General Description

The EUT is a spread spectrum electric meter module which operate in the 900MHz ISM band. Normally, the EUT would be mounted onto an electrical meter box during operation. For the purpose of testing the EUT was treated as table top equipment. The electrical rating of the EUT is **120/240 V, 60 Hz**.

Equipment Under Test (EUT)

Manufacturer/Model/Description	Serial Number	FCC ID Number
Cellnet/ SLAMM/ Electric Meter Module	301	

Power Supply and Line Filters

The following information was provided by the manufacturer:

Description	Manufacturer	Model
120/240 VAC transformer	Cellnet	Meter Box # 1

EMC Test Log

Client:	Cellnet Data	Date:	11/24/98	Test Engr:	Rudy Suy
Product:	SLAMM Beta 2	File:	T29341	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Val Hyjek
Spec:	FCC	Page:	2 of 3	Approved:	
Revision	1.0				

Printed Wiring Boards in EUT

The following information was provided by the manufacturer:

Manufacturer/Description	Assembly #	Rev.	Serial Number	Crystals (MHz)
Cellnet/ SLAMM meter module	25-0055	4	301	14.564762

Subassemblies in EUT

The following information was provided by the manufacturer:

Manufacturer/Description	Assembly Number	Rev.	Serial Number
Cellnet/ LCD daughter board	25-0056	3	301

EUT Enclosure(s)

The EUT enclosure is primarily constructed of molded plastic. It measures approximately 15 cm wide by 10 cm deep by 15 cm high.

EMI Suppression Devices (filters, gaskets, etc.)

The following information was provided by the manufacturer:

Description	Manufacturer	Part Number
None		

Local Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
Cellnet Meter Box 1	1	none

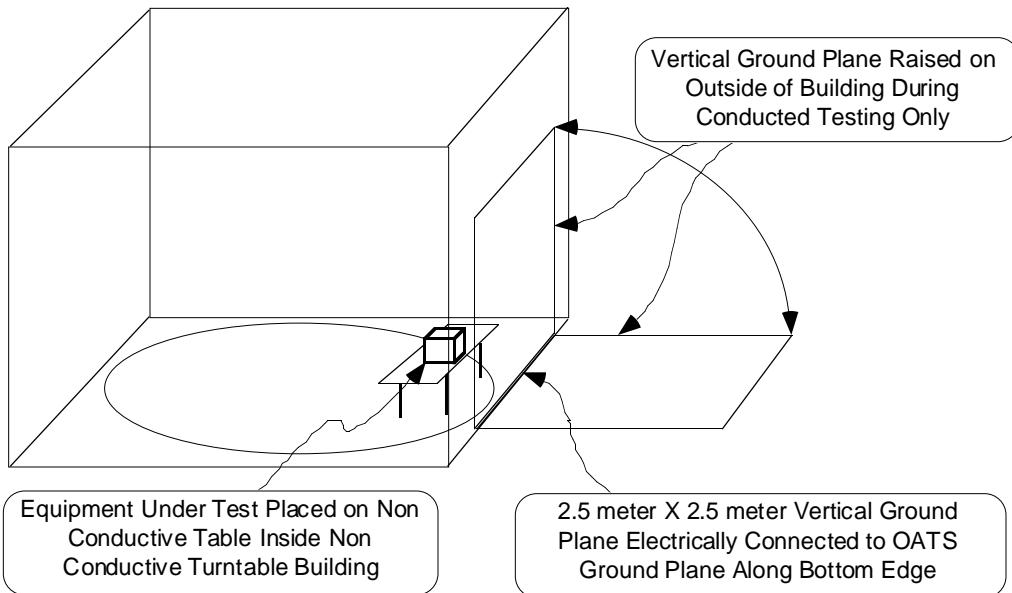
Remote Support Equipment

Manufacturer/Model/Description	Serial Number	FCC ID Number
None		

Interface Cabling

Cable Description	Length (m)	From Unit/Port	To Unit/Port
None			

Client:	Cellnet Data	Date:	11/24/98	Test Engr:	Rudy Suy
Product:	SLAMM Beta 2	File:	T29341	Proj. Eng:	Mark Briggs
Objective:	Final Qualification	Site:	SVOATS #3	Contact:	Val Hyjek
Spec:	FOC	Page:	3 of 3	Approved:	
Revision	1.0				


Test Software

The EUT was set to transmit once every second.

General Test Conditions

During radiated testing, the main power source was connected to 120V, 60Hz that was stepped up to 240V, 60Hz which the EUT was operating on. The EUT was located on the turntable for radiated testing and conducted testing.

