COLLAGE INVESTMENTS LLC

Mobile phone

Main Model: L1 FLYER

Serial Model: N/A

July 09, 2014

Report No.: 14050021-FCC-R3 (This report supersedes none)

Modifications made to the product: None

This Test Report is Issued Under the Authority of:

Kevin Tian

Kevin Tian

Compliance Engineer

Alex Lin

Alex Liu Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

RF Test Report

14050021-FCC-R3 July 09, 2014 2 of 65 www.siemic.com

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Scope		
USA	EMC, RF/Wireless, Telecom		
Canada	EMC, RF/Wireless, Telecom		
Taiwan	EMC, RF, Telecom, Safety		
Hong Kong	RF/Wireless ,Telecom		
Australia	EMC, RF, Telecom, Safety		
Korea	EMI, EMS, RF, Telecom, Safety		
Japan	EMI, RF/Wireless, Telecom		
Singapore	EMC, RF, Telecom		
Europe	EMC, RF, Telecom, Safety		

14050021-FCC-R3 July 09, 2014 3 of 65 www.siemic.com Report No.: Issue Date: Page:

This page has been left blank intentionally.

14050021-FCC-R3 July 09, 2014 4 of 65 www.siemic.com

CONTENTS

1	EXECUTIVE SUMMARY & EUT INFORMATION	5
	TECHNICAL DETAILS	
	MODIFICATION	
	TEST SUMMARY	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	
	NEX A. TEST INSTRUMENT NEX B. EUT AND TEST SETUP PHOTOGRAPHS	
	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	
	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	
AN	NEX F. DECLARATION OF SIMILARITY	65

14050021-FCC-R3 July 09, 2014 5 of 65 www.siemic.com

EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programme was to demonstrate compliance of the COLLAGE INVESTMENTS LLC, Mobile phone and model: L1 FLYER against the current Stipulated Standards. The Mobile phone has demonstrated compliance with the FCC Part 15.247: 2013, ANSI C63.4: 2009.

EUT Information

EUT Description	Mobile phone
Main Model	L1 FLYER
Serial Model	N/A
Antenna Gain	GSM850: -1.87 dBi PCS1900: -0.75 dBi UMTS-FDD Band V: -0.62 dBi UMTS-FDD Band II: -0.62 dBi Bluetooth/ WIFI: -0.7 dBi
Input Power	Adapter: Model: BSN-DB05B Input: AC 100-240V 50/60Hz 150mA Output: DC 5V 500mA RECHARGEABLE BATTERY BH-P4B: 3.7V 1300mAh 4.81Wh
Classification Per Stipulated Test Standard	FCC Part 15.247: 2013, ANSI C63.4: 2009

14050021-FCC-R3 July 09, 2014 6 of 65 www.siemic.com

2 TECHNICAL DETAILS

Purpose	Compliance testing of Mobile phone with stipulated standard
Applicant / Client	COLLAGE INVESTMENTS LLC 11437 NW 34 STREET, DORAL, FLORIDA 33178 U.S.A.
Manufacturer	NINGBO BIRD CO., LTD No.999 Dacheng East Road,Fenghua City,Zhejiang
Laboratory performing the tests	SIEMIC (Nanjing-China) Laboratories NO.2-1,Longcang Dadao, Yuhua Economic Development Zone, Nanjing, China Tel: +86(25)86730128/86730129 Fax: +86(25)86730127 Email: China@siemic.com.cn
Test report reference number	14050021-FCC-R3
Date EUT received	May 19, 2014
Standard applied	FCC Part 15.247: 2013, ANSI C63.4: 2009
Dates of test (from - to)	May 30 to July 09, 2014
No of Units :	#1
Equipment Category :	DTS
Trade Name :	LIKUID
RF Operating Frequency (ies)	GSM850 TX : 824.2 ~ 848.8 MHz; RX : 869.2 ~ 893.8 MHz PCS1900 TX : 1850.2 ~ 1909.8 MHz; RX : 1930.2 ~ 1989.8 MHz UMTS-FDD Band II TX :1852.4 ~ 1907.6 MHz; RX : 1932.4 ~ 1987.6 MHz 802.11b/g/n: 2412-2462 MHz Bluetooth : 2402-2480 MHz
Number of Channels	299CH (PCS1900) and 124CH (GSM850) UMTS-FDD Band II : 277CH Bluetooth: 79CH 802.11b/g/n: 11CH
Modulation	GSM / GPRS: GMSK UMTS-FDD: QPSK 802.11b/g/n: DSSS/OFDM Bluetooth: GFSK
GPRS Multi-slot class	8/10/12
Port	Earphone Port, Power Port
FCC ID:	GAO-FLYER

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 7 of 65

www.siemic.com

3 MODIFICATION

N/A

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 8 of 65 www.siemic.com

4 TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

Test Results Summary

FCC Rules	Description of Test	Result
§15.247 (i), §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.247 (a)(2)	DTS (6 dB&20 dB) CHANNEL BANDWIDTH	Compliance
§15.247(b)(3)	Conducted Maximum Output Power	Compliance
§15.247(e)	Power Spectral Density	Compliance
§15.247(d)	Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands	Compliance
§15.207 (a),	AC Power Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands	Compliance

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 9 of 65 www.siemic.com

5 <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 §15.247 (i) and §2.1093 – RF Exposure

The EUT is a portable device, thus requires SAR evaluation; please refer to SIEMIC RF Exposure Report: 14050021-FCC-H2

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 10 of 65 www.siemic.com

<u>5.2</u> <u>§15.203 - ANTENNA REQUIREMENT</u>

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has 2 antennas: . a monopole antenna for Bluetooth, the gain is -0.7dBi;

a monopole antenna for WIFI, the gain is -0.7dBi

.a PIFA antenna for GSM, the gain are -1.87dBi for GSM, -0.75 dBi for PCS

.a PIFA antenna for WCDMA the gain is -0.62 dBi for Band V a PIFA antenna for WCDMA the gain is -0.62 dBi for Band II

which in accordance to section 15.203, please refer to the internal photos.

Result: Compliance.

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 11 of 65 www.siemic.com

5.3 §15.247(a) (2) –DTS (6 dB&20 dB) CHANNEL BANDWIDTH

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 20°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: May 30 to June 03, 2014

Tested By: Kevin Tian

Requirement(s): The minimum 6 dB bandwidth of a DTS transmission shall be at least 500 kHz. Within this document, this bandwidth is referred to as the DTS bandwidth. The procedures provided herein for measuring the maximum peak conducted output power assume the use of the DTS bandwidth.

Procedures:

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Result: Pass.

Please refer to the following tables and plots.

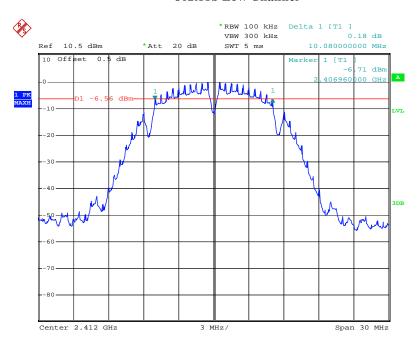
SIEMIC, INC.

