

SAR TEST REPORT

For

TLV Co Ltd

Pocket TrapMan

Model No.: PT3

FCC ID: H3RTLVPT031

IC: 7221A-TLVPT031

The MAX Report SAR(1g)	
Body SAR	0.043W/Kg

Test distance: 0mm

Prepared for : TLV Co Ltd

881 Nagasuna, Noguchi-Cho, Kakogawa, Hyogo 675-8511
Japan

Prepared By : Audix Technology (Shenzhen) Co., Ltd.
No. 6, Kefeng Road, Science &Technology Park,
Nanshan District, Shenzhen, Guangdong, China

Tel: (0755) 26639496
Fax: (0755) 26632877

Report No. : ACS-SF25009
Date of Test : May.28~Jun.11, 2025
Date of Report : Jun.17, 2025

TABLE OF CONTENTS

<u>Description</u>	<u>Page</u>
TEST REPORT VERIFICATION.....	3
1. GENERAL INFORMATION.....	4
1.1. Description of Equipment Under Test.....	4
1.2. Feature of Equipment under Test	5
2. GENERAL DESCRIPTION.....	6
2.1. Product Description For EUT.....	6
2.2. Applied Standards	6
2.3. Device Description and SAR Limits	6
2.4. Test Conditions.....	6
2.5. Exposure Positions Consideration.....	7
2.6. Standalone SAR Test Exclusion Considerations.....	8
2.7. EUT Configuration and operation conditions for test.	10
2.8. Test Equipments	10
2.9. Laboratory Environment	10
2.10. Measurement Uncertainty	10
3. MEASURE PROCEDURES.....	13
3.1. General description of test procedures	13
4. SAR MEASUREMENTS SYSTEM.....	14
4.1. SAR Measurement Set-up	14
4.2. ELI Phantom.....	15
4.3. Device Holder for SAM Twin Phantom	16
4.4. DASY5 E-field Probe System.....	17
4.5. E-field Probe Calibration.....	18
4.6. Scanning procedure	19
5. DATA STORAGE AND EVALUATION.....	21
5.1. Data Storage	21
5.2. Data Evaluation by SEMCAD.....	21
6. SYSTEM CHECK	23
7. TEST RESULTS.....	25
7.1. Output power.....	25
7.2. System Check for Head Tissue simulating liquid	27
7.3. Dielectric Performance for Tissue simulating liquid.....	29
7.4. Test Results	30

APPENDIX A (Graph Result- BDR+EDR & BLE 1M)

APPENDIX B (Calibration Certificate)

APPENDIX C (Test Photos)

APPENDIX D (Exposure Positions Consideration)

SAR TEST REPORT

Applicant : TLV Co Ltd
Manufacturer : TLV Co Ltd
Product : Pocket TrapMan
Model No. : PT3
FCC ID : H3RTLVP031
IC : 7221A-TLVP031
Test Voltage : DC 3.7V

Measurement Standard Used:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1999
- EN IEC-IEEE 62209-1528: 2021
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- RSS-102, Issue 6: 2023
- FCC KDB 447498 D04 v01
- FCC KDB 865664 D01/D02
- FCC KDB 248227 D01 v02r02

The device described above is tested by Audix Technology (Shenzhen) Co., Ltd. to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The test results are contained in this test report and Audix Technology (Shenzhen) Co., Ltd. is assumed full responsibility for the accuracy and completeness of test. This report contains data that are not covered by the NVLAP accreditation. Also, this report shows that the EUT is technically compliant with the FCC and RSS-102 test requirements.

This report applies to single evaluation of one sample of above mentioned product and shall not be reproduced in part without written approval of Audix Technology (Shenzhen) Co., Ltd.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

Date of Test: May.28~Jun.11, 2025 Date of Report: Jun.17, 2025

Prepared by: Olivia Liu Reviewed by: Thomas Chen
Olivia Liu / Assistant Thomas Chen / Assistant Manager

Approved & Authorized Signer:

1. GENERAL INFORMATION

1.1. Description of Equipment Under Test

Applicant	TLV Co Ltd
Applicant Address	881 Nagasuna, Noguchi-Cho, Kakogawa, Hyogo 675-8511 Japan
Manufacturer	TLV Co Ltd
Manufacturer Address	881 Nagasuna, Noguchi-Cho, Kakogawa, Hyogo 675-8511 Japan
Product	Pocket TrapMan
Model No.	PT3
FCC ID	H3RTLVP031
IC	7221A-TLVPT031
Radio	BDR+EDR; BLE
Sample Type	Mass production
Date of Receipt	Apr.24, 2025
Date of Test	May.28~Jun.11, 2025

1.2. Feature of Equipment under Test

Product Feature & Specification		
Product	Pocket TrapMan	
Model No.	PT3	
Power Source	<input type="checkbox"/> Commercial Power	AC V
	<input checked="" type="checkbox"/> External Power Source	DC 3.7V
	<input type="checkbox"/> Li-ion Battery	DC V
	<input type="checkbox"/> UM battery	DC V
Bluetooth		
Radio	BDR+EDR; BLE	
Frequency Range	2402-2480MHz	
Type of Modulation	GFSK, $\pi/4$ DQPSK, 8DPSK	
Data Rate	1Mbps, 2Mbps, 3Mbps	
Quantity of Channels	79	
Channel Separation	1MHz	
RF ID		
Frequency Range	125kHz	

Antenna System	
Type of Antenna	PCB Antenna
Antenna Peak Gain	3.5dBi max

2. GENERAL DESCRIPTION

2.1. Product Description For EUT [None]

2.2. Applied Standards

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- IEEE C95.1-1999
- EN IEC-IEEE 62209-1528: 2021
- FCC OET Bulletin 65 Supplement C (Edition 01-01)
- RSS-102, Issue 6: 2023
- FCC KDB 447498 D04 v01
- FCC KDB 865664 D01/D02
- FCC KDB 248227 D01 v02r02

2.3. Device Description and SAR Limits

This device is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Test Conditions

2.4.1. Ambient Condition

Ambient Temperature	18 to 25 °C
Humidity	< 25% to 75 %

2.4.2. Test Configuration

The EUT was set to radiate maximum output power during all tests.

2.5. Exposure Positions Consideration

Exposure Positions Consideration please refer to Appendix D.

Sides for SAR tests						
Band	Body					
	Back	Front	Top	Bottom	Left	Right
BDR+EDR	✓	✓	X	✓	X	✓

Note: The side which has a distance larger than 2.5cm from antenna can be excluded from SAR measurement.

2.6. Standalone SAR Test Exclusion Considerations

The SAR-based exemption formula of § 1.1307(b)(3)(i)(B), repeated here as Formula (B.2), applies for single fixed, mobile, and portable RF sources with available maximum time-averaged power or effective radiated power (ERP), whichever is greater, of less than or equal to the threshold P_{th} (mW).

This method shall only be used at separation distances from 0.5 cm to 40 cm and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by Formula (B.2).

$$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \leq 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases} \quad (\text{B.2})$$

where

$$x = -\log_{10} \left(\frac{60}{ERP_{20 \text{ cm}} \sqrt{f}} \right)$$

and f is in GHz, d is the separation distance (cm), and $ERP_{20\text{cm}}$ is per Formula (B.1) in KDB44749 D04 V01, The example values shown in Table B.2 are for illustration only.