A 2.5 meter X 2.5 meter ground plane was raised to a vertical position 40 cm from the EUT as shown below:

Test Data Tables

See attached data

Emissions Test Data

Client:	Cellnet Data	Date:	11/24/98	Test Engr:	Rudy Suy
Product:	Slamm Beta 2	File:	T29341	Proj. Engr:	Mark Briggs
Objective	Final Qualification	Site:	SVOATS #3	Contact:	Val Hyjek
Spec:	FCC	Distance:	3m	Approved:	

Ambient Conditions

Temperature: 10 °C
Humidity: 73 %

Run #1: Maximized radiated scan, 1-10 GHz

Elliott Equipment Used: Analyzer #284, Pre-Amp #263, Horn # 487 and Filter #833

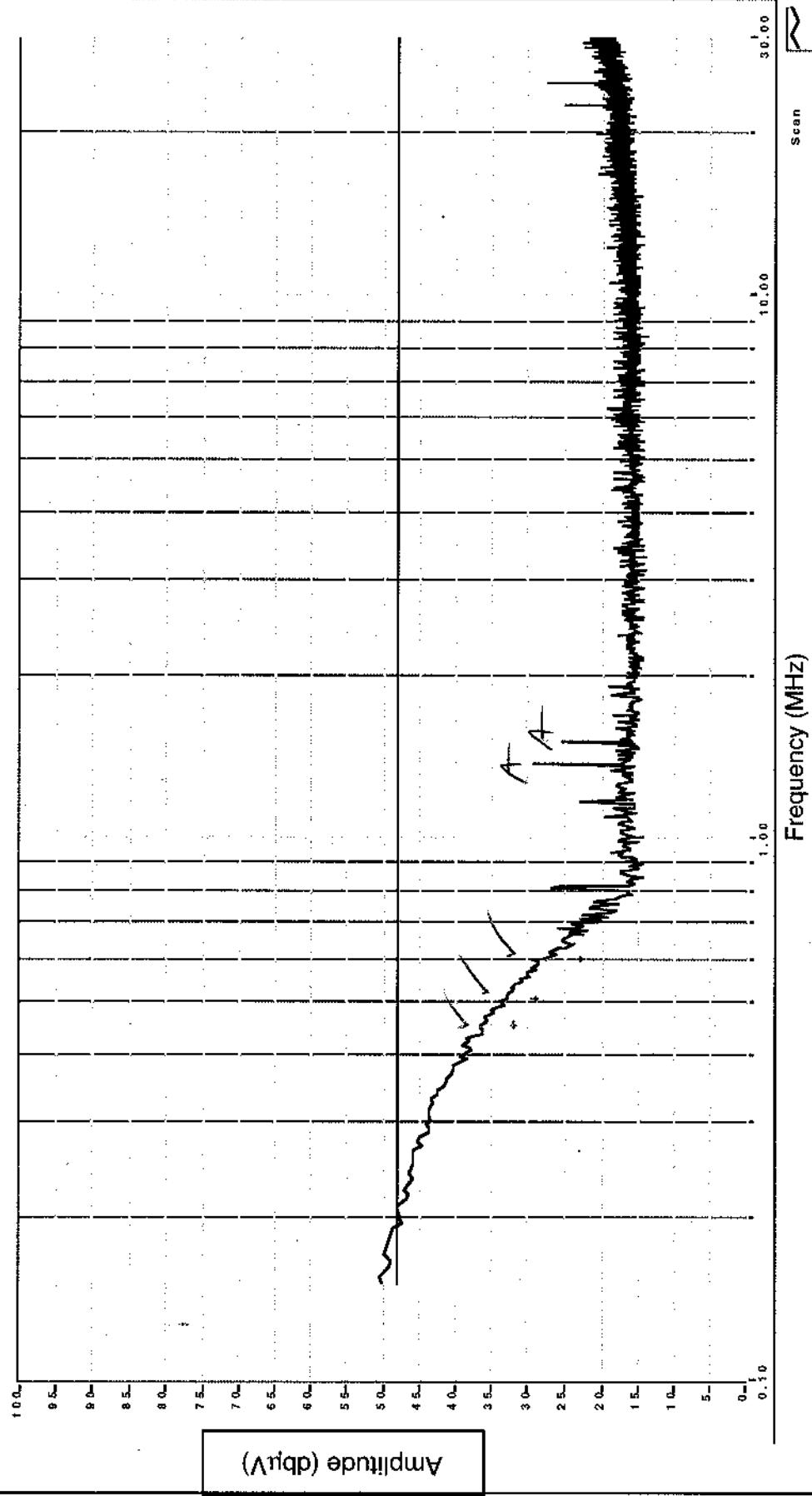
Frequencies that does not fall in the Restricted Band must be 20dB below the fundamental emissions (116dBuV/m)

Frequencies that is in the Restricted Band was compared to FCC Class B Limits.

