

Testing Tomorrow's Technology

April 24, 2008

Mr. John Gauss
BALOGH T.A.G. Corporation
7699 Kensington Court
Brighton, MI 48116

Dear Mr. Gauss:

Enclosed please find BALOGH T.A.G. Corporation's file copy of the FCC Subpart C, Section 15.209 Certification Report and Application for the ERC-100 RFID Transceiver.

BALOGH T.A.G. Corporation should expect to receive a grant of certification for this product within the next 8-12 weeks.

If you have any questions, please don't hesitate to call. Thank you for your business.

Sincerely,

A handwritten signature in blue ink that appears to read "Steve Sawyer".

Steve Sawyer
Chief Compliance Engineer

3505 Francis Circle Alpharetta, GA 30004

PH: 770-740-0717 Fax: 770-740-1508

www.ustech-lab.com

Certification Application

For the

BALOGH T.A.G. Corporation

Model ERC-100

Per the Requirements of

US Code Title 47, Part 15, Subpart C, Section 15.209

DATE: May 7, 2008

Number of Pages in this report: 38

**3505 Francis Circle Alpharetta, GA 30004
PH: 770-740-0717 Fax: 770-740-1508
www.ustech-lab.com**

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

MEASUREMENT TECHNICAL REPORT

COMPANY NAME: **BALOGH T. A. G. Corporation**

MODEL: **ERC-100**

FCC ID: **G8630100X**

DATE: **May 7, 2008**

This report concerns (check one): Original grant X
Class II change _____

Equipment type: **RFID Transceiver**

Deferred grant requested per 47 CFR 0.457(d)(1)(ii)? yes _____ No X

If yes, defer until: _____
date

N.A. agrees to notify the Commission by N.A.
date

of the intended date of announcement of the product so that the grant can be issued on that date.

Report prepared by:

US Tech
3505 Francis Circle
Alpharetta, GA 30004

Phone Number: (770) 740-0717
Fax Number: (770) 740-1508

Table of Contents

<u>Paragraph</u>	<u>Title</u>	<u>Page</u>
	Agency Agreement	5
	Letter of Confidentiality	6
1	General Information	7
1.1	Product Description	7
1.2	Related Submittal(s)	7
1.3	Subject Authorizations	7
2	Tests and Measurements	8
2.1	Configuration of Tested EUT	8
2.2	Test Facility	8
2.3	Test Equipment	8
2.4	Modifications to Hardware	8
2.5	Antenna Description	8
2.6	Test Procedures	9
2.7	Field Strength of Fundamental Emission	16
2.8	Peak Radiated Spurious Emissions in the Frequency Range 13 MHz -1,000 MHz (FCC Section 15.205, 15.209 and 15.225)	21
2.9	Frequency Stability	23
2.10	Power Line Conducted Emissions (Transmitter and Receiver plus Digital Devices) (FCC Section 15.107 & 15.207)	27
2.11	Radiated Emissions (Receiver and Digital Devices) (FCC Section 15.109)	29
3	Labeling Information	31
4	Block Diagram(s)/ Schematic(s)	32
5	Photographs	33
5.1	EUT, Front View	34
5.2	EUT, Bottom View	35
5.3	EUT, Bottom View Cover Removed Transceiver board Solder Side	36
5.4	EUT, Transceiver board Component Side	37
6	User's Manual	38

List of Figures

<u>Figure</u>	<u>Title</u>	<u>Page</u>
1	Test Configuration	10
2	Photograph of Test Setup for Spurious and Fundamental Emissions Measurement, (Rear View)	11
3	Photograph of Test Setup for Spurious and Fundamental Emissions Measurement, (Front View)	12
4	Photograph of Conducted Emissions, Transceiver and Digital Device	13
5	Field Strength of Fundamental Emissions 15.209	18
6	Second Harmonic of ERC-100.	19
7	Third Harmonic of ERC-100.	20
8	Peak Radiated Spurious Emission 15.209 Representative Plot	22
9	Data Plot 24.0 VDC, + 20° C	24
10	Data Plot 24.0 VDC, - 20° C	25
11	Data Plot 24.0 VDC, + 50° C	26

List of Tables

<u>Tables</u>	<u>Title</u>	<u>Page</u>
1	Antenna description for Model ERC-100 Transceiver	9
2	EUT and Peripherals	14
3	Test Instruments	15
4	Field Strength of Fundamental and Harmonic Peak	17
5	Peak Radiated spurious Emissions 30 MHz to 1000 MHz.	21
6	Frequency Variation with Temperature and Supply Voltage.	23
7	Conducted Emissions Test Data for Transmitter and Receiver and Digital Devices, Class B.	28
8	Radiated Emissions Data for Receiver and Digital Device, Class B	30

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

1. General Information

The information contained in this report is presented for the FCC Equipment Authorization of Certification for the EUT.

1.1 Product Description

The Equipment under Test (EUT) is the BALOGH T.A.G. Corporation, Model ERC-100. The EUT is a Low Power RFID Transceiver operating at 1.5 MHz.

1.2 Related Submittal(s)/Grant(s)

The EUT will be used with part of a system to send/receive data. The transmitter presented in this report will be used with another transceiver which has been submitted under FCC ID: G8630100X

1.3 Subject Authorizations

The EUT is subject to the following authorizations:

- a) Certification as a transceiver
- b) Verification as a Digital Device.

2 Tests and Measurements

2.1 Configuration of Tested System

The Test sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (2003). Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter associated with the spectrum analyzer was off throughout the evaluation process. Interconnecting cables were manipulated as necessary in an attempt to maximize emissions. A block diagram of the tested system is shown in Figure 1. Test configuration photographs for fundamental and harmonic emissions are shown in Figure 2.