According to the KDB447498 Table B.2, the SAR test exclusion threshold for 2450MHz at 5mm test separation distances is 3mW

Table B.2—Example Power Thresholds (mW)

Frequency (MHz)	Distance (mm)									
	5	10	15	20	25	30	35	40	45	50
300	39	65	88	110	129	148	166	184	201	217
450	22	44	67	89	112	135	158	180	203	226
835	9	25	44	66	90	116	145	175	207	240
1900	3	12	26	44	66	92	122	157	195	236
2450	3	10	22	38	59	83	111	143	179	219
3600	2	8	18	32	49	71	96	125	158	195
5800	1	6	14	25	40	58	80	106	136	169

RSS-102 issue 6 Section 6.3 table 11:

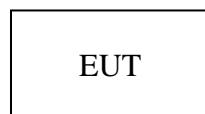

Devices operating at or below the applicable output power levels (adjusted for tune-up tolerance) specified in table 11, based on the separation distance, are exempt from SAR evaluation. The separation distance, defined as the distance between the user and/or bystander and the antenna and/or radiating element of the device or the outer surface of the device, shall be less than or equal to 20 cm for these exemption limits to apply.

Table 11: Power limits for exemption from routine SAR evaluation based on the separation distance

Frequency (MHz)	≤ 5 mm(mW)	10 mm (mW)	15 mm(mW)	20 mm(mW)	25 mm(mW)	30 mm(mW)	35 mm(mW)	40 mm(mW)	45 mm(mW)	> 50 mm(mW)
≤ 300	45	116	139	163	189	216	246	280	319	362
450	32	71	87	104	124	147	175	208	248	296
835	21	32	41	54	72	96	129	172	228	298
1900	6	10	18	33	57	92	138	194	257	323
2450	3	7	16	32	56	89	128	170	209	245
3500	2	6	15	29	50	72	94	114	134	158
5800	1	5	13	23	32	41	54	74	102	128

The exemption limits in table 11 Table 11 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 50 mm from a iat phantom, which provides a SAR value of approximately 0.4 W/kg for 1 g of tissue.

2.7. EUT Configuration and operation conditions for test.

(EUT: Pocket TrapMan)

2.8. Test Equipments

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal Date	Validity Date	Cal. Agency
1.	DASY5 SAR Test System	Speag	TX60 L speag	F09/5B1H1/01	NCR	NCR	N/A
2.	ENA SERIES NETWORK ANALYZER	Agilent	E5071C	MY46316760	2024.09.15	2025.09.14	CCIC
3.	Power Meter	Anritsu	ML2487A	6K00003262	2024.06.19	2025.06.18	CCIC
4.	Power Sensor	Anritsu	MA2491A	032516	2024.06.19	2025.06.18	CCIC
5.	Signal Generator	Rohde & Schwarz	SMB100A	181375	2025.03.10	2026.03.09	CCIC
6.	Amplifier	Milmega	ZHL-42W	C620601316	NCR	NCR	N/A
7.	Dipole Validation Kits	Speag	D2450V2	862	2023.05.18	2026.05.17	SPEAG
8.	Attenuator(20dB)	MCL	VAT-20W2-2 W	1527-001	2024.09.15	2025.09.14	CCIC
9.	Date Acquisition Electronics	Speag	DAE4	899	2024.06.06	2025.06.05	CCTL
10.	E-Field Probe	Speag	EX3DV4	3767	2024.08.01	2025.07.31	CCTL
11.	Test Software	Schmid&Partner Englinnering AG	DASY5	52.8.7.1137	NCR	NCR	NCR

Note: NCR means no calibration required (calibrated with system).

2.9. Laboratory Environment

Temperature	Min: 20°C, Max. 25°C
Relative humidity	Min. = 30%, Max. = 70%
Note: Ambient noise is checked and found very low and in compliance with requirement of standards.	

2.10. Measurement Uncertainty

Test Item	Uncertainty
Uncertainty for SAR test	1g: ± 21.1
	10g: ± 20.6
Uncertainty for test site temperature	$\pm 0.6^\circ\text{C}$

Source	Type	Uncertainty Value (%)	Probability Distribution	K	C1(1g)	C1(10g)	Standard uncertainty uI(%)1g	Standard uncertainty uI(%)10g	Degree of freedom Veff or Vi
Measurement system repetitivity	A	0.5	N	1		1	0.5	0.5	9
Probe calibration	B	5.9	N	1	1	1	5.9	5.9	∞
Isotropy	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Linearity	B	4.7	R	$\sqrt{3}$	1	1	2.7	2.7	∞
Probe modulation response	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Detection limits	B	1.0	R	$\sqrt{3}$	1	1	0.6	0.6	∞
Boundary effect	B	1.9	R	$\sqrt{3}$	1	1	1.1	1.1	∞
Readout electronics	B	1.0	N	1	1	1	1.0	1.0	∞
Response time	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Integration time	B	4.32	R	$\sqrt{3}$	1	1	2.5	2.5	∞
RF ambient conditions – noise	B	0	R	$\sqrt{3}$	1	1	0	0	∞
RF ambient conditions – reflections	B	3	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner mech. Restrictions	B	0.4	R	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning with respect to phantom shell	B	2.9	R	$\sqrt{3}$	1	1	1.7	1.7	∞
Post-processing	B	0	R	$\sqrt{3}$	1	1	0	0	∞
Test sample related									
Device holder uncertainty	A	2.94	N	1	1	1	2.94	2.94	M-1
Test sample positioning	A	4.1	N	1	1	1	4.1	4.1	M-1
Power scaling	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Drift of output power (measured SAR drift)	B	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞
Phantom and set-up									
Phantom uncertainty (shape and thickness tolerances)	B	4.0	R	$\sqrt{3}$	1	1	2.3	2.1	∞
Algorithm for correcting SAR for deviations in permittivity and conductivity	B	1.9	N	1	1	0.84	1.9	1.6	∞
Liquid conductivity (meas.)	A	0.55	N	1	0.78	0.71	0.24	0.21	M-1
Liquid permittivity (meas.)	A	0.19	N	1	0.23	0.26	0.09	0.06	M
Liquid permittivity – temperature uncertainty	A	5.0	R	$\sqrt{3}$	0.78	0.71	1.4	1.1	∞
Liquid conductivity – temperature uncertainty	A	5.0	R	$\sqrt{3}$	0.23	0.26	1.2	0.8	∞
Combined standard uncertainty	$u_c' = \sqrt{\sum_{i=1}^{23} c_i^2 u_i^2}$						10.57	10.32	
Expanded uncertainty (95 % conf. interval)	$u_e = 2u_c$		N	K=2			21.14	20.64	

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients (% by weight)	Frequency (MHz)									
	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 18 MΩ+ resistivity

HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

3. MEASURE PROCEDURES

3.1. General description of test procedures

Please apply the following guidance for SAR testing:

1. Please use a 0 mm (touching) test separation distance on the flat phantom during SAR testing of this device. This separation distance is based on the guidance found in FCC KDB Publication 447498 D04
2. Please utilize a body tissue simulating liquid (TSL) of the appropriate frequency during SAR testing.
3. Please use the guidance found in FCC KDB Publication 447498 D04 to determine which sides of the device need to be tested for SAR.

