

Ten One Design

Blue Tiger

FCC 15.247:2012

Report #: TEN10003

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC – (888) 364-2378 – www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: September24, 2012 Ten One Design Model: Blue Tiger

Emissions

Test Description	Specification	Test Method	Pass/Fail
Occupied Bandwidth	FCC 15.247:2012	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2012	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass
Power Spectral Density	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NV(AP)

NVLAP Lab Code: 200630-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC - Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

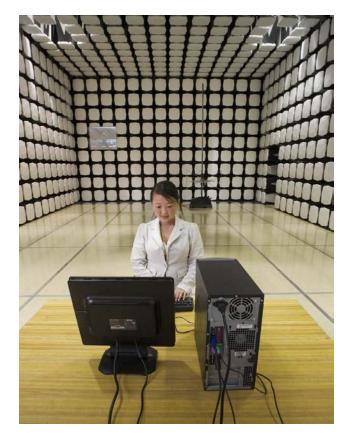
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	4.00	-4.00
AC Powerline Conducted Emissions (dB)	2.70	-2.70

LOCATIONS



Oregon	California	New York	Minnesota	Washington			
Labs EV01-EV12	Labs OC01-OC13	Labs WA01-WA04	Labs MN01-MN08	Labs SU01-SU07			
22975 NW Evergreen Pkwy, #400	41 Tesla	4939 Jordan Rd.	9349 W Broadway Ave.	14128 339 th Ave. SE			
Hillsboro, OR 97124	Irvine, CA 92618	Elbridge, NY 13060	Brooklyn Park, MN 55445	Sultan, WA 98294			
(503) 844-4066	(949) 861-8918	(315) 685-0796	(763) 425-2281	(360) 793-8675			
		VCCI					
A-0108	A-0029		A-0109	A-0110			
Industry Canada							
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1			

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Ten One Design
Address:	149 Chestnut Street
City, State, Zip:	Montclair, NJ 07042
Test Requested By:	Peter Skinner
Model:	Blue Tiger
First Date of Test:	September 11, 2012
Last Date of Test:	September 24, 2012
Receipt Date of Samples:	September 11, 2012
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):	
---	--

Bluetooth LE radio module with 1 antenna.

Test	ina (Dbi	ectiv	e:

To demonstrate compliance to FCC 15.247 requirements.

Configuration TEN10003-1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Pen	Ten One Design	Blue Tiger	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
iPad	Apple	A1416	DLXH864HDJBR		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	9/11/2012	Band Edge Compliance	Tested as delivered to	No EMI suppression devices were added or	EUT remained at Northwest EMC
		Compliance	Test Station.	modified during this test.	following the test.
2	9/11/2012	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	9/11/2012	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	9/11/2012	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	9/11/2012	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	9/24/2012	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Duty Cycle

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

Testing was done with the radio operating at 100% duty cycle.

During normal product operation the information below applies:

The duty cycle correction factor applied to the average detector measurements is based on the worst case transmitter on time in a given period for each available operating mode. The duty cycle correction factor is based on the formula of 20 * LOG (T on/Period).

When operating in the Advertising mode the total transmission time is 300us with a 20ms period between advertising events:

20*LOG(.300/20) = -36.5 dB

When operating in the Data mode the total transmission time is 100us with a 28ms period between data events:

20*LOG(.100/28) = -48.9 dB

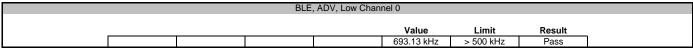
Occupied Bandwidth

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

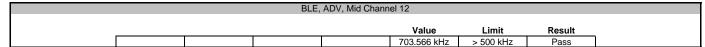
TEST EQUIPMENT

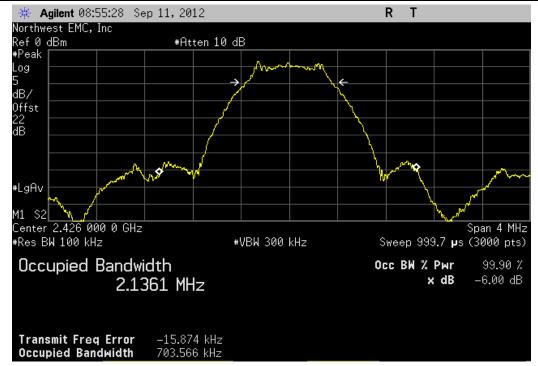
Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12

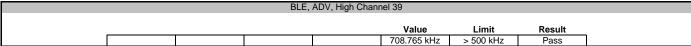
TEST DESCRIPTION

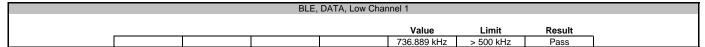

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 26 dB (99.9%) emission bandwidth (EBW) was also measured at the same time.

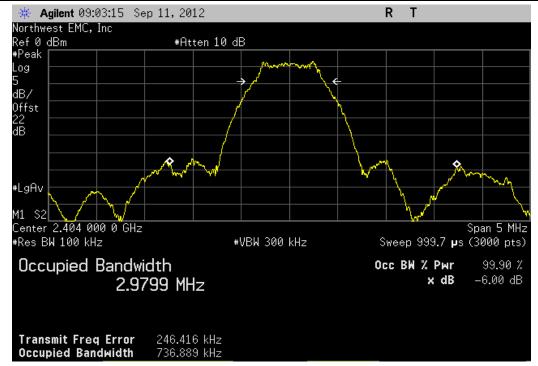
The EUT was set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

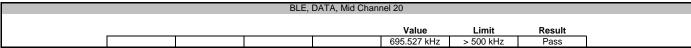


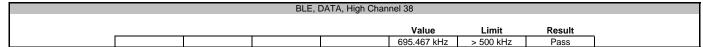

	T: Blue Tiger					der: TEN10003	
Serial Numbe						ate: 09/11/12	
	r: Ten One Design					ure: 18°C	
Attendees						dity: 48%	
	t: None				Barometric F		
	y: Brandon Hobbs and Rod	Peloquin	Power	Battery	Job	Site: EV06	
TEST SPECIFICA	TIONS			Test Method			
FCC 15.247:2012				ANSI C63.10:2009			
COMMENTS							
The EUT was ope	erating at 100% duty cycle w	hile under test.					
	5 , . , . , . ,						
DEVIATIONS FRO	OM TEST STANDARD						
None							
			101	20			
Configuration #	1		Rocky le	Leting			
, and the second		Signature					
					Value	Limit	Result
BLE, ADV							
,	Low Channel 0				693.13 kH	z > 500 kHz	Pass
	Mid Channel 12				703.566 kl	z > 500 kHz	Pass
	High Channel 39				708.765 kl		Pass
BLE, DATA	J					******	
,,	Low Channel 1				736.889 kl	z > 500 kHz	Pass
	Mid Channel 20				695.527 kl		Pass
	High Channel 38				695.467 kl		Pass

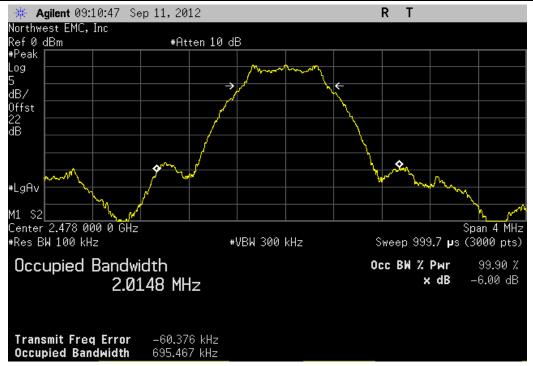












Output Power

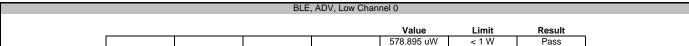
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

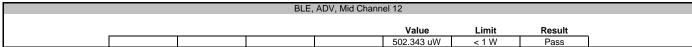
Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12