The sample used for testing was received by US Tech on March 20, 2008 in good condition.

2.2 Test Facility

Testing was performed at US Tech's measurement facility at 3505 Francis Circle, Alpharetta, GA 30004. This site has been fully described and registered with the FCC, under designation number US5117. Additionally this site has also been fully described and submitted to Industry Canada (IC), and has been approved under file number 2982A-1.

2.3 Test Instruments

Table 3 describes test equipment used to evaluate this product.

2.4 Modifications to Hardware

No modifications were necessary to be made by US Tech in order to bring the EUT into compliance with FCC Part 15 limits for the transmitter portion of the EUT or the Class A Digital Device Requirements (Part 15, Subpart B).

2.5 Antenna Description (FCC Sec. 15.203)

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The BALOGH T.A.G. Corporation Model ERC-100 incorporates an integral antenna only.

Manufacturer: Balogh T.A.G. Corporation
7699 Kensington Court

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Brighton, Michigan 48116-8561

Type: Internal Single Ferrite Antenna

Model Number: --

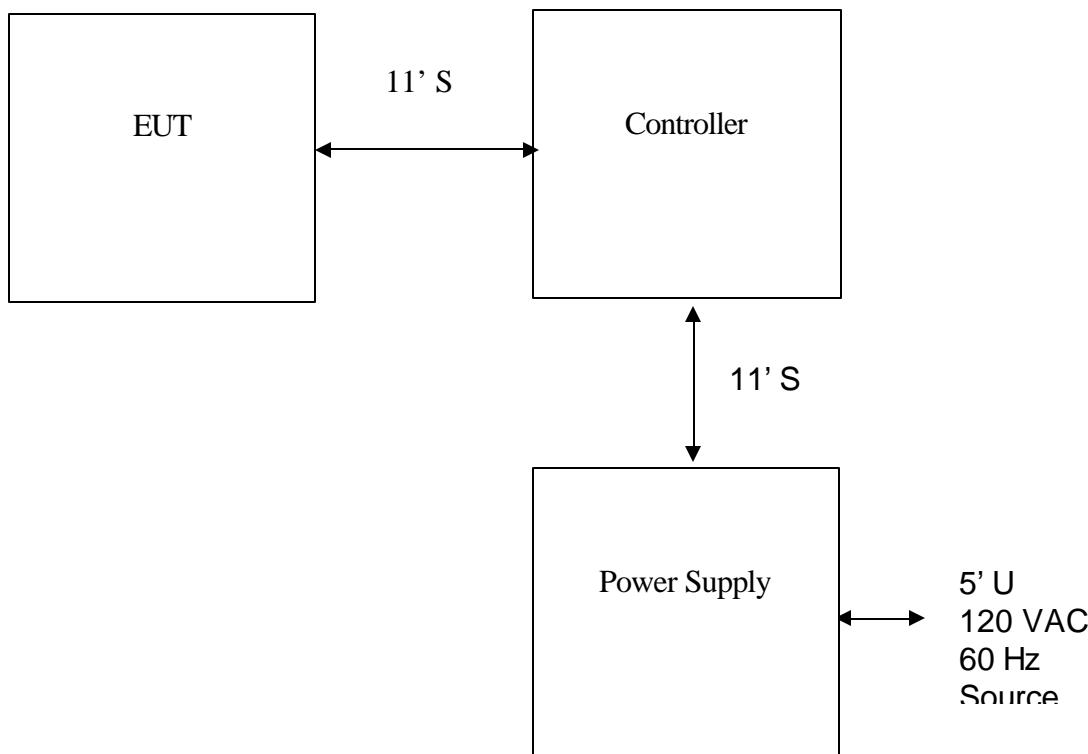
Gain: 2 dBi

Connector: Integral

BALOGH T.A.G. Corporation will sell the ERC-100 with one of the following antennas.

Table 1. Antenna description for Model ERC-100 Transceiver

MANUFACTURER	MODEL	GAIN dBi
Balogh T.A.G. Corporation	--	2


2.6 Test Procedure

The EUT was configured as shown in the following block diagram(s) and photograph(s). The sample was tested per ANSI C63.4, Methods of Measurement from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz (1992) following paragraph 7 for conducted emissions and paragraph 8 for radiated emissions. Conducted and radiated emissions data were taken with the test receiver or spectrum analyzer's resolution bandwidth adjusted to 9 kHz and 120 kHz, respectively. All measurements are peak unless stated otherwise. The video filter on the spectrum analyzer was OFF throughout the evaluation process. Interconnecting cables were manipulated as necessary in an attempt to maximize emissions. See Table 2 for a list of EUT and peripherals. A list of Test Instruments is found in Table 3.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 1. Test Configuration

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 2.

Photograph of Test Setup for Spurious and Fundamental Emissions Measurement, (Rear View)

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 3.

Photograph of Test Setup for Spurious and Fundamental Emissions Measurement, (Front View)

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 4.

Photograph of Conducted Emissions, Transceiver and Digital Device

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Table 2.

