

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 1910WSU011-U1 Report Version: V01 Issue Date: 10-31-2019

MEASUREMENT REPORT

FCC PART 15C & ISED RSS-247 Zigbee

FCC ID: GTC-2015286V

IC: 1609A-2015286V

APPLICANT: Honeywell International Inc.

Application Type: Certification

Product: e7w Wireless EMS Thermostat

Model No.: 201-528-6V-WH, 201-528-6V-BK

FCC Classification: Digital Transmission System (DTS)

FCC Rule Part(s): Part 15 Subpart C (Section 15.247)

IC Rule Part(s): RSS-247 Issue 2, RSS-GEN Issue 5

Test Procedure(s): ANSI C63.10-2013

Test Date: October 21 ~ 29, 2019

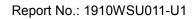
Reviewed By:

(Kevin Guo

(Robin Wu)

Approved By:

lac-MRA



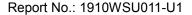
The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: GTC-2015286V IC: 1609A-2015286V Page Number: 1 of 25

Revision History


Report No.	Version	Description	Issue Date	Note
1910WSU011-U1	Rev. 01	Initial Report	10-31-2019	Valid

FCC ID: GTC-2015286V Page Number: 2 of 25

CONTENTS

Des	scriptio	on	Page
1.	INTR	ODUCTION	5
	1.1.	Scope	5
	1.2.	MRT Test Location	5
2.	PROD	DUCT INFORMATION	6
	2.1.	Equipment Description	6
	2.2.	Product Specification Subjective	6
	2.3.	Working Frequencies for this report	6
	2.4.	Test Mode	6
	2.5.	Description of Test Software	6
	2.6.	Test Configuration	7
	2.7.	EMI Suppression Device(s)/Modifications	7
	2.8.	Labeling Requirements	7
3.	DESC	CRIPTION of TEST	8
	3.1.	Evaluation Procedure	8
	3.2.	AC Line Conducted Emissions	8
	3.3.	Radiated Emissions	9
4.	ANTE	ENNA REQUIREMENTS	10
5.	TEST	FEQUIPMENT CALIBRATION DATE	11
6.	MEAS	SUREMENT UNCERTAINTY	12
7.	TEST	TRESULT	13
	7.1.	Summary	13
	7.2.	Radiated Spurious Emission Measurement	14
	7.2.1.	Test Limit	14
	Test P	Procedure Used	15
	7.2.2.	Test Setting	15
	7.2.3.	Test Setup	16
	7.2.4.	Test Result	18
8.	CON	CLUSION	23
Арр	oendix	A - Test Setup Photograph	24
App	endix	B - EUT Photograph	25

§2.1033 General Information

Applicant:	Honeywell International Inc.	
Applicant Address:	12 Clintonville Road, Northford, CT 06472, United States	
Manufacturer:	Honeywell International Inc.	
Manufacturer Address:	12 Clintonville Road, Northford, CT 06472, United States	
Test Site:	MRT Technology (Suzhou) Co., Ltd	
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development	
	Zone, Suzhou, China	

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

FCC ID: GTC-2015286V Page Number: 4 of 25 IC: 1609A-2015286V

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

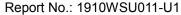
Product Name:	e7w Wireless EMS Thermostat
Model No.:	201-528-6V-WH, 201-528-6V-BK
Zigbee Specification:	2405 - 2480MHz
Working Voltage:	6V DC

Note: Difference between models as above is only the color of shell. Others, contain software and hardware design, are the same. And we select model (201-528-6V-BK) for RSE test.

2.2. Product Specification Subjective

Frequency Range:	2405 - 2480MHz
Channel Number:	16
Type of Modulation:	OQPSK
Data Rate:	250kbps
Antenna Type:	Chip Antenna
Antenna Gain:	1.3dBi

2.3. Working Frequencies for this report


Channel	Frequency	Channel	Frequency	Channel	Frequency
11	2405 MHz	12	2410 MHz	13	2415 MHz
14	2420 MHz	15	2425 MHz	16	2430 MHz
17	2435 MHz	18	2440 MHz	19	2445 MHz
20	2450 MHz	21	2455 MHz	22	2460 MHz
23	2465 MHz	24	2470 MHz	25	2475 MHz
26	2480 MHz	N/A	N/A	N/A	N/A

2.4. Test Mode

2.5. Description of Test Software

The test utility software used during testing was provided by the customer.

FCC ID: GTC-2015286V Page Number: 6 of 25

2.6. Test Configuration

The device was tested per the guidance of ANSI C63.10-2013, which is used as the reference of appropriate EUT setup for radiated spurious emissions testing and AC line conducted testing.