Accessing global markets
RF Test Report for Mobile phone
Main Model: L1 FLYER
Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page:

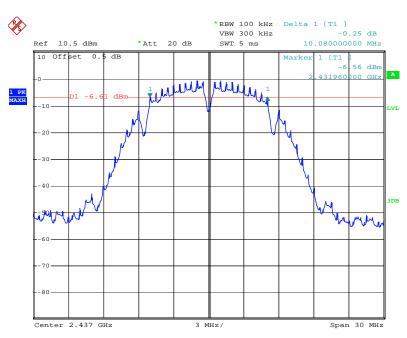
14050021-FCC-R3 July 09, 2014 12 of 65 www.siemic.com

6dB bandwidth:


Channel	Channel Frequency (MHz)	Data Rate (Mbps)	Measured 6dB Bandwidth (MHz)	FCC Part 15.247 Limit (kHz)	
		802.11b mode			
Low	2412	1	10.08	>500	
Middle	2437	1	10.08	>500	
High	2462	1	10.08	>500	
		802.11g mode			
Low	2412	6	16.26	>500	
Middle	2437	6	16.02	>500	
High	2462	6	15.84	>500	
802.11n mode					
Low	2412	MCS0	17.28	>500	
Middle	2437	MCS0	17.04	>500	
High	2462	MCS0	17.16	>500	

20dB bandwidth:

Channel	Channel Frequency (MHz)	Data Rate (Mbps)	Measured 20dB Bandwidth (MHz)	FCC Part 15.247 Limit (kHz)
		802.11b mode		
Low	2412	1	14.04	>500
Middle	2437	1	14.16	>500
High	2462	1	14.16	>500
		802.11g mode		
Low	2412	6	17.94	>500
Middle	2437	6	17.88	>500
High	2462	6	17.94	>500
802.11n mode				
Low	2412	MCS0	18.54	>500
Middle	2437	MCS0	18.66	>500
High	2462	MCS0	18.60	>500


6dB bandwidth:

802.11b Low Channel

Date: 30.MAY.2014 21:48:21

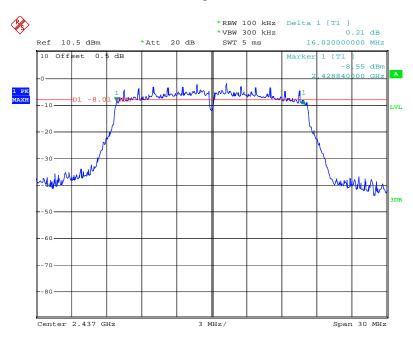

802.11b Middle Channel

Date: 3.JUN.2014 20:18:20

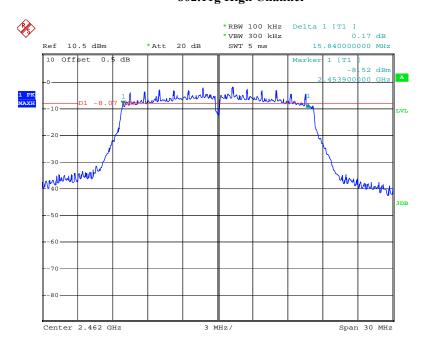

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 14 of 65 www.siemic.com

802.11b High Channel

Date: 30.MAY.2014 21:50:55

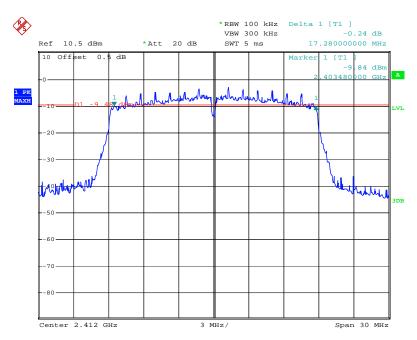

802.11g Low Channel

Date: 30.MAY.2014 21:59:20

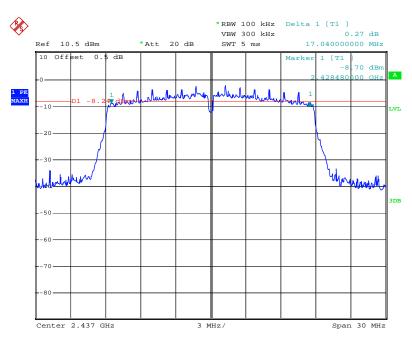

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 15 of 65 www.siemic.com

802.11g Middle Channel

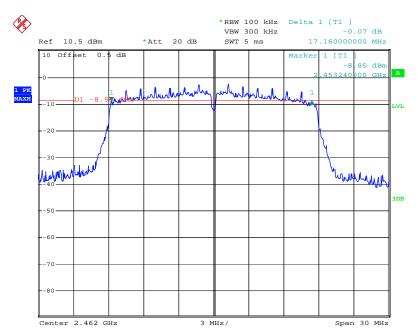
Date: 30.MAY.2014 22:01:45


802.11g High Channel

Date: 30.MAY.2014 22:05:24

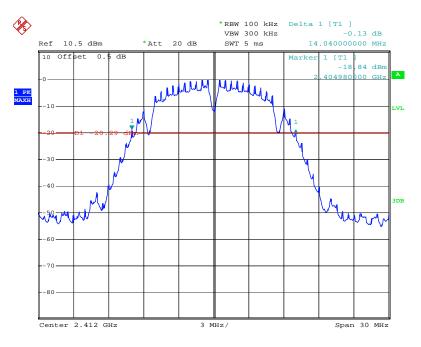

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 16 of 65 www.siemic.com

802.11n Low Channel


Date: 3.JUN.2014 20:41:03

802.11n Middle Channel

Date: 3.JUN.2014 20:48:52

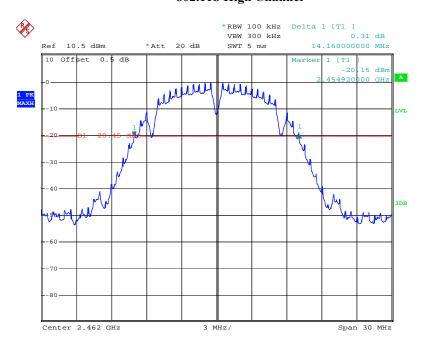

802.11n High Channel

Date: 3.JUN.2014 20:46:59

The 20dB bandwidth:

802.11b Low Channel

Date: 3.JUN.2014 19:26:39

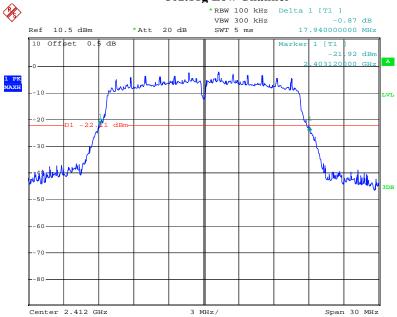

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 18 of 65 www.siemic.com

802.11b Middle Channel

Date: 3.JUN.2014 20:19:23

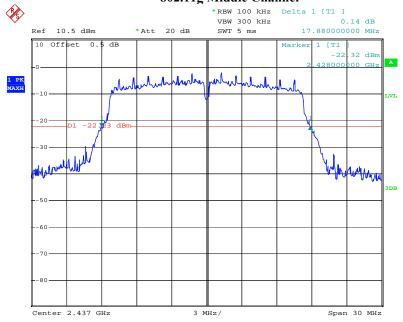
802.11b High Channel

Date: 3.JUN.2014 20:23:07



Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

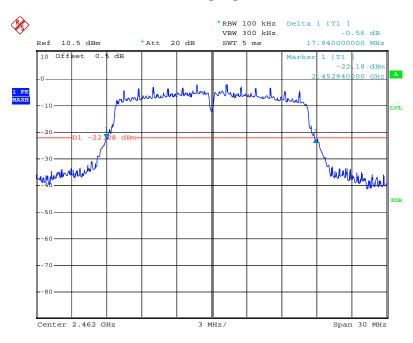
Report No.: Issue Date: Page:


14050021-FCC-R3 July 09, 2014 19 of 65 www.siemic.com

802.11g Low Channel

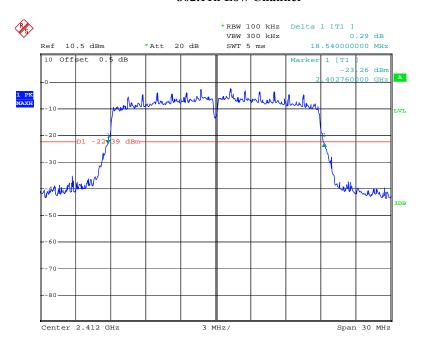
Date: 3.JUN.2014 20:32:46

802.11g Middle Channel


Date: 3.JUN.2014 20:30:18

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

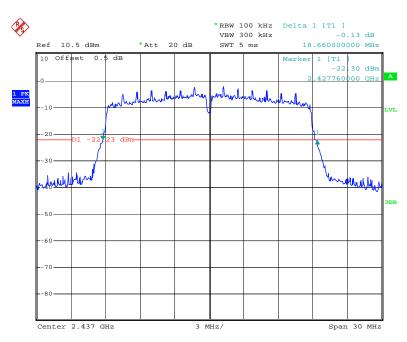
Report No.: Issue Date: Page:


14050021-FCC-R3 July 09, 2014 20 of 65 www.siemic.com

802.11g High Channel

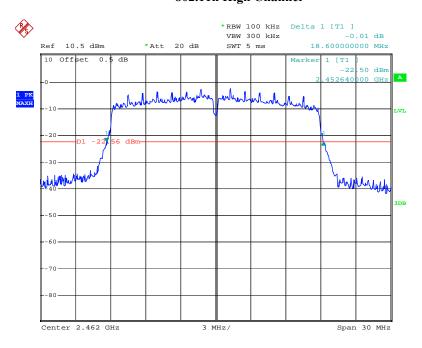
Date: 3.JUN.2014 20:28:19

802.11n Low Channel



Date: 3.JUN.2014 20:34:56

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009


Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 21 of 65 www.siemic.com

802.11n Middle Channel

Date: 3.JUN.2014 20:43:33

802.11n High Channel

Date: 3.JUN.2014 20:46:09

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 22 of 65 www.siemic.com

5.4 §15.247(b) (3) - Conducted Maximum Output Power

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 20°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

4. Test date: June 03 to July 09, 2014

Tested By: Kevin Tian

Standard Requirement:

Maximum Conducted Output Power

§15.247(b)(3) permits the maximum (average) conducted output power to be measured as an alternative to the maximum peak conducted output power for demonstrating compliance to the limit. When these procedures are utilized, the power is referenced to the emission bandwidth (EBW) rather than the DTS bandwidth (see Section 2.0 for definitions).

When using a spectrum/signal analyzer to perform these measurements, it must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

The ideal method for measuring the maximum (average) conducted output power is with the EUT is configured to transmit continuously (duty cycle \geq 98%) at its maximum power control level. However, when this condition cannot be realized, video triggering or signal gating can be used to ensure that the measurements are performed only during periods when the EUT is transmitting at its maximum power control level. An option is also provided that can be used when none of the above requirements can be met with the available measurement instrumentation.

Procedures:

Maximum conducted (average) output power:

Method AVGSA-1 (trace averaging with the EUT transmitting at full power throughout each sweep)

This procedure should be used with an RMS power averaging detector; however, a sample detector can be used when an RMS detector is not available. This is the baseline method for measuring the maximum (average) conducted output power.

- 1. Set span to at least 1.5 times the OBW.
- 2. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 3. Set $VBW \ge 3 \times RBW$.
- 4. Number of points in sweep ≥ 2 x span / RBW. (This gives bin-to-bin spacing ≤ RBW/2, so that narrowband signals are not lost between frequency bins.)
- 5. Sweep time = auto.
- 6. Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- 7. If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".
- 8. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

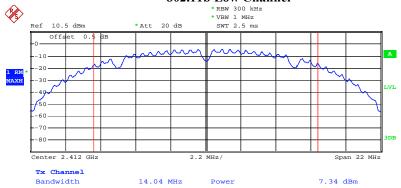
Test Result: Pass.

Please refer to the following tables and plots.

SIEMIC, INC.

Accessing global markets
RF Test Report for Mobile phone
Main Model: L1 FLYER
Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page:


14050021-FCC-R3 July 09, 2014 23 of 65 www.siemic.com

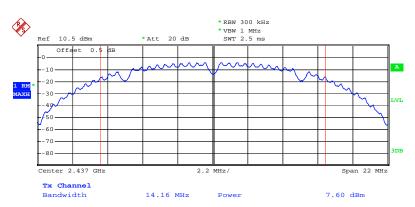
The Power

Channel	Channel Frequency (MHz)	Data Rate (Mbps)	AV Output Power (dBm)	Limit (dBm)	
	8	302.11b mode			
Low	2412	1	7.34	30	
Middle	2437	1	7.60	30	
High	2462	1	7.39	30	
	8	302.11g mode			
Low	2412	6	6.93	30	
Middle	2437	6	7.56	30	
High	2462	6	7.32	30	
802.11n mode					
Low	2412	MCS0	5.97	30	
Middle	2437	MCS0	7.57	30	
High	2462	MCS0	7.28	30	

The Average Power

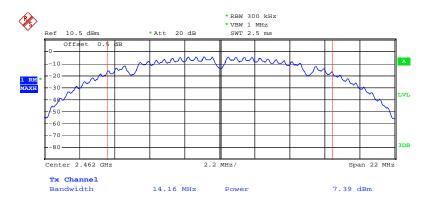
802.11b Low Channel

SIEMIC, INC.


Accessing plotal markets
Title: RF Test Report for Mobile phone
Main Model: L1 FLYER

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

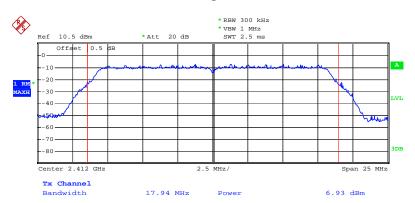
Report No.: Issue Date: Page:


14050021-FCC-R3 July 09, 2014 24 of 65 www.siemic.com

802.11b Middle Channel

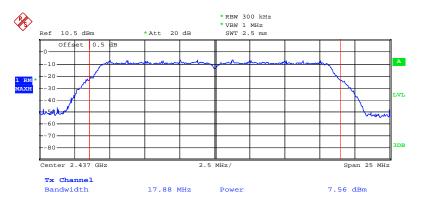
Date: 9.JUL.2014 01:04:21

802.11b High Channel


Date: 9.JUL.2014 01:05:01

SIEMIC, INC. Accessing plotal markets Title: RF Test Report for Mobile phone Main Model: L1 FLYER

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009


Report No.: Issue Date: 14050021-FCC-R3 July 09, 2014 25 of 65 Page: www.siemic.com

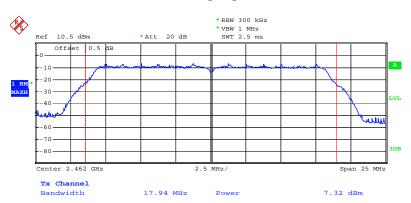
802.11g Low Channel

Date: 9.JUL.2014 01:01:10

802.11g Middle Channel

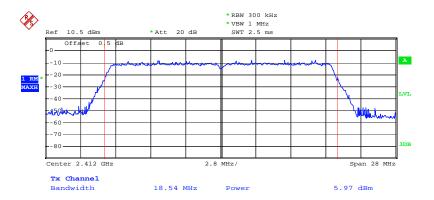
Date: 9.JUL.2014 01:00:08

SIEMIC, INC.