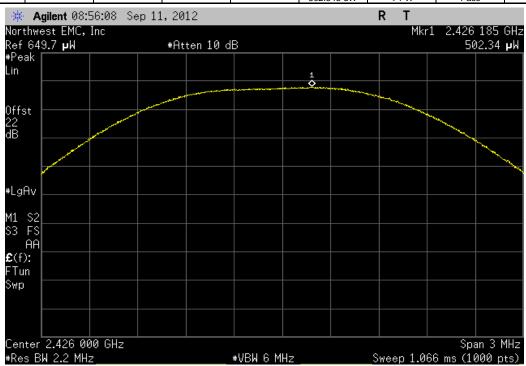
MEASUREMENT UNCERTAINTY

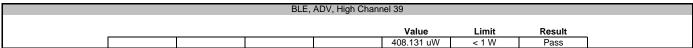
A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

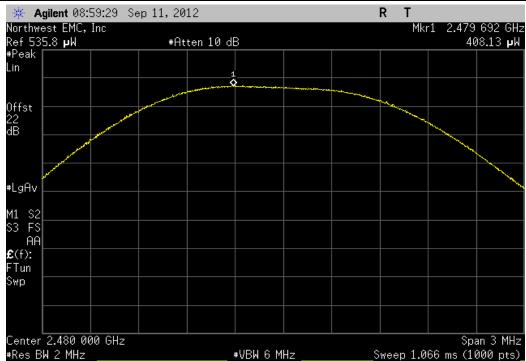

TEST DESCRIPTION

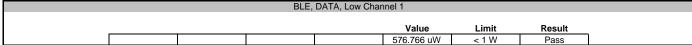
The peak output power was measured with the EUT set to low, medium and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and a spectrum analyzer. The EUT was transmitting in a no hop mode at the data rate(s) listed in the datasheet.

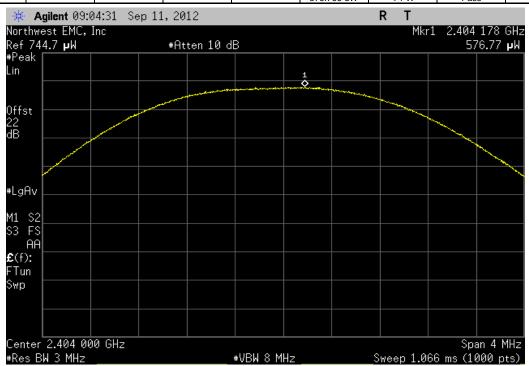


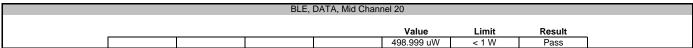

	Blue Tiger				Work Order		
Serial Number:						09/11/12	
Customer	Ten One Design				Temperature		
Attendees	None				Humidity	48%	
Project:	None				Barometric Pres.	1025	
Tested by:	Brandon Hobbs and Rod	Peloquin	Power:	Battery	Job Site	EV06	
TEST SPECIFICAT	TONS			Test Method			
FCC 15.247:2012				ANSI C63.10:2009			
COMMENTS							
The EUT was oper	ating at 100% duty cycle w	hile under test.					
DEVIATIONS FROM	M TEST STANDARD						
None							
			101	PI			
Configuration #	1		Rocky le	Teleng			
		Signature					
					Value	Limit	Result
BLE, ADV							
	Low Channel 0				578.895 uW	< 1 W	Pass
	Mid Channel 12				502.343 uW	< 1 W	Pass
	High Channel 39				408.131 uW	< 1 W	Pass
BLE, DATA							
	Low Channel 1				576.766 uW	< 1 W	Pass
	Mid Channel 20				498.999 uW	< 1 W	Pass
	11: 1 0: 100						
	High Channel 38				414.477 uW	< 1 W	Pass

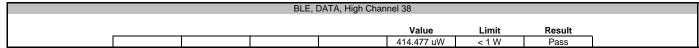


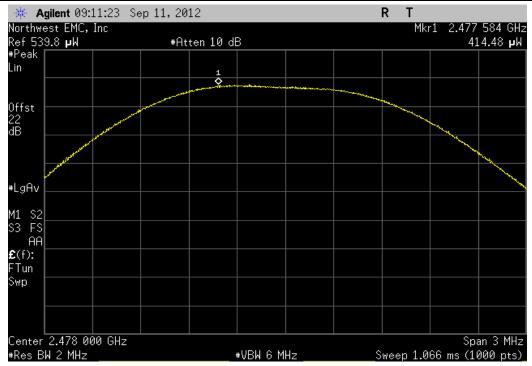








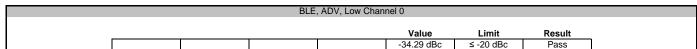


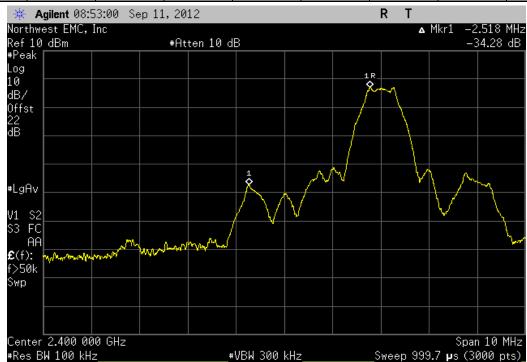


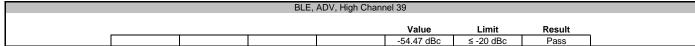
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

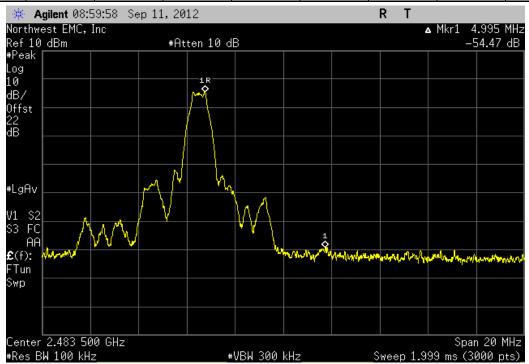
TEST EQUIPMENT

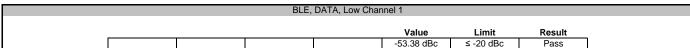
Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12

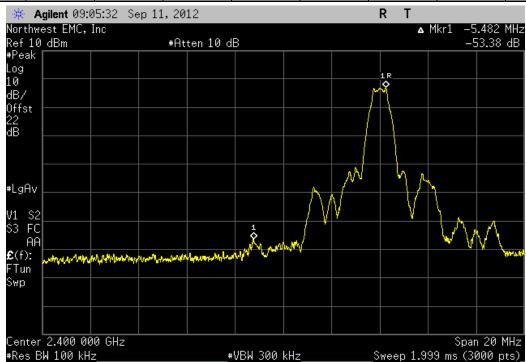

TEST DESCRIPTION

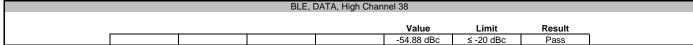

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

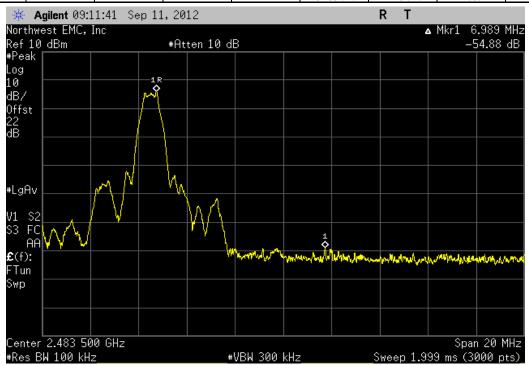

The spectrum was scanned below the lower band edge and above the higher band edge.