-15.9dB was subtracted from Avg Reading for duty cycle correction factor. The EUT is ON for 16ms/100ms.

Frequency	Level	Pol	FCC B	FCC B	Detector	Azimuth	Height	Comments
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2752.941	64.8	v	74.0	-9.2	Peak	320	1.3	Restricted Band
2752.941	63.5	h	74.0	-10.5	Peak	30	1.7	Restricted Band
3670.588	61.9	h	74.0	-12.2	Peak	350	2.0	Restricted Band
3670.588	60.1	v	74.0	-13.9	Peak	320	1.1	Restricted Band
1835.293	74.0	h	96.0	-22.0	Peak	30	1.9	Not in Restricted Band
2752.941	31.9	v	54.0	-22.1	Avg	320	1.3	Restricted Band
4588.234	51.9	v	74.0	-22.1	Peak	310	1.1	Restricted Band
4588.234	48.7	h	74.0	-25.4	Peak	320	1.2	Restricted Band
3670.588	28.6	v	54.0	-25.4	Avg	320	1.1	Restricted Band
3670.588	27.2	h	54.0	-26.8	Avg	350	2.0	Restricted Band
1835.293	68.7	v	96.0	-27.3	Peak	310	1.3	Not in Restricted Band
4588.234	25.0	v	54.0	-29.0	Avg	310	1.1	Restricted Band
2752.941	24.7	h	54.0	-29.4	Avg	30	1.7	Restricted Band
4588.234	20.6	h	54.0	-33.4	Avg	320	1.2	Restricted Band

Note: Frequencies above 4.6GHz was within the noise floor.


Run #2: Conducted Emissions, 240V/60Hz, 0.45-30 MHz, Sorted by margin

Frequency	Level	Power	FCC B	FCC B	Detector	Comments
MHz	dBuV	Lead	Limit	Margin	Function	
0.4500	32.1	Neutral	48.0	-15.9	QP	
0.4500	30.8	Line 1	48.0	-17.2	QP	
0.5048	29.0	Neutral	48.0	-19.0	QP	
0.5001	27.4	Line 1	48.0	-20.6	QP	
1.5033	26.7	Line 1	48.0	-21.3	QP	
0.5438	24.0	Line 1	48.0	-24.0	QP	
0.5969	22.8	Neutral	48.0	-25.2	QP	

Elliott

SVOATS #3: CellNet Data Slamm Run 2

Electric Meter

240V, 60Hz. NEUTRAL

Frequency (MHz)

240V, 60Hz. NEUTRAL

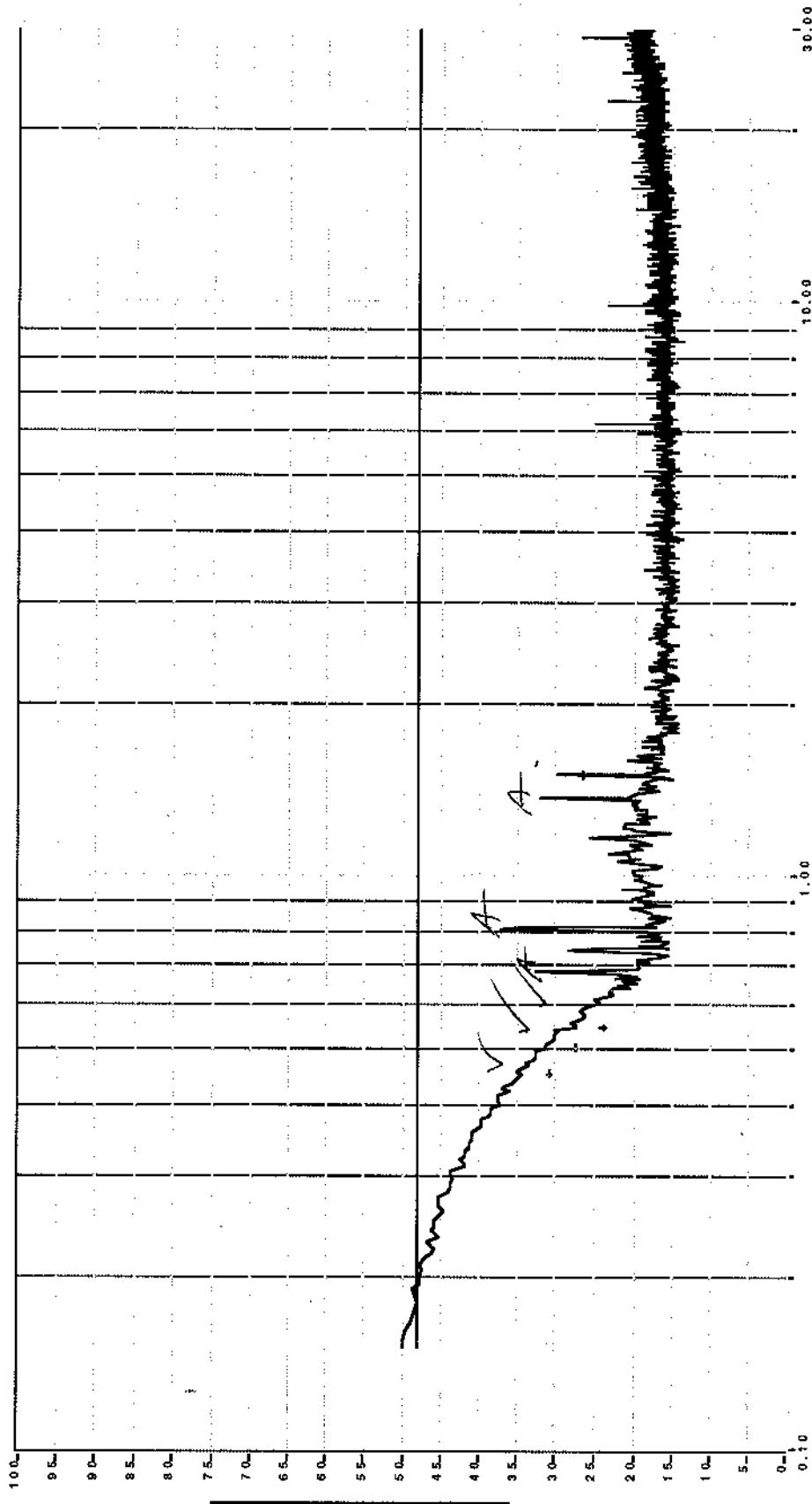
Frequency (MHz)