EUT and Peripherals

PERIPHERAL MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID:	CABLES P/D
Transceiver BALOGH T.A.G. Corporation (EUT)	ERC-100	None	G8630100X (Pending)	11' S
Controller BALOGH T.A.G. Corporation	BIET / XX	3090033	None	11' S
Power Supply Kenwood	PD56-6	None	None	5' U

P = Power D = data S = Shielded U = Unshielded

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Table 3.
Test Instruments

TYPE	MANUFACTURER	MODEL	SN.	Cal Date.
SPECTRUM ANALYZER	HEWLETT-PACKARD	8593E	3205A00124	1/15/08
RF PREAMP 10 to 1000 MHz	HEWLETT-PACKARD	8447D	1937A03355	6/14/07
Loop Antenna 10 kHz to 30 MHz	A. H. Systems	SAS-200/562	142	Due 10/16/08
BICONICAL ANTENNA 25 to 200 MHz	EMCO	3110	9307-1431	11/15/07
LOG PERIODIC ANTENNA 100 MHz to 1 GHz	EMCO	3146	9110-3600	8/24/07
LISN	SOLAR ELECTRONICS.	8028	910495 & 910494	5/10/07

2.7 Field Strength of Fundamental

The results of the measurements for peak fundamental emissions are given in Table 3 and Figure 6. The EUT emissions were measured by setting up the loop antenna in the vertical orientation at a distance of 3 meters from the EUT and at a height of 1.0 meters above the ground. The EUT major axis was set to face the measuring antenna so that it intercepted the plane formed by the loop at right angles. When a signal was detected, the loop was slowly rotated about its axis in an attempt to maximize the emission. The antenna was left in the orientation where the emission was at a maximum and the signal was measured and recorded.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Table 4.
Field Strength of Fundamental and Harmonic Emissions, Peak

Test By: DA	Test: FCC Part 15.209							
	Project: 08-0015			Class: N/A				
Frequency	Spectrum Analyzer Reading	Transducer Factor for Loop Antenna	Other Correction Factors	Corrected Test Data @ 30 m	FCC Limits @ 30 m	Actual Test Distance	Margin	DETECTOR
MHz	*dBuV	dB/m	dB	uV/m	uV/m	m	dB	
1.50	25.4	35.4	+1.6 -40	13.18	16.00	3	1.6	PK
1.50	22.63	35.4	+1.6 -40	9.59	16.00	3	4.37	QP
3.0	23.95	28.7	+.3 -40	4.44	29.54	3	17.05	PK
4.5	14.05	24.9	+.3 -40	0.92	29.54	3	30.3	PK

Tested over (0.15 to 15) MHz. No other signals found within 20 dB of limit.

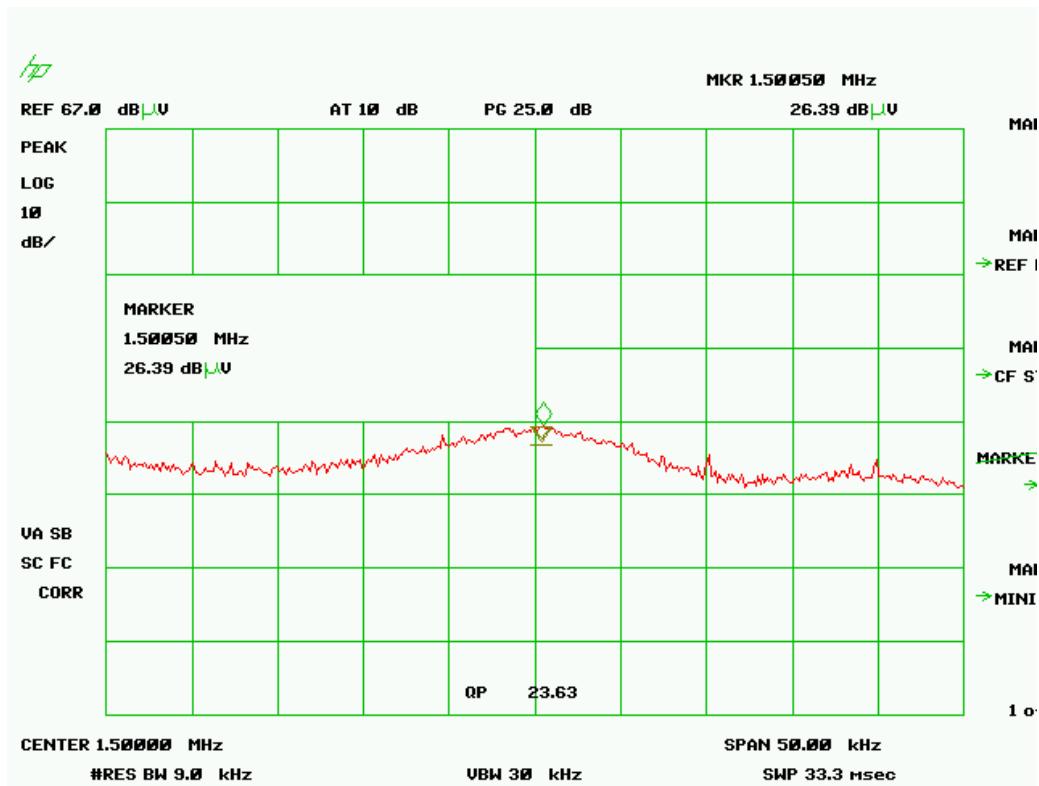
* - Includes subtraction of Preamp gain value (-26 dB)

SAMPLE CALCULATIONS:

RESULTS @ 1.5 MHz with Peak Detector, = Antilog $(25.4 + 35.4 + 1.6 - 40)/20 = 13.18$
uV/m @ 30 m

