

Product Name: Set Top Box	Report No: FCC022022-05669RF1
Product Model: UIW4054MIL	Security Classification: Open
Version: V1.0	Total Page: 26

TIRT Testing Report

Prepared By:	Checked By:	Approved By:	A circular blue stamp with the text "TIRT Technology Service Co., Ltd." around the perimeter and "Shenzhen" in the center.
Stone Tang	Randy Lv	Daniel Chen	
Stone Tang	Randy Lv	Daniel Chen	

FCC Radio Test Report

FCC ID: G95UIW4054

This report concerns: Class II Permissive Change

Equipment : Set Top Box
Brand Name : Technicolor
Test Model : UIW4054MIL
Series Model : N/A
Applicant : Technicolor Connected Home USA LLC
Address : 4855 Peachtree Industrial Blvd, Suite 200, Norcross, GA 30092, USA
Manufacturer : Technicolor Connected Home USA LLC
Address : 4855 Peachtree Industrial Blvd, Suite 200, Norcross, GA 30092, USA
Date of Receipt : 2022.08.08
Date of Test : 2022.08.10 ~ 2022.10.29
Issued Date : 2022.11.02
Report Version : V1.0
Test Sample : Engineering Sample No.: 20220808019075
Standard(s) : FCC CFR Title 47, Part 15, Subpart C
FCC KDB 558074 D01 15.247 Meas Guidance v05r02
ANSI C63.10-2013

- The test result referred exclusively to the presented test model /sample.
- Without written approval of TIRT Inc. the test report shall not reproduced except in full.

Lab: Beijing TIRT Technology Service Co.,Ltd Shenzhen

Add: 101, 3 # Factory Building, Gongjin Electronics Shatin Community, Kengzi
Street, Pingshan District, Shenzhen , China

TEL: +86-0755-27087573

Table of Contents	Page
REPORT ISSUED HISTORY	4
1 . SUMMARY OF TEST RESULTS	5
1.1 TEST LOCATION	6
1.2 MEASUREMENT UNCERTAINTY	6
1.3 TEST ENVIRONMENT CONDITIONS	6
2 . GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF EUT	7
2.2 DESCRIPTION OF TEST MODES	9
2.3 PARAMETERS OF TEST SOFTWARE	10
2.4 SUPPORT UNITS	10
3 . AC POWER LINE CONDUCTED EMISSIONS	11
3.1 LIMIT	11
3.2 TEST PROCEDURE	11
3.3 DEVIATION FROM TEST STANDARD	11
3.4 TEST SETUP	12
3.5 EUT OPERATION CONDITIONS	12
3.6 TEST RESULTS	12
4 . RADIATED EMISSIONS	13
4.1 LIMIT	13
4.2 TEST PROCEDURE	14
4.3 DEVIATION FROM TEST STANDARD	15
4.4 TEST SETUP	15
4.5 EUT OPERATION CONDITIONS	16
4.6 TEST RESULTS - 9 KHZ TO 30 MHZ	16
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ	16
5 . MEASUREMENT INSTRUMENTS LIST	17
6 . EUT TEST PHOTO	18
APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS	20
APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ	23
APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ	24

REPORT ISSUED HISTORY

Report No.	Version	Description	Issued Date	Note
FCC022022-05669RF1	V1.0	<p>Compared with original report (BTL-FCCP-3-2104C150A), PCB Layout changes from LAB3D version to LAB3E version. Please see the following table for details.</p> <p>So, the AC Power Line Conducted Emissions, Radiated Emissions the worst case have been re-evaluated.</p> <p>In this report only updated the test results for AC Power Line Conducted Emissions , Radiated Emissions below 1GHz, other are kept the same.</p>	2022.11.02	Valid

Change ID	PCB Layout changes from LAB3D version to LAB3E version
1	Due to UP06(RT9041B-10GE_SOT23-6) shortage, co-layout SOT23-5 part. Add RP98 and RP99 for SWAP.
2	Improved +5V_SW Power plan below HDMI connector in Layer 3. Replace power ground with track to reduce coupling from this power to HDMI signal.

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC CFR Title 47, Part 15, Subpart C			
Standard(s) Section	Test Item	Test Result	Remark
15.207	AC Power Line Conducted Emissions	PASS	-----
15.247(d) 15.205(a) 15.209(a)	Radiated Emissions	PASS	Note(3)
15.247(a)(2)	Bandwidth	PASS	Note(3)
15.247(b)(3)	Maximum Output Power	PASS	Note(3)
15.247(d)	Conducted Spurious Emissions	PASS	Note(3)
15.247(e)	Power Spectral Density	PASS	Note(3)
15.203	Antenna Requirement	PASS	Note(2)

Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a permanently attached antenna were considered sufficient to comply with the provisions of 15.203.
- (3) For test item: Radiated Emissions above 1GHz, Bandwidth, Conducted Spurious Emissions, Maximum Output Power and Power Spectral Density, Please refer to original report (BTL-FCCP-3-2104C150A).