Spec:
FOCB
Mains Lead
Neutral

Scan
Peak
Quasi-peak
Average
QuasiPeak
Limit 2

11/24/98

Rudy Suy


Elliott

SVOATS #3: CellNet Data Slamm Run 2

Spec:
FCCB

Electric Meter

Maine Lead
Line 1

240V, 60Hz. LINE

$\checkmark = EUT$

$A = AMBIENT$

Scan
Peak
Quasi-peak
Average
QuasiPeak
Limit 2

11/24/98

Rudy Suy

Test Name:	Processing Gain	Test #: 3.B.1
Test Summary:	Verifies compliance to receiver processing gain specification at +25°C with an input signal level of -104 dBm.	
Applies to Specification 3.2.2.7		

Pass / Fail Criteria:

Every point must exhibit => 12 dB process gain. (FCC Requirement \geq 10 dB)

Required Test Equipment:

HP9664B Signal Generator

Variable attenuator(s)

Power supply

Boonton Power Meter

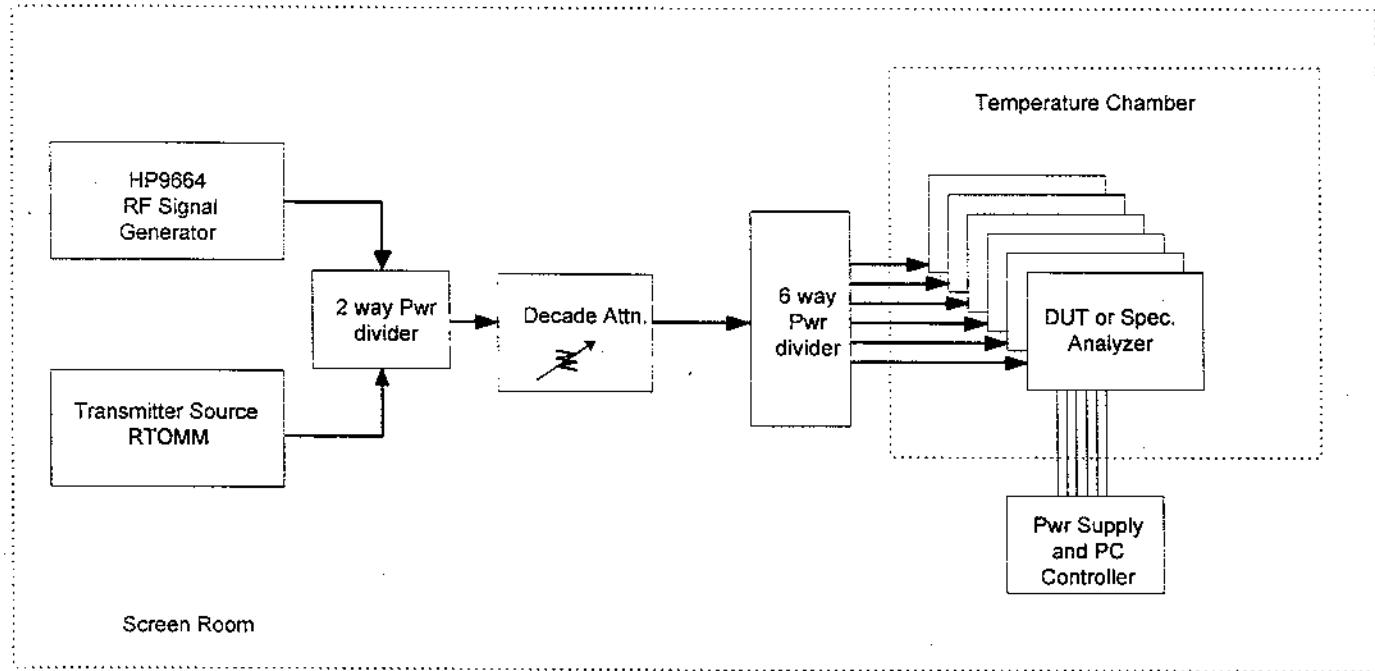
HP8594E Spectrum Analyzer

IBM PC compatible computer with serial interface

Transceiver power cable, twisted pair, extended length

Transceiver serial cable, RJ45, extended length

Equipment Set Up:


The processing gain of the DSP receiver is measured by the spread signal to unspread signal method whereby a CW signal is injected in 50 KHz intervals from 917.3800 to 917.7800 MHz. The difference (in dB) of the correlated spread signal level applied separately, is the system process gain.

1. Each transceiver receive section will be programmed with default parameters using appropriate software/firmware. Select a receive frequency of 917.58 MHz for all tests.
2. HP9664A Signal Generator:

Center Frequency	=	917.38000 MHz
Signal Level	=	-30 dBm
3. HP8594E Spectrum Analyzer

Resolution Bandwidth	=	3 MHz
Video Bandwidth	=	1 MHz
Sweep	=	50 msec
Span	=	0 MHz
Attenuation	=	10 dB
4. Variable Attenuator = as required to achieve a -95 dBm spread signal.

Note: Ensure that all test equipment has been warmed up for 30 minutes and calibrated before measurements are taken.

3.B.1 Test Configuration for Process Gain

Procedure:

1. Place the transceiver(s) to be tested in the temperature chamber.
2. Label and route each wire and cable described below outside the temperature chamber.
3. Use the transceiver power cable to connect the device under test to the DC supply. Set the DC supply to provide 13.5 VDC to the device under test.
4. Determine the amount of power difference between the injected spread signal at 917.58 MHz and the injected CW signal at 917.58 MHz that produced the same signal level on the spectrum analyzer.