2.7. EMI Suppression Device(s)/Modifications

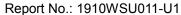
No EMI suppression device(s) were added and/or no modifications were made during testing.

2.8. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

RSP-100 Issue 12 Section 3


The manufacturer, importer or distributor shall meet the labelling requirements set out in this section for every unit:

- (i) prior to marketing in Canada, for products manufactured in Canada
- (ii) prior to importation into Canada, for imported products

For information regarding the e-labelling option, see Notice 2014–DRS1003. The label for the certified product represents the manufacturer's or importer's compliance with Innovation, Science and Economic Development Canada's (ISED) regulatory requirements.

Please see attachment for IC label and label location.

FCC ID: GTC-2015286V Page Number: 7 of 25

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013), and were used in the measurement.

Deviation from measurement procedure......None

3.2. AC Line Conducted Emissions

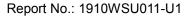
The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment which determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

FCC ID: GTC-2015286V Page Number: 8 of 25



3.3. Radiated Emissions

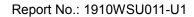
The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, which produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

FCC ID: GTC-2015286V Page Number: 9 of 25

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:


"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the device is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

FCC ID: GTC-2015286V Page Number: 10 of 25

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2020/03/31
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2019/11/09
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Broadband Coaxial	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2019/11/16
Preamplifier					
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2019/12/13
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

Software	Version	Function
EMI Software	V3	EMI Test Software

FCC ID: GTC-2015286V Page Number: 11 of 25

MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 30MHz~300MHz: 4.07dB

300MHz~1GHz: 3.63dB

1GHz~18GHz: 4.16dB

Vertical: 30MHz~300MHz: 4.18dB

300MHz~1GHz: 3.60dB 1GHz~18GHz: 4.76dB

Radiated Emission Measurement - AC2

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

Horizontal: 30MHz~300MHz: 3.75dB

300MHz~1GHz: 3.53dB

1GHz~18GHz: 4.28dB

Vertical: 30MHz~300MHz: 3.86dB

300MHz~1GHz: 3.53dB 1GHz~18GHz: 4.33dB

FCC ID: GTC-2015286V Page Number: 12 of 25 IC: 1609A-2015286V

TEST RESULT

7.1. Summary

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.209	RSS-247 [5.5]	General Field Strength Limits (Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 & RSS-Gen [8.9]	Radiated	Pass	Section 7.2

Notes: All modes of operation and data rates were investigated. For radiated emission test, every axis (X, Y, Z) was also verified. The test results shown in the following sections represent the worst case emissions.

FCC ID: GTC-2015286V Page Number: 13 of 25 IC: 1609A-2015286V

7.2. Radiated Spurious Emission Measurement

7.2.1.Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Section 8.10 of the RSS-Gen Issue 4 must not exceed the limits shown in Table as follow.

	FCC Part 15.209					
Frequency [MHz]	Field Strength [uV/m]	Measured Distance [Meters]				
0.009 - 0.490	2400/F (kHz)	300				
0.490 - 1.705	24000/F (kHz)	30				
1.705 - 30	30	30				
30 - 88	100	3				
88 - 216	150	3				
216 - 960	200	3				
Above 960	500	3				

	RSS-Gen Section 8.9									
Frequency [MHz]	Field Strength [μV/m]	Magnetic field strength (H-Field) [µA/m]	Measured Distance [Meters]							
0.009 - 0.490		6.37/F (F in kHz)	300							
0.490 - 1.705		63.7/F (F in kHz)	30							
1.705 - 30		0.08	30							
30 - 88	100		3							
88 - 216	150		3							
216 - 960	200		3							
Above 960	500		3							

FCC ID: GTC-2015286V Page Number: 14 of 25

Test Procedure Used

ANSI C63.10 Section 6.3 (General Requirements)

ANSI C63.10 Section 6.4 (Standard test method below 30MHz)

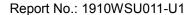
ANSI C63.10 Section 6.5 (Standard test method above 30MHz to 1GHz)

ANSI C63.10 Section 6.6 (Standard test method above 1GHz)

7.2.2.Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW		
9 ~ 150 kHz	200 ~ 300 Hz		
0.15 ~ 30 MHz	9 ~ 10 kHz		
30 ~ 1000 MHz	100 ~ 120 kHz		
> 1000 MHz	1 MHz		