	: Blue Tiger			Work Order:		
Serial Number					09/11/12	
	: Ten One Design			Temperature:		
Attendees				Humidity:		
Project				Barometric Pres.:		
	: Brandon Hobbs and Rod	Peloquin	Power: Battery	Job Site:	EV06	
TEST SPECIFICAT	TIONS		Test Method			
FCC 15.247:2012			ANSI C63.10:2009			
				<u> </u>		
COMMENTS						
The EUT was oper	rating at 100% duty cycle w	hile under test.				
DEVIATIONS FRO	M TEST STANDARD					
None						
			Rolly be Felings			
Configuration #	1	0: .	· · · · · · · · · · · · · · · · · · ·			
		Signature				
				Value	Limit	Result
BLE, ADV						
,	Low Channel 0			-34.29 dBc	≤ -20 dBc	Pass
	High Channel 39			-54.47 dBc	≤ -20 dBc	Pass
BLE, DATA						
	Low Channel 1			-53.38 dBc	≤ -20 dBc	Pass
	High Channel 38			-54.88 dBc	≤ -20 dBc	Pass
	3					



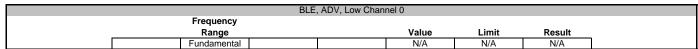




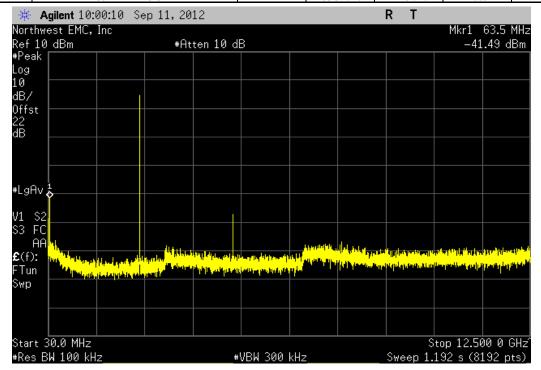
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

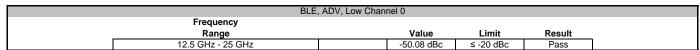
TEST EQUIPMENT

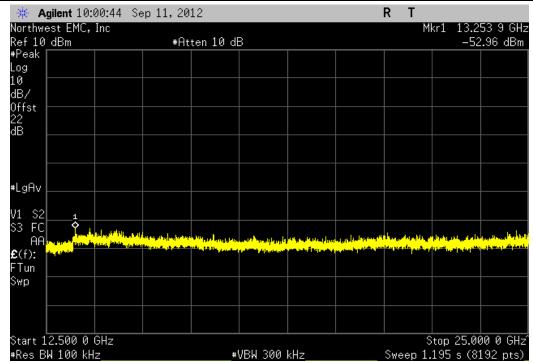
Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12


TEST DESCRIPTION

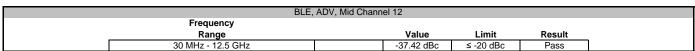
The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

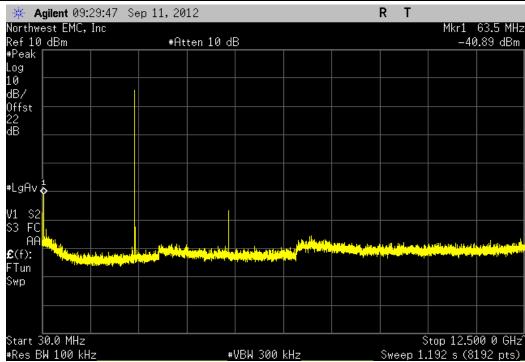

Low Channel 0								
Customer: Ten One Design								
Attendess: None Barometric Press: 125 5 5 Project: None Barometric Press: 125 5 Tested by: Brandon Hobbs and Rod Peloquin Power: Battery Job Site: EV06								
Project: None Barometric Press: 1925 Tester by Bardon Hobbs and Rod Peloquin Power Battery Job Site: EV06 TEST SPECIFICATIONS Test Method								
Tested by: Brandon Hobbs and Rod Peloquin Power: Battery Substitute EVOS Test Method								
TEST SPECIFICATIONS Test Method								
ANSI C63.10:2009 STATE EUT was operating at 100% duty cycle while under test. Signature			d Peloquin	Power:		Job Site:	EV06	
Comments The EUT was operating at 100% duty cycle while under test.		IONS						
The EUT was operating at 100% duty cycle while under test.	FCC 15.247:2012				ANSI C63.10:2009			
The EUT was operating at 100% duty cycle while under test.								
DEVIATIONS FROM TEST STANDARD None	COMMENTS							
None Signature Signatur	The EUT was opera	ating at 100% duty cycle v	while under test.					
None Signature Signatur								
None Signature Signatur	DEVIATIONS EDO	M TEST STANDARD						
Signature Frequency Range Value Limit Result		WI IESI STANDAND						
Signature Frequency Range Value Limit Result	None			0 .				
Signature Frequency Range Value Limit Result	Configuration #	1	1600	ting le	Letung			
Frequency Range Value Limit Result	g	·	Signature	0				
BLE, ADV					Frequency			
Low Channel 0					Range	Value	Limit	Result
Low Channel 0 30 MHz - 12.5 GHz	BLE, ADV							
Low Channel 0 12.5 GHz - 25 GHz -50.08 dBc ≤ -20 dBc Pass Mid Channel 12 N/A N/A N/A N/A Mid Channel 12 30 MHz - 12.5 GHz -37.42 dBc ≤ -20 dBc Pass Mid Channel 12 12.5 GHz - 25 GHz -49.81 dBc ≤ -20 dBc Pass Mid Channel 12 12.5 GHz - 25 GHz -49.81 dBc ≤ -20 dBc Pass High Channel 39 30 MHz - 12.5 GHz -36.55 dBc ≤ -20 dBc Pass High Channel 39 30 MHz - 12.5 GHz -36.55 dBc ≤ -20 dBc Pass High Channel 39 21.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass Pass High Channel 39 21.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass		Low Channel 0			Fundamental	N/A	N/A	N/A
Mid Channel 12 Fundamental N/A N/A N/A Mid Channel 12 30 MHz - 12.5 GHz -37.42 dBc ≤ -20 dBc Pass Mid Channel 12 12.5 GHz - 25 GHz -49.81 dBc ≤ -20 dBc Pass High Channel 39 Fundamental N/A N/A N/A N/A High Channel 39 30 MHz - 12.5 GHz -36.55 dBc ≤ -20 dBc Pass High Channel 39 12.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass BLE, DATA Low Channel 1 Fundamental N/A N/A N/A Low Channel 1 30 MHz - 12.5 GHz -37.59 dBc ≤ -20 dBc Pass Low Channel 1 30 MHz - 12.5 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 30 MHz - 12.5 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 30 MHz - 12.5 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 30 MHz - 12.5 GHz -50.26 dBc								
Mid Channel 12 30 MHz - 12.5 GHz -37.42 dBc ≤ -20 dBc Pass Mid Channel 12 49.81 dBc ≤ -20 dBc Pass High Channel 39 Fundamental N/A		Low Channel 0			12.5 GHz - 25 GHz	-50.08 dBc		Pass
Mid Channel 12 12.5 GHz - 25 GHz -49.81 dBc ≤ -20 dBc Pass High Channel 39 30 MHz - 12.5 GHz -36.55 dBc ≤ -20 dBc Pass High Channel 39 12.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass BLE, DATA 12.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass BLE, DATA 12.5 GHz - 25 GHz -37.59 dBc ≤ -20 dBc Pass Low Channel 1 30 MHz - 12.5 GHz -37.59 dBc ≤ -20 dBc Pass Low Channel 1 12.5 GHz - 25 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 50 MBc - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 50 MHz - 12.5 GHz -50.25 dBc ≤ -20 dBc Pass High Channel 38 30 MHz - 12.5 GHz -50.25 dBc ≤ -20 dBc Pass		Mid Channel 12			Fundamental	N/A	N/A	N/A
High Channel 39					30 MHz - 12.5 GHz	-37.42 dBc	≤ -20 dBc	Pass
High Channel 39 High Channel 39 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz -36.55 dBc 48.98 dBc ≤ -20 dBc 5 -20 dBc Pass BLE, DATA Low Channel 1 Low Channel 1 Fundamental 30 MHz - 12.5 GHz N/A 30 MHz - 12.5 GHz 37.59 dBc -37.59 dBc ≤ -20 dBc -20 dBc Pass -20 dBc -20 dBc -20 dBc Pass -20 dBc -20 dBc -20 dBc -20 dBc Pass -20 dBc -20 d		Mid Channel 12			12.5 GHz - 25 GHz			
High Channel 39 12.5 GHz - 25 GHz -48.98 dBc ≤ -20 dBc Pass BLE, DATA Low Channel 1 Fundamental N/A N/A N/A N/A N/A Pass -20 dBc -20 dBc -20 dBc -20 dBc -20 dBc </td <td></td> <td>High Channel 39</td> <td></td> <td></td> <td>Fundamental</td> <td>N/A</td> <td>N/A</td> <td>N/A</td>		High Channel 39			Fundamental	N/A	N/A	N/A
BLE, DATA		High Channel 39			30 MHz - 12.5 GHz	-36.55 dBc	≤ -20 dBc	Pass
Low Channel 1 Fundamental N/A N/A N/A Low Channel 1 30 MHz - 12.5 GHz -37.59 dBc ≤ -20 dBc Pass Low Channel 2 12.5 GHz - 25 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 Fundamental N/A N/A N/A Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass		High Channel 39			12.5 GHz - 25 GHz	-48.98 dBc	≤ -20 dBc	Pass
Low Channel 1 30 MHz - 12.5 GHz -37.59 dBc ≤ -20 dBc Pass Low Channel 1 12.5 GHz - 25 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 Fundamental N/A N/A N/A Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass	BLE, DATA							
Low Channel 1 12.5 GHz - 25 GHz -50 dBc ≤ -20 dBc Pass Mid Channel 20 Fundamental N/A N/A N/A N/A Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass								
Mid Channel 20 Fundamental N/A N/A N/A Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass								
Mid Channel 20 30 MHz - 12.5 GHz -37.24 dBc ≤ -20 dBc Pass Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass					12.5 GHz - 25 GHz			
Mid Channel 20 12.5 GHz - 25 GHz -50.26 dBc ≤ -20 dBc Pass High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass		Mid Channel 20			Fundamental	N/A	N/A	N/A
High Channel 38 Fundamental N/A N/A N/A High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass		Mid Channel 20			30 MHz - 12.5 GHz			Pass
High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤ -20 dBc Pass		Mid Channel 20			12.5 GHz - 25 GHz	-50.26 dBc	≤ -20 dBc	Pass
High Channel 38 30 MHz - 12.5 GHz -36.25 dBc ≤-20 dBc Pass		High Channel 38			Fundamental	N/A	N/A	N/A
					30 MHz - 12.5 GHz	-36.25 dBc	≤ -20 dBc	Pass
		High Channel 38			12.5 GHz - 25 GHz	-49.13 dBc	≤ -20 dBc	Pass