4. SAR MEASUREMENTS SYSTEM

4.1. SAR Measurement Set-up

DASY5 system for performing compliance tests consists of the following items:

- (1) A standard high precision 6-axis robot (Stäubli RX family) with controller and software.
An arm extension for accommodating the data acquisition electronics (DAE).
- (2) A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage It issue simulating liquid. The probe is equipped with an optical surface detector system.
- (3) A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- (4) A unit to operate the optical surface detector which is connected to the EOC.
- (5) The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- (6) The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.
- (7) DASY5 software and SEMCAD data evaluation software.
- (8) Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- (9) The generic twin phantom enabling the testing of left-hand and right-hand usage.
- (10) The device holder for handheld mobile phones.
- (11) Tissue simulating liquid mixed according to the given recipes.
- (12) System validation dipoles allowing to validate the proper functioning of the system.

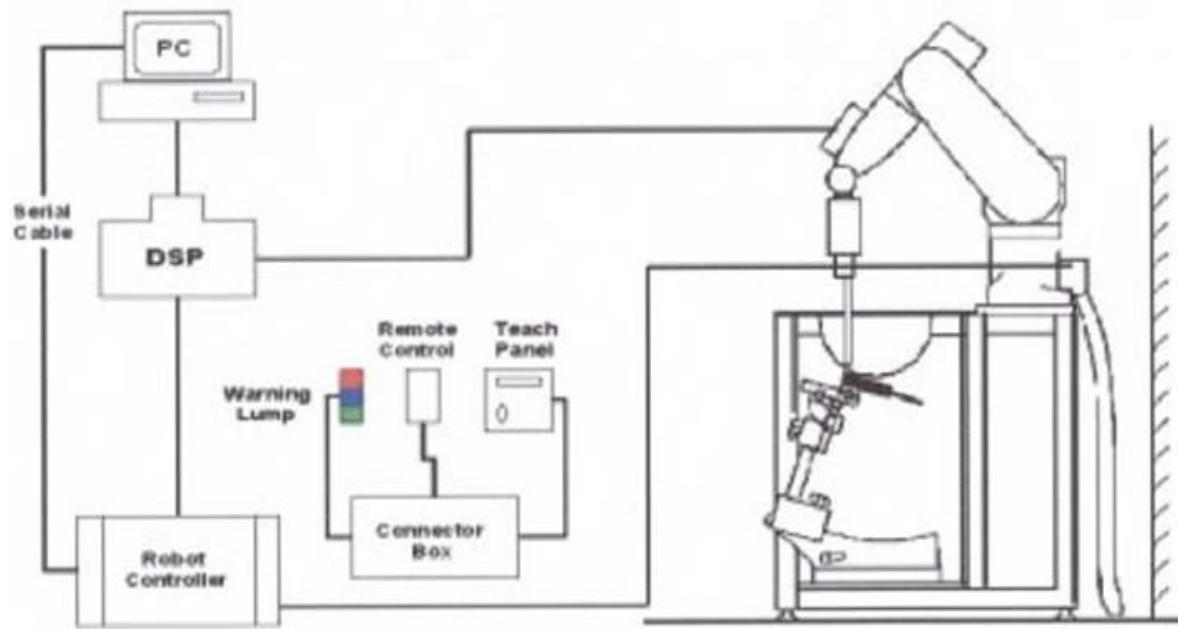


Figure 4.1 SAR Lab Test Measurement Set-up

4.2. ELI Phantom

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Material	Vinylester, glass fiber reinforced (VE-GF)
Liquid Compatibility	Compatible with all SPEAG tissue simulating liquids (incl. DGBE type)
Shell Thickness	2.0 ± 0.2 mm (bottom plate)
Dimensions	Major axis: 600 mm Minor axis: 400 mm
Filling Volume	approx. 30 liters
Wooden Support	SPEAG standard phantom table

The bottom plate contains three pair of bolts for locking the device holder. The device holderpositions are adjusted to the standard measurement positions in the three sections.

Figure 6.2 Top View of Twin Phantom

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

*Water-sugar based liquid

*Glycol based liquids

4.3. Device Holder for SAM Twin Phantom

The SAR in the Phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source in 5 mm distance, a positioning uncertainty of $\pm 0.5\text{mm}$ would produce a SAR uncertainty of $\pm 20\%$. An accurate device position is therefore crucial for accurate and repeatable measurement. The position in which the devices must be measured, are defined by the standards.

The DASY5 device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (EPR).

Thus the device needs no repositioning when changing the angles.

The DASY5 device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon_r = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Figure 4.3Device Holder

4.4. DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

4.4.1. EX3DV4 Probe Specification

Figure 4.4EX3DV4 E-field Probe

Construction	Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to > 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μ W/g to > 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μ W/g)
Dimensions	Overall length: PRS-T2 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

4.5. E-field Probe Calibration

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than $\pm 10\%$. The spherical isotropy was evaluated and found to be better than $\pm 0.25\text{dB}$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

Where: Δt = Exposure time (30 seconds),
 C = Heat capacity of tissue (brain or muscle),
 ΔT = Temperature increase due to RF exposure.
Or

$$\text{SAR} = \frac{|E|^2 \sigma}{\rho}$$

Where:
 σ = Simulated tissue conductivity,
 ρ = Tissue density (kg/m^3).

4.6. Scanning procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the EUT's output power and should vary max. $\pm 5\%$.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles.

The difference between the optical surface detection and the actual surface depends on the Probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a gridspacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged.

After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- peak search for averaged SAR

During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

5. DATA STORAGE AND EVALUATION

5.1. Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.2. Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - SensitivityNormi, ai0, ai1, ai2
- Conversion factorConvFi
- Diode compression pointDcp

Device parameters: - Frequency f
- Crest factor cf

Media parameters: - Conductivity
- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$Vi =Ui +Ui2 \cdot c f / d c pi$$

With Vi = compensated signal of channel i (i = x, y, z)

Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $Ei = (Vi / Normi \cdot ConvF)I/2$

H-field probes: $Hi = (Vi)I/2 \cdot (ai0 + ai1f + ai2f2)/f$

With Vi = compensated signal of channel i (i = x, y, z)

$Normi$ = sensor sensitivity of channel i (i = x, y, z)

$ConvF$ = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei = electric field strength of channel i in V/m

Hi = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$Etot = (Ex^2 + EY^2 + Ez^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

SAR = local specific absorption rate in mW/g

$Etot$ = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$Ppwe = Etot^2 / 3770 \quad \text{or} \quad Ppwe = Htot^2 \cdot 37.7$$

with $Ppwe$ = equivalent power density of a plane wave in mW/cm²

$Etot$ = total electric field strength in V/m

$Htot$ = total magnetic field strength in A/m

6. SYSTEM CHECK

The manufacturer calibrates the probes annually. Dielectric parameters of the tissue simulates were measured every day using the dielectric probe kit and the network analyzer. A system check measurement was made following the determination of the dielectric parameters of the simulates, using the dipole validation kit. A power level of 250 mW was supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the ANNEX A.