Test Results

Reviewed By: Daniel Aparaschivei

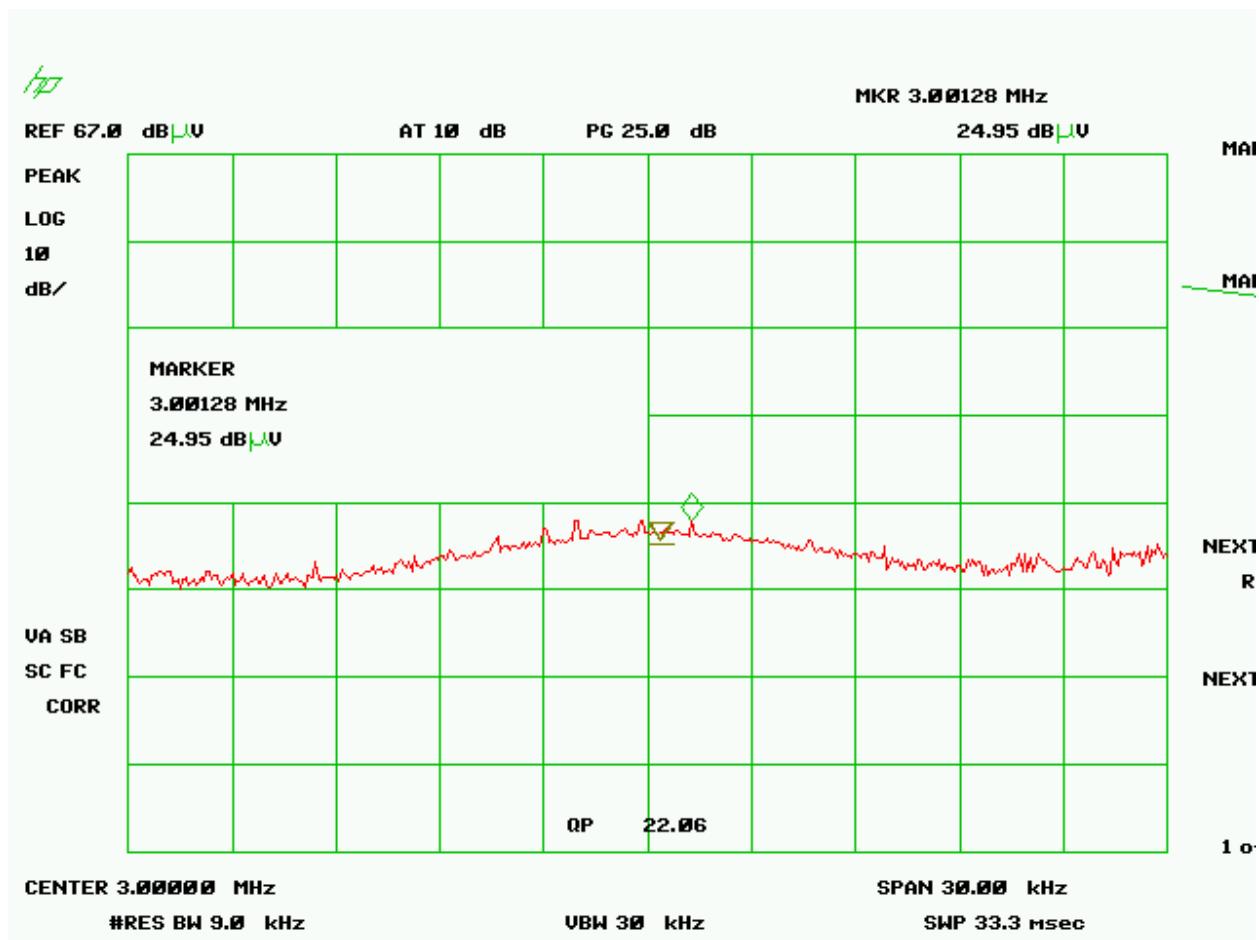

Name: Daniel Aparaschivei

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 5.

Field Strength of Fundamental Emissions 15.209



Note: Subtract 1 additional dB for pre-amp gain.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 6. Second Harmonic of ERC-100.



Note: Subtract 1 additional dB for pre-amp gain.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