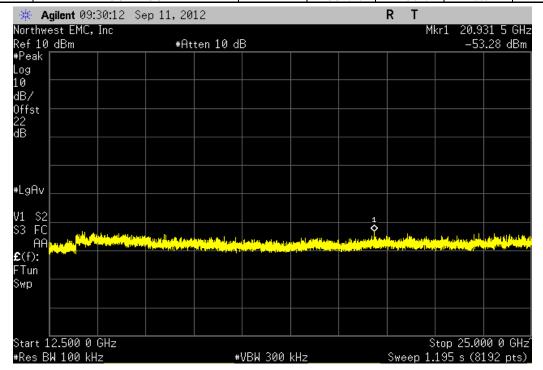


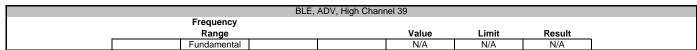


BLE, A	ADV, Low Channel 0		
Frequency			
Range	Value	Limit	Result
30 MHz - 12.5 GHz	-38.61 dBc	≤ -20 dBc	Pass

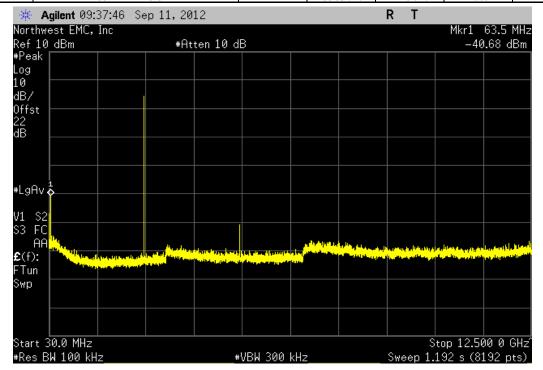


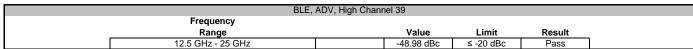


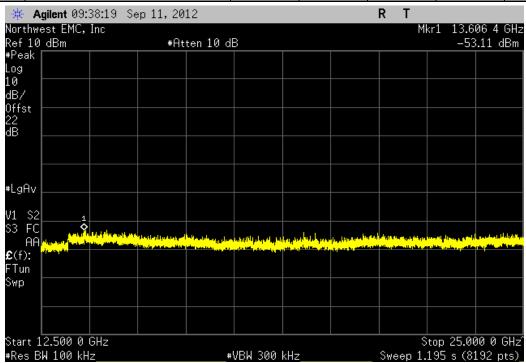

	BLE, ADV, Mid Channe	el 12		
Frequency				
Range		Value	Limit	Result
Fundamental		N/A	N/A	N/A



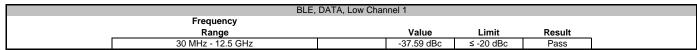
BLE, A	ADV, Mid Channel 12		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-49.81 dBc	≤ -20 dBc	Pass

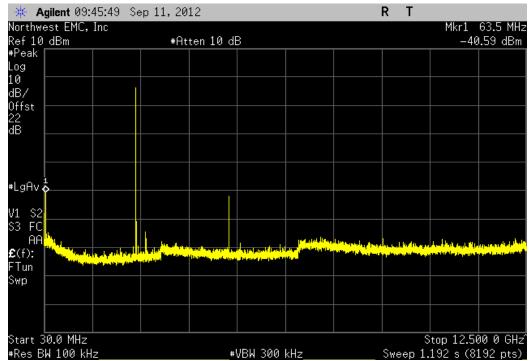




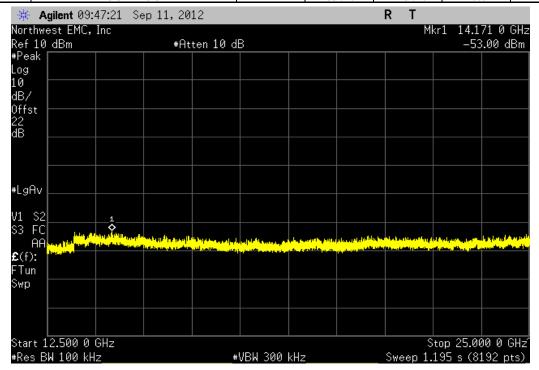


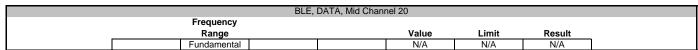
BLE, A	DV, High Channel 39		
Frequency			
Range	Value	Limit	Result
30 MHz - 12.5 GHz	-36.55 dBc	≤ -20 dBc	Pass





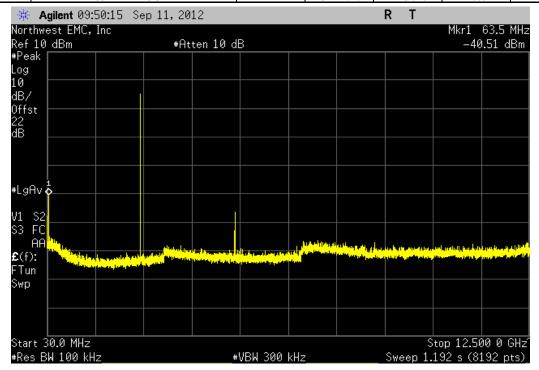
	BLE, DATA, Low Char	nnel 1		
Frequency				
Range		Value	Limit	Result
Fundamental		N/A	N/A	N/A

