



Choose Scandinavian trust

# EMC TEST REPORT – 388352-1R2TRFEMC

Applicant:

**Lotek Wireless Inc.**

Product name:

**Telemetry Receiver**

Model:

**SRX1200, SRX1200-D**

FCC ID:

**FW9SRX1200**

IC Registration number:

**4272A-SRX1200**

Specification:

- ◆ FCC 47 CFR Part 15, Subpart B
- ◆ RSS-215 Issue 2, June 2009

Date of issue: March 25, 2020

Alvin Liu, Wireless/EMC Specialist

Test engineer(s)

Signature

Andrey Adelberg, Senior Wireless/EMC Specialist

Reviewed by

Signature

---

**Lab and test locations**

|                               |                                                                                                                |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|
| Company name                  | Nemko Canada Inc.                                                                                              |
| Facilities                    | Cambridge site:<br>1-130 Saltsman Drive<br>Cambridge, Ontario<br>Canada<br>N3E 0B2<br><br>Tel: +1 519 650 4811 |
| Test Firm Registration Number | FCC: 332406, ISED:24676                                                                                        |
| Test site registration        | <b>Organization</b> <b>Recognition numbers</b><br>FCC/ISED      CA0101                                         |
| Website                       | <a href="http://www.nemko.com">www.nemko.com</a>                                                               |

---

**Limits of responsibility**

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contained in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

---

**Copyright notification**

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties.

Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

© Nemko Canada Inc.

## Table of contents

---

|                                                            |           |
|------------------------------------------------------------|-----------|
| <b>Table of contents .....</b>                             | <b>3</b>  |
| <b>Section 1. Report summary .....</b>                     | <b>4</b>  |
| 1.1    Applicant and manufacturer .....                    | 4         |
| 1.2    Test specifications .....                           | 4         |
| 1.3    Test methods.....                                   | 4         |
| 1.4    Statement of compliance .....                       | 4         |
| 1.5    Exclusions.....                                     | 4         |
| 1.6    Test report revision history .....                  | 4         |
| <b>Section 2. Summary of test results.....</b>             | <b>5</b>  |
| 2.1    FCC Part 15 Subpart B, test results .....           | 5         |
| 2.2    RSS-215, Issue 2, test results .....                | 5         |
| 2.3    RSS-Gen, Issue 5, test results.....                 | 5         |
| <b>Section 3. Equipment under test (EUT) details .....</b> | <b>6</b>  |
| 3.1    Sample information.....                             | 6         |
| 3.2    EUT information .....                               | 6         |
| 3.3    Technical information .....                         | 6         |
| 3.4    EUT exercise details.....                           | 6         |
| 3.5    EUT setup .....                                     | 7         |
| <b>Section 4. Engineering considerations.....</b>          | <b>9</b>  |
| 4.1    Modifications incorporated in the EUT.....          | 9         |
| 4.2    Technical judgment .....                            | 9         |
| 4.3    Deviations from laboratory tests procedures.....    | 9         |
| <b>Section 5. Test conditions.....</b>                     | <b>10</b> |
| 5.1    Atmospheric conditions .....                        | 10        |
| 5.2    Power supply range.....                             | 10        |
| <b>Section 6. Measurement uncertainty.....</b>             | <b>11</b> |
| 6.1    Uncertainty of measurement .....                    | 11        |
| <b>Section 7. Test equipment .....</b>                     | <b>12</b> |
| 7.1    Test equipment list.....                            | 12        |
| <b>Section 8. Testing data .....</b>                       | <b>13</b> |
| 8.1    Radiated emissions.....                             | 13        |
| 8.2    AC power line conducted emissions .....             | 24        |
| <b>Section 9. Block diagrams of test set-ups .....</b>     | <b>28</b> |
| 9.1    Radiated emissions set-up.....                      | 28        |
| 9.2    Conducted emissions set-up .....                    | 28        |
| 9.3    Antenna port set-up .....                           | 29        |

## Section 1. Report summary

---

### 1.1 Applicant and manufacturer

---

|                  |                     |
|------------------|---------------------|
| Company name:    | Lotek Wireless Inc. |
| Address:         | 115 Pony Drive      |
| City:            | Newmarket           |
| Province/State:  | Ontario             |
| Postal/Zip code: | L3Y 7B5             |
| Country:         | Canada              |