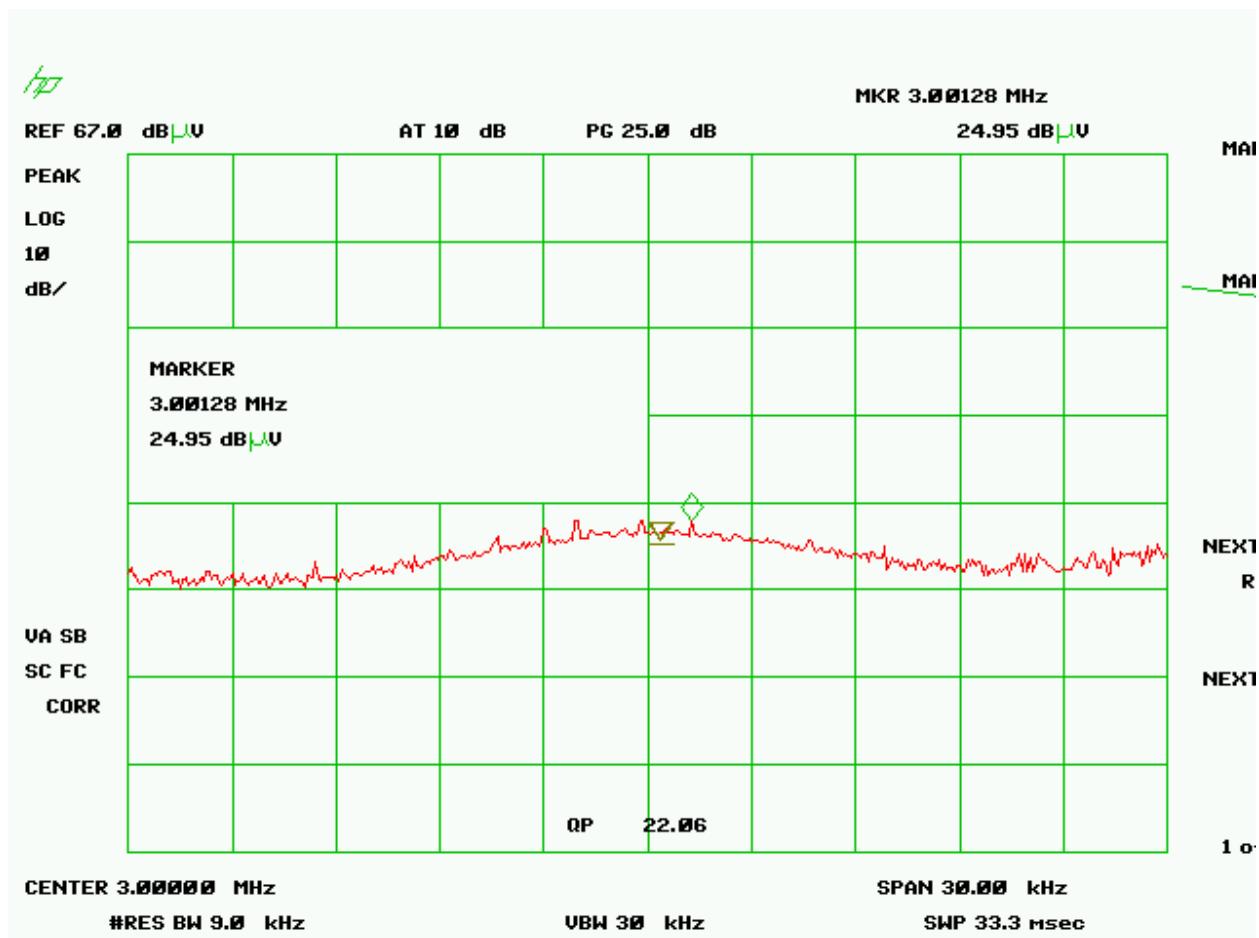
Figure 7. Third Harmonic of ERC-100.

Note: Subtract 1 additional dB for pre-amp gain.

2.8 Peak Radiated Spurious Emissions in the Frequency Range 30 MHz -1,000 MHz (FCC Section 15.205 & 15.209)

A preliminary scan was performed on the EUT to determine spurious frequencies that were caused by the transmitter portion of the product. Significant emissions that fell within restricted bands were then measured on an OAT's site. Radiated measurements below 1 GHz were tested with a RBW = 120 kHz. The results of all peak radiated spurious emissions including those falling in the restricted bands are given in Table 4 and 5 and Figure 8.

Table 5. Peak Radiated spurious Emissions 30 MHz to 1000 MHz.


Test By: DA	Client: BALOGH T.A.G. Corporation							
	FCC Part 15.209		Model: ERC-100					
	Project Number: 08-0015							
Frequency (MHz)	Test Data (dBm)	Test Data (dBuV)	Transducer ANT+CL (dB)	Corrected Results (uV/m)	Limits @ 3m (uV/m)	Actual Test Distance/ Polarity	Margin (dB)	PK / QP PK
30.0	-84.65	22.35	13.2+9.5	66.83	100	3m/Vert	3.5	PK
109.5	-89.69	17.31	10.7+1.9	31.29	100	3m/Horiz	10.09	PK
212.33	-93.89	13.11	11.4+2.7	29.5	100	3m/Vert	10.6	PK
221.33	-88.83	18.17	11.1+2.7	22.94	150	3m/Horiz	12.81	PK
468.9	-92.68	14.16	17.2+4.2	59.98	150	3m/Vert	4.44	PK
477.74	-92.84	14.16	17.4+4.2	59.98	200	3m/Vert	17.2	PK
641.36	-90.94	16.06	19.8+4.8	107.89	200	3m/Vert	11.27	PK
973.2	-101.53	5.47	23.0+6.3	54.76	500	3m/Vert	19.23	PK

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 8.