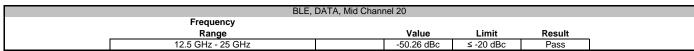


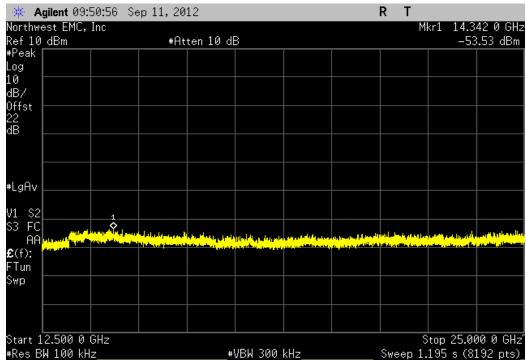


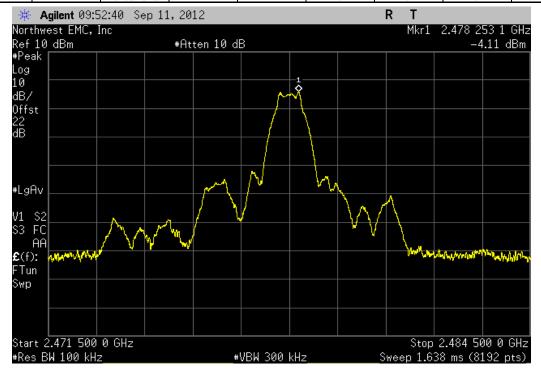


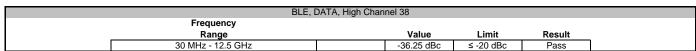
BLE, DATA, Lo	ow Channel 1		
Frequency			
Range	Value	Limit	Result
12.5 GHz - 25 GHz	-50 dBc	≤ -20 dBc	Pass

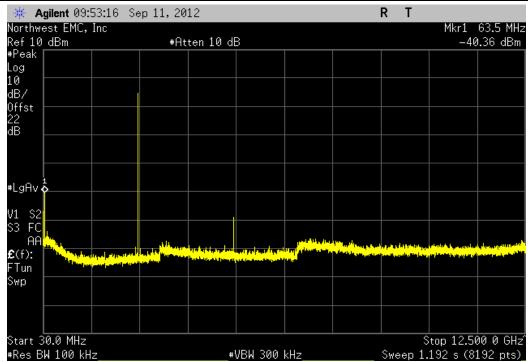




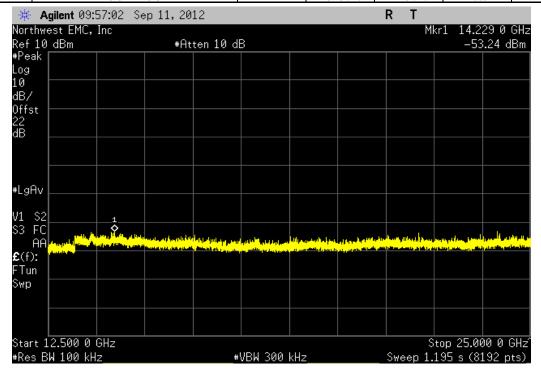



BL	BLE, DATA, Mid Channel 20								
Frequency									
Range	Value	Limit	Result						
30 MHz - 12.5 GHz	-37.24 dBc	≤ -20 dBc	Pass						





BLE, DATA, High Channel 38							
Frequency							
Range		Value	Limit	Result			
Fundamental		N/A	N/A	N/A			



BLE, DA	BLE, DATA, High Channel 38							
Frequency								
Range	Value	Limit	Result					
12.5 GHz - 25 GHz	-49.13 dBc	≤ -20 dBc	Pass					

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12

TEST DESCRIPTION

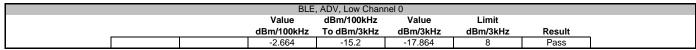
The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 5.3.1, the spectrum analyzer was used as follows:

≻RBW = 100 kHz

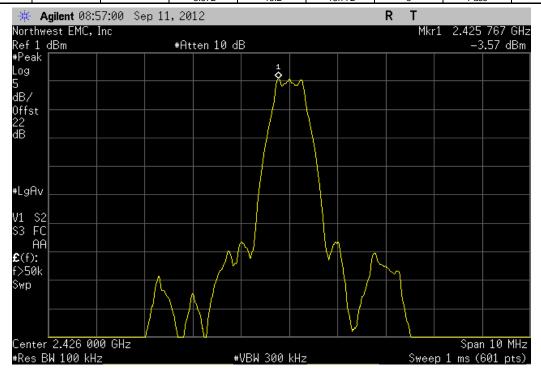
>VBW = 300 kHz

> Detector = Peak (to match method used for power measurement)

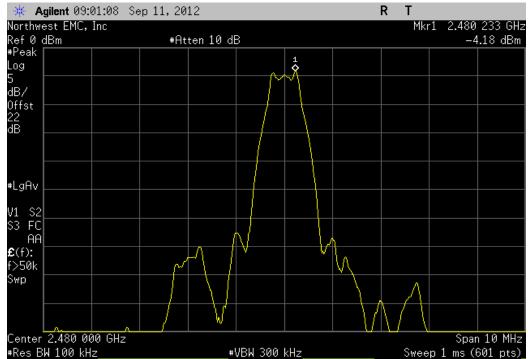

➤Trace = Max hold

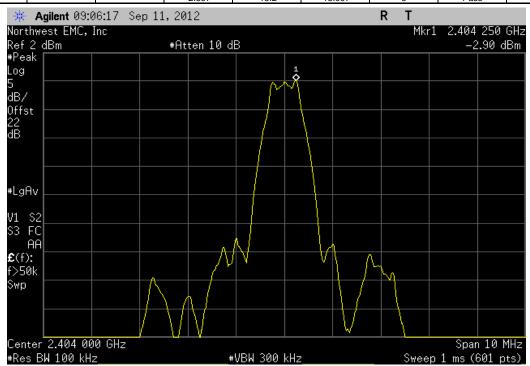

The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:

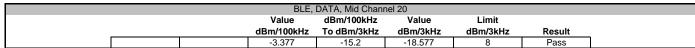
BWCF = 10*LOG (3 kHz / 100 kHz) = -15.2 dB

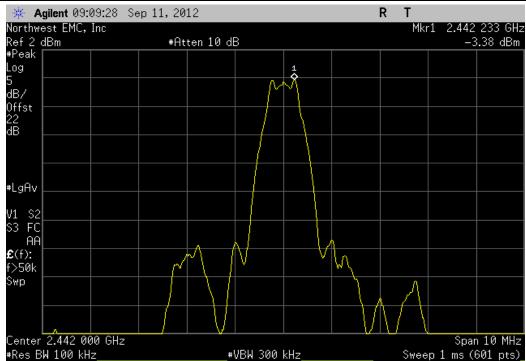


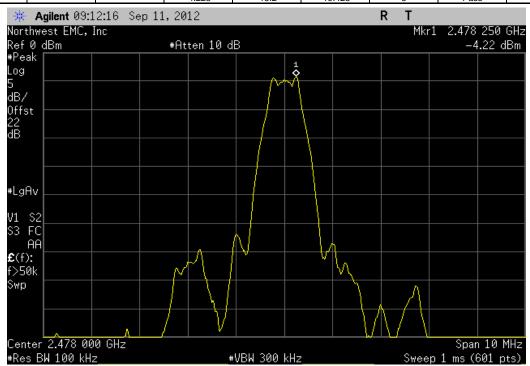
EUT:	: Blue Tiger						Work Order:	TEN10003		
Serial Number:	: None						Date:	09/11/12		
Customer:	: Ten One Design		Temperature: 18°C							
Attendees:	: None			Humidity:	48%					
Project:	: None			Barometric Pres.:	1025					
Tested by:	: Brandon Hobbs and Rod	Peloquin	Po	ower: Battery			Job Site:	EV06		
TEST SPECIFICAT	TIONS			Test Method						
FCC 15.247:2012				ANSI C63.10:2009						
COMMENTS										
The EUT was opera	ating at 100% duty cycle w	vhile under test.								
DEVIATIONS FROM TEST STANDARD										
	III ILOI GIANDAND									
None	III TEOT OTANDARD									
None	III TEOTOTANDAND		201	, P.						
	1		Rocky L	La Relings						
None	1	Signature	Rocky l	Le Relengs						
None	1	Signature	Rocky l	e Relengs	Value	dBm/100kHz	Value	Limit		
None Configuration #	1	Signature	Rocky L	Le Relings	Value dBm/100kHz	dBm/100kHz To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Result	
None	1	Signature	Rocky L	Le Relings	dBm/100kHz	To dBm/3kHz	dBm/3kHz			
None Configuration #	1 Low Channel 0	Signature	Rocky l	Le Rollings	-2.664	To dBm/3kHz	-17.864		Pass	
None Configuration #	1	Signature	Rocky W	Le Relings	dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz		
None Configuration # BLE, ADV	1 Low Channel 0	Signature	Roeling l	Le Relays	-2.664	To dBm/3kHz	-17.864	dBm/3kHz 8	Pass	
None Configuration #	Low Channel 0 Mid Channel 12 High Channel 39	Signature	Rocky L	Le Felings	-2.664 -3.572	-15.2 -15.2	-17.864 -18.772	dBm/3kHz 8 8	Pass Pass	
None Configuration # BLE, ADV	Low Channel 0 Mid Channel 12 High Channel 39 Low Channel 1	Signature	Rocky U	Le Relings	-2.664 -3.572 -4.184 -2.897	-15.2 -15.2 -15.2 -15.2	-17.864 -18.772	dBm/3kHz 8 8	Pass Pass	
None Configuration # BLE, ADV	Low Channel 0 Mid Channel 12 High Channel 39	Signature	Rocky l	Le Religge	-2.664 -3.572 -4.184	-15.2 -15.2 -15.2 -15.2	-17.864 -18.772 -19.384	8 8 8 8	Pass Pass Pass	