Accessing plobal markets
Title: RF Test Report for Mobile phone
Main Model: L1 FLYER

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page:

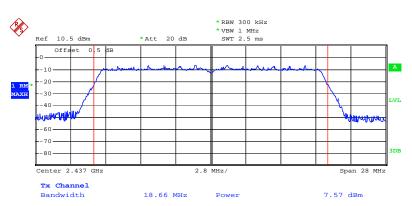

14050021-FCC-R3 July 09, 2014 26 of 65 www.siemic.com

802.11g High Channel

Date: 9.JUL.2014 01:02:15

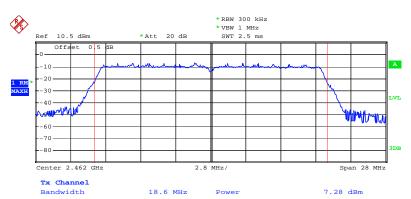
802.11n Low Channel

Date: 9.JUL.2014 01:07:07


SIEMIC, INC. Accessing plobal markets
Title: RF Test Report for Mobile phone
Main Model: L1 FLYER

Serial Model: N/A
To: FCC Part 15.247: 2013, ANSI C63.4: 2009

Report No.: Issue Date: Page:


14050021-FCC-R3 July 09, 2014 27 of 65 www.siemic.com

802.11n Middle Channel

Date: 9.JUL.2014 01:08:16

802.11n High Channel

Date: 9.JUL.2014 01:09:59

5.5 §15.247(e) - Power Spectral Density

1. <u>Conducted Measurement</u>

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Environmental Conditions Temperature 20°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30 MHz - 40 GHz is $\pm 1.5 dB$.

4. Test date :June 03, 2014

Tested By: Kevin Tian

Requirement(s):

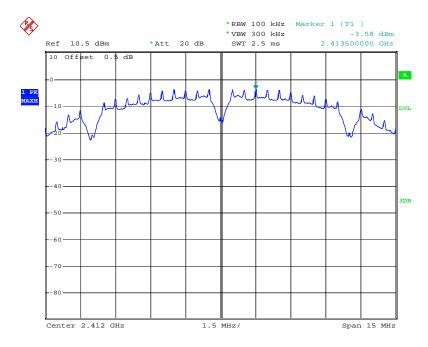
A conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the DTS bandwidth is specified during any time interval of continuous transmission.4 By rule, the same method as used to determine the conducted output power shall be used to determine the power spectral density (i.e., if maximum peak conducted output power was measured then the peak PSD procedure shall be used and if maximum conducted output power was measured then the average PSD procedure shall be used).

If the average PSD is measured with a power averaging (RMS) detector or a sample detector, then the spectrum analyzer must be capable of utilizing a number of measurement points in each sweep that is greater than or equal to twice the span/RBW in order to ensure bin-to-bin spacing of \leq RBW/2 so that narrowband signals are not lost between frequency bins.

Procedures:

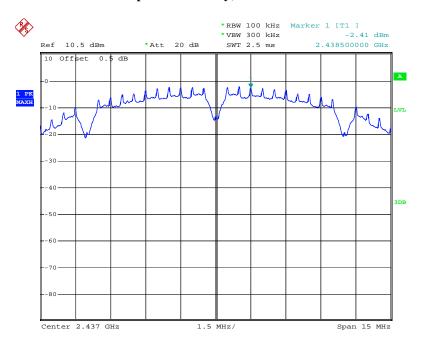
This procedure must be used if maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit, and is optional if the maximum (average) conducted output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

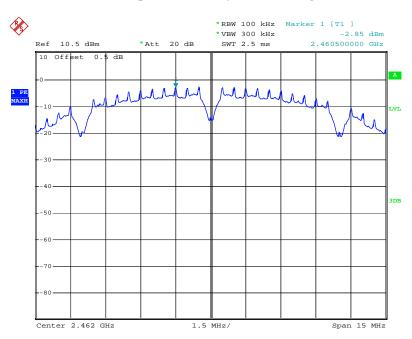

Test Result: Pass.

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 29 of 65 www.siemic.com

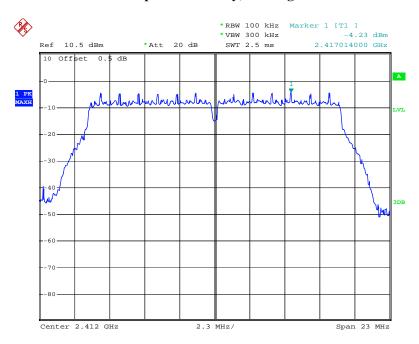
Please refer to the following tables and plots.


Channel	Frequency (MHz)	Data Rate	PSD (dBm)	Limit (dBm)			
	802.11b mode						
Low	2412	1	-3.58	8			
Middle	2437	1	-2.41	8			
High	2462	1	-2.85	8			
		802.11g mo	de				
Low	2412	6	-4.23	8			
Middle	2437	6	-3.85	8			
High	2462	6	-4.80	8			
	802.11n mode						
Low	2412	MCS0	-4.05	8			
Middle	2437	MCS0	-3.82	8			
High	2462	MCS0	-3.70	8			

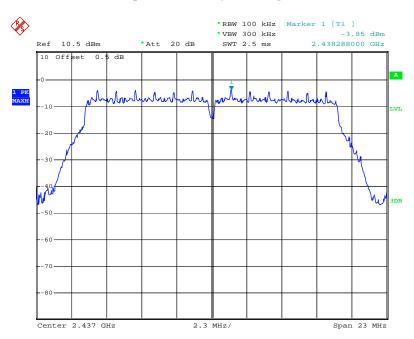
Power Spectral Density, 802.11b Low Channel


Date: 3.JUN.2014 22:00:45

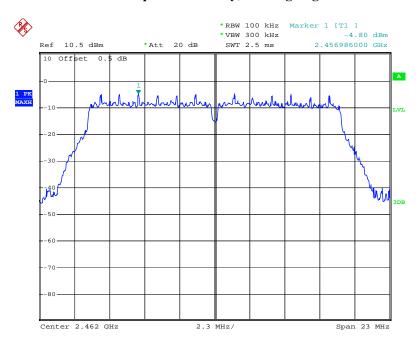
Power Spectral Density, 802.11b Middle Channel


Date: 3.JUN.2014 22:02:08

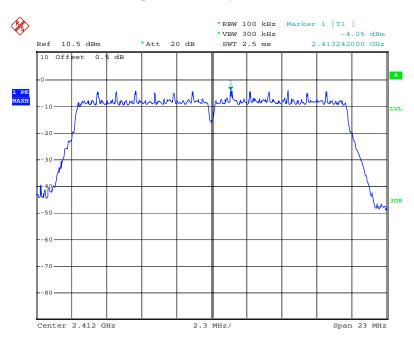
Power Spectral Density, 802.11b High Channel