Peak Radiated Spurious Emission 15.209 Representative Plot

2.9 Frequency Stability

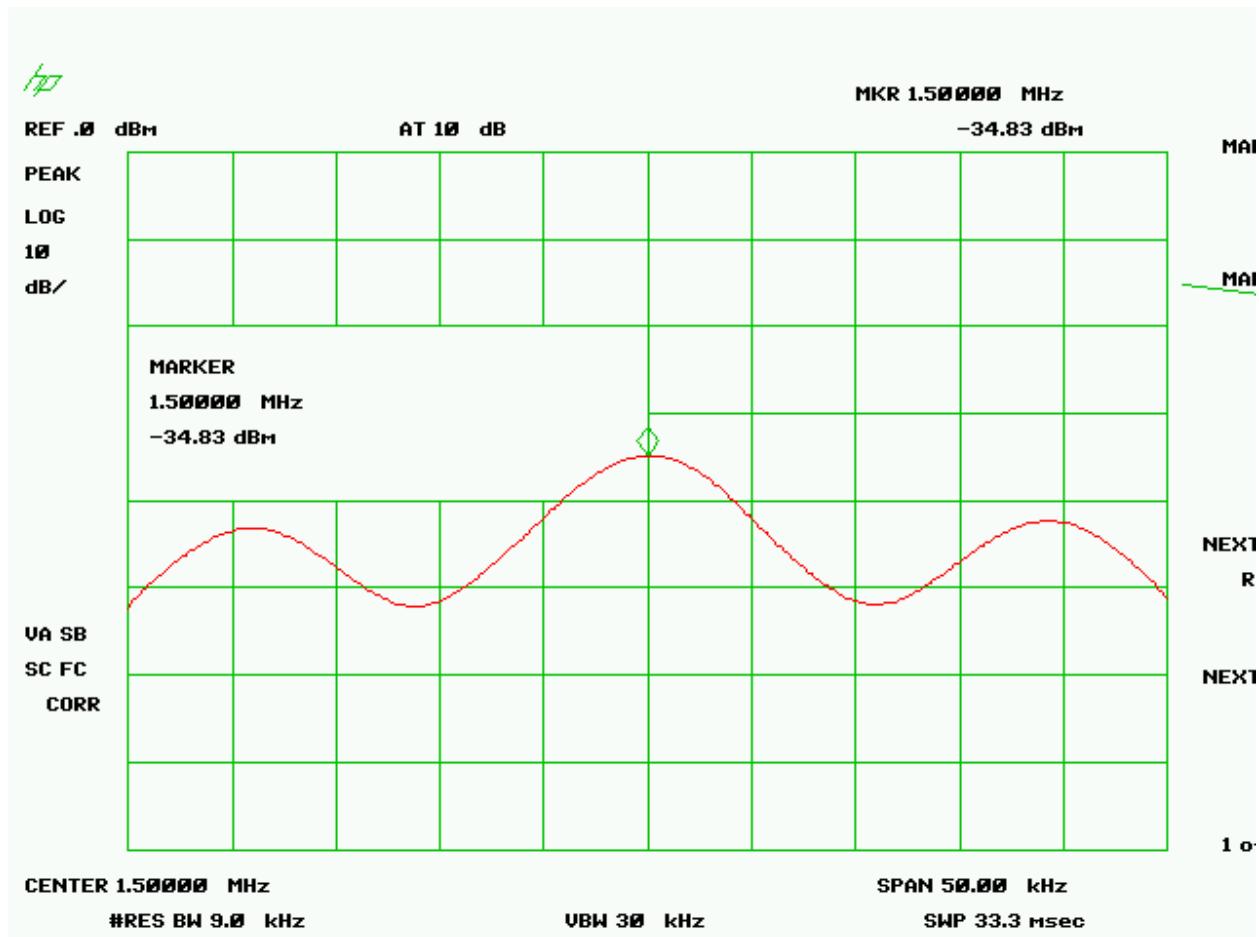
The EUT temperature stability was measured over the temperature range of -20° C to 50° C as well as supply voltage variations of 85% to 115% at the temperature of 20° C. The results of this measurement are recorded in Table 6 below.

Table 6. Frequency Variation with Temperature and Supply Voltage.

Voltage - Volts	Temperature °C		
	-20	20	50
Frequency @ 20.4	NR	1.5000 MHz	NR
Frequency @ 24.0	1.50000 MHz	1.50025 MHz	1.50031 MHz
Frequency @ 27.6	NR	1.50000 MHz	NR
85 % of 24 VDC = 20.4 VDC			
115 % of 24 VDC= 27.6 VDC			

NR = Not Required

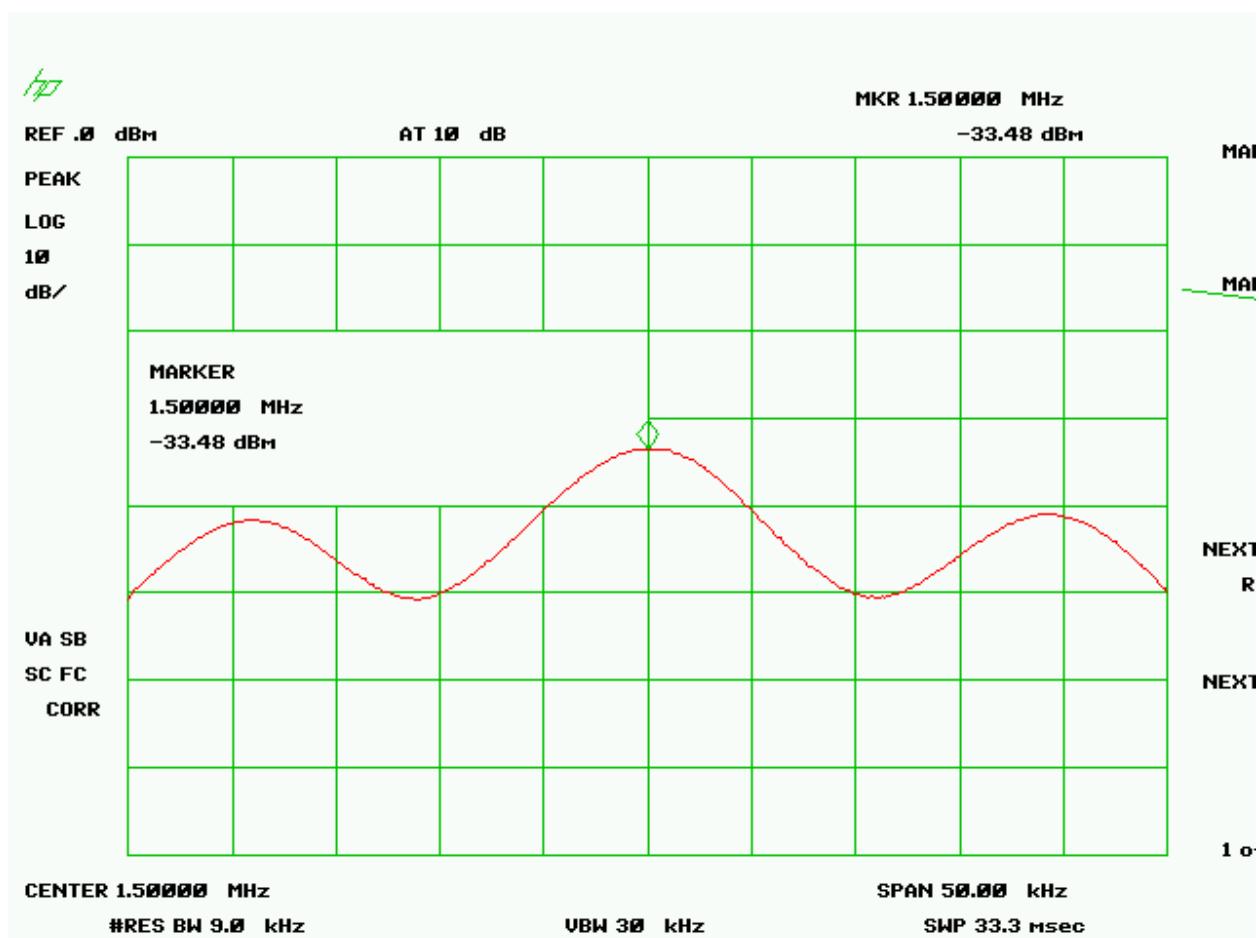
All of the measured values lie between the upper and lower 0.01% bounds.