BLE, ADV, Mid Channel 12									
	Value dBm/100kHz Value Limit								
			dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz	Result		
			-3.572	-15.2	-18.772	8	Pass		






BLE, DATA, Low Channel 1									
	Value dBm/100kHz Value Limit								
			dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz	Result		
			-2.897	-15.2	-18.097	8	Pass		

BLE, DATA, High Channel 38									
	Value dBm/100kHz Value Limit								
			dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz	Result		
			-4.223	-15.2	-19.423	8	Pass		

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting Bluetooth Low Energy Data mode, 100% duty cycle

Transmitting Bluetooth Low Energy Advertising mode, 100% duty cycle

POWER SETTINGS INVESTIGATED

EUT Battery

CONFIGURATIONS INVESTIGATED

TEN10003 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency | 30 MHz | Stop Frequency | 26.5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

ILOI EQUII IIIEITI					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	KMKM-72	EVY	9/11/2012	12 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/11/2012	12 mo
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2/28/2012	12 mo
Antenna, Horn	ETS	3160-08	AHV	NCR	0 mo
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	2/28/2012	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	2/28/2012	12 mo
Antenna, Horn	ETS	3160-07	AHU	NCR	0 mo
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/27/2012	12 mo
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/27/2012	12 mo
Antenna, Horn	ETS	3115	AIZ	1/24/2011	24 mo
EV01 Cables	N/A	Bilog Cables	EVA	6/26/2012	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/26/2012	12 mo
Antenna, Biconilog	EMCO	3141	AXG	4/10/2012	12 mo
Spectrum Analyzer	Agilent	E4446A	AAQ	2/7/2012	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

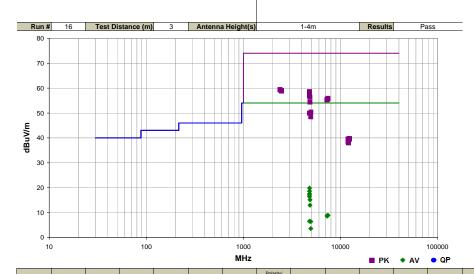
The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

Testing was done with the radio operating at 100% duty cycle.

During normal product operation the information below applies:

The duty cycle correction factor applied to the average detector measurements is based on the worst case transmitter on time in a given period for each available operating mode. The duty cycle correction factor is based on the formula of 20 * LOG (T on/Period).

When operating in the Advertising mode the total transmission time is 300us with a 20ms period between advertising events:


20*LOG(.300/20) = -36.5 dB

When operating in the Data mode the total transmission time is 100us with a 28ms period between data events: 20*LOG(.100/28) = -48.9 dB

SPURIOUS RADIATED EMISSIONS

Work Order:	TEN10003	Date:	09/17/12	00000							
Project:	None	Temperature:	23.9 °C	Callyfrolm							
Job Site:	EV01	Humidity:	37% RH								
Serial Number:	None	Barometric Pres.:	1017.1 mbar	Tested by: Carl Engholm							
EUT:	Blue Tiger										
Configuration:	1										
Customer:	Ten One Design	en One Design									
Attendees:	None	one									
EUT Power:	EUT Battery										
Operating Mode:	Transmitting Bluetooth	Transmitting Bluetooth Low Energy Advertising mode, 100% duty cycle									
Deviations:	None										
Comments:	None :										
Test Specifications			Test Meth	od							
FCC 15.247:2012	•		ANSI C63.	10:2009							