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

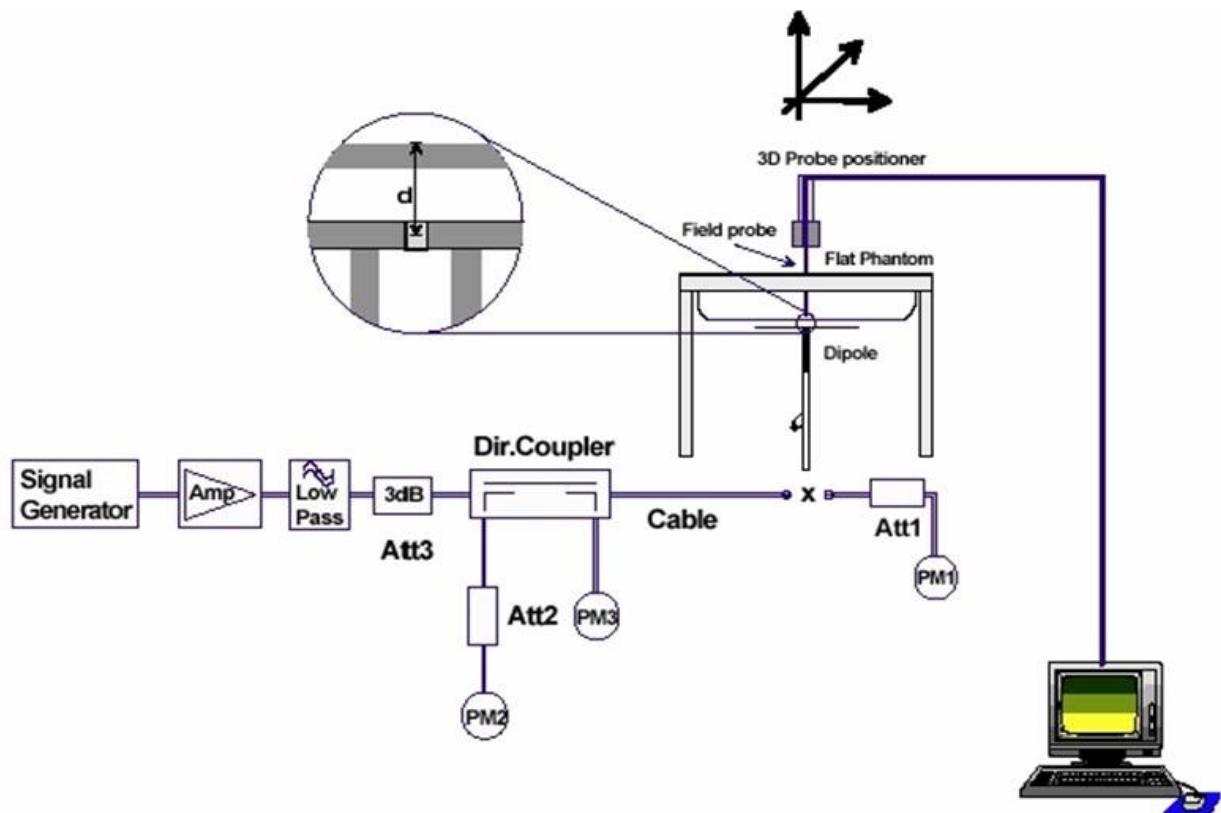
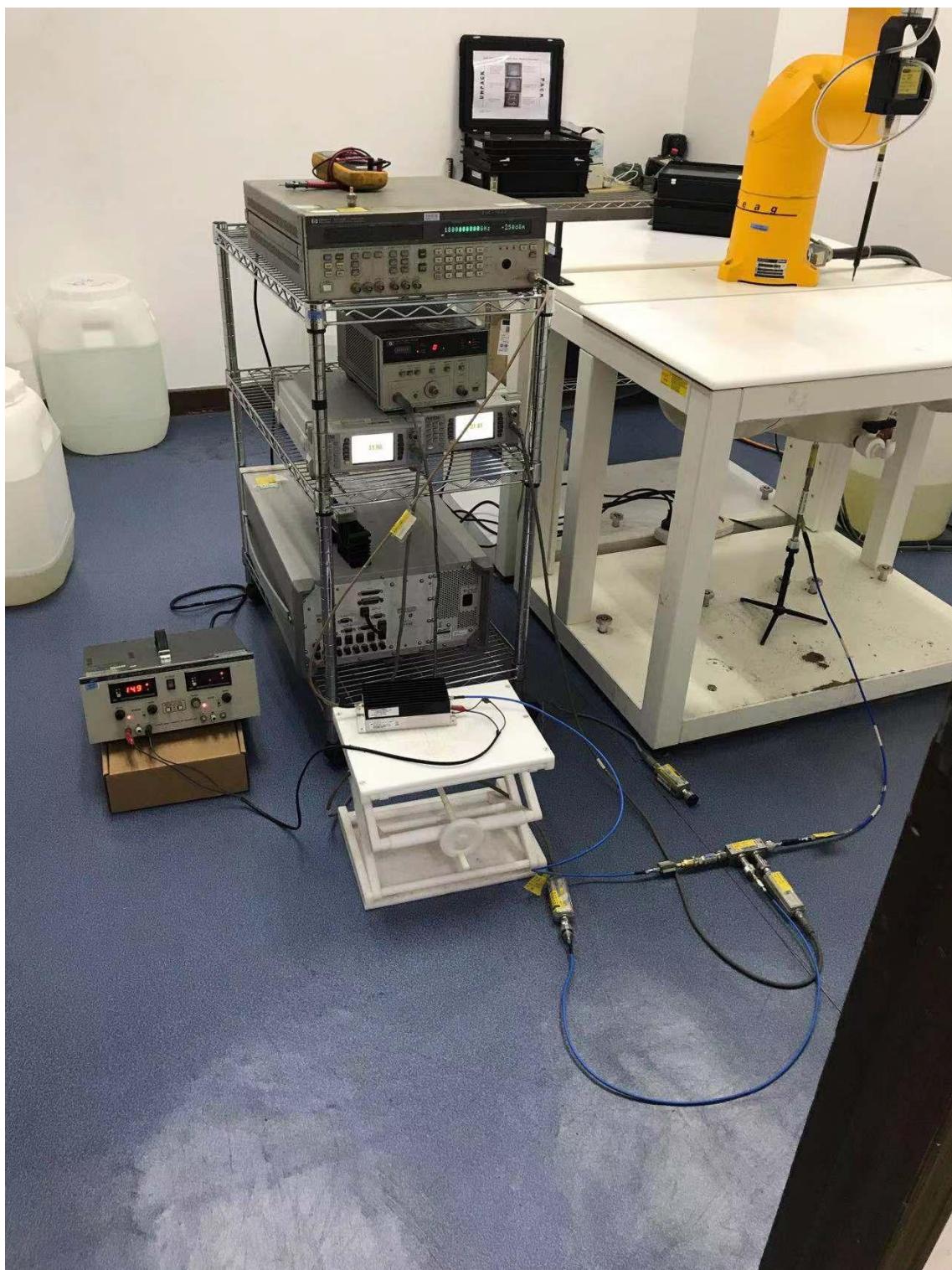
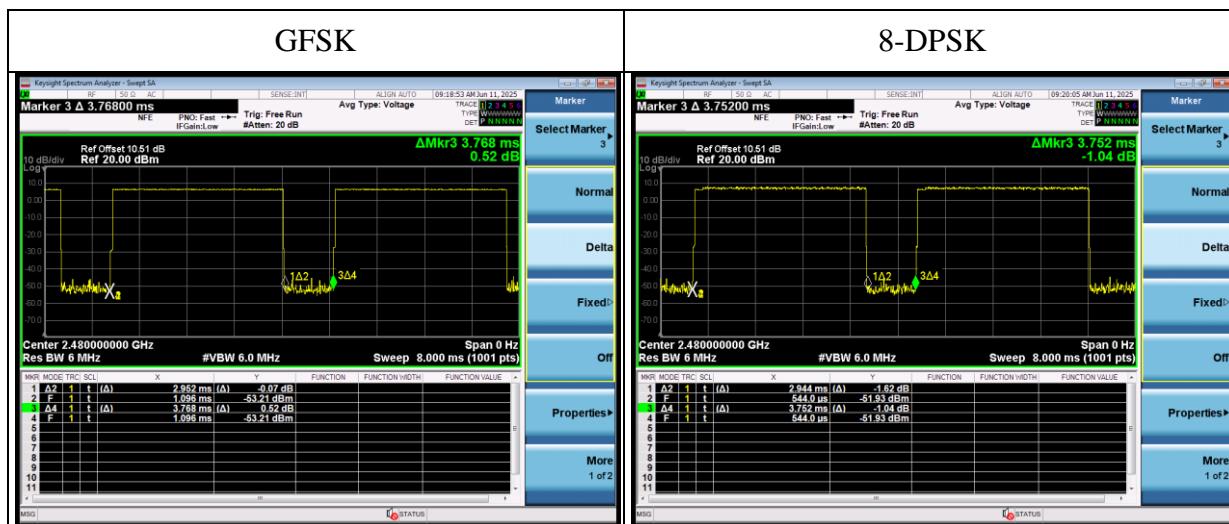