 - a. Measure and record the power of the spread signal present at the input to any one of the DUTs by connecting it to the spectrum analyzer. Measure power during preamble portion of the message packet.
 - b. Then, after turning the Spread signal OFF and switching ON the CW signal, measure and record the power of the CW signal present at the input of the same DUT by routing again the spectrum analyzer.
 - c. Determine a calibration factor based on the difference between the measurements made in steps a. and b. This amount of attenuation shall be added or removed (as appropriate) from the circuit when configured for CW input measurements.
5. Apply a spread signal to the receiver. Record the indicated level of this signal after correlation.
6. Reconfigure the set-up to apply a CW signal at 917.58 MHz to the DSP input.
7. Apply (or remove) the appropriate amount of attenuation, as determined in step 4 above, such that the CW signal is at the same indicated input power level as the spread signal from step 5.
8. Input a spread signal level at - 80 dBm at 917.58 MHz, and then, input a CW signal beginning at 917.3800 MHz, and increment up in 50 KHz steps to 917.7800, record the delta (change in attenuator settings) that produces the same indicated output for the CW signal as the - 80 dBm spread signal. The indicated output is first of the last three bites in the reported packet as is a number between 0 and 255 which roughly corresponds to -128 and -30 dBm respectively.
9. Determine average process gain by averaging the linear equivalent in Watts of the values in the table below and then converting back to dB's.

PROCESS CAIN TEST

+25 C (only)	Frequency Offset (KHz)								
	-200	-150	-100	-50	0	+50	+100	+150	+200
1	14.8	14.5	14.5	14.0	15.0	14.4	15.0	15.7	15.1
2	16.3	16.0	15.7	15.0	15.0	15.7	16.1	17.0	16.2
3	16.2	15.8	15.7	15.2	16.0	15.8	16.4	16.6	16.6
4	16.0	16.0	15.0	14.4	15.0	14.5	15.3	15.6	15.5
Pass/Fail (dB)	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12	≥ 12 dB

DUT # 1 Average Process Gain = 14.8 dB

DUT # 2 Average Process Gain = 16.0 dB

DUT # 3 Average Process Gain = 16.1 dB

DUT # 4 Average Process Gain = 15.3 dB

Acceptance Block: A signature below denotes that this test has met all pass criteria.