Test Date: April 17, 2008

Tested by *Daniel Aparaschivei*
Signature: _____ **Name:** Daniel Aparaschivei

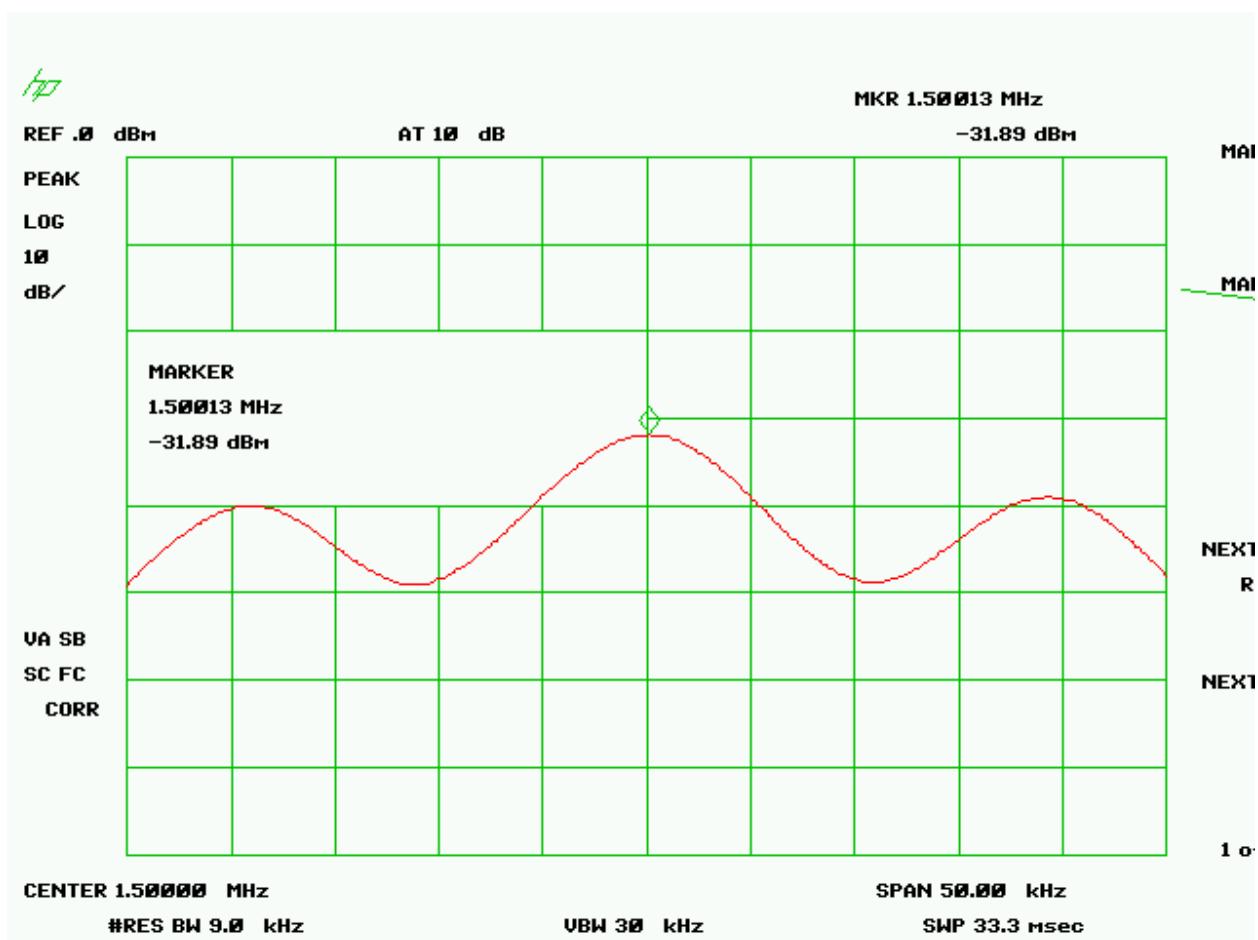
US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100


Figure 9. Data Plot 24.0 VDC, +20°C.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100


Figure 10. Data Plot, 24.0 VDC, -20 °C.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Figure 11. Data Plot 24.0 VDC, +50 °C.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

2.10 Powerline Conducted Emissions (Transmitter and Receiver plus Digital Devices.) (FCC Section 15.107 & 15.207)

The conducted voltage measurements have been carried out in accordance with FCC Section 15.207, with a spectrum analyzer connected to an LISN and the EUT placed into a continuous mode of transmit. The results are given in Table 7.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Table 7. Conducted Emissions Test Data for Transmitter and Receiver/Digital Devices, Class A.