### 1.2 Test specifications

---

|                               |                                                              |
|-------------------------------|--------------------------------------------------------------|
| FCC 47 CFR Part 15, Subpart B | Title 47: Telecommunication; Part 15—Radio Frequency Devices |
| RSS-215, Issue 2, June 2009   | Analogue Scanner Receivers                                   |

### 1.3 Test methods

---

|                                          |                                                                                                                                                                     |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.4 v2014                         | American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz |
| RSS-Gen, Issue 5 Amendment 1, March 2019 | General Requirements for Compliance of Radio Apparatus                                                                                                              |

### 1.4 Statement of compliance

---

In the configuration tested, the EUT was found compliant.

Testing was completed against all relevant requirements of the test standard. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.5 Exclusions

---

None

### 1.6 Test report revision history

---

*Table 1.6-1: Test report revision history*

| Revision # | Date of issue    | Details of changes made to test report                                                                                                                                                                                                |
|------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TRF        | January 10, 2020 | Original report issued                                                                                                                                                                                                                |
| R1TRF      | March 16, 2020   | Update Receiver Spurious Emissions spectral plots for low, mid, high three frequency testing with the scan mode stopped and with the scanning mode turned on as per RSS-215 and add test specification FCC 47 CFR Part 15, Subpart B. |
| R2TRF      | March 25, 2020   | Update description about EUT exercise details                                                                                                                                                                                         |

## Section 2. Summary of test results

---

### 2.1 FCC Part 15 Subpart B, test results

---

| Part       | Test description                              | Verdict |
|------------|-----------------------------------------------|---------|
| §15.107(a) | Conducted emission limits                     | Pass    |
| §15.109(a) | Radiated emission limits                      | Pass    |
| §15.111    | Antenna power conduction limits for receivers | Pass    |

Notes: SRX1200 is an AC powered device, SRX1200-D is a DC powered device. The test is only available for SRX1200.

### 2.2 RSS-215, Issue 2, test results

---

| Part | Test description            | Verdict |
|------|-----------------------------|---------|
| 5.1  | Receiver Spurious Emissions | Pass    |

### 2.3 RSS-Gen, Issue 5, test results

---

| Part | Test description                         | Verdict |
|------|------------------------------------------|---------|
| 7.2  | AC power-line conducted emissions limits | Pass    |
| 7.3  | Receiver radiated emissions limits       | Pass    |
| 7.4  | Receiver conducted emissions limits      | Pass    |

Notes: SRX1200 is an AC powered device, SRX1200-D is a DC powered device. The test is only available for SRX1200.

## Section 3. Equipment under test (EUT) details

---

### 3.1 Sample information

---

|                        |                  |
|------------------------|------------------|
| Receipt date           | December 9, 2019 |
| Nemko sample ID number | 1, 3             |

### 3.2 EUT information

---

|               |                    |
|---------------|--------------------|
| Product name  | Telemetry Receiver |
| Model         | SRX1200, SRX1200-D |
| Serial number | None               |

### 3.3 Technical information

---

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Band                  | 138–176 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Frequencies tested              | Low: 138.3 MHz, middle: 149.800 MHz, high: 170 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Power requirements              | SRX1200: 9 V <sub>DC</sub> (or via external 100–240 V <sub>AC</sub> , 50/60 Hz power adapter), SRX1200-D: 12 V <sub>DC</sub>                                                                                                                                                                                                                                                                                                                                                                                                             |
| Description/theory of operation | The telemetry receiver is a VHF receiver receiving VHF signals, with a burst interval in the range of seconds. The system consists of: CPU board, RF receiver board (including audio amplifier and speaker), power management and interconnect board, keypad, LCD display, and GPS receiver. The CPU controls the system and is collecting information from the RF board, which is then displayed on the LCD. The receiving of the signal is also signaled via the incorporated speaker. The user can operate the receiver via a keypad. |
| Operational frequencies         | The highest frequencies on the new CPU board: <ul style="list-style-type: none"> <li>– 24 MHz (on the DART module)</li> <li>– 12 MHz (active oscillator on the MSP430 coprocessor)</li> </ul> On the VHF receiver board, the main oscillator is 26 MHz                                                                                                                                                                                                                                                                                   |
| Software details                | Master firmware: V1.0.952.21/ Slave firmware V1.0738.1/ Windows host software 1.07254.20220                                                                                                                                                                                                                                                                                                                                                                                                                                              |