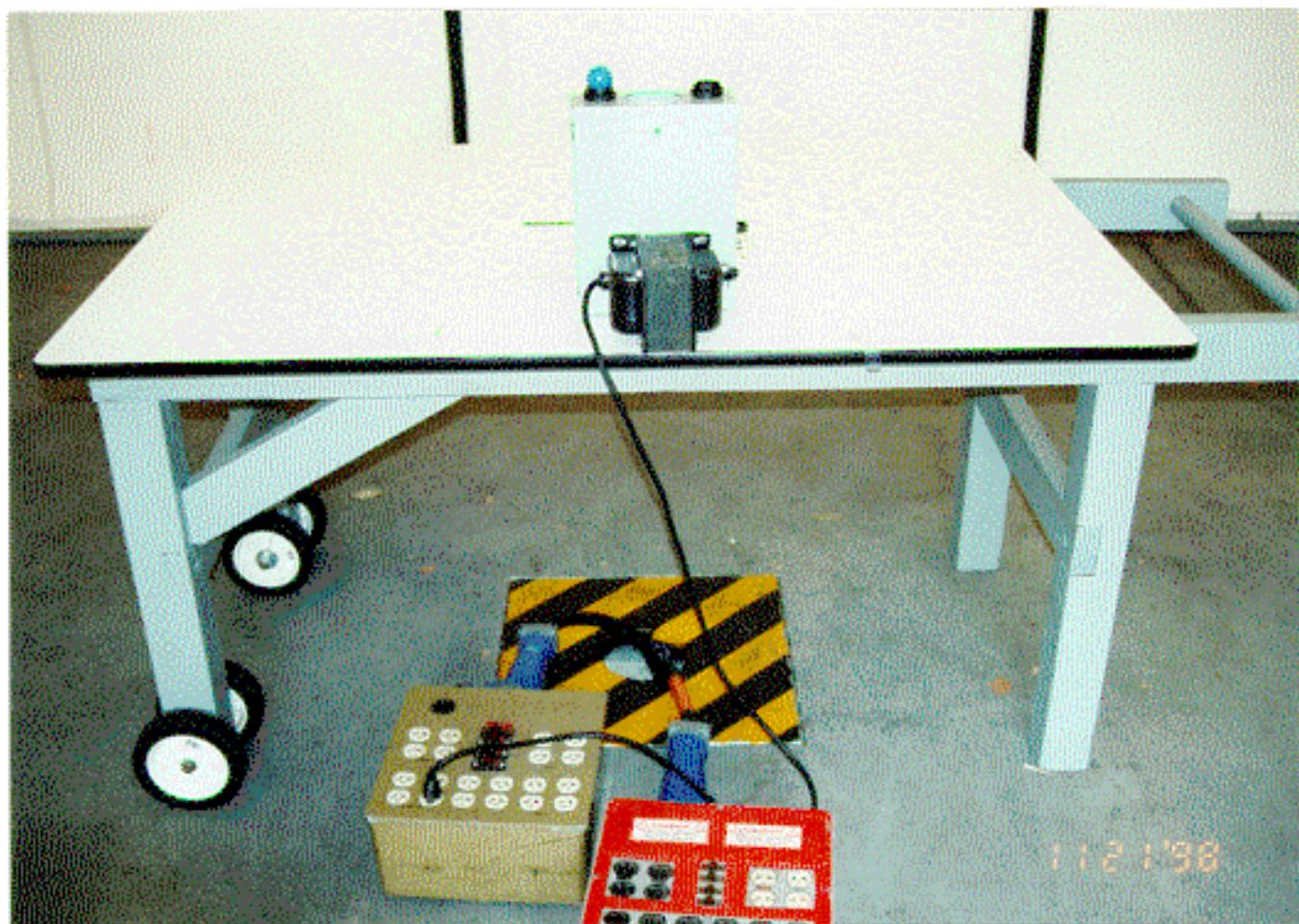
Signature: Gordon Furze *Gordon Furze*
Date: July 30, 1997 *July 30 1997*

Dear Greg Czumack:

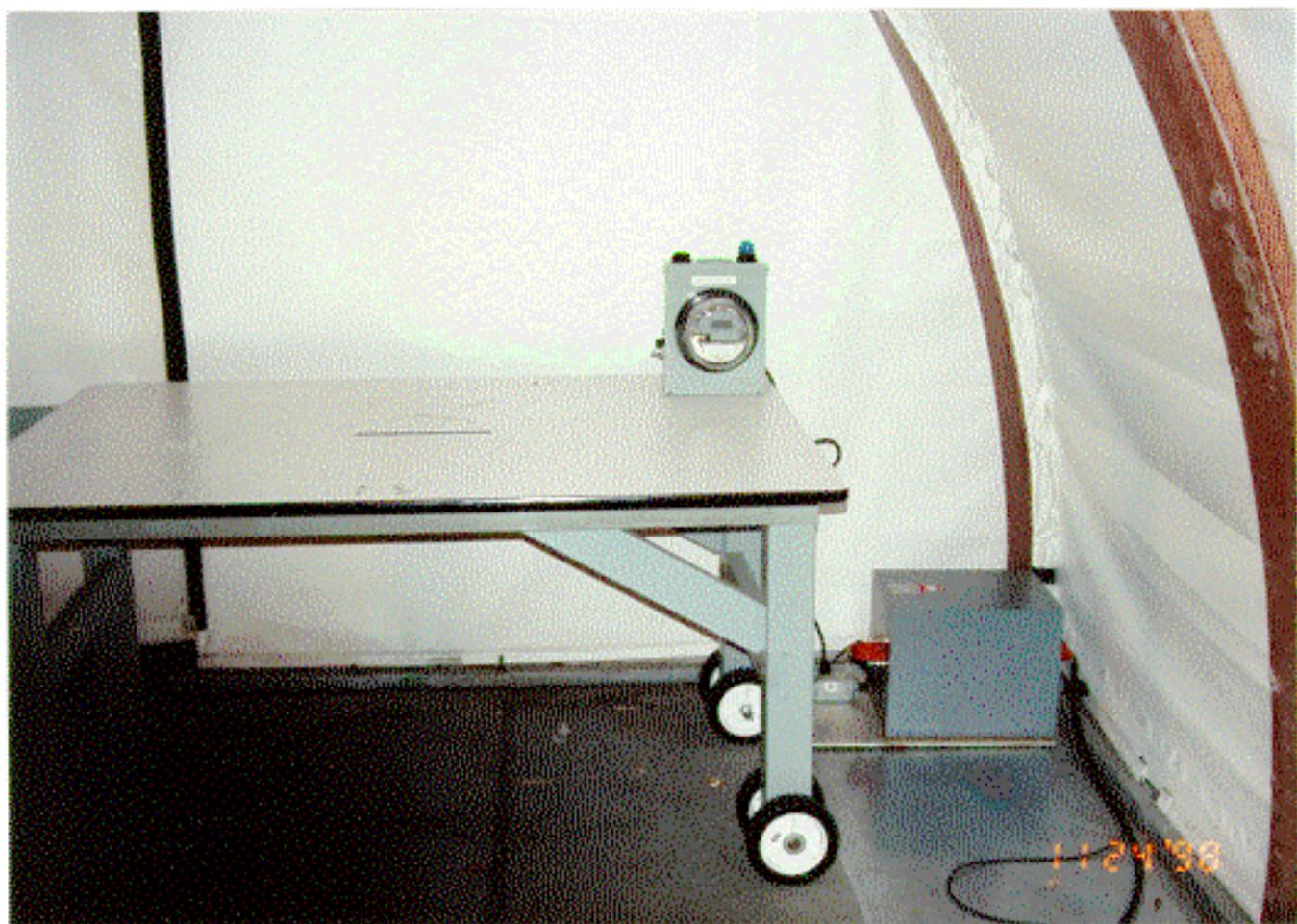
Please excuse the lack of introduction, but I was asked to look at the correspondence between you and Elliott Labs/ CellNet about the H6NCMM2200 device. My summary of the problem is that our people have been too close to the details and haven't conveyed the big picture you have been asking for, (as I read between the lines of your questions).

The missing picture is that our system uses on-off keying as the data modulation. Data zeros are "sent" as zero amplitude of the spread signal, and data ones are sent as full amplitude of the spread signal. Thus the data is demodulated by the amplitude detector, which also supplies the signal level indication.

Consequently, in the processing gain measurement, the spread signal is correlated, by being mixed against the identically-spread local oscillator and narrow-bandwidth-filtered, then demodulated by the amplitude level detector. The amplitude measurement is actually made during the all-ones synchronization burst. Then the spread signal source is turned off, and the CW signal from the signal generator is substituted for the spread signal. This CW signal represents a nonspread signal that is a data modulated signal with the "data" being all-ones. This CW signal is "correlated," then demodulated at the level detector. The processing gain is the number of dBs that have to be removed from an attenuator preceding the receiver to bring the indicated level of this nonspread signal, at the receiver demodulating amplitude detector, up to the level indicated for the spread signal, when they each enter the attenuator at the same power level.


If this communication resolves the questions, I will try to get our people to buy me a beer.

