

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 96

47 CFR FCC Part 2

Report No.: RFBEDV-WTW-P23030565B

FCC ID: G95RG525FNA

Product: Module

Brand: Vantiva

Model No.: RG525FNA

Received Date: 2024/10/30

Test Date: 2024/11/26 ~ 2025/3/5

Issued Date: 2025/3/21

Applicant: Vantiva USA LLC

Address: 4855 Peachtree Industrial Blvd. Suite 200 Norcross, Georgia 30092

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location(1): No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Test Location(2): No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 281270 / TW0032 for Test Location(1)

Designation Number: 788550 / TW0003 for Test Location(2)

Approved by: _____

, **Date:** _____

2025/3/21

Jeremy Lin / Project Engineer

This test report consists of 24 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.

Prepared by : Pettie Chen / Senior Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Release Control Record	3
1 Certificate.....	4
2 Summary of Test Results	5
2.1 Measurement Uncertainty	5
2.2 Supplementary Information	5
3 General Information	6
3.1 General Description of EUT	6
3.2 Antenna Description of EUT	7
3.3 Test Mode Applicability and Tested Channel Detail.....	8
3.3.1 LTE Band 48	8
3.4 Test Program Used and Operation Descriptions.....	9
3.5 Connection Diagram of EUT and Peripheral Devices	9
3.6 Configuration of Peripheral Devices and Cable Connections	9
4 Test Instruments	10
4.1 Radiated Spurious Emissions below 1GHz.....	10
4.2 Radiated Spurious Emissions above 1GHz	11
5 Limits of Test Items.....	12
5.1 Radiated Spurious Emissions below 1GHz.....	12
5.2 Radiated Spurious Emissions above 1GHz	12
6 Test Arrangements.....	13
6.1 Radiated Spurious Emissions below 1GHz.....	13
6.1.1 Test Setup	13
6.1.2 Test Procedure	14
6.2 Radiated Spurious Emissions above 1GHz	15
6.2.1 Test Setup	15
6.2.2 Test Procedure	15
7 Test Results of Test Item	16
7.1 Radiated Spurious Emissions below 1GHz.....	16
7.1.1 LTE Band 48	16
7.2 Radiated Spurious Emissions above 1GHz	17
7.2.1 LTE Band 48	17
8 Pictures of Test Arrangements	23
9 Information of the Testing Laboratories	24

Release Control Record

Issue No.	Description	Date Issued
RFBEDV-WTW-P23030565B	Original release.	2025/3/21

1 Certificate

Product: Module

Brand: Vantiva

Test Model: RG525FNA

Sample Status: Engineering sample

Applicant: Vantiva USA LLC

Test Date: 2024/11/26 ~ 2025/3/5

Standard: 47 CFR FCC Part 96

47 CFR FCC Part 2

Measurement Procedure: ANSI/TIA/EIA-603-E 2016

ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

KDB 940660 D01 Part 96 CBRS Eqpt v03

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

Standard / Clause	Test Item	Result	Remark
Part 2.1046 Part 96.41(b)	Maximum EIRP	NA	Refer to Note
Part 2.1047	Modulation Characteristics	NA	Refer to Note
Part 2.1046 Part 96.41(b)	Maximum Power Spectral Density	NA	This device is End User Device.
Part 96.41(g)	Peak to Average Ratio	NA	Refer to Note
Part 2.1049	Bandwidth	NA	Refer to Note
Part 2.1051 Part 96.41(e)	Conducted Spurious Emissions	NA	Refer to Note
Part 2.1053 Part 96.41(e)	Radiated Spurious Emissions below 1GHz	Pass	Minimum passing margin is -11.08 dB at 54.25 MHz
Part 2.1053 Part 96.41(e)	Radiated Spurious Emissions above 1GHz	Pass	Minimum passing margin is -2.12 dB at 7395.00 MHz
Part 2.1055	Frequency Stability	NA	Refer to Note

Note:

1. This report is issued as a supplementary report. Therefore, only test item of Radiated Spurious Emissions was performed for this report. Other testing data please refer to MRT Technology (Suzhou) Co., Ltd report no.: 2211RSU034-U5 for module (Brand: Quectel, Model: RG525F-NA).
2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Parameter	Specification	Uncertainty (±)
Effective Radiated Power and Equivalent Isotropically Radiated Power	18 GHz ~ 40 GHz	1.77 dB
Effective Radiated Power and Equivalent Isotropically Radiated Power	1 GHz ~ 18 GHz	1.76 dB
Radiated Spurious Emissions below 1GHz	30 MHz ~ 1 GHz	2.93 dB
Radiated Spurious Emissions above 1GHz	1 GHz ~ 18 GHz	1.76 dB
	18 GHz ~ 40 GHz	1.77 dB