Date: 3.JUN.2014 22:03:02

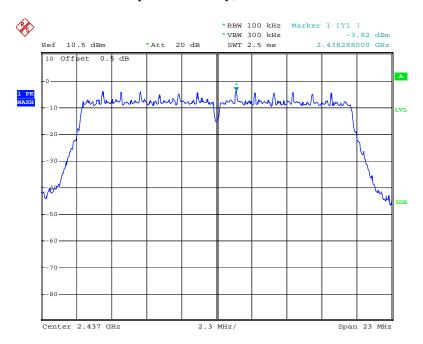
Power Spectral Density, 802.11g Low Channel


Date: 3.JUN.2014 21:57:06

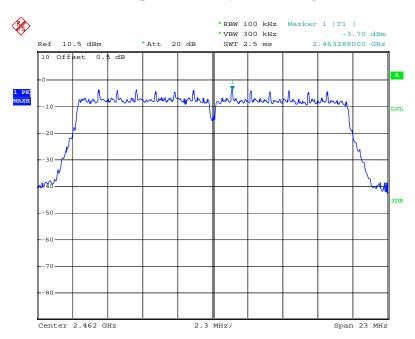
Power Spectral Density, 802.11g Middle Channel


Date: 3.JUN.2014 21:58:15

Power Spectral Density, 802.11g High Channel


Date: 3.JUN.2014 21:59:39

Power Spectral Density, 802.11n Low Channel


Date: 3.JUN.2014 21:55:59

Power Spectral Density, 802.11n Middle Channel

Date: 3.JUN.2014 21:55:03

Power Spectral Density, 802.11n High Channel

Date: 3.JUN.2014 21:54:14

14050021-FCC-R3 July 09, 2014 34 of 65 www.siemic.com

5.6 <u>§15.247(d) –Band-Edge & Unwanted Emissions into Non-Restricted Frequency Bands</u>

1. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c))

Environmental Conditions Temperature 20 °C
 Relative Humidity 50%
 Atmospheric Pressure 1019mbar

3. Test date: June 05 to July 09, 2014

Tested By: Kevin Tian

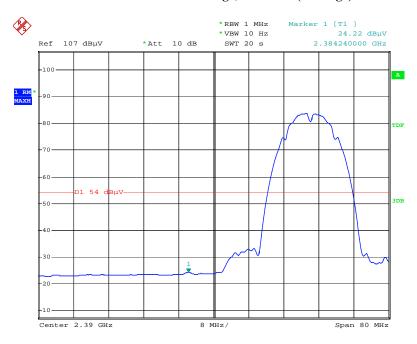
Standard Requirement:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Procedures: (Radiated Method Only)

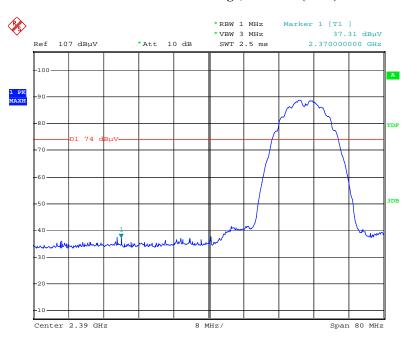
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Put it on the Rotated table and turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. First, set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, check the emission of EUT, if pass then set Spectrum Analyzer as below:
 - a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
 - b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
 - c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth for Average detection (AV) as below at frequency above 1GHz.
 - \Box 1 kHz (Duty cycle < 98%) \blacksquare 10 Hz (Duty cycle > 98%)
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Note:


For Hopping device, should test hopping mode and CW Tx mode separately. For hopping mode, find out the worst points outside the frequency band firstly, then set the worst points as the center frequency, use above average 3 (c) spectrum analyzer set, find out the final worst average value separately.

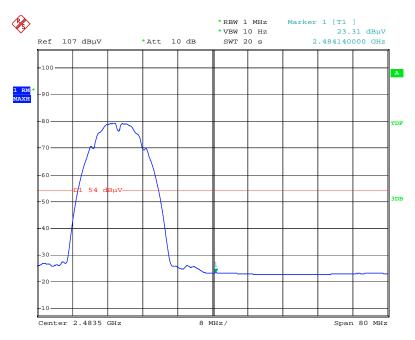
Test Result: Pass.

Please refer to the following tables and plots.

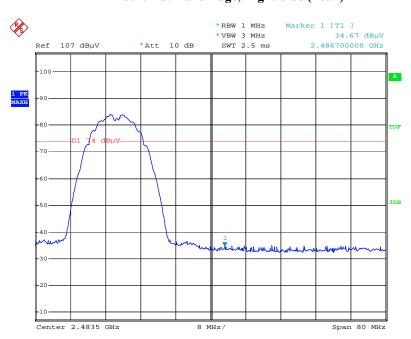

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 36 of 65 www.siemic.com

802.11b: Band Edge, Left Side (Average)

Date: 9.JUL.2014 01:14:28

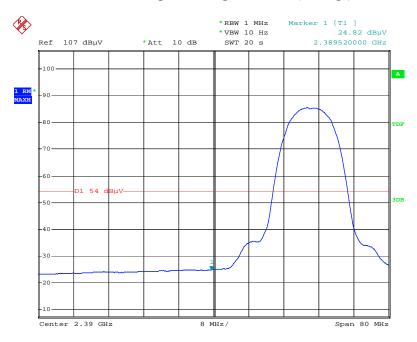

802.11b: Band Edge, Left Side (Peak)

Date: 9.JUL.2014 01:18:20

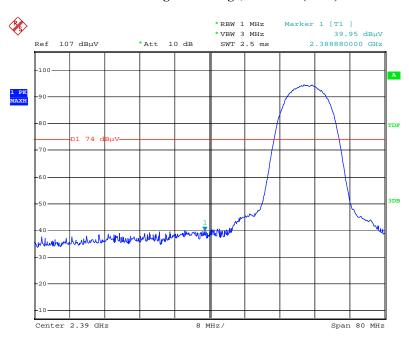

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 37 of 65 www.siemic.com

802.11b: Band Edge, Right Side (Average)

Date: 9.JUL.2014 01:26:17

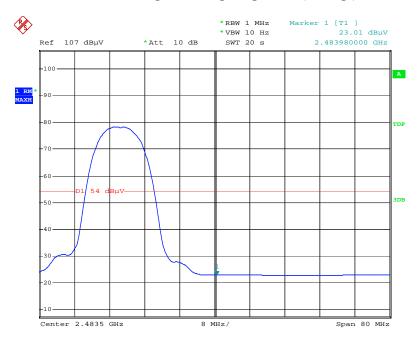

802.11b: Band Edge, Right Side (Peak)

Date: 9.JUL.2014 01:22:56

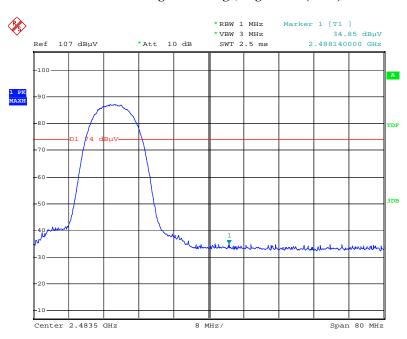

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 38 of 65 www.siemic.com

802.11g: Band Edge, Left Side (Average)