1.1 TEST LOCATION

Company:	Beijing TIRT Technology Service Co., Ltd Shenzhen
Address:	101,3 # Factory Building, Gongjin Electronics Shatin Community, Kengzi Street, Pingshan District, Shenzhen, China
CNAS Registration Number:	CNAS L14158
A2LA Registration Number	6049.01
Telephone:	+86-0755-27087573

1.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2))

The TIRT measurement uncertainty as below table:

Uncertainty	Parameter	Uncertainty
	Occupied Channel Bandwidth	±142.12 kHz
	RF power conducted	±0.74 dB
	RF power radiated	±3.25dB
	Spurious emissions, conducted	±1.78dB
	Spurious emissions, radiated (30MHz~1GHz)	±4.6dB
	Spurious emissions, radiated (1GHz ~ 18GHz)	±4.9dB
	Conduction Emissions(150kHz~30MHz)	±3.1 dB
	Humidity	±4.6%
	Temperature	±0.7°C
	Time	±1.25%

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Temperature	Humidity	Test Voltage	Tested By
AC Power Line Conducted Emissions	24.3°C	52%	AC 120V/60Hz	Stone Tang
Radiated Emissions-9kHz to 30 MHz	24.6°C	55%	AC 120V/60Hz	Stone Tang
Radiated Emissions-30 MHz to 1000 MHz	24.6°C	55%	AC 120V/60Hz	Stone Tang
Maximum Output Power	24.2°C	55%	DC 12V	Stone Tang

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Equipment	Set Top Box
Brand Name	Technicolor
Test Model	UIW4054MIL
Series Model	N/A
Model Difference(s)	N/A
Software Version	UIW4054MIL_HC_1.0
Hardware Version	LAB3E
Power Source	DC voltage supplied from AC adapter. 1#Brand / Model: MASS POWER / E012-1O120100VU 2#Brand / Model: HONOTO / ADS-12HG-12 12012EPCU
Power Rating	1# I/P: 100-240V~ 50/60Hz 0.4A O/P: 12.0V --- 1.0A 2# I/P: 100-240V~ 50/60Hz Max. 0.4A O/P: 12V --- 1.0A
Operation Frequency	2412 MHz ~ 2462 MHz
Modulation Type	IEEE 802.11b: DSSS IEEE 802.11g: OFDM IEEE 802.11n: OFDM IEEE 802.11ax: OFDMA
Bit Rate of Transmitter	IEEE 802.11b: 11/5.5/2/1 Mbps IEEE 802.11g: 54/48/36/24/18/12/9/6 Mbps IEEE 802.11n: up to 144.4 Mbps IEEE 802.11ax: up to 286.8 Mbps
Maximum Output Power Non Beamforming	IEEE 802.11n(HT20): 21.62 dBm (0.1452 W)
Maximum Output Power Beamforming	IEEE 802.11n(HT20): 21.39 dBm (0.1377 W)

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

CH01 - CH11 for IEEE 802.11b, IEEE 802.11g, IEEE 802.11n(HT20), IEEE 802.11ax(HE20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

3. Antenna Specification:

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	3.94
2	N/A	N/A	Internal	N/A	2.78

Note:

1) For CDD: Directional Gain=2.33 dBi

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

N_{SS} = the number of independent spatial streams of data;

N_{ANT} = the total number of antennas

$g_{j,k} = 10^{G_k/20}$ if the k th antenna is being fed by spatial stream j , or zero if it is not;
 G_k is the gain in dBi of the k th antenna.

2) For TXBF: Directional Gain=10log[($10^{G1/20}+10^{G2/20}+\dots+10^{GN/20}$)² / N_{ANT}]=4.98dBi.

3) The antenna gain is provided by the manufacturer.

4. For Non Beamforming:

Operating Mode	TX Mode	2TX
IEEE 802.11b		V(Ant. 1 + Ant. 2)
IEEE 802.11g		V(Ant. 1 + Ant. 2)
IEEE 802.11n(HT20)		V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)		V(Ant. 1 + Ant. 2)

For Beamforming:

Operating Mode	TX Mode	2TX
IEEE 802.11n(HT20)		V(Ant. 1 + Ant. 2)
IEEE 802.11ax(HE20)		V(Ant. 1 + Ant. 2)

2.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

Pretest Mode	Description
Mode 1	TX B Mode Channel 01/06/11
Mode 2	TX G Mode Channel 01/06/11
Mode 3	TX N(HT20) Mode Channel 01/06/11
Mode 4	TX AX(HE20) Mode Channel 01/06/11
Mode 5	TX N(HT20) Mode Channel 06

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

AC power line conducted emissions test_Non Beamforming	
Final Test Mode	Description
Mode 5	TX N(HT20) Mode Channel 06

Radiated emissions test - Below 1GHz_Non Beamforming	
Final Test Mode	Description
Mode 5	TX N(HT20) Mode Channel 06

NOTE:

- (1) All the bit rate of transmitter have been tested and found the lowest rate is found to be the worst case and recorded.
- (2) For AC power line conducted emissions and radiated emission below 1 GHz test, the TX N(HT20) Mode Channel 06 is found to be the worst case and recorded.
- (3) For radiated emission above 1 GHz test, the spurious points of 1GHz~26.5GHz have been pre-tested and in this report only recorded the worst case. The remaining spurious points are all below the limit value of 20dB.
- (4) The measurements for Output Power are tested, the Non Beamforming and Beamforming are recorded in the report. The worst case is Non Beamforming and only the worst case is documented for other test items.
- (5) For AC power line conducted emissions and radiated emissions below 1 GHz test, all adapters had been pre-tested and in this report only recorded the worst case.
- (6) IEEE 802.11ax mode only supports full RU, so only the full RU is evaluated and measured inside report.
- (7) For AC power line conducted emissions test, the prototype is tested with or without the monitor, and in this report only recorded the worst case(tested with monitor).

2.3 PARAMETERS OF TEST SOFTWARE

Non Beamforming

Test Software Version	N/A		
Frequency (MHz)	2412	2437	2462
IEEE 802.11b	75	76	77
IEEE 802.11g	66	75	70
IEEE 802.11n(HT20)	65	77	65
IEEE 802.11ax(HE20)	60	75	60

Beamforming

Test Software Version	N/A		
Frequency (MHz)	2412	2437	2462
IEEE 802.11n(HT20)	64	76	64
IEEE 802.11ax(HE20)	60	74	60

2.4 SUPPORT UNITS

Support Equipment

No.	Equipment	Brand Name	Model Name	Remarks
1	Notebook	Lenovo	L450	N/A
2	DC Cable	NO	NO	1.5m
3	RJ45 Cable	NO	NO	10m

3. AC POWER LINE CONDUCTED EMISSIONS

3.1 LIMIT

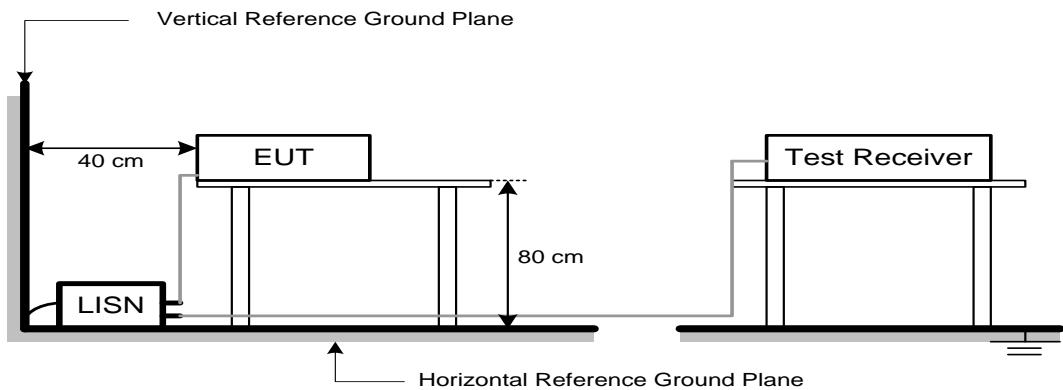
Frequency of Emission (MHz)	Limit (dB μ V)	
	Quasi-peak	Average
0.15 - 0.5	66 to 56*	56 to 46*
0.5 - 5.0	56	46
5.0 - 30.0	60	50

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

3.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


The following table is the setting of the receiver:

Receiver Parameters	Setting
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

3.5 EUT OPERATION CONDITIONS

EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULTS

Please refer to the APPENDIX A.

4. RADIATED EMISSIONS

4.1 LIMIT

In case the emission fall within the restricted band specified on 15.205(a) and RSS-Gen 8.10, then the 15.209(a) and RSS-Gen 8.9 limit in the table below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