Quasi-Peak Measurements below 1GHz

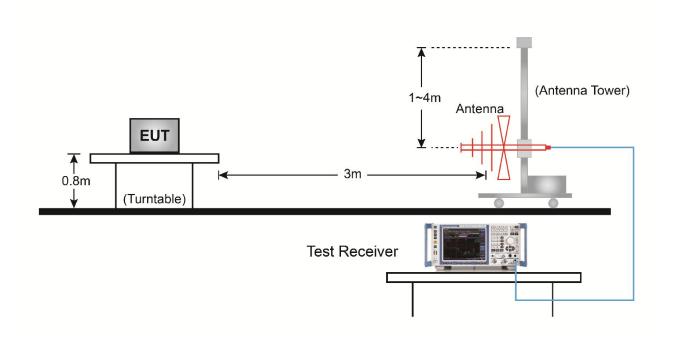
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Peak Measurements above 1GHz

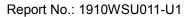
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

FCC ID: GTC-2015286V Page Number: 15 of 25

Average Measurements above 1GHz (Method VB)

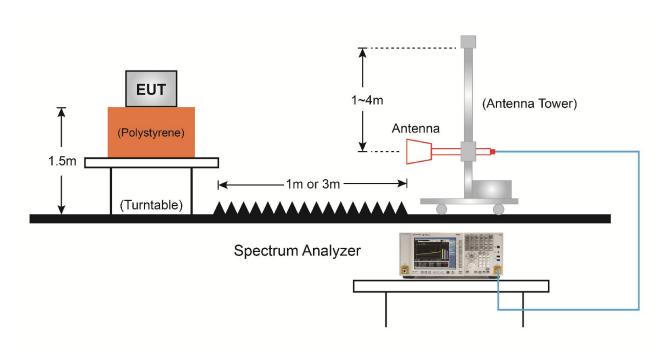

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle ≥ 98%, set VBW = 10 Hz.

If the EUT duty cycle is < 98%, set VBW ≥ 1/T. T is the minimum transmission duration.


- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

7.2.3.Test Setup

Below 1GHz Test Setup:

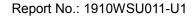


FCC ID: GTC-2015286V Page Number: 16 of 25

Above 1GHz Test Setup:

7.2.4.Test Result

Product:	e7w Wireless EMS Thermostat	Temperature:	25°C
Test Engineer:	Cloud Guo	Relative Humidity:	54%
Test Site:	AC1	Test Date:	2019/10/21
Test Mode:	Zigbee	Test Channel:	11
Remark:	1. Average measurement was no	t performed if peak le	vel lower than average
	limit.		
	2. Other frequency was 20dB bel	ow limit line within 1-	18GHz, there is not show
	in the report.		


Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4808.0	39.0	5.6	44.6	74.0	-29.4	Peak	Horizontal
*	5870.5	35.9	7.4	43.3	81.3	-38.0	Peak	Horizontal
	7519.5	35.5	11.9	47.4	74.0	-26.6	Peak	Horizontal
*	8684.0	35.0	13.1	48.1	81.3	-33.2	Peak	Horizontal
	4808.0	39.2	5.6	44.8	74.0	-29.2	Peak	Vertical
*	5743.0	35.5	7.0	42.5	81.3	-38.8	Peak	Vertical
	7604.5	34.1	11.8	45.9	74.0	-28.1	Peak	Vertical
*	8777.5	34.9	13.3	48.2	81.3	-33.1	Peak	Vertical

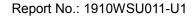
Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (101.3dBµV/m) or FCC 15.209 which is higher.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

FCC ID: GTC-2015286V Page Number: 18 of 25

Product:	e7w Wireless EMS Thermostat	Temperature:	25°C				
Test Engineer:	Cloud Guo	Relative Humidity:	54%				
Test Site:	AC1	Test Date:	2019/10/21				
Test Mode:	Zigbee	Test Channel:	18				
Remark:	1. Average measurement was no	t performed if peak le	vel lower than average				
	limit.						
	2. Other frequency was 20dB below limit line within 1-18GHz, there is not show						
	in the report.						


Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4893.0	40.9	5.6	46.5	74.0	-27.5	Peak	Horizontal
*	6414.5	37.9	8.9	46.8	81.0	-34.2	Peak	Horizontal
	7630.0	35.0	11.7	46.7	74.0	-27.3	Peak	Horizontal
*	8633.0	35.2	13.1	48.3	81.0	-32.7	Peak	Horizontal
	4893.0	38.3	5.6	43.9	74.0	-30.1	Peak	Vertical
*	6406.0	35.9	9.0	44.9	81.0	-36.1	Peak	Vertical
	7613.0	35.0	11.9	46.9	74.0	-27.1	Peak	Vertical
*	8641.5	35.5	13.1	48.6	81.0	-32.4	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (101.0dBµV/m) or FCC 15.209 which is higher.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

FCC ID: GTC-2015286V Page Number: 19 of 25

Product:	e7w Wireless EMS Thermostat	Temperature:	25°C
Test Engineer:	Cloud Guo	Relative Humidity:	54%
Test Site:	AC1	Test Date:	2019/10/21
Test Mode:	Zigbee	Test Channel:	26
Remark:	1. Average measurement was no	t performed if peak le	vel lower than average
	limit.		
	2. Other frequency was 20dB bel	ow limit line within 1-	18GHz, there is not show
	in the report.		