Date: 9.JUL.2014 01:51:51

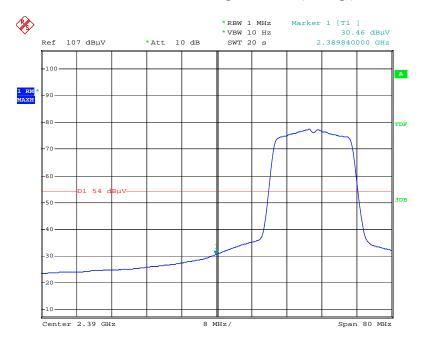

802.11g: Band Edge, Left Side (Peak)

Date: 9.JUL.2014 01:48:09

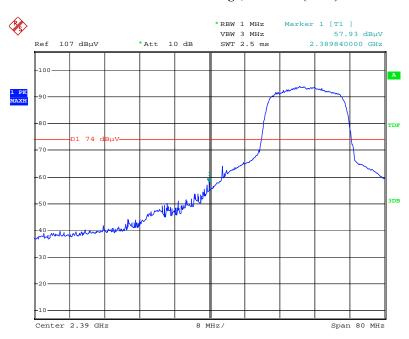

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 39 of 65 www.siemic.com

802.11g: Band Edge, Right Side (Average)

Date: 9.JUL.2014 01:55:13

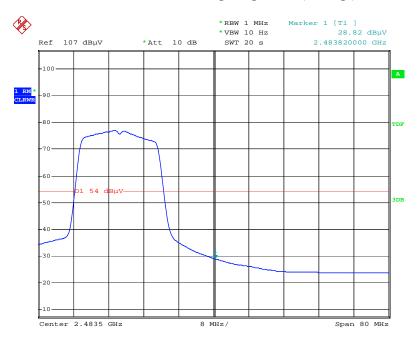

802.11g: Band Edge, Right Side (Peak)

Date: 9.JUL.2014 01:58:50

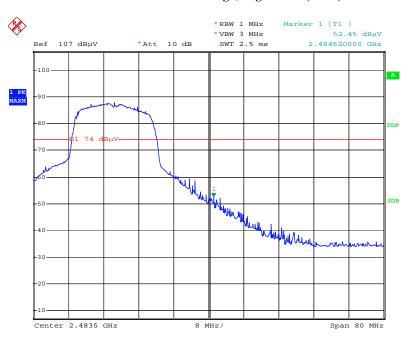

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 40 of 65 www.siemic.com

802.11n: Band Edge, Left Side (Average)

Date: 9.JUL.2014 01:35:23


802.11n: Band Edge, Left Side (Peak)

Date: 9.JUL.2014 14:23:16


Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 41 of 65 www.siemic.com

802.11n: Band Edge, Right Side (Average)

Date: 9.JUL.2014 01:38:56

802.11n: Band Edge, Right Side (Peak)

Date: 9.JUL.2014 01:42:47

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 42 of 65 www.siemic.com

5.7 §15.207 (a) - AC Power Line Conducted Emissions

Requirement:

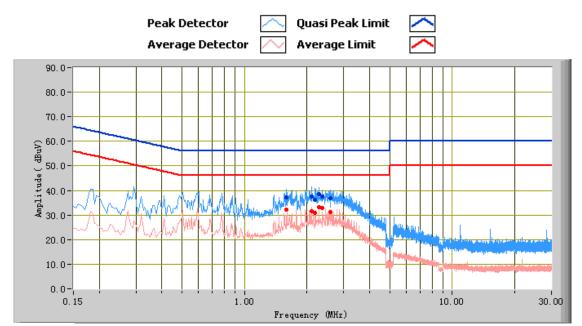
	Conducted lin	nit (dBμV)
Frequency of emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5–5	56	46
5–30	60	50

^{*}Decreases with the logarithm of the frequency.

Procedures:

- 1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR and Average detectors, are reported. All other emissions were relatively insignificant.
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. <u>Conducted Emissions Measurement Uncertainty</u>

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 9kHz - 30MHz (Average & Quasi-peak) is $\pm 3.5dB$.

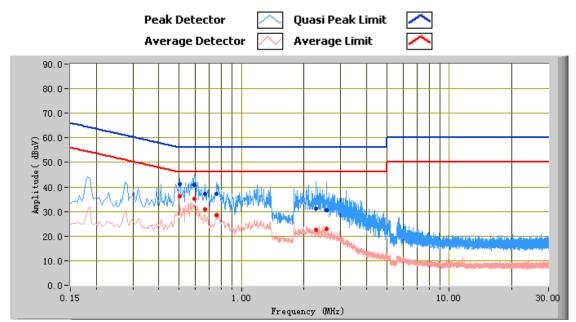

4. Environmental Conditions Temperature 20°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

5. Test date: May 30, 2014 Tested By: Kevin Tian

Report No.: Issue Date: Page: 14050021-FCC-R3 July 09, 2014 43 of 65 www.siemic.com

Test Mode: Transmitting Mode(Worse Case)


Test Data

Phase Line Plot at 120Vac, 60Hz

Thuse Elife Flot at 120 vac, vollz									
Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)		
2.10	37.40	56.00	-18.60	31.42	46.00	-14.58	10.88		
2.28	38.36	56.00	-17.64	33.24	46.00	-12.76	10.88		
2.18	36.05	56.00	-19.95	31.04	46.00	-14.96	10.88		
1.59	37.14	56.00	-18.86	32.13	46.00	-13.87	10.80		
2.59	36.80	56.00	-19.20	31.23	46.00	-14.77	10.88		
2.37	37.52	56.00	-18.48	32.94	46.00	-13.06	10.88		

Report No.: Issue Date: Page: 14050021-FCC-R3 July 09, 2014 44 of 65 www.siemic.com

Test Mode: Transmitting Mode(Worse Case)

Test Data

Phase Neutral Plot at 120Vac, 60Hz

1 11450 1 (040141 1 100 40 120) 409 00112									
Frequency (MHz)	Quasi Peak (dBµV)	Limit (dBµV)	Margin (dB)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Factors (dB)		
0.59	40.70	56.00	-15.30	35.36	46.00	-10.64	10.99		
0.51	41.24	56.00	-14.76	36.25	46.00	-9.75	11.05		
2.29	31.32	56.00	-24.68	22.64	46.00	-23.36	10.92		
0.76	37.29	56.00	-18.71	28.41	46.00	-17.59	10.87		
2.56	30.71	56.00	-25.29	22.83	46.00	-23.17	10.93		
0.67	37.11	56.00	-18.89	30.83	46.00	-15.17	10.94		

Report No.: Issue Date: Page: 14050021-FCC-R3 July 09, 2014 45 of 65 www.siemic.com

5.8 §15.209, §15.205 & §15.247(d) - Radiated Spurious Emissions & Unwanted Emissions into Restricted Frequency Bands

- 1. <u>All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.</u>
- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 1GHz & 1GHz above (3m & 10m) is \pm -6dB.