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Module	
Brand	Vantiva	
Test Model	RG525FNA	
Host Marketing Name (HMN)	MGA5331 MGA5331VBV5	
Status of EUT	Engineering sample	
Power Supply Rating	Refer to Note	
EUT Category	End User Device	
Operating Frequency	LTE Band 42 (Channel Bandwidth 5MHz)	3552.5 ~ 3597.5 MHz
	LTE Band 42 (Channel Bandwidth 10MHz)	3555.0 ~ 3595.0 MHz
	LTE Band 42 (Channel Bandwidth 15MHz)	3557.5 ~ 3592.5 MHz
	LTE Band 42 (Channel Bandwidth 20MHz)	3560.0 ~ 3590.0 MHz
	LTE Band 43 (Channel Bandwidth 5MHz)	3652.5 ~ 3672.5 MHz
	LTE Band 43 (Channel Bandwidth 10MHz)	3655.0 ~ 3670.0 MHz
	LTE Band 43 (Channel Bandwidth 15MHz)	3657.5 ~ 3667.5 MHz
	LTE Band 43 (Channel Bandwidth 20MHz)	3660.0 ~ 3665.0 MHz
	LTE Band 48 (Channel Bandwidth 5MHz)	3552.5 ~ 3697.5 MHz
	LTE Band 48 (Channel Bandwidth 10MHz)	3555.0 ~ 3695.0 MHz
	LTE Band 48 (Channel Bandwidth 15MHz)	3557.5 ~ 3692.5 MHz
	LTE Band 48 (Channel Bandwidth 20MHz)	3560.0 ~ 3690.0 MHz

Note:

1. This report is a supplementary report to BV CPS report no.: RFBEDV-WTW-P23030565A. The differences compared with the original report are to change LTE/5GNR antenna 0 and add board shielding. Due to power setting is the same and new antenna gain is lower than original antenna gain, for LTE Band 48: only test item of Radiated Spurious Emissions was performed for this report. Refer to original report for the other test data.
2. The EUT is authorized for use in specific End-product. Please refer to below for more details. Model MGA5331 is the representative for final test.

Item	Brand	Model	Note
WIFI Gateway	Vantiva	MGA5331	Model difference only for marketing strategy.
		MGA5331VBV5	

*The RF characteristics of the above two host models are the same frequency band of this module.

3. The adapter for the End-product.

AC Adapter		
Brand	Model	Specification
HONOR	ADS-42FI-12 12042EPCU-L	AC Input: 100-120V~ 50/60Hz 1.2A max. DC Output: 12VDC, 3.5A, 42W DC Output Cable: 1.5m, Non-Shielded

4. For detailed information about each WWAN bands frequency range, bandwidth mode of the product, please refer to section 3.3 of the report.
5. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

