

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4pR^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Lane Display Controller for Micro Industries

Maximum peak output power at antenna input terminal:	<u>0.17</u> (dBm)
Maximum peak output power at antenna input terminal:	0.001 (W)
Antenna gain(typical):	0.40 (dBi)
Maximum antenna gain:	1.10 (numeric)
Prediction distance:	20.00 (cm)
Prediction frequency:	824.20 (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	1.00 (mW/cm^2)

Power density at prediction frequency: 0.000227 (mW/cm^2)

Maximum allowable antenna gain: 66.84 (dBi)

Margin of Compliance: 36.44 dB

Therefore the power density at 20 cm = 0.0000227 W/m^2