4. Environmental Conditions Temperature 20°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

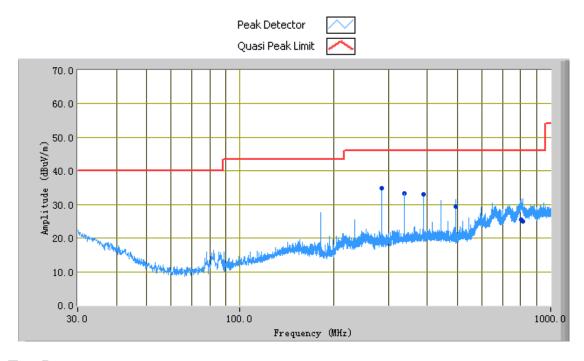
5. Test date : June 06, 2014 Tested By : Kevin Tian

Requirement:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Procedures:

- 1. The EUT was switched on and allowed to warm up to its normal operating condition.
- 2. The test was carried out at the selected frequency points obtained from the EUT characterisation. Maximization of the emissions was carried out by rotating the EUT, changing the antenna polarization, and adjusting the antenna height in the following manner:
- a. Vertical or horizontal polarisation (whichever gave the higher emission level over a full rotation of the EUT) was chosen.
 - b. The EUT was then rotated to the direction that gave the maximum emission.
 - c. Finally, the antenna height was adjusted to the height that gave the maximum emission.
- 3. A Quasi-peak measurement was then made for that frequency point for below 1GHz test, PK and AV for above 1GHz emission test.
 - a. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasiy Peak detection at frequency below 1GHz.
 - b. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
 - c. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth for Average detection (AV) as below at frequency above 1GHz.


 \Box 1 kHz (Duty cycle < 98%) \blacksquare 10 Hz (Duty cycle > 98%)

4. Steps 2 and 3 were repeated for the next frequency point, until all selected frequency points were measured.

Test Result: Pass

Test Mode:	Transmitting Mode(Worse Case)
------------	-------------------------------

(Below 1GHz)

Test Data

Vertical & Horizontal Polarity Plot @3m

Frequency (MHz)	Quasi Peak (dBμV/m)	Azimuth	Polarity (H/V)	Height (cm)	Factors (dB)	Limit (dBµV/m)	Margin (dB)
285.98	34.92	281.00	Н	103.00	-29.69	46.00	-11.08
389.98	33.10	292.00	Н	101.00	-28.28	46.00	-12.90
337.99	33.40	194.00	V	136.00	-28.52	46.00	-12.60
810.63	24.96	188.00	Н	109.00	-17.51	46.00	-21.04
800.44	25.53	124.00	Н	232.00	-17.47	46.00	-20.47
494.03	29.42	227.00	V	118.00	-28.67	46.00	-16.58

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 47 of 65 www.siemic.com

Above 1 GHz:

Test Mode: Transmitting

Note: Other modes were verified, only the result of worst case basic rate mode was presented.

Mode: 802.11b Low Channel (2412 MHz)

Frequency	Substituted level	Detector	Direction	Height	Polarity	Ant.	Cable	Pre- Amp.	Cord.	Limit	Margin
(MHz)	$(dB\mu V/m)$	(PK/AV)	(degree)	(cm)	(H/V)	Factor	Loss	Gain	Amp.	$(dB\mu V/m)$	(dB)
						(dB/m)	(dB)	(dB)	$(dB\mu V/m)$		
4824	27.26	AV	125	120	V	33.83	12.83	55	48.26	54	-5.74
4824	28.12	AV	143	120	Н	33.83	12.83	55	49.12	54	-4.88
4824	39.15	PK	205	120	V	33.83	12.83	55	60.15	74	-13.85
4824	40.25	PK	155	120	Н	33.83	12.83	55	61.25	74	-12.75
5585.4	28.2	AV	333	100	V	34.29	14.33	55	48.16	54	-5.84
5585.4	29.33	AV	216	130	Н	34.29	14.33	55	49.29	54	-4.71
5585.4	35.19	PK	310	150	V	34.29	14.33	55	55.15	74	-18.85
5585.4	38.98	PK	259	130	Н	34.29	14.33	55	58.94	74	-15.06

Middle Channel (2437 MHz)

Frequency	Substituted level	Detector	Direction	Height	Polarity	Ant.	Cable	Pre- Amp.	Cord.	Limit	Margin
(MHz)	$(dB\mu V/m)$	(PK/AV)	(degree)	(cm)	(H/V)	Factor	Loss	Gain	Amp.	$(dB\mu V/m)$	(dB)
						(dB/m)	(dB)	(dB)	(dBµV/m)		
4874	25.52	AV	254	110	V	33.83	12.98	55	46.37	54	-7.63
4874	26.43	AV	74	130	Н	33.83	12.98	55	47.28	54	-6.72
4874	39.66	PK	124	110	V	33.83	12.98	55	60.51	74	-13.49
4874	41.46	PK	213	100	Н	33.83	12.98	55	62.31	74	-11.69
5568.5	28.86	AV	165	110	V	34.29	14	55	49.15	54	-4.85
5568.5	29.83	AV	95	130	Н	34.29	14	55	50.12	54	-3.88
5568.5	38.08	PK	167	110	V	34.29	14	55	58.37	74	-15.63
5568.5	37.76	PK	342	140	Н	34.29	14	55	58.05	74	-15.95

High Channel (2462 MHz)

Frequency	Substituted level	Detector	Direction	Height	Polarity	Ant.	Cable	Pre- Amp. Gain	Cord.	Limit	Margin
(MHz)	(dBµV/m)	(PK/AV)	(degree)	(cm)	(H/V)	Factor (dB/m)	Loss (dB)	(dB)	Amp. (dBμV/m)	(dBµV/m)	(dB)
4924	15.91	AV	302	120	V	33.83	3.3	55	46.44	54	-7.56
4924	16.68	AV	258	110	Н	33.83	3.3	55	47.21	54	-6.79
4924	30.08	PK	133	120	V	33.83	3.3	55	60.61	74	-13.39
4924	31.96	PK	285	130	Н	33.83	3.3	55	62.49	74	-11.51
5575.4	18.64	AV	109	110	V	34.29	3.8	55	49.13	54	-4.87
5575.4	18.85	AV	220	120	Н	34.29	3.8	55	49.34	54	-4.66
5575.4	27.82	PK	125	110	V	34.29	3.8	55	58.31	74	-15.69
5575.4	27.65	PK	262	130	Н	34.29	3.8	55	58.14	74	-15.86

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 48 of 65 www.siemic.com

Annex A. TEST INSTRUMENT

Annex A.i. TEST INSTRUMENTATION

Instrument	Model	Serial #	Calibration Date	Calibration Due Date
AC Line Conducted Emissions				
R&S EMI Test Receiver	ESPI3	101216	09/27/2013	09/26/2014
V-LISN	ESH3-Z5	838979/005	09/27/2013	09/26/2014
Com-Power Transient Limiter	LIT-153	531021	09/27/2013	09/26/2014
SIEMIC Labview Conducted Emissions software	V1.0	N/A	N/A	N/A
RF conducted test				
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	CFG038	10/25/2013	10/24/2014
Power Splitter	1#	1#	02/02/2014	02/01/2015
Temperature/Humidity Chamber	1007H	N/A	01/07/2014	01/06/2015
DC Power Supply	E3640A	MY4000401 3	03/22/2014	03/21/2015
Radiated Emissions				
Hp Spectrum Analyzer	8563E	3821A09023	09/27/2013	09/26/2014
R&S EMI Receiver	ESPI3	101216	09/27/2013	09/26/2014
Antenna (30MHz~6GHz)	JB6	A121411	04/15/2014	04/14/2015
EMCO Horn Antenna (1 ~18GHz)	3115	N/A	10/09/2013	10/08/2014
Horn Antenna (18~40GHz)	AH-840	101013	04/22/2014	04/21/2015
Microwave Pre-Amp (18~40GHz)	PA-840	181250	05/29/2014	05/28/2015
Hp Agilent Pre-Amplifier	8447F	1937A01160	10/27/2013	10/26/2014
MITEQ Pre-Amplifier (0.1 ~ 18GHz)	AMF-7D- 00101800- 30-10P	1451709	10/27/2013	10/26/2014