Sincerely
Forrest Fulton
Forrest Fulton
Chief Scientist, Radio Systems


EXHIBIT 3: Radiated Emissions Test Configuration Photographs

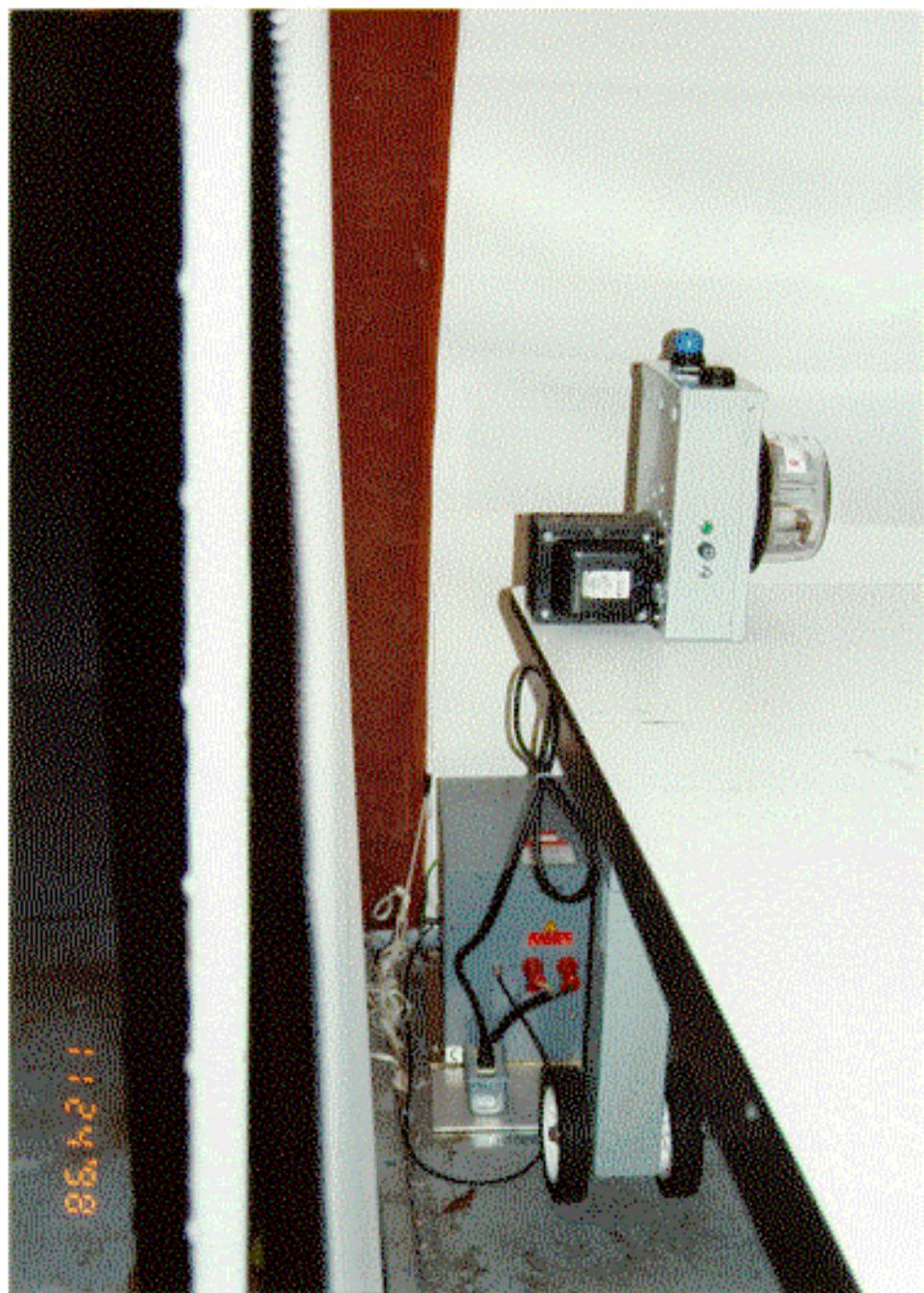

EXHIBIT 3: Radiated Emissions Test Configuration Photographs

EXHIBIT 4: Conducted Emissions Test Configuration Photographs

EXHIBIT 4: Conducted Emissions Test Configuration Photographs

EXHIBIT 5: Proposed FCC ID Label & Label Location

EXHIBIT 6:Detailed Photographs of Cellnet Data Systems Model SLAMM Beta 2 Construction

8 Pages

EXHIBIT 7:Operator's Manual for Cellnet Data Systems Model SLAMM Beta 2

1 Page

EXHIBIT 8:Block Diagram of Cellnet Data Systems Model SLAMM Beta 2

1 Page

EXHIBIT 9:Schematic Diagrams for Cellnet Data Systems Model SLAMM Beta 2

2 Pages

EXHIBIT 10: Theory of Operation for Cellnet Data Systems Model SLAMM Beta 2

2 Pages