Tested over the frequency range of 150 kHz to 30 MHz.

Conducted Emissions										
Test By: KM	Test: FCC Part 15.107 & 15.207					Client: BALOGH T.A.G. Corporation				
	Project: 08-0015					Model: ERC-100				
Frequency (MHz)	Test Data (dBm)	Test Data (dBuV)	Transd ucessor	LISN +CL (dB)	Results (dBuV)	Limits (dBuV)	Distance / Polarity	Margin (dB)	PK = n / QP	
3.0	-82.3	24.7	LISNP	0.2	24.9	46.0	PHASE	21.1	PK	
18.0	-73.8	33.2	LISNP	0.7	33.9	50.0	PHASE	16.1	PK	
19.5	-68.5	38.5	LISNP	0.6	39.1	50.0	PHASE	10.9	PK	
24.0	-73.7	33.3	LISNP	0.6	33.9	50.0	PHASE	16.1	PK	
25.5	-70.0	37.0	LISNP	0.6	37.6	50.0	PHASE	12.4	PK	
27.0	-76.2	30.8	LISNP	0.6	31.4	50.0	PHASE	18.6	PK	
28.5	-74.3	32.7	LISNP	0.7	33.4	50.0	PHASE	16.6	PK	
3.0	-86.8	20.2	LISNN	0.2	20.4	46.0	NEUTRAL	25.6	PK	
18.0	-75.8	31.2	LISNN	0.7	31.9	50.0	NEUTRAL	18.1	PK	
19.5	-69.7	37.3	LISNN	0.6	37.9	50.0	NEUTRAL	12.1	PK	
24.0	-75.2	31.8	LISNN	0.7	32.5	50.0	NEUTRAL	17.5	PK	
25.5	-71.0	36.0	LISNN	0.7	36.7	50.0	NEUTRAL	13.3	PK	
27.0	-77.0	30.0	LISNN	0.7	30.7	50.0	NEUTRAL	19.3	PK	
28.5	-75.0	32.0	LISNN	0.8	32.8	50.0	NEUTRAL	17.2	PK	

SAMPLE CALCULATIONS: At 3.00 MHz, level = 24.7 + 0.2 = 24.9 dBuV.

Test Results
Reviewed By: Keyvan Muvahhid

Name: Keyvan Muvahhid

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

2.11 Radiated Emissions (Receiver and Digital Devices) (FCC Section 15.109)

Radiated emissions for the receiver and digital apparatus were evaluated from 30 MHz to 5000 MHz. Measurements were made with the analyzer's bandwidth set to 120 kHz for measurements made at less than 1 GHz and 1 MHz for measurements made for 1 GHz and higher. Results are shown in Table 8.

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

Table 8. Radiated Emissions Data for Receiver and Digital Device, Class B

30 MHz – 12 GHz

Radiated Emissions for Digital Device									
Test By: DA	Test: FCC Part 15					Client: BALOGH T.A.G. Corporation			
	Project: 08-0015			Class: B		Model: ERC-100			
Frequency MHz	Spectrum Analyzer dBm	Transducer Table	Test Data dBuV	AF+CA -AMP dB/m	Results uV/m	Limits uV/m	Distance / Polarity	Margin dB	QP/PK
30.00	-84.7	1BI3mV	22.4	13.9	65.3	100.0	3m./VERT	3.7	PK
63.00	-88.2	1BI3mH	18.8	11.0	31.1	100.0	3m./HORZ	10.1	PK
109.50	-89.7	1BI3mH	17.3	12.6	31.3	150.0	3m./HORZ	13.6	PK
144.00	-88.5	1BI3mV	18.5	15.0	47.4	150.0	3m./VERT	10.0	PK
221.33	-88.8	1LP3mH	18.2	14.2	41.5	150.0	3m./HORZ	11.2	PK
468.90	-92.7	1LP3mV	14.3	21.0	58.5	200.0	3m./VERT	10.7	PK
477.70	-94.5	1LP3mH	12.5	21.7	51.2	200.0	3m./HORZ	11.8	PK
477.74	-92.8	1LP3mV	14.2	21.2	58.6	200.0	3m./VERT	10.7	PK
641.36	-90.9	1LP3mV	16.1	24.3	104.7	200.0	3m./VERT	5.6	PK
973.20	-101.5	1LP3mV	5.5	29.4	55.4	500.0	3m./VERT	11.2	PK

SAMPLE CALCULATIONS:

**RESULTS @ 30 MHz: E = Antilog ((-84.7 + 13.9 + 107)/20) = 65.3 uV/m @ 3m
CONVERSION FROM dBm TO dBuV = 107 dB**

April 16, 2008

Test Results
Reviewed By: _____

Name: Daniel Aparaschivei

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

5 Photographs

Photos of The Tested EUT

- 5.1 EUT, Front View**
- 5.2 EUT, Side View**
- 5.3 EUT, Bottom View Cover Removed Transceiver board Solder Side**
- 5.4 EUT, Transceiver board Component Side**

US Tech
Requirements of:
Report Number:
Customer:
Model:

FCC ID: G8630100X
Title 47, US Code Part 15 B and C
08-0015
BALOGH T.A.G. Corporation
ERC-100

6

User's Manual

Provided in a separate PDF document