Figure 6.1: System Check Set-up


Figure 6.3: photos of system

7. TEST RESULTS

7.1. Output power (BDR+EDR)


Test Mode	Frequency	Power Setting	AV power (dBm)
GFSK	2402	Default	6.279
	2441	Default	5.508
	2480	Default	4.886
8-DPSK	2402	Default	4.561
	2441	Default	4.429
	2480	Default	3.093

Note: GFSK has the maximum output power, so choose GFSK as the SAR test mode.

(BLE-1Mbps)

Test Mode	Frequency	Power Setting	AV power (dBm)
BLE 1M	2402	Default	-0.483
	2440	Default	-0.496
	2480	Default	-0.601

(125kHz)

Test Mode	Frequency	power (mW)
RF ID	125kHz	0.000001007

7.2. System Check for Head Tissue simulating liquid

Frequency	Description	SAR(W/kg)		Dielectric Parameters (±10% window)		Temp °C
		1g	10g	εr	σ(s/m)	
2450MHz	Recommended value 2025-05-28	13.5 6.4152-4.3848	6.29 2.986492-2.045508	39.2 35.28-43.12	1.80 1.62-1.98	/
	Measurement value 2025-05-28	5.47	2.47	39.2	1.8	21.05

Test Laboratory: Audix SAR Lab
CW 2450

Date: 28/05/2025

DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:862

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.8$ S/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

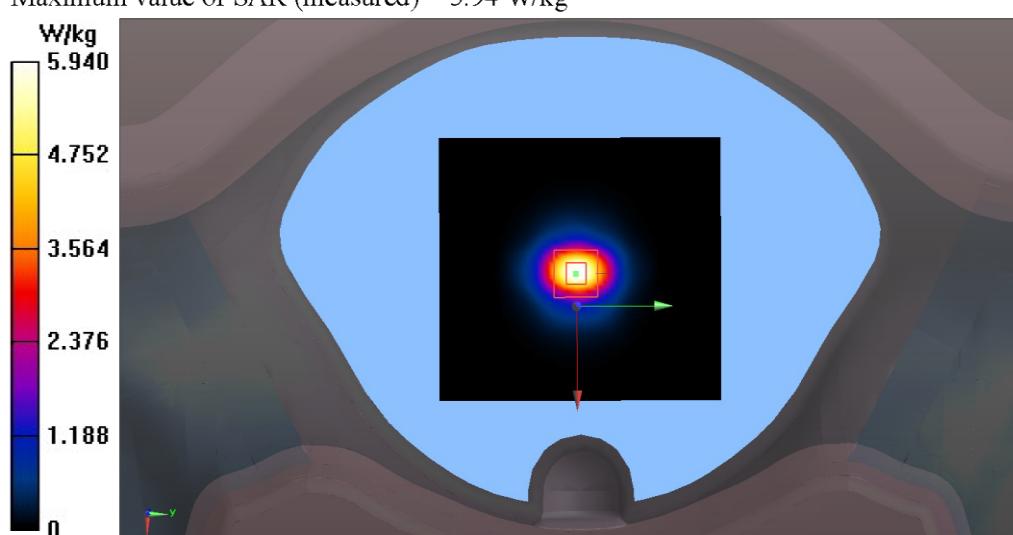
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM;
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CW 2450MHz/Area Scan (61x71x1): Interpolated grid: dx=2.000 mm, dy=2.000 mm

Maximum value of SAR (interpolated) = 11.7 W/kg


Configuration/CW 2450MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 72.71 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 25.4 W/kg

SAR(1 g) = 5.47 W/kg; SAR(10 g) = 2.47 W/kg

Maximum value of SAR (measured) = 5.94 W/kg

7.3. Dielectric Performance for Tissue simulating liquid

Frequency		Description	Dielectric Parameters (±10% window)		Temp °C
			εr	σ(s/m)	
BDR+EDR	2402MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.913	1.828	21.05
	2441MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.734	1.878	21.05
	2480MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.579	1.917	21.05
BLE 1M	2402MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.913	1.828	21.05
	2440MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.738	1.876	21.05
	2480MHz	Recommended value	39.2 35.28-43.12	1.80 1.62-1.98	/
		Measurement value 2025-05-28	38.579	1.917	21.05

7.4. Test Results
 (BDR+EDR)

Test Position	distance	Band	Mode	Test CH	SAR (W/kg) 1g	SAR (W/kg) 10g	Power Drift (dB)	Duty cycle	output power (dBm)	Tune up (dBm)	Factor	SAR (W/kg) 1g	SAR (W/kg) 10g
Front	0mm	BT	DH5	0	0.02	0.00391	0.16	0.78	6.279	6.5	1.052204125	0.027	0.005
Back	0mm	BT	DH5	0	0.00612	0.00601	0.15	0.78	6.279	6.5	1.052204125	0.008	0.008
Bottom	0mm	BT	DH5	0	0.0027	0.00248	0.13	0.78	6.279	6.5	1.052204125	0.004	0.003
Right	0mm	BT	DH5	0	0.00426	0.004	0.16	0.78	6.279	6.5	1.052204125	0.006	0.005
Front	0mm	BT	DH5	39	0.024	0.00643	0.14	0.78	5.508	6.5	1.25660852	0.039	0.01
Front	0mm	BT	DH5	78	0.023	0.00787	0.16	0.78	4.886	6.5	1.450106836	0.043	0.015

(BLE 1M)

Test Position	distance	Band	Mode	Test CH	SAR (W/kg) 1g	SAR (W/kg) 10g	Power Drift (dB)	Duty cycle	output power (dBm)	Tune up (dBm)	Factor	SAR (W/kg) 1g	SAR (W/kg) 10g
Front	0mm	BT	BLE1M	0	0.00216	0.00104	-0.06	0.2	-0.483	1	1.407019123	0.015	0.007
Back	0mm	BT	BLE1M	0	0.000536	0.000496	0.17	0.2	-0.483	1	1.407019123	0.004	0.003
Bottom	0mm	BT	BLE1M	0	0.000224	0.000125	-0.18	0.2	-0.483	1	1.407019123	0.002	0.001
Right	0mm	BT	BLE1M	0	0.000179	0.000057	-0.14	0.2	-0.483	1	1.407019123	0.001	0
Front	0mm	BT	BLE1M	19	0.00197	0.00103	-0.16	0.2	-0.496	1	1.411237148	0.014	0.007
Front	0mm	BT	BLE1M	39	0.00261	0.00112	0.08	0.2	-0.601	1	1.445772634	0.019	0.008