							Contract	Polarity/		Duty Cycle			C	
	Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Correction Correction	Adjusted	Spec. Limit	Compared to Spec.	
	(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	1,75~	Delicolor	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
	()													Comments
-	2388.530	37.9	1.6	1.0	117.0	3.0	20.0	Horz	PK	0.0	59.5	74.0	-14.5	EUT Horiz (button up), Adv Mode, Low CH (2402)
	2388.237	37.7	1.6	1.2	245.0	3.0	20.0	Vert	PK	0.0	59.3	74.0	-14.7	EUT Vertical, Adv Mode, Low CH (2402)
	2484.043	37.1	1.9	1.0	140.0	3.0	20.0	Horz	PK	0.0	59.0	74.0	-15.0	EUT Horiz (button up), Adv Mode, High CH (2480)
	2485.427	37.0	1.9	1.0	328.0	3.0	20.0	Vert	PK	0.0	58.9	74.0	-15.1	EUT Vertical, Adv Mode, High CH (2480)
	2484.913	37.0	1.9	1.0	0.0	3.0	20.0	Horz	PK	0.0	58.9	74.0	-15.1	EUT Horiz (button side), Adv Mode, High CH (2480)
	2485.257	36.9	1.9	1.3	51.0	3.0	20.0	Vert	PK	0.0	58.8	74.0	-15.2	EUT Horiz (button side), Adv Mode, High CH (2480)
	2484.137	36.9	1.9	1.0	278.0	3.0	20.0	Vert	PK	0.0	58.8	74.0	-15.2	EUT Horiz (button up), Adv Mode, High CH (2480)
	2484.013	36.9	1.9	1.4	150.0	3.0	20.0	Horz	PK	0.0	58.8	74.0	-15.2	EUT Vertical, Adv Mode, High CH (2480)
	4804.535	48.4	10.2	1.1	140.0	3.0	0.0	Horz	PK	0.0	58.6	74.0	-15.4	EUT Horiz (button side), Adv Mode, Low Ch (2402MHz)
	4804.482	48.1	10.2	1.1	133.0	3.0	0.0	Horz	PK	0.0	58.3	74.0	-15.7	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	4803.582	47.2	10.2	2.2	100.0	3.0	0.0	Vert	PK	0.0	57.4	74.0	-16.6	EUT Horiz (button side), Adv Mode, Low Ch (2402MHz)
	4804.448	46.9	10.2	2.2	90.0	3.0	0.0	Vert	PK	0.0	57.1	74.0	-16.9	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	4803.615	46.7	10.2	1.1	248.0	3.0	0.0	Vert	PK	0.0	56.9	74.0	-17.1	EUT Vert, Adv mode, Low Ch (2402MHz)
	4851.667	46.0	10.3	1.0	221.0	3.0	0.0	Horz	PK	0.0	56.3	74.0	-17.7	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	7441.520	36.4	19.5	1.0	145.0	3.0	0.0	Horz	PK	0.0	55.9	74.0	-18.1	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	7439.347	36.1	19.5	1.0	278.0	3.0	0.0	Vert	PK	0.0	55.6	74.0	-18.4	EUT Vertical, Adv Mode, High Ch (2480MHz)
	7277.460	36.7	18.8	2.1	96.0	3.0	0.0	Vert	PK	0.0	55.5	74.0	-18.5	EUT Vertical, Adv Mode, Mid Ch (2426MHz)
	7276.420	36.5	18.8	1.0	29.0	3.0	0.0	Horz	PK	0.0	55.3	74.0	-18.7	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	4851.380	44.0	10.3	1.0	210.0	3.0	0.0	Vert	PK	0.0	54.3	74.0	-19.7	EUT Vertical, Adv Mode, Mid Ch (2426MHz)
	4960.687	39.6	10.7	1.2	153.0	3.0	0.0	Horz	PK	0.0	50.3	74.0	-23.7	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	4804.148	39.7	10.2	1.0	266.0	3.0	0.0	Horz	PK	0.0	49.9	74.0	-24.1	EUT Vert, Adv mode, Low Ch (2402MHz)
	4958.133	37.7	10.7	1.1	162.0	3.0	0.0	Vert	PK	0.0	48.4	74.0	-25.6	EUT Vertical, Adv Mode, High Ch (2480MHz)
	4804.062	46.1	10.2	1.0	215.0	3.0	0.0	Horz	AV	-36.5	19.8	54.0	-34.2	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	12401.430	42.6	-2.9	1.0	152.0	3.0	0.0	Vert	PK PK	0.0	39.7	74.0	-34.3	EUT Vertical, Adv Mode, High Ch (2480MHz)
	12008.390	45.0	-5.5	1.0	155.0	3.0	0.0	Vert		0.0	39.5	74.0	-34.5	EUT Vertical (button up), Adv Mode, Low Ch (2402MHz)
	12399.470	42.3	-2.9	3.1	171.0 96.0	3.0 3.0	0.0	Horz	PK PK	0.0	39.4 38.7	74.0 74.0	-34.6	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	12130.550	43.4	-4.7	1.0			0.0	Horz	AV	-36.5	38.7 18.6	74.0 54.0	-35.3	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	4804.062	44.9	10.2	1.1	156.0	3.0	0.0	Horz					-35.4	EUT Horiz (button side), Adv Mode, Low Ch (2402MHz)
	12009.250	43.8 42.6	-5.5 -4.7	1.0 1.0	258.0 279.0	3.0 3.0	0.0	Horz Vert	PK PK	0.0	38.3 37.9	74.0 74.0	-35.7 -36.1	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	12131.530 4804.055	43.9	10.2	1.1	143.0	3.0	0.0		AV	-36.5	17.6	74.0 54.0	-36.4	EUT Vertical, Adv Mode, Mid Ch (2426MHz)
	4804.035	43.4	10.2	2.2	100.0	3.0	0.0	Vert Vert	AV	-36.5	17.0	54.0 54.0	-36.4	EUT Vert, Adv mode, Low Ch (2402MHz) EUT Horiz (button side), Adv Mode, Low Ch (2402MHz)
	4803.922	42.7	10.2	2.2	90.0	3.0	0.0	Vert	AV	-36.5	16.4	54.0 54.0	-36.9	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	4852.107	41.3	10.2	1.0	221.0	3.0	0.0	Horz	AV	-36.5	15.1	54.0	-38.9	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	4851.993	39.1	10.3	1.0	210.0	3.0	0.0	Vert	AV	-36.5	12.9	54.0	-41.1	EUT Vertical, Adv Mode, Mid Ch (2426MHz)
	7438.407	25.9	19.5	1.0	145.0	3.0	0.0	Horz	AV	-36.5	8.9	54.0	-45.1	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	7438.020	25.9	19.5	1.0	278.0	3.0	0.0	Vert	AV	-36.5	8.9	54.0	-45.1	EUT Vertical, Adv Mode, High Ch (2480MHz)
	7278.680	26.5	18.8	2.1	96.0	3.0	0.0	Vert	AV	-36.5	8.8	54.0	-45.1	EUT Vertical, Adv Mode, High Ch (2426MHz)
	7278.640	26.3	18.8	1.0	29.0	3.0	0.0	Horz	AV	-36.5	8.6	54.0	-45.4	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	4804.155	32.8	10.0	1.0	266.0	3.0	0.0	Horz	AV	-36.5	6.5	54.0	-47.5	EUT Vert, Adv mode, Low Ch (2402MHz)
	4960.060	32.1	10.7	1.2	153.0	3.0	0.0	Horz	AV	-36.5	6.3	54.0	-47.7	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	4958.020	29.3	10.7	1.1	162.0	3.0	0.0	Vert	AV	-36.5	3.5	54.0	-50.5	EUT Vertical, Adv Mode, Mid Ch (2480MHz)
	12402.000	31.7	-2.9	3.1	171.0	3.0	0.0	Horz	AV	-36.5	-7.7	54.0	-61.7	EUT Horiz (button up), Adv Mode, High Ch (2480MHz)
	12398.980	31.6	-2.9	1.0	152.0	3.0	0.0	Vert	AV	-36.5	-7.8	54.0	-61.8	EUT Vertical, Adv Mode, High Ch (2480MHz)
	2483.517	26.4	1.9	1.0	140.0	3.0	20.0	Horz	AV	-36.5	-8.2	54.0	-62.2	EUT Horiz (button up), Adv Mode, High CH (2480)
	2485.420	26.3	1.9	1.3	51.0	3.0	20.0	Vert	AV	-36.5	-8.3	54.0	-62.3	EUT Horiz (button side), Adv Mode, High CH (2480)
	2485.243	26.3	1.9	1.0	278.0	3.0	20.0	Vert	AV	-36.5	-8.3	54.0	-62.3	EUT Horiz (button up), Adv Mode, High CH (2480)
	2485.207	26.3	1.9	1.4	150.0	3.0	20.0	Horz	AV	-36.5	-8.3	54.0	-62.3	EUT Vertical, Adv Mode, High CH (2480)
	2483.533	26.3	1.9	1.0	328.0	3.0	20.0	Vert	AV	-36.5	-8.3	54.0	-62.3	EUT Vertical, Adv Mode, High CH (2480)
	2485.413	26.2	1.9	1.0	0.0	3.0	20.0	Horz	AV	-36.5	-8.4	54.0	-62.4	EUT Horiz (button side), Adv Mode, High CH (2480)
	2389.247	26.5	1.5	1.2	245.0	3.0	20.0	Vert	AV	-36.5	-8.5	54.0	-62.5	EUT Vertical. Adv Mode, Low CH (2402)
	2389.593	26.5	1.5	1.0	117.0	3.0	20.0	Horz	AV	-36.5	-8.5	54.0	-62.5	EUT Horiz (button up), Adv Mode, Low CH (2402)
	12011.870	33.4	-5.5	1.0	155.0	3.0	0.0	Vert	AV	-36.5	-8.6	54.0	-62.6	EUT Vertical (button up), Adv Mode, Low Ch (2402MHz)
	12010.050	33.4	-5.5	1.0	258.0	3.0	0.0	Horz	AV	-36.5	-8.6	54.0	-62.6	EUT Horiz (button up), Adv Mode, Low Ch (2402MHz)
	12129.170	32.2	-4.7	1.0	279.0	3.0	0.0	Vert	AV	-36.5	-9.0	54.0	-63.0	EUT Vertical, Adv Mode, Mid Ch (2426MHz)
	12128.350	32.2	-4.7	1.0	96.0	3.0	0.0	Horz	AV	-36.5	-9.0	54.0	-63.0	EUT Horiz (button up), Adv Mode, Mid Ch (2426MHz)
	20.000	OL.L	****		00.0	0.0	0.0	11012	***	00.0	0.0	0 1.0	00.0	

SPURIOUS RADIATED EMISSIONS

Work Order:	TEN10003	Date:	09/24/12	0 -					
Project:	None		22.7 °C	Calleyfolm					
		Temperature:		Collegioen					
Job Site:	EV01	Humidity:	42% RH						
Serial Number:	None	Barometric Pres.:	1020.3 mbar	Tested by: Carl Engholm					
	Blue Tiger								
Configuration:	1								
Customer:	Ten One Design								
Attendees:	None								
EUT Power:	EUT Battery								
Operating Mode:	Transmitting Bluetooth Low Energy Data mode, 100% duty cycle								
Deviations:	None								
Comments:	None								
Test Specifications			Test Meth	od					