Mark	Frequency	Reading	Factor	Measure	Limit	Margin	Detector	Polarization
	(MHz)	Level	(dB)	Level	(dBµV/m)	(dB)		
		(dBµV)		(dBµV/m)				
	4961.0	40.8	5.9	46.7	74.0	-27.3	Peak	Horizontal
*	6542.0	35.8	9.6	45.4	80.9	-35.5	Peak	Horizontal
	7434.5	34.9	11.9	46.8	74.0	-27.2	Peak	Horizontal
*	8658.5	35.3	13.0	48.3	80.9	-32.6	Peak	Horizontal
	4961.0	39.7	5.9	45.6	74.0	-28.4	Peak	Vertical
*	6414.5	36.5	8.9	45.4	80.9	-35.5	Peak	Vertical
	7553.5	34.9	11.9	46.8	74.0	-27.2	Peak	Vertical
*	7936.0	36.7	12.6	49.3	80.9	-31.6	Peak	Vertical

Note 1: "*" is not in restricted band, its limit is 20dBc of the fundamental emission level (100.9dBµV/m) or FCC 15.209 which is higher.

Note 2: Measure Level (dBµV/m) = Reading Level (dBµV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Page Number: 20 of 25

The Worst Case of Radiated Emission below 1GHz:

Site: AC1	Time: 2019/10/29 - 17:19
Limit: FCC_Part15.209_RSE(3m)	Engineer: Dillon Diao
Probe: VULB 9168 _20-2000MHz	Polarity: Horizontal
EUT: e7w Wireless EMS Thermostat	Power: By Battery
Note: Transmit by Zigbee at channel 2405MHz	

90 80 70 60 10 20 10 30 20 10 30 Frequency(MHz)

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1		*	41.156	14.811	0.210	-25.189	40.000	14.601	QP
2			118.610	14.566	1.380	-28.934	43.500	13.186	QP
3			125.310	14.935	1.280	-28.565	43.500	13.655	QP
4			360.240	16.134	0.210	-29.866	46.000	15.924	QP
5			457.290	19.462	1.290	-26.538	46.000	18.172	QP
6			550.260	20.127	0.250	-25.873	46.000	19.877	QP

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.

FCC ID: GTC-2015286V Page Number: 21 of 25

1000

-10 30

Site: AC1	Time: 2019/10/29 - 17:22
Limit: FCC_Part15.209_RSE(3m)	Engineer: Dillon Diao
Probe: VULB 9168 _20-2000MHz	Polarity: Vertical
EUT: e7w Wireless EMS Thermostat	Power: By Battery
Note: Transmit by Zigbee at channel 2405MHz	

90 80 70 60 (W)09 40 20 10 0

No	Flag	Mark	Frequency	Measure	Reading	Over Limit	Limit	Factor	Туре
			(MHz)	Level	Level	(dB)	(dBuV/m)	(dB)	
				(dBuV/m)	(dBuV)				
1			78.960	11.977	1.630	-28.023	40.000	10.346	QP
2			96.340	13.520	2.640	-29.980	43.500	10.880	QP
3			127.000	17.346	3.589	-26.154	43.500	13.756	PK
4			127.590	15.032	1.240	-28.468	43.500	13.792	QP
5			188.360	14.587	2.540	-28.913	43.500	12.046	QP
6			437.210	17.951	0.210	-28.049	46.000	17.740	QP
7		*	552.360	20.976	1.050	-25.024	46.000	19.926	QP

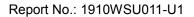
Frequency(MHz)

Note 1: Measure Level ($dB\mu V/m$) = Reading Level ($dB\mu V$) + Factor (dB)

100

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range: $9kHz \sim 30MHz$, $18GHz \sim 25GHz$), therefore no data appear in the report.



CONCLUSION

The data collected relate only the item(s) teste	ed and show that the device is in compliance with Pa	art
15C of the FCC rules and RSS-247 of ISED ru	ules.	

FCC ID: GTC-2015286V Page Number: 23 of 25

—— The End



Appendix A - Test Setup Photograph

Refer to "1910WSU011-UT" file.

FCC ID: GTC-2015286V Page Number: 24 of 25

Appendix B - EUT Photograph

Refer to "1910WSU011-UE" file.

Page Number: 25 of 25 FCC ID: GTC-2015286V