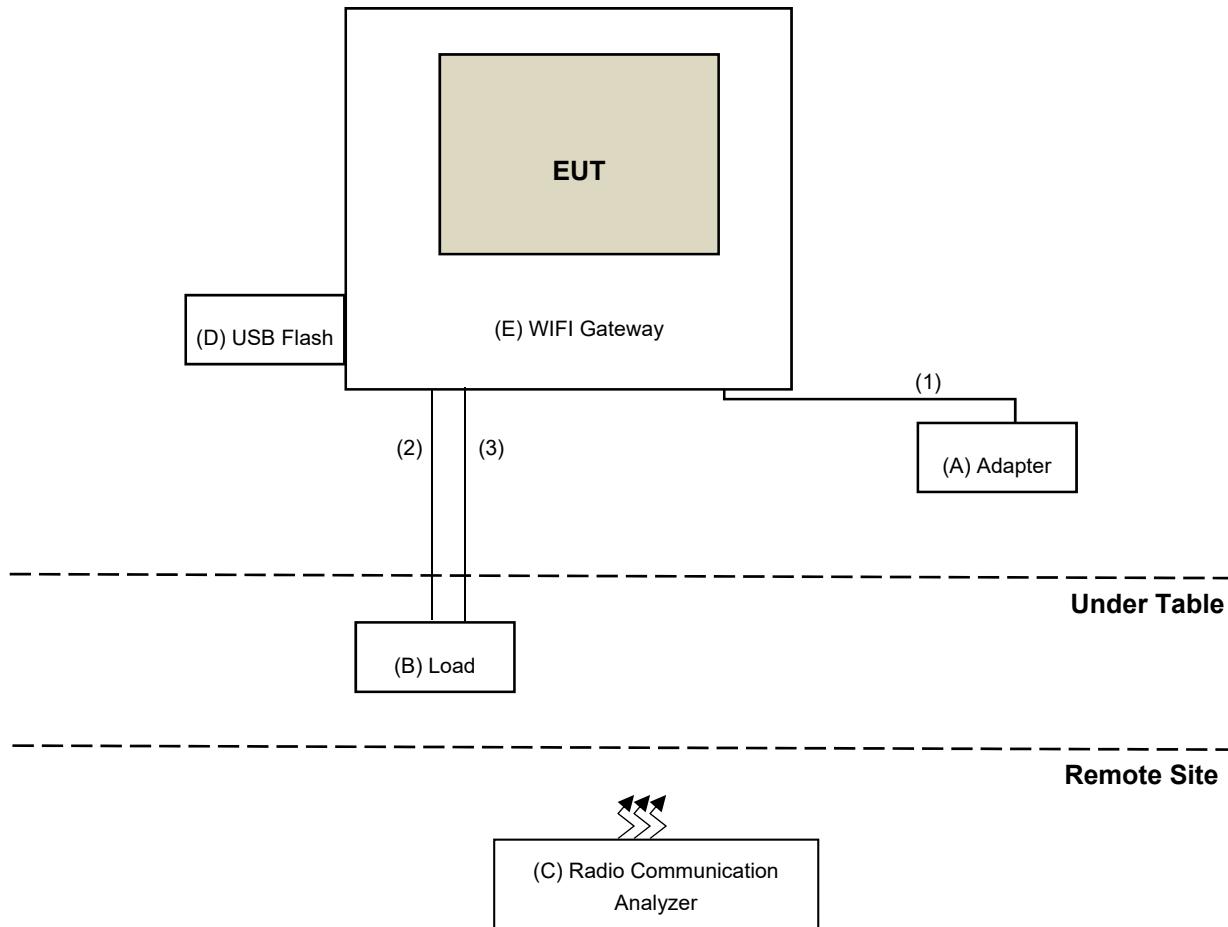
1. The antenna information is listed as below.

Ant. No.		Ant. 0 (newly)	Ant. 3
Antenna Type		PCB	PCB
Antenna Connector		Ipxe(MHF)	Ipxe(MHF)
Band	TX Ant	Gain (dBi)	
Band 48	Ant 0	4.2	4.85

* The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan:	1. EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan these ways and find the worst case as a representative test condition.
Worst Case:	1. X-axis/ Y-axis/ Z-axis Worst Condition: X-axis 2. This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation and 1RB mode. 3. For radiated spurious emissions below 1 GHz, the worst case radiated emissions mode above 1 GHz is selected for final testing.


3.3.1 LTE Band 48

Test Item	Tested Channel	Channel Bandwidth	Modulation	Mode
Radiated Spurious Emissions below 1GHz	56715(3697.50 MHz)	5 MHz	QPSK	1 RB
Radiated Spurious Emissions above 1GHz	55265(3552.50 MHz)	5 MHz	QPSK	1 RB
	55990(3625.00 MHz)			
	56715(3697.50 MHz)			
	55340(3560.00 MHz)	20 MHz	QPSK	1 RB
	55990(3625.00 MHz)			
	56640(3690.00 MHz)			

3.4 Test Program Used and Operation Descriptions

There is no need to controlling software during the test, and the EUT can be paired with the Radio Communication Analyzer to test the connection when it is powered on.