Total:

Max 1g SAR		Total	Limit
BT (W/kg)	125K (mW)		
0.043	0.000001007	0.026876007	<1

Note:

Total=BT/Limit+125K/Limit

125K Limit: 1mW/MHz

APPENDIX A

Graph Results (BDR+EDR & BLE 1M)

BDR+EDR:

**Test Laboratory: Audix SAR Lab
CH0(2402MHz Front)**

Date: 28/05/2025

DUT: Pocket TrapMan M/N:PT3

Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2402 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2402$ MHz; $\sigma = 1.828$ S/m; $\epsilon_r = 38.913$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

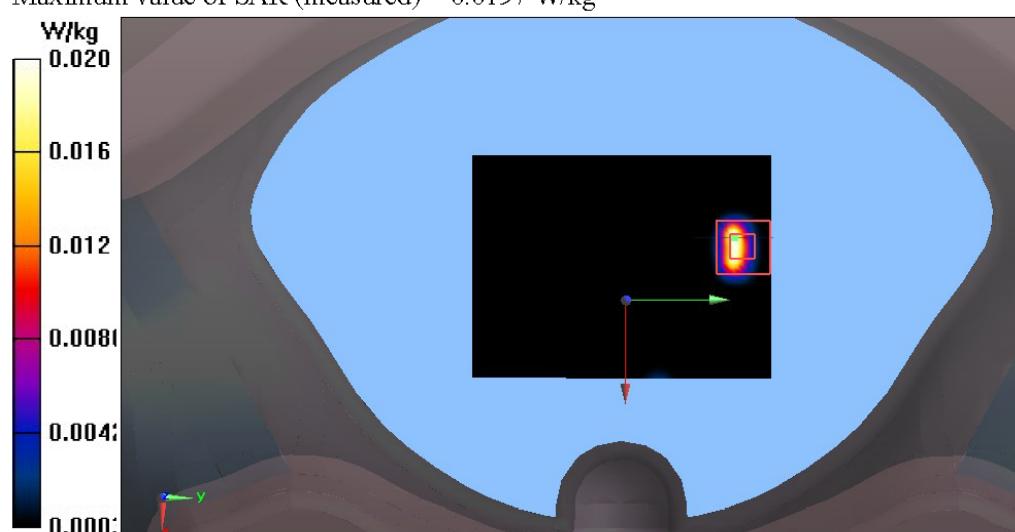
- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH0(2402MHz Front)/Area Scan (61x81x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0211 W/kg

Configuration/CH0(2402MHz Front)/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.385 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0950 W/kg

SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.00391 W/kg

Maximum value of SAR (measured) = 0.0197 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1=47.3%

Test Laboratory: Audix SAR Lab

Date: 28/05/2025

CH39(2441MHz Front)**DUT: Pocket TrapMan M/N:PT3**Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2441 MHz; Communication System PAR: 0 dBMedium parameters used (interpolated): $f = 2441$ MHz; $\sigma = 1.878$ S/m; $\epsilon_r = 38.734$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

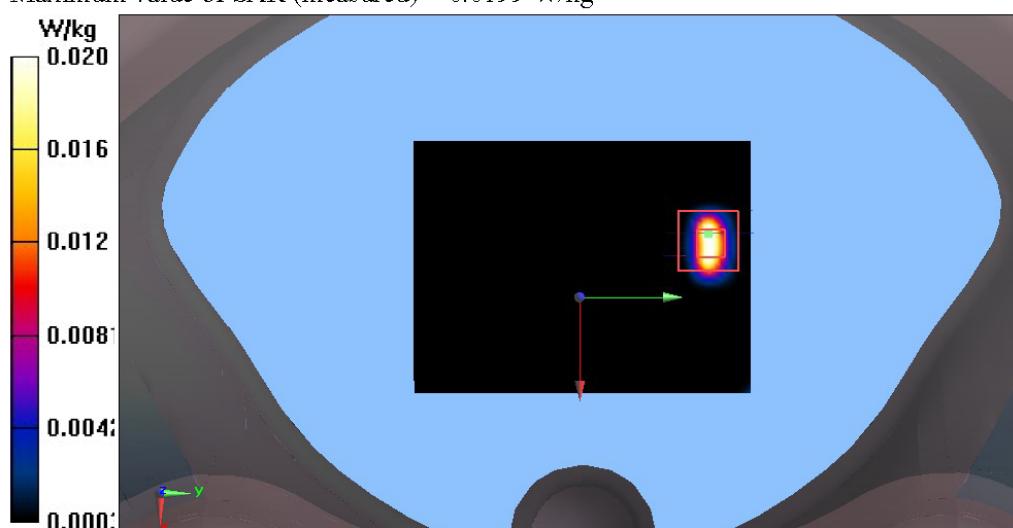
- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH39(2441MHz Front)/Area Scan (61x81x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.0231 W/kg

Configuration/CH39(2441MHz Front)/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.331 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.115 W/kg

SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.00643 W/kg

Maximum value of SAR (measured) = 0.0199 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1=47.5%

Test Laboratory: Audix SAR Lab

Date: 28/05/2025

CH78(2480MHz Front)**DUT: Pocket TrapMan M/N:PT3**Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2480 MHz; Communication System PAR: 0 dBMedium parameters used: $f = 2480$ MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 38.579$; $\rho = 1000$ kg/m³

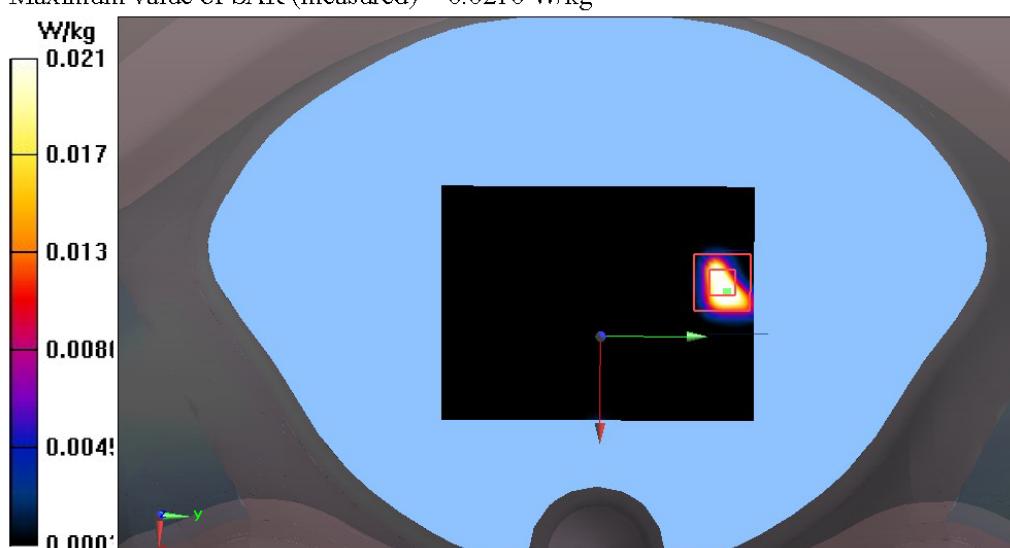
Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH78(2480MHz Front)/Area Scan (61x81x1): Interpolated grid:
 $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.0334 W/kg