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 49 of 65 www.siemic.com

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph: EUT External Photo

All Packages - Front View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 50 of 65 www.siemic.com

EUT - Front View

EUT - Rear View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 51 of 65 www.siemic.com

EUT – Top View

EUT – Bottom View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 52 of 65 www.siemic.com

EUT – Left View

EUT – Right View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 53 of 65 www.siemic.com

Annex B.ii. Photograph 2: EUT Internal Photo

BT/WIFI Antenna

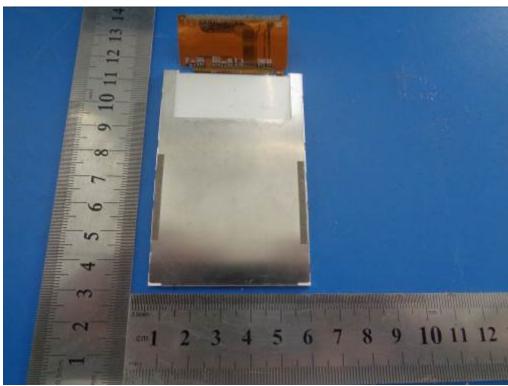
GSM/WCDMA Antenna

EUT - Uncover Front View 1

EUT – Uncover Front View 2

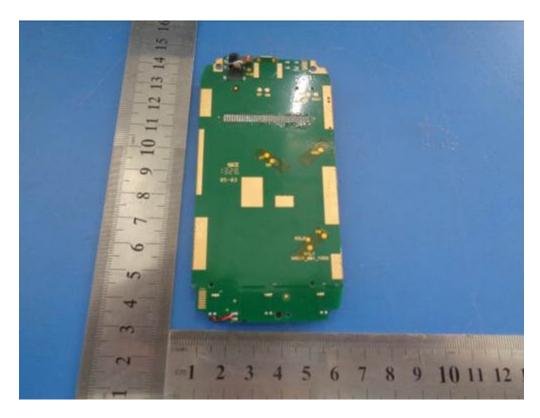
Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 54 of 65 www.siemic.com

EUT – Battery Front View

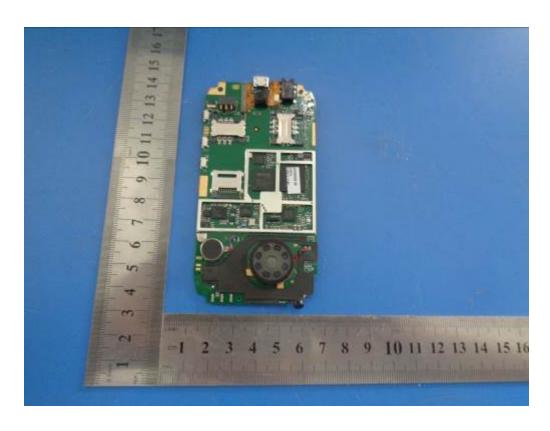

EUT – Battery Rear View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 55 of 65 www.siemic.com

LCD - Front View


LCD - Rear View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 56 of 65 www.siemic.com



EUT – PCB Front View

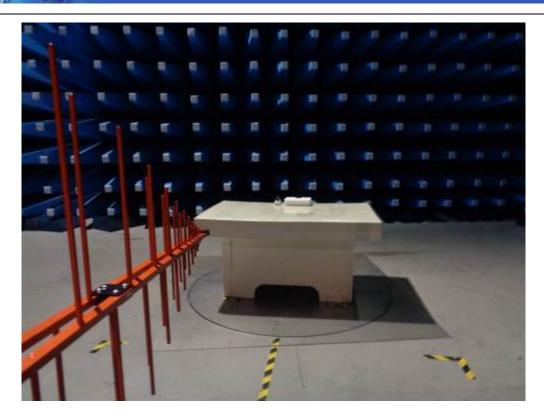
EUT – PCB Rear View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 57 of 65 www.siemic.com

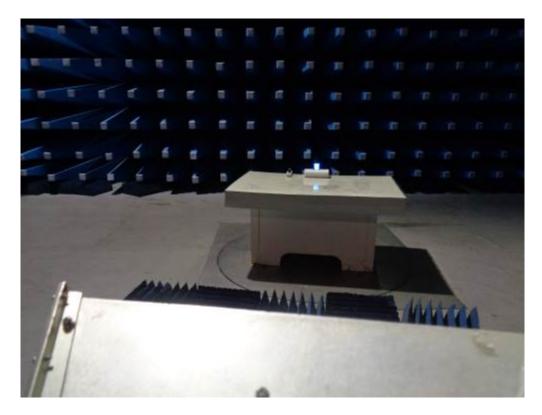
EUT – PCB Shielding Off Front View

| Report No.: 14050021-FCC-R3 | Issue Date: July 09, 2014 | Page: 58 of 65 | www.siemic.com

Annex B.iii. Photograph 3: Test Setup Photo



Conducted Emissions Test Setup – Front View



Conducted Emissions Test Setup – Side View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 59 of 65 www.siemic.com

Radiated Spurious Emissions Test Setup Below 1GHz - Front View

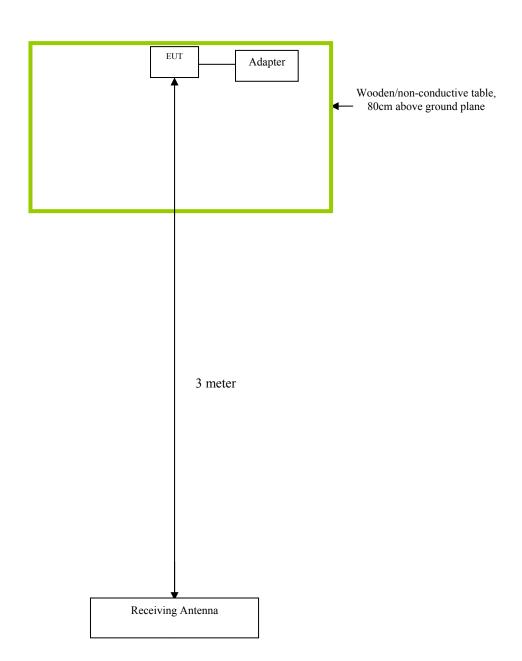
Radiated Spurious Emissions Test Setup Above 1GHz -Front View

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 60 of 65 www.siemic.com

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION


The following is a description of supporting equipment and details of cables used with the EUT.

	Manufacturer	Equipment Description (Including Brand Name)	Model	Calibration Date	Calibration Due Date
ĺ	N/A	N/A	N/A	N/A	N/A

Block Configuration Diagram for AC Line Conducted Emissions

Block Configuration Diagram for Radiated Emissions

Report No.: Issue Date: 14050021-FCC-R3 July 09, 2014 63 of 65 Page:

www.siemic.com

Annex C.ii. **EUT OPERATING CONDITIONS**

The following is the description of how the EUT is exercised during testing.

Test	Description Of Operation
Emissions Testing	The EUT was continuously transmitting to stimulate the worst case.

Report No.: Issue Date: 14050021-FCC-R3 July 09, 2014 64 of 65 Page:

www.siemic.com

Annex D. LIST USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART

Please see attachment

Report No.: 14050021-FCC-R3 Issue Date: July 09, 2014 Page: 65 of 65 www.siemic.com

Annex E. DECLARATION OF SIMILARITY

N/A