Frequency (MHz)	(dBuV/m at 3 m)	
	Peak	Average
Above 1000	74	54

NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

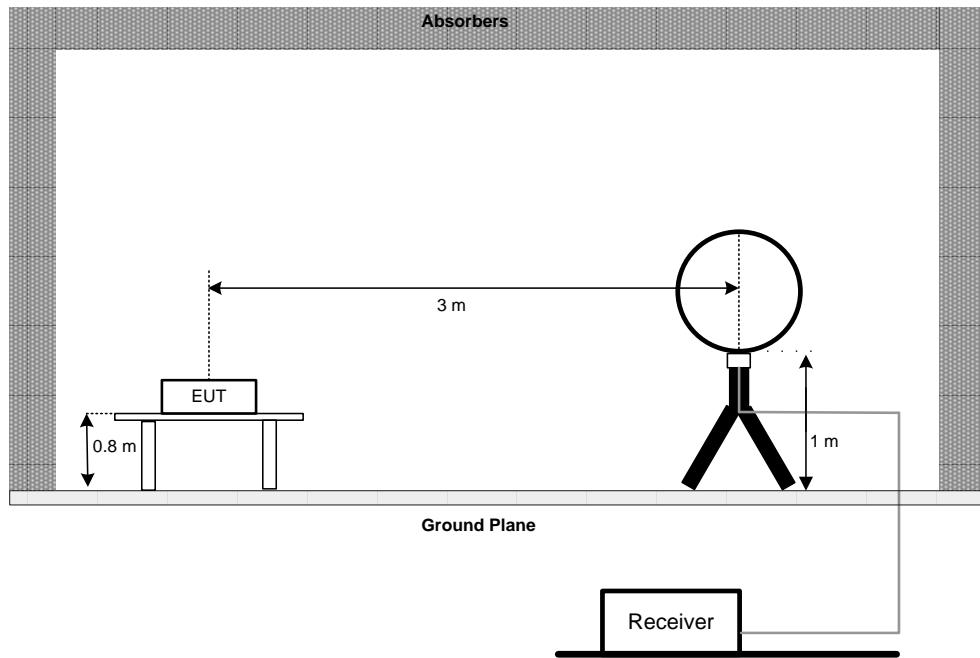
4.2 TEST PROCEDURE

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

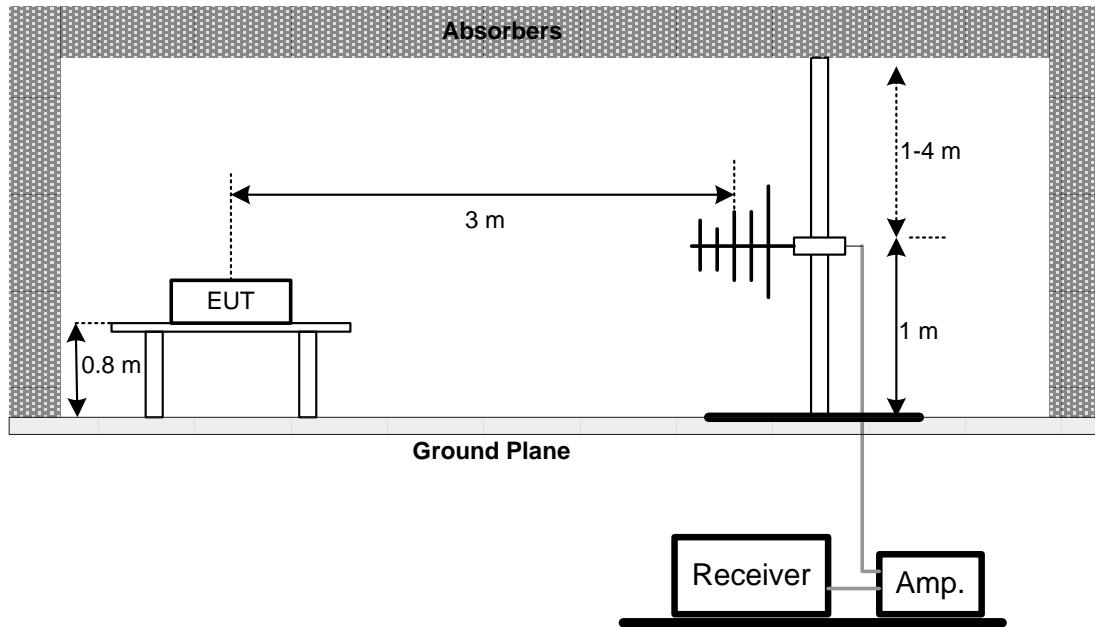
The following table is the setting of the receiver:

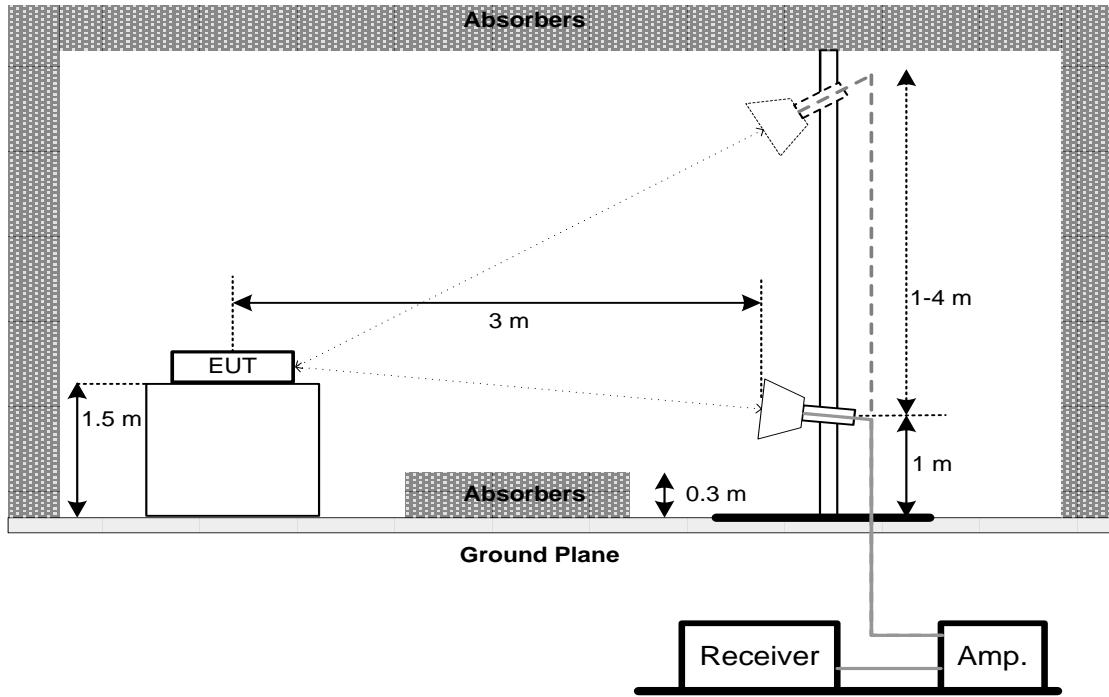
Spectrum Parameters	Setting
Start ~ Stop Frequency	9 kHz~150 kHz for RBW 200 Hz
Start ~ Stop Frequency	0.15 MHz~30 MHz for RBW 9 kHz
Start ~ Stop Frequency	30 MHz~1000 MHz for RBW 100 kHz

Spectrum Parameters	Setting
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW (Emission in restricted band)	1 MHz / 3 MHz for PK value 1 MHz / 1/T Hz for AVG value


Receiver Parameters	Setting
Start ~ Stop Frequency	9 kHz~90 kHz for PK/AVG detector
Start ~ Stop Frequency	90 kHz~110 kHz for QP detector
Start ~ Stop Frequency	110 kHz~490 kHz for PK/AVG detector
Start ~ Stop Frequency	490 kHz~30 MHz for QP detector
Start ~ Stop Frequency	30 MHz~1000 MHz for QP detector
Start ~ Stop Frequency	1 GHz~26.5 GHz for PK/AVG detector

4.3 DEVIATION FROM TEST STANDARD


No deviation.


4.4 TEST SETUP

9 kHz to 30 MHz

30 MHz to 1 GHz

Above 1 GHz**4.5 EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

4.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

Remark:

- (1) Distance extrapolation factor = $40 \log (\text{specific distance} / \text{test distance})$ (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

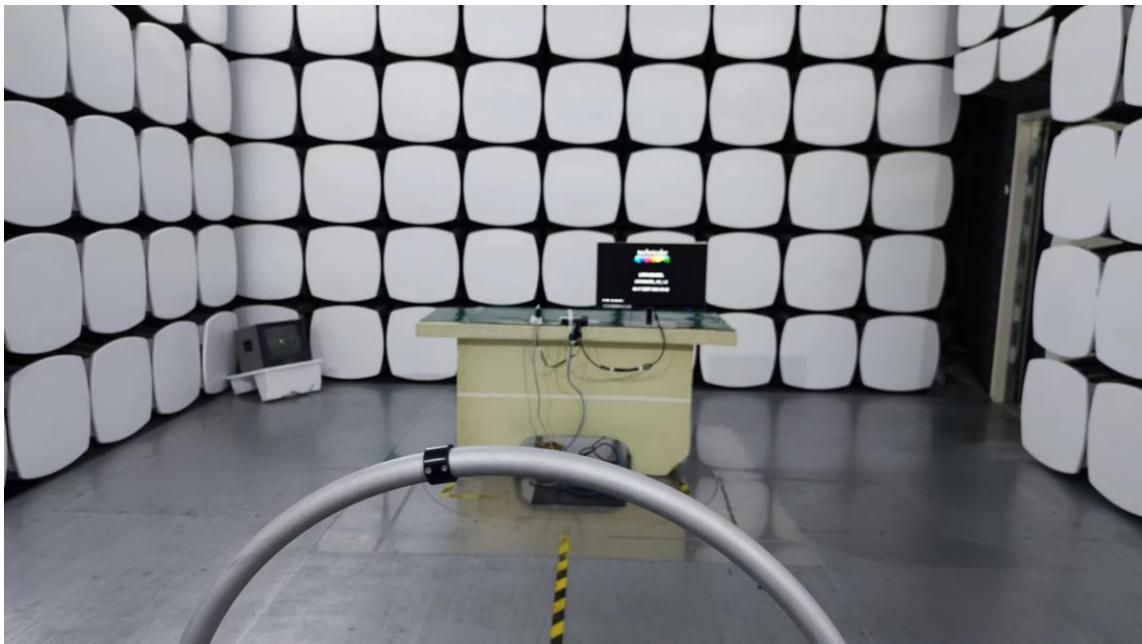
4.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

Remark:

- (1) Worst case for 2# adapter was recorded

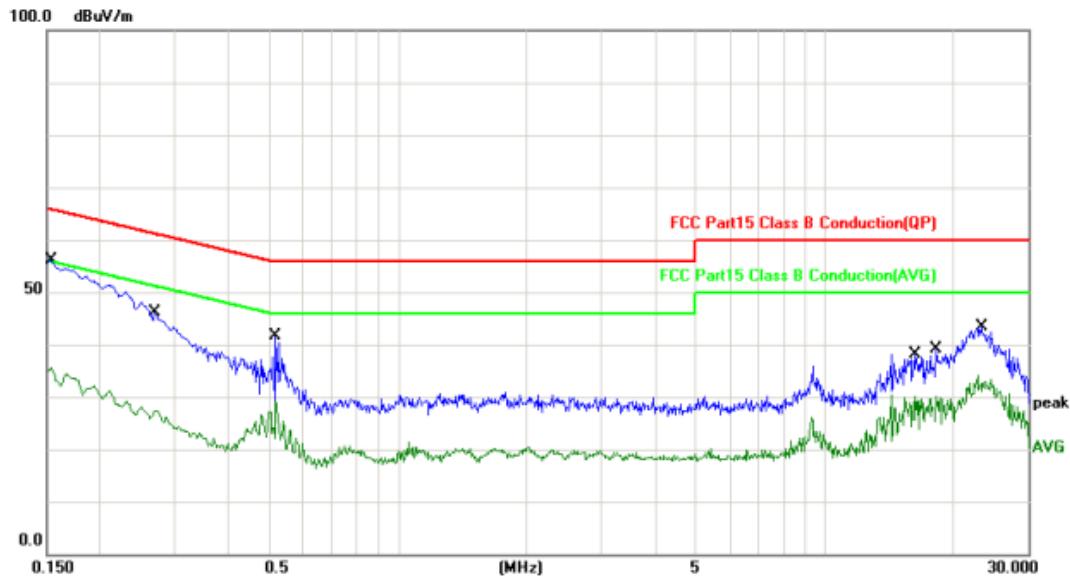
5. MEASUREMENT INSTRUMENTS LIST



No.	Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EMI Receiver	Rohde&Schwarz	ESCI	1166.5950.03	2022/11/16
2	AMN	Rohde&Schwarz	ENV216	3560.6550.05	2022/11/09
3	AMN	Schwarzbeck	NSLK8127	#829	2022/11/09
4	ECSI RF IN RF Cable	Rohde&Schwarz	RP-X1	N/A	2022/11/18
5	ECSI RF IN RF Cable	Rohde&Schwarz	Sapre sm	N/A	2022/11/09
6	EMI Receiver	Rohde&Schwarz	ESR7	102013	2022/11/09
7	Spectrum analyzer	Rohde&Schwarz	FSV30	103741	2022/11/09
8	EMI receiver	Rohde&Schwarz	ESU	100184	2023/07/20
9	Spectrum analyzer	KEYSIGHT	N9010A-44	MY51440158	2022/11/09
10	Loop Antenna*	Schwarzbeck	FMZB1519B	00029	2025/07/03
11	Integral Antenna	Schwarzbeck	VULB 9163	VULB 9163-361	2022/11/09
12	Integral Antenna	Schwarzbeck	BBHA 9120D	BBHA 9120D 1201	2022/11/09
13	Integral Antenna	Schwarzbeck	BBHA 9170	9170#685	2022/11/09
14	Preamplifier	CD Systems Inc	PAP-03036-30	85060000	2022/11/09
15	Preamplifier	Schwarzbeck	BBV9721	9721-019	2022/11/09
16	Preamplifier	emci	EMC012645SE	980417	2022/11/09
17	ECSI RF IN RF Cable	Rohde&Schwarz	AP-X1	N/A	2022/11/09
18	Spectrum Analyzer	Agilent	N9010A	MY52221119	2022/11/09
19	Power Collection Unit	Tonscend	JS0806-2	188060134	2022/11/09
20	Tonscend Test System	Tonscend	2.6.77.0518	N/A	N/A
21	10dB Attenuator	Tonscend	10dB	N/A	N/A
22	Temp&Humidity Recorder	Anymetre	JR900	N/A	2022/11/03
23	Temp&Humidity Chamber	ETOMA	NTH1100-30A	16080628	2022/11/03
24	Filter	STI	STI15-9845	N/A	N/A
25	Filter	STI	5.1G	N/A	N/A
26	Filter	STI	STI15-9845	N/A	N/A
27	Testing Software	EZ-EMC	TW-03A2	N/A	N/A

Remark: "N/A" denotes no model name, serial no. or calibration specified.

"*" calibration period of equipment list is three year.

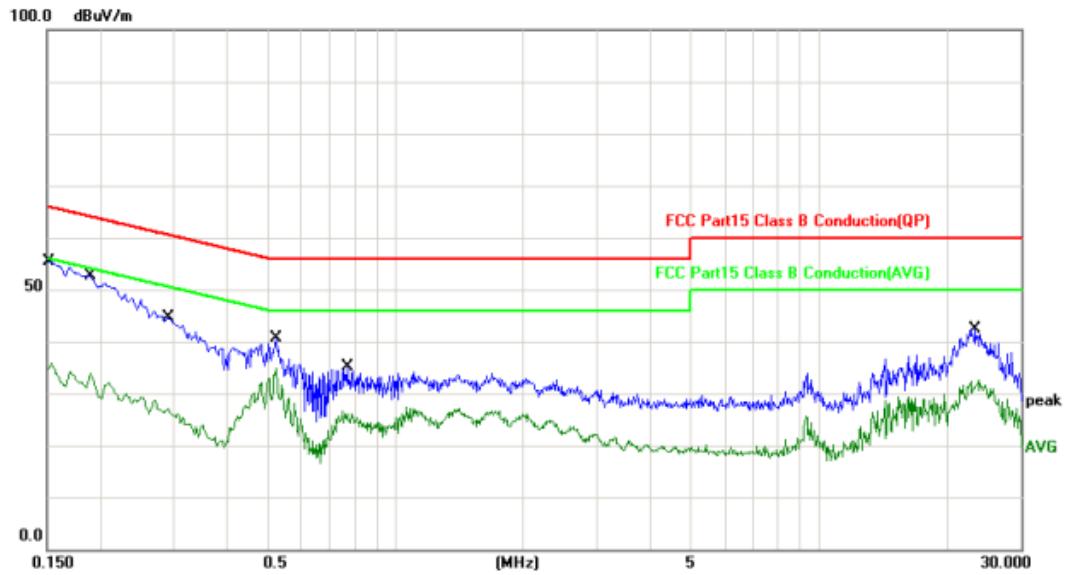

Except * item, all calibration period of equipment list is one year.

6. EUT TEST PHOTO**AC Power Line Conducted Emissions Test Photos**

Radiated Emissions Test Photos**9 kHz to 30 MHz****30 MHz to 1000 MHz**

APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS

Test Mode	TX N(HT20) Mode Channel 06	Phase	Line
-----------	----------------------------	-------	------



No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
1 *		0.1540	33.96	19.50	53.46	65.78	-12.32	QP	
2		0.1540	15.55	19.50	35.05	55.78	-20.73	AVG	
3		0.2700	23.76	19.53	43.29	61.12	-17.83	QP	
4		0.2700	6.35	19.53	25.88	51.12	-25.24	AVG	
5		0.5180	18.65	19.53	38.18	56.00	-17.82	QP	
6		0.5180	7.72	19.53	27.25	46.00	-18.75	AVG	
7		16.2260	13.56	20.72	34.28	60.00	-25.72	QP	
8		16.2260	9.01	20.72	29.73	50.00	-20.27	AVG	
9		18.2460	15.15	20.82	35.97	60.00	-24.03	QP	
10		18.2460	9.11	20.82	29.93	50.00	-20.07	AVG	
11		23.3820	17.75	20.86	38.61	60.00	-21.39	QP	
12		23.3820	11.47	20.86	32.33	50.00	-17.67	AVG	

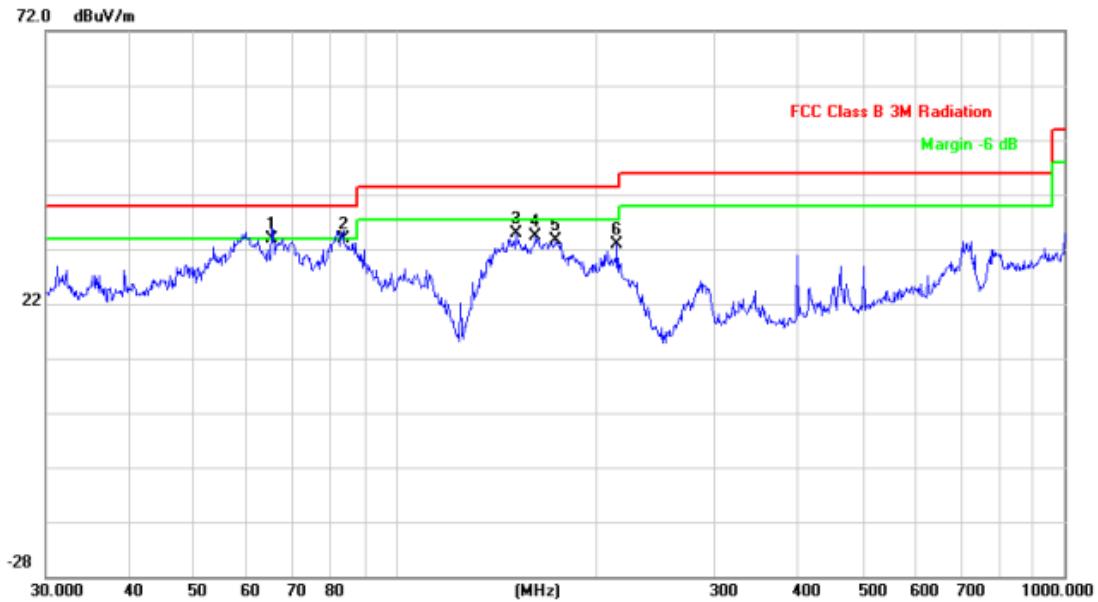
REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 06	Phase	Neutral
-----------	----------------------------	-------	---------

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Detector	Comment
			Level	Factor	ment				
1		0.1500	32.73	19.70	52.43	66.00	-13.57	QP	
2		0.1500	14.66	19.70	34.36	56.00	-21.64	AVG	
3		0.1900	29.88	19.70	49.58	64.04	-14.46	QP	
4		0.1900	12.42	19.70	32.12	54.04	-21.92	AVG	
5		0.2900	21.60	19.70	41.30	60.52	-19.22	QP	
6		0.2900	6.50	19.70	26.20	50.52	-24.32	AVG	
7		0.5220	17.84	19.74	37.58	56.00	-18.42	QP	
8 *		0.5220	14.63	19.74	34.37	46.00	-11.63	AVG	
9		0.7700	10.29	19.80	30.09	56.00	-25.91	QP	
10		0.7700	6.12	19.80	25.92	46.00	-20.08	AVG	
11		23.4740	17.43	20.40	37.83	60.00	-22.17	QP	
12		23.4740	10.74	20.40	31.14	50.00	-18.86	AVG	

REMARKS:

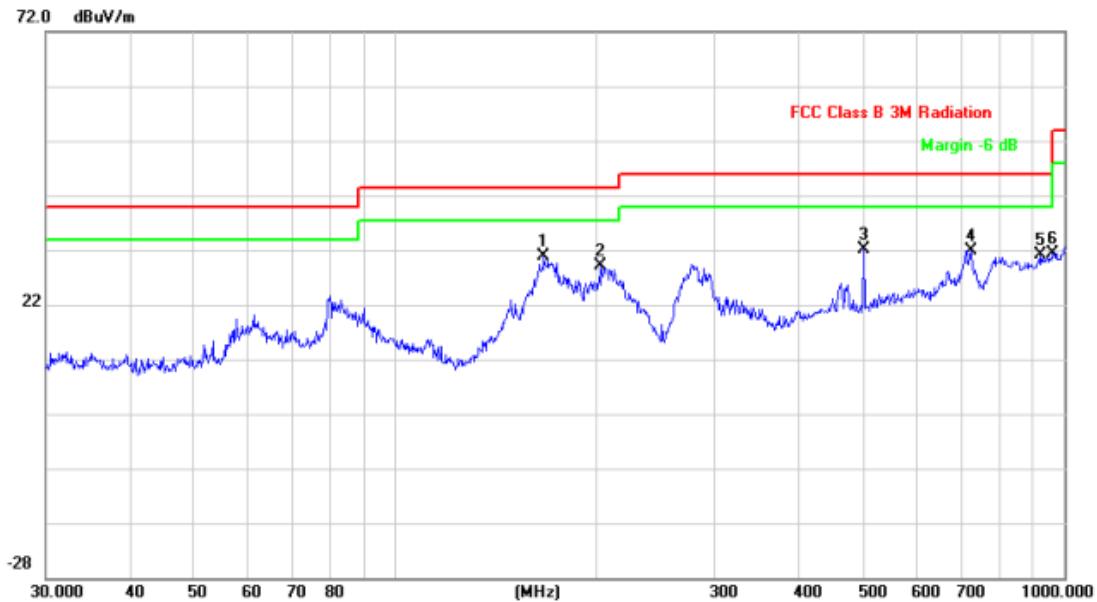

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ

The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ

Test Mode	TX N(HT20) Mode Channel 06	Polarization	Vertical
-----------	----------------------------	--------------	----------



No.	Mk.	Freq.	Reading Level	Correct Factor	Measurement	Limit	Over	Antenna Height	Table Degree	Comment
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree
1	*	65.3432	19.31	14.67	33.98	40.00	-6.02	peak	100	190
2		83.5222	19.08	14.75	33.83	40.00	-6.17	peak	100	241
3		151.5972	19.82	15.12	34.94	43.50	-8.56	peak	100	100
4		162.0414	19.01	15.25	34.26	43.50	-9.24	peak	100	4
5		173.8135	18.17	15.37	33.54	43.50	-9.96	peak	100	229
6		214.5143	17.18	15.82	33.00	43.50	-10.50	peak	100	148

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

Test Mode	TX N(HT20) Mode Channel 06	Polarization	Horizontal
-----------	----------------------------	--------------	------------

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over	Antenna	Table	
			Level	Factor	ment				Height	Degree
MHz dBuV dB dBuV/m dB dB Detector cm degree Comment										
1 *		166.6514	17.15	13.71	30.86	43.50	-12.64	peak	200	238
2		202.8104	13.34	15.69	29.03	43.50	-14.47	peak	200	274
3		501.1790	10.59	21.46	32.05	46.00	-13.95	peak	200	82
4		726.8052	7.27	24.70	31.97	46.00	-14.03	peak	200	139
5		922.5157	1.40	29.71	31.11	46.00	-14.89	peak	200	88
6		958.7943	1.26	30.16	31.42	46.00	-14.58	peak	200	109

REMARKS:

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value - Limit Value.

End of Test Report