Configuration/CH78(2480MHz Front)/Zoom Scan (5x5x7)/Cube 0:Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 1.232 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 0.0820 W/kg

SAR(1 g) = 0.023 W/kg; SAR(10 g) = 0.00787 W/kg

Maximum value of SAR (measured) = 0.0210 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1=47.8%

BLE 1M:

**Test Laboratory: Audix SAR Lab
CH0(2402MHz Front)**

Date: 28/05/2025

DUT: Pocket TrapMan M/N:PT3

Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2402 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2402$ MHz; $\sigma = 1.828$ S/m; $\epsilon_r = 38.913$; $\rho = 1000$ kg/m³
Phantom section: Flat Section

DASY5 Configuration:

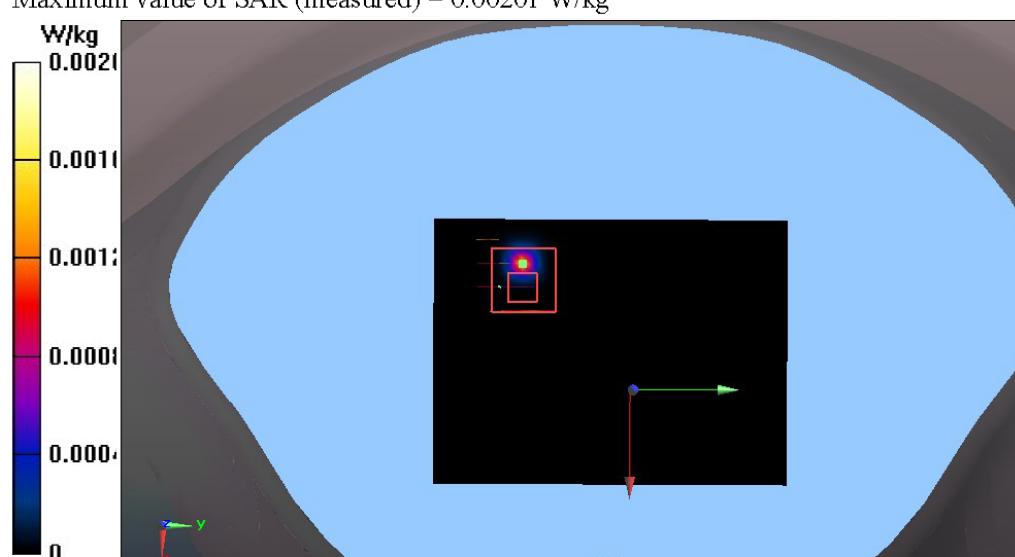
- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH0(2402MHz Front)/Area Scan (61x81x1): Interpolated grid:

$dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.00138 W/kg

Configuration/CH0(2402MHz Front)/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 0.4660 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.00480 W/kg

SAR(1 g) = 0.000216 W/kg; SAR(10 g) = 0.00104 W/kg

Maximum value of SAR (measured) = 0.00201 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 46.4%

Test Laboratory: Audix SAR Lab

Date: 28/05/2025

CH19(2440MHz Front)**DUT: Pocket TrapMan M/N:PT3**Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2440 MHz; Communication System PAR: 0 dBMedium parameters used: $f = 2440$ MHz; $\sigma = 1.876$ S/m; $\epsilon_r = 38.738$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

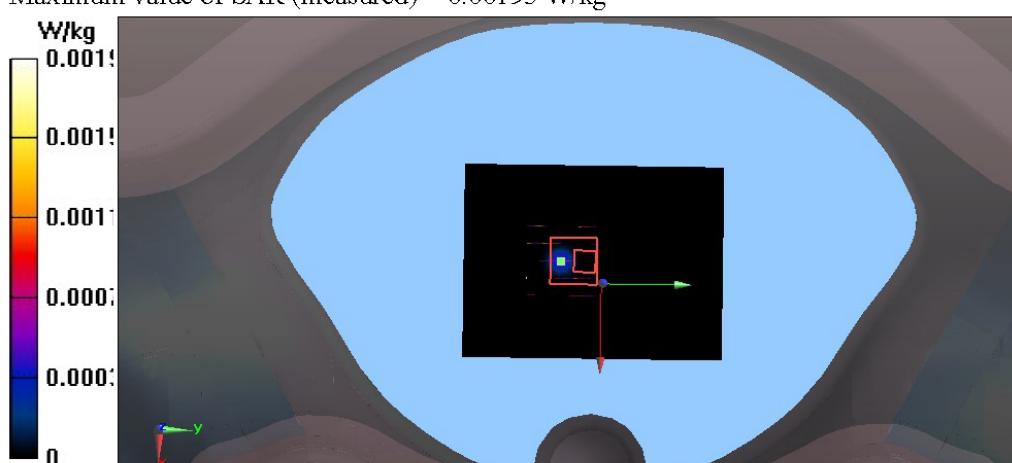
- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH19(2440MHz Front)/Area Scan (61x81x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.000711 W/kg

Configuration/CH19(2440MHz Front)/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 0.4000 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.00101 W/kg

SAR(1 g) = 0.00197 W/kg; SAR(10 g) = 0.00103 W/kg

Maximum value of SAR (measured) = 0.00195 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1=46.6%

Test Laboratory: Audix SAR Lab
CH39(2480MHz Front)

Date: 28/05/2025

DUT: Pocket TrapMan M/N:PT3

Communication System: UID 0, Blue Tooth (0); Communication System Band: Mid;
Frequency: 2480 MHz; Communication System PAR: 0 dB

Medium parameters used: $f = 2480$ MHz; $\sigma = 1.917$ S/m; $\epsilon_r = 38.579$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

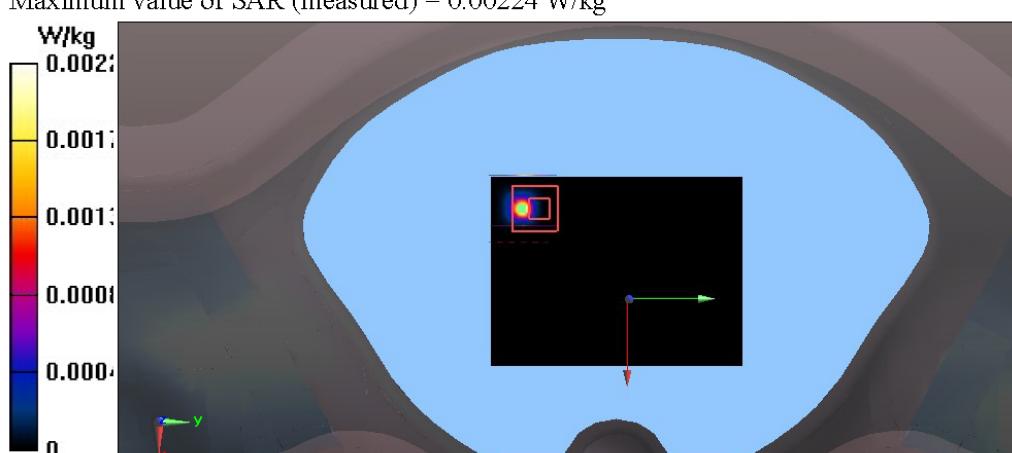
DASY5 Configuration:

- Probe: EX3DV4 - SN3767; ConvF(7.6, 7.6, 7.6); Calibrated: 01/08/2024;
- Modulation Compensation:
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn899; Calibrated: 06/06/2024
- Phantom: SAM 1; Type: SAM; Serial: TP-1543
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Configuration/CH39(2480MHz Front)/Area Scan (61x81x1): Interpolated grid:
 $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.00267 W/kg

Configuration/CH39(2480MHz Front)/Zoom Scan (5x5x7)/Cube 0:

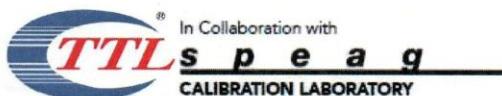

Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm

Reference Value = 0.1520 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.00577 W/kg

SAR(1 g) = 0.00261 W/kg; SAR(10 g) = 0.00112 W/kg

Maximum value of SAR (measured) = 0.00224 W/kg



Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 46.2%

APPENDIX B

DASY Calibration Certificate

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191
 Tel: +86-10-62304633-2117
 E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Client audix

Certificate No: J23Z60244

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 862

Calibration Procedure(s) FF-Z11-003-01
 Calibration Procedures for dipole validation kits

Calibration date: May 18, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG, No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG, No.Z23-60034)	Jan-24
Secondary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

Calibrated by:	Name	Function	Signature
	Zhao Jing	SAR Test Engineer	
Reviewed by:	Lin Hao	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: May 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORMx,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor $k=2$, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

In Collaboration with
s p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.1 ± 6 %	1.82 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.5 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	25.2 W/kg ± 18.7 % (k=2)

In Collaboration with
S p e a g
CALIBRATION LABORATORY

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.3Ω+ 2.34jΩ
Return Loss	- 29.9dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.067 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: cttl@chinattl.com <http://www.caict.ac.cn>

DASY5 Validation Report for Head TSL

Date: 2023-05-18

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 862

Communication System: UID 0, CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.824$ S/m; $\epsilon_r = 40.07$; $\rho = 1000$ kg/m³

Phantom section: Right Section

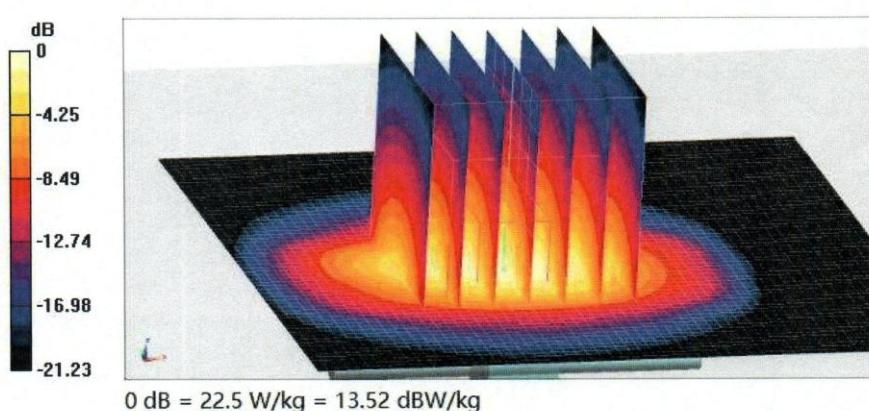
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 - SN3617; ConvF(7.68, 7.68, 7.68) @ 2450 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.75 V/m; Power Drift = -0.07 dB

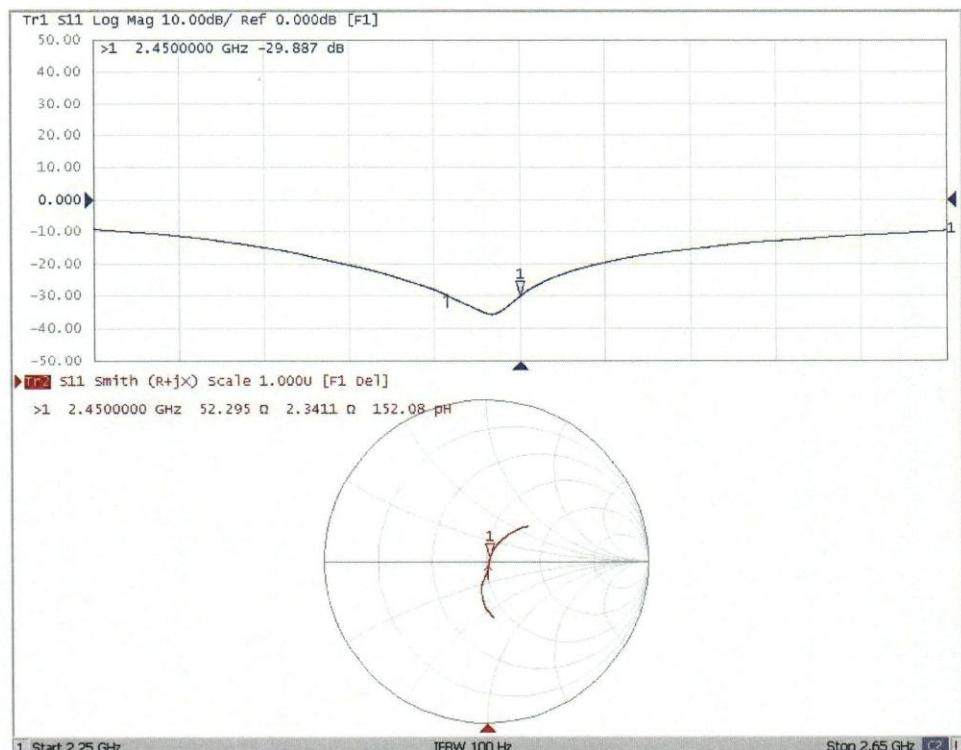

Peak SAR (extrapolated) = 27.7 W/kg

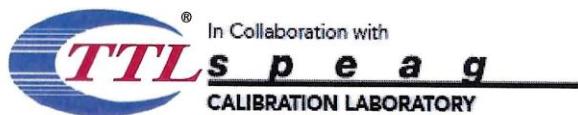
SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.29 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 49.5%

Maximum value of SAR (measured) = 22.5 W/kg





Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
Tel: +86-10-62304633-2117
E-mail: ctl@chinattl.com <http://www.caict.ac.cn>

Impedance Measurement Plot for Head TSL

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China
 Tel: +86-10-62304633-2117
 E-mail: emf@caict.ac.cn <http://www.caict.ac.cn>

Client : **Audix**

Certificate No: 24J02Z000275

CALIBRATION CERTIFICATE

Object DAE4 - SN: 899

Calibration Procedure(s) FF-Z11-002-01
 Calibration Procedure for the Data Acquisition Electronics (DAEx)

Calibration date: June 06, 2024

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Process Calibrator 753	1971018	12-Jun-23 (CTTL, No.J23X05436)	Jun-24

Calibrated by:	Name Yu Zongying	Function SAR Test Engineer	Signature
Reviewed by:	Lin Jun	SAR Test Engineer	
Approved by:	Qi Dianyuan	SAR Project Leader	

Issued: June 09, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.