3.5 Connection Diagram of EUT and Peripheral Devices

3.6 Configuration of Peripheral Devices and Cable Connections

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A	Adapter	HONOR	ADS-42FI-12 12042EPCU-L	N/A	N/A	Supplied by applicant
B	Load	N/A	N/A	N/A	N/A	Provided by Lab
C	Radio Communication Analyzer	Anritsu	MT8821C	6261806803	N/A	Provided by Lab
D	USB Flash	SanDisk	SDDDC3-032G	N/A	N/A	Provided by Lab
E	WIFI Gateway	Vantiva	MGA5331	NA	NA	Provided by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	DC Cable	1	1.5	No	0	Attached on the adapter
2	RJ-45 Cable	5	1.5	No	0	Provided by Lab
3	RJ-11 Cable	1	1.5	No	0	Provided by Lab

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 Radiated Spurious Emissions below 1GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFA-515BSN	N/A	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-1214	2024/10/15	2025/10/14
EXA Signal Analyzer Agilent	N9010A	MY52220207	2023/12/28	2024/12/27
MXE EMI Receiver Agilent	N9038A	MY52260177	2024/9/19	2025/9/18
Preamplifier EMCI	EMC330N	980798	2024/1/15	2025/1/14
RF Coaxial Cable EMCI	EMCCFD400-NM-NM-500	201248	2024/1/15	2025/1/14
	EMCCFD400-NM-NM-3000	201249	2024/1/15	2025/1/14
	EMCCFD400-NM-NM-9000	201251(with PAD)	2024/1/15	2025/1/14
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208676	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 9.
2. Tested Date: 2024/11/29

4.2 Radiated Spurious Emissions above 1GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFA-515BSN	N/A	N/A	N/A
EXA Signal Analyzer Agilent	N9010A	MY52220207	2023/12/28	2024/12/27
Horn Antenna RFSPIN	DRH18-E	210104A18E	2024/11/10	2025/11/9
Horn Antenna Schwarzbeck	BBHA 9170	9170-1049	2024/11/10	2025/11/9
MXE EMI Receiver Agilent	N9038A	MY52260177	2024/9/19	2025/9/18
Preamplifier Agilent	83017A	MY39501357	2024/6/12	2025/6/11
Preamplifier EMCI	EMC184045SE	980788	2024/1/15	2025/1/14
RF Coaxial Cable EMCI	EMC101G-KM-KM-2000	201254	2024/1/15	2025/1/14
	EMC101G-KM-KM-3000	201258	2024/1/15	2025/1/14
	EMC101G-KM-KM-5000	201261	2024/1/15	2025/1/14
	EMC104-SM-SM-1000	210103	2024/1/15	2025/1/14
	EMC104-SM-SM-3000	201241	2024/1/15	2025/1/14
	EMC104-SM-SM-9000	201244	2024/1/15	2025/1/14
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208676	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 9.
2. Tested Date: 2024/11/26

5 Limits of Test Items

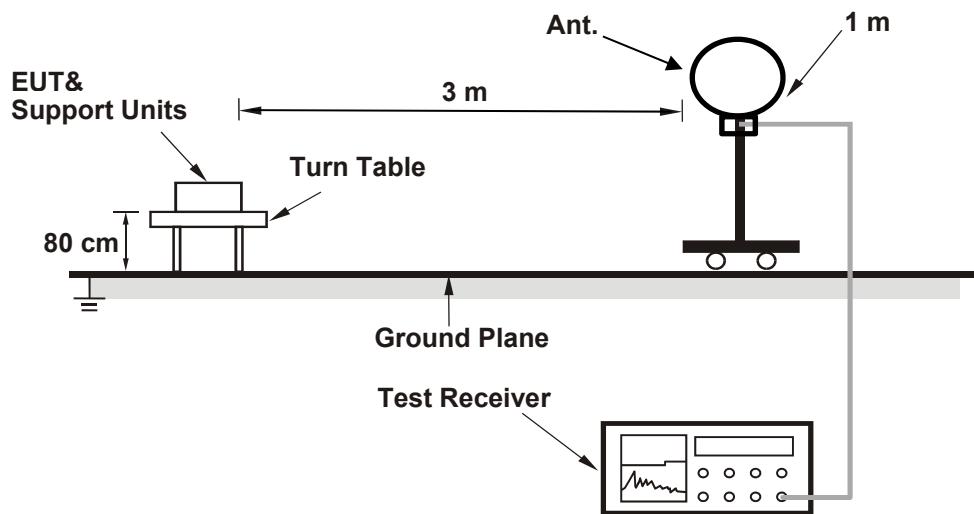
5.1 Radiated Spurious Emissions below 1GHz

For LTE Band 48:

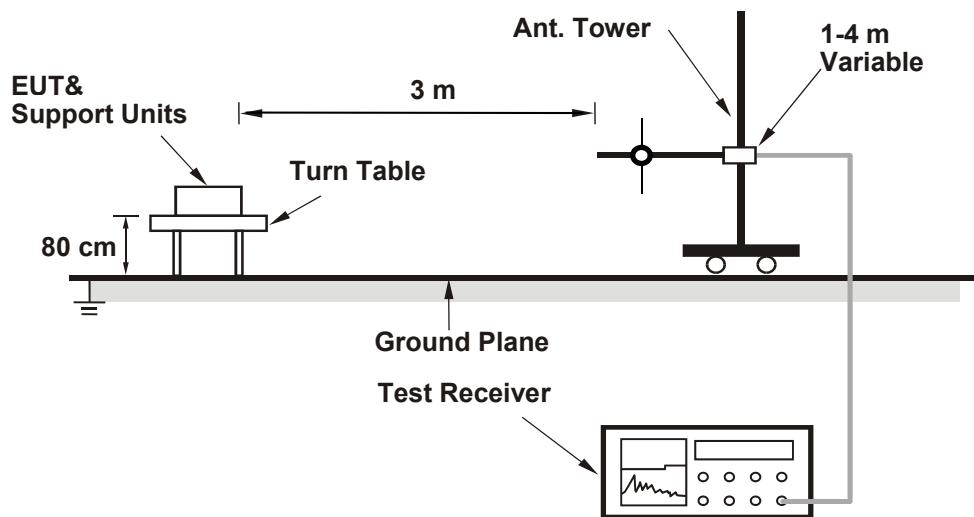
The power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40 dBm/MHz.

5.2 Radiated Spurious Emissions above 1GHz

For LTE Band 48:


The power of any emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

6 Test Arrangements


6.1 Radiated Spurious Emissions below 1GHz

6.1.1 Test Setup

For Radiated emission below 30 MHz

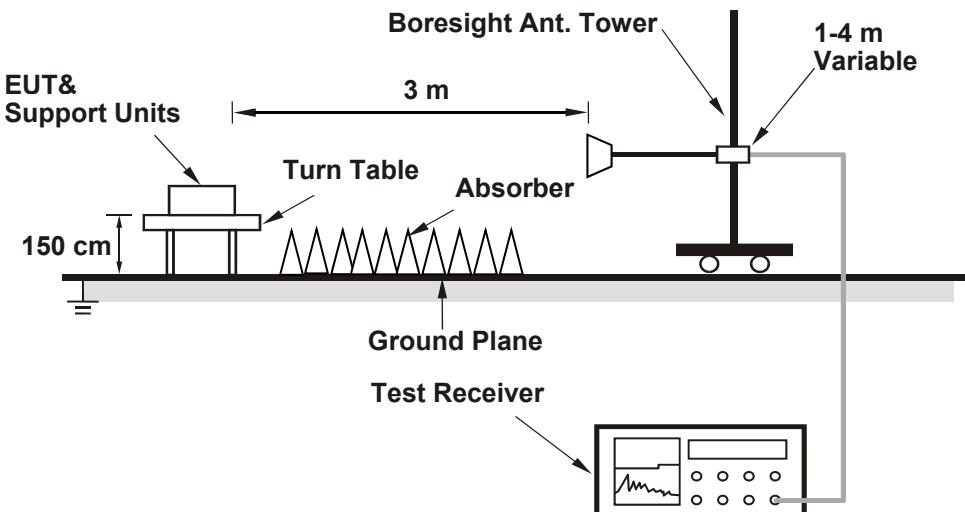
For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.1.2 Test Procedure

The EUT is configured to set data modulation and maximum power using WWAN technology.

- a. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) height of turn table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following ANSI C63.26 section 5.5 and 5.2.7
- e. $EIRP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.
- f. $ERP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8 - 2.15$; where D is the measurement distance (in the far field region) in m.


Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz. Set detector = average.
2. The amplitude of spurious emissions in the range 9 kHz to 30 MHz which are attenuated more than 20 dB below the permissible value need not be reported.

6.2 Radiated Spurious Emissions above 1GHz

6.2.1 Test Setup

For radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.2.2 Test Procedure

The EUT is configured to set data modulation and maximum power using WWAN technology.