### 3.4 EUT exercise details

---

The EUT was receiving RF ID tags. Three tags were used for test, which separately transmitted different frequency signals at low/middle/high frequency. The test was performed while EUT was set on low/middle/high frequency of operation in scanning mode or scanning stopped mode, as below:

1. Scanning at low frequency: 138.3 MHz;
2. Scanning at middle frequency: 149.8 MHz;
3. Scanning at high frequency: 170 MHz;
4. Scanning stopped at low frequency: 138.3 MHz;
5. Scanning stopped at middle frequency: 149.8 MHz;
6. Scanning stopped at high frequency: 170 MHz.

### 3.5 EUT setup

---

**Table 3.5-1: EUT sub assemblies**

| Description                                        | Brand name | Model/Part number | Rev. |
|----------------------------------------------------|------------|-------------------|------|
| CPU Board                                          | Lotek      | 200-3065          | 1.5  |
| RF board                                           | Lotek      | 200-2490          | 2.0  |
| Power management and interconnect board (SRX1200)  | Lotek      | 200-2508          | 5    |
| Power management and interconnect board (SRX1200D) | Lotek      | 200-2607          | 6    |
| Keypad Assembly                                    | Lotek      | 011-1351          | N/A  |
| LCD Display                                        | Lotek      | 011-1245          | N/A  |
| GPS antenna assembly                               | Lotek      | 200-1249          | N/A  |

**Table 3.5-2: EUT interface ports**

| Description                         | Qty.                       |
|-------------------------------------|----------------------------|
| DC power input                      | 1                          |
| USB                                 | 2                          |
| Headphone                           | 1                          |
| VHF antenna input (BNC)             | 1 (SRX1200), 4 (SRX1200-D) |
| GPS antenna connector (SMA female)  | 1                          |
| WiFi antenna connector (SMA female) | 1                          |

**Table 3.5-3: Support equipment**

| Description       | Brand name | Model, Part number, Serial number, Revision level |
|-------------------|------------|---------------------------------------------------|
| Switching Adaptor | None       | PN: S6-092A5P, MN: FJ-SW0902500N                  |
| Tag               | Lotek      | 138.3 MHz, 149.800 MHz, 170 MHz                   |
| GPS Antenna       | Trimble    | SN:156130439, PN: 66800-50                        |
| GPS Antenna       | Trimble    | SN:22180661, PN: 66800-50                         |
| WiFi antenna      | Laird      | PN: 001-009                                       |
| VHF antenna       | Lotek      | Larsen KDA-150-HQ, PN: SLA/FT-2                   |
| Headphone         | Maxell     | MN: EB-125                                        |

**Table 3.5-4: Inter-connection cables**

| Cable description | From         | To                | Length (m) |
|-------------------|--------------|-------------------|------------|
| DC power cable    | SRX1200      | Switching Adaptor | 1.4        |
| DC power cable    | SRX1200-D    | DC power supply   | 1.4        |
| USB cable         | EUT USB port | —                 | 1.8        |

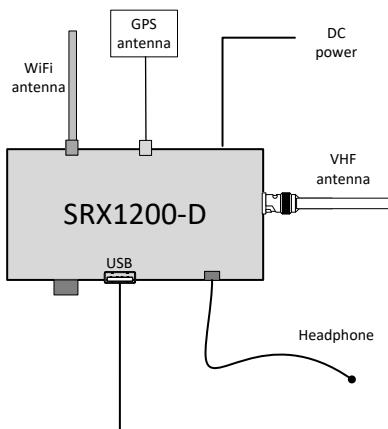
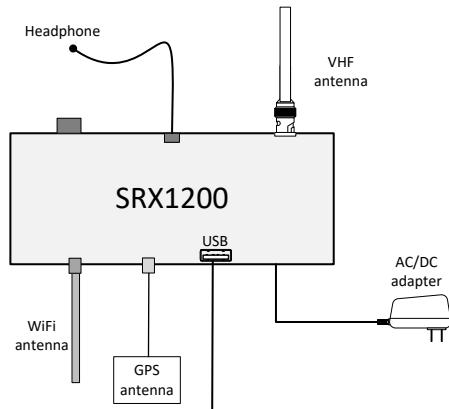




Figure 3.5-1: Setup diagram

## Section 4. Engineering considerations

---

### 4.1 Modifications incorporated in the EUT

---

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

---

This product has two models, SRX1200 and SRX1200-D:

- Same RF board and CPU board
- Battery powered, from non-vehicular source
- SRX1200: LCD & keypad, 9 V<sub>DC</sub>, can be powered by an AC/DC adaptor.
- SRX1200-D: rugged box, no LCD nor keypad, 12V<sub>DC</sub>

All tests have been conducted for both models.

### 4.3 Deviations from laboratory tests procedures

---

No deviations were made from laboratory procedures.

## Section 5. Test conditions

---

### 5.1 Atmospheric conditions

---

|                   |               |
|-------------------|---------------|
| Temperature       | 15–30 °C      |
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

---

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages  $\pm 5\%$ , for which the equipment was designed.

## Section 6. Measurement uncertainty

### 6.1 Uncertainty of measurement

Nemko Canada Inc. has calculated measurement uncertainty and is documented in EMC/MUC/001 "Uncertainty in EMC measurements." Measurement uncertainty was calculated using the methods described in CISPR 16-4-2 Specification for radio disturbance and immunity measuring apparatus and methods – Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty. The expression of Uncertainty in EMC Testing. Measurement uncertainty calculations assume a coverage factor of K=2 with 95% certainty.

**Table 6.1-1: Measurement uncertainty calculations**

| Measurement                                                           | $U_{cisp}$ dB                             | $U_{lab}$ dB |            |            |            |
|-----------------------------------------------------------------------|-------------------------------------------|--------------|------------|------------|------------|
|                                                                       |                                           | Ottawa       | Montreal   | Cambridge  | Almonte    |
| Conducted disturbance at AC mains and other port power using a V-AMN  | (9 kHz to 150 kHz)<br>(150 kHz to 30 MHz) | 3.8<br>3.4   | 2.9<br>2.3 | 2.8<br>2.2 | 2.8<br>2.2 |
| Conducted disturbance at telecommunication port using AAN             | (150 kHz to 30 MHz)                       | 5.0          | 4.3        | 4.3        | 4.3        |
| Conducted disturbance at telecommunication port using CVP             | (150 kHz to 30 MHz)                       | 3.9          | 2.9        | 2.8        | 2.8        |
| Conducted disturbance at telecommunication port using CP              | (150 kHz to 30 MHz)                       | 2.9          | 1.4        | 1.1        | 1.1        |
| Conducted disturbance at telecommunication port using CP and CVP      | (150 kHz to 30 MHz)                       | 4.0          | 3.1        | 3.0        | 3.0        |
| Disturbance power                                                     | (30 MHz to 300 MHz)                       | 4.0          | 3.7        | 3.7        | 3.7        |
| Radiated disturbance (electric field strength at an OATS or in a SAC) | (30 MHz to 1 GHz)                         | 6.3          | 5.7        | 5.5        | 5.5        |
| Radiated disturbance (electric field strength in a FAR)               | (1 GHz to 6 GHz)                          | 5.2          | 4.8        | 5.1        | 4.8        |
| Radiated disturbance (electric field strength in a FAR)               | (6 GHz to 18 GHz)                         | 5.5          | 5.1        | 5.0        | 4.7        |

Notes: Compliance assessment:

If  $U_{lab}$  is less than or equal to  $U_{cisp}$  then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit

If  $U_{lab}$  is greater than  $U_{cisp}$  then:

- compliance is deemed to occur if no measured disturbance level, increased by  $(U_{lab} - U_{cisp})$ , exceeds the disturbance limit;
- non-compliance is deemed to occur if any measured disturbance level, increased by  $(U_{lab} - U_{cisp})$ , exceeds the disturbance limit

## Section 7. Test equipment

### 7.1 Test equipment list

**Table 7.1-1: Equipment list**

| Equipment                   | Manufacturer    | Model no. | Asset no. | Cal cycle | Next cal.   |
|-----------------------------|-----------------|-----------|-----------|-----------|-------------|
| 3 m EMI test chamber        | TDK             | SAC-3     | FA003012  | 1 year    | Oct. 10/20  |
| Flush mount turntable       | SUNAR           | FM2022    | FA003006  | —         | NCR         |
| Controller                  | SUNAR           | SC110