 Test Specifications
 Test Method

 FCC 15.247:2012
 ANSI C63.10:2009

Run # 17	Test Distance (m)	3 Antenna Height(s)	1-4m	Results	Pass
80 T					
70					
60					
50					
40					
			-		
30					
20					
10					
0					
10	100	1000	10000		1000
		MHz		■ PK ◆	AV •

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Duty Cycle Correction (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2389.133	38.3	1.5	1.0	201.0	3.0	20.0	Horz	PK	0.0	59.8	74.0	-14.2	EUT Horiz (button up), Data Mode, Low CH (2404)
2484.253	37.1	1.9	1.0	1.0	3.0	20.0	Horz	PK	0.0	59.0	74.0	-15.0	EUT Horiz (button up), Data Mode, High CH (2478)
2485.120	37.0	1.9	1.0	98.0	3.0	20.0	Vert	PK	0.0	58.9	74.0	-15.1	EUT Vertical, Data Mode, High CH (2478)
2388.917	37.1	1.6	1.0	333.0	3.0	20.0	Vert	PK	0.0	58.7	74.0	-15.4	EUT Vertical, Data Mode, Low CH (2404)
4808.473	48.0	10.2	1.0	221.0	3.0	0.0	Horz	PK	0.0	58.2	74.0	-15.8	EUT Horiz (button up), Data Mode, Low CH (2404)
4807.487	47.9	10.2	1.2	276.0	3.0	0.0	Vert	PK	0.0	58.1	74.0	-15.9	EUT Vertical, Data Mode, Low CH (2404)
7325.833	37.1	19.0	1.8	120.0	3.0	0.0	Vert	PK	0.0	56.1	74.0	-17.9	EUT Vertical, Data Mode, Mid CH (2442)
7434.787	36.2	19.4	1.0	130.0	3.0	0.0	Horz	PK	0.0	55.6	74.0	-18.4	EUT Horiz (button up), Data Mode, High CH (2478)
7434.267	36.1	19.4	1.0	130.0	3.0	0.0	Vert	PK	0.0	55.5	74.0	-18.5	EUT Vertical, Data Mode, High CH (2478)
7325.507	36.3	19.0	1.0	53.0	3.0	0.0	Horz	PK	0.0	55.3	74.0	-18.7	EUT Horiz (button up), Data Mode, Mid CH (2442)
4884.533	43.1	10.4	1.0	214.0	3.0	0.0	Horz	PK	0.0	53.5	74.0	-20.5	EUT Horiz (button up), Data Mode, Mid CH (2442)
4884.367	41.1	10.4	1.2	252.0	3.0	0.0	Vert	PK	0.0	51.5	74.0	-22.5	EUT Vertical, Data Mode, Mid CH (2442)
4955.460	39.2	10.7	1.3	82.0	3.0	0.0	Vert	PK	0.0	49.9	74.0	-24.1	EUT Vertical, Data Mode, High CH (2478)
4955.513	38.2	10.7	1.0	141.0	3.0	0.0	Horz	PK	0.0	48.9	74.0	-25.1	EUT Horiz (button up), Data Mode, High CH (2478)
12390.430	42.7	-2.9	1.0	281.0	3.0	0.0	Vert	PK	0.0	39.8	74.0	-34.2	EUT Vertical, Data Mode, High CH (2478)
12388.810	42.5	-3.0	1.0	248.0	3.0	0.0	Horz	PK	0.0	39.6	74.0	-34.5	EUT Horiz (button up), Data Mode, High CH (2478)
12020.060	44.9	-5.4	1.0	276.0	3.0	0.0	Vert	PK	0.0	39.5	74.0	-34.5	EUT Vertical, Data Mode, Low CH (2404)
12020.080	44.5	-5.4	1.0	73.0	3.0	0.0	Horz	PK	0.0	39.1	74.0	-34.9	EUT Horiz (button up), Data Mode, Low CH (2404)
12210.610	42.9	-4.1	1.0	154.0	3.0	0.0	Vert	PK	0.0	38.8	74.0	-35.2	EUT Vertical, Data Mode, Mid CH (2442)
12210.230	42.4	-4.1	1.0	248.0	3.0	0.0	Horz	PK	0.0	38.3	74.0	-35.7	EUT Horiz (button up), Data Mode, Mid CH (2442)
4807.887	44.4	10.2	1.0	221.0	3.0	0.0	Horz	AV	-48.9	5.7	54.0	-48.3	EUT Horiz (button up), Data Mode, Low CH (2404)
4808.013	44.2	10.2	1.2	276.0	3.0	0.0	Vert	AV	-48.9	5.5	54.0	-48.5	EUT Vertical, Data Mode, Low CH (2404)
4883.900	37.3	10.4	1.0	214.0	3.0	0.0	Horz	AV	-48.9	-1.2	54.0	-55.2	EUT Horiz (button up), Data Mode, Mid CH (2442)
7433.747	26.1	19.4	1.0	130.0	3.0	0.0	Vert	AV	-48.9	-3.4	54.0	-57.4	EUT Vertical, Data Mode, High CH (2478)
7433.147	25.9	19.4	1.0	130.0	3.0	0.0	Horz	AV	-48.9	-3.6	54.0	-57.6	EUT Horiz (button up), Data Mode, High CH (2478)
7325.360	26.3	19.0	1.8	120.0	3.0	0.0	Vert	AV	-48.9	-3.6	54.0	-57.6	EUT Vertical, Data Mode, Mid CH (2442)
4884.027	34.8	10.4	1.2	252.0	3.0	0.0	Vert	AV	-48.9	-3.7	54.0	-57.7	EUT Vertical, Data Mode, Mid CH (2442)
7325.413	26.0	19.0	1.0	53.0	3.0	0.0	Horz	AV	-48.9	-3.9	54.0	-57.9	EUT Horiz (button up), Data Mode, Mid CH (2442)
4955.907	31.4	10.7	1.3	82.0	3.0	0.0	Vert	AV	-48.9	-6.8	54.0	-60.8	EUT Vertical, Data Mode, High CH (2478)
4955.913	30.7	10.7	1.0	141.0	3.0	0.0	Horz	AV	-48.9	-7.5	54.0	-61.5	EUT Horiz (button up), Data Mode, High CH (2478)
12388.340	31.9	-3.0	1.0	281.0	3.0	0.0	Vert	AV	-48.9	-20.0	54.0	-74.0	EUT Vertical, Data Mode, High CH (2478)
12388.360	31.8	-3.0	1.0	248.0	3.0	0.0	Horz	AV	-48.9	-20.1	54.0	-74.1	EUT Horiz (button up), Data Mode, High CH (2478)
12019.730	33.8	-5.4	1.0	73.0	3.0	0.0	Horz	AV	-48.9	-20.5	54.0	-74.5	EUT Horiz (button up), Data Mode, Low CH (2404)
12018.960	33.8	-5.4	1.0	276.0	3.0	0.0	Vert	AV	-48.9	-20.5	54.0	-74.5	EUT Vertical, Data Mode, Low CH (2404)
2485.047	26.4	1.9	1.0	1.0	3.0	20.0	Horz	AV	-48.9	-20.6	54.0	-74.6	EUT Horiz (button up), Data Mode, High CH (2478)
2484.740	26.3	1.9	1.0	98.0	3.0	20.0	Vert	AV	-48.9	-20.7	54.0	-74.7	EUT Vertical, Data Mode, High CH (2478)
12208.360	32.2	-4.1	1.0	248.0	3.0	0.0	Horz	AV	-48.9	-20.8	54.0	-74.8	EUT Horiz (button up), Data Mode, Mid CH (2442)
2389.073	26.5	1.5	1.0	201.0	3.0	20.0	Horz	AV	-48.9	-20.9	54.0	-74.9	EUT Horiz (button up), Data Mode, Low CH (2404)
2389.817	26.5	1.5	1.0	333.0	3.0	20.0	Vert	AV	-48.9	-20.9	54.0	-74.9	EUT Vertical, Data Mode, Low CH (2404)
12208.620	32.1	-4.1	1.0	154.0	3.0	0.0	Vert	AV	-48.9	-20.9	54.0	-74.9	EUT Vertical, Data Mode, Mid CH (2442)