- In the semi-anechoic chamber, EUT placed on the 1.5 m height of turn table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- Following ANSI C63.26 section 5.5 and 5.2.7
- $EIRP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.
- $ERP (dBm) = E (dB\mu V/m) + 20\log(D) - 104.8 - 2.15$; where D is the measurement distance (in the far field region) in m.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz/3 MHz. Set detector = average.

7 Test Results of Test Item

7.1 Radiated Spurious Emissions below 1GHz

7.1.1 LTE Band 48

RF Mode	LTE Band 48 Channel Bandwidth: 5MHz	Channel	CH 56715 : 3697.5 MHz
Frequency Range	30 MHz ~ 1 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	21 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	98.87	-62.03	-40.00	-22.03	1.00 H	336	50.93	-112.96
2	132.82	-51.10	-40.00	-11.10	1.00 H	247	58.10	-109.20
3	212.36	-52.65	-40.00	-12.65	1.49 H	261	58.98	-111.63
4	299.66	-52.49	-40.00	-12.49	2.00 H	114	55.12	-107.61
5	363.68	-60.37	-40.00	-20.37	2.00 H	294	45.84	-106.21
6	436.43	-52.39	-40.00	-12.39	1.00 H	23	51.58	-103.97
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	31.94	-51.19	-40.00	-11.19	1.00 V	190	58.35	-109.54
2	54.25	-51.08	-40.00	-11.08	2.00 V	253	57.50	-108.58
3	127.97	-51.43	-40.00	-11.43	2.00 V	201	58.25	-109.68
4	182.29	-52.13	-40.00	-12.13	1.00 V	223	58.00	-110.13
5	214.30	-52.75	-40.00	-12.75	1.00 V	187	58.91	-111.66
6	297.72	-52.46	-40.00	-12.46	1.00 V	186	55.20	-107.66

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ $20\log(D) - 104.8$
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

7.2 Radiated Spurious Emissions above 1GHz

7.2.1 LTE Band 48

RF Mode	LTE Band 48 Channel Bandwidth: 5MHz	Channel	CH 55265 : 3552.5 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7105.00	-42.26	-40.00	-2.26	3.08 H	25	44.59	-86.85
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7105.00	-43.13	-40.00	-3.13	2.77 V	79	43.72	-86.85

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

BUREAU
VERITAS

RF Mode	LTE Band 48 Channel Bandwidth: 5MHz	Channel	CH 55990 : 3625 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7250.00	-42.44	-40.00	-2.44	3.12 H	22	44.35	-86.79
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7250.00	-43.28	-40.00	-3.28	2.74 V	76	43.51	-86.79

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

BUREAU
VERITAS

RF Mode	LTE Band 48 Channel Bandwidth: 5MHz	Channel	CH 56715 : 3697.5 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7395.00	-42.12	-40.00	-2.12	3.10 H	27	44.61	-86.73
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7395.00	-43.11	-40.00	-3.11	2.74 V	80	43.62	-86.73

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

BUREAU
VERITAS

RF Mode	LTE Band 48 Channel Bandwidth: 20MHz	Channel	CH 55340 : 3560 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7120.00	-42.53	-40.00	-2.53	3.14 H	28	44.42	-86.95
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7120.00	-43.32	-40.00	-3.32	2.73 V	85	43.63	-86.95

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

BUREAU
VERITAS

RF Mode	LTE Band 48 Channel Bandwidth: 20MHz	Channel	CH 55990 : 3625 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7250.00	-42.16	-40.00	-2.16	3.10 H	22	44.63	-86.79
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7250.00	-43.05	-40.00	-3.05	2.76 V	82	43.74	-86.79

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

BUREAU
VERITAS

RF Mode	LTE Band 48 Channel Bandwidth: 20MHz	Channel	CH 56640 : 3690 MHz
Frequency Range	1 GHz ~ 40 GHz	Detector Function & Bandwidth	1 MHz/3 MHz (RMS)
Input Power	120 Vac, 60 Hz	Environmental Conditions	22 °C, 67 % RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7380.00	-42.48	-40.00	-2.48	3.12 H	25	44.31	-86.79
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	EIRP (dBm)	Limit (dBm)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	7380.00	-43.11	-40.00	-3.11	2.73 V	83	43.68	-86.79

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
+ 20log(D) – 104.8
3. Margin value = EIRP – Limit value
4. The other EIRP levels were very low against the limit.

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@bureauveritas.com

Web Site: <http://ee.bureauveritas.com.tw>

The address and road map of all our labs can be found in our web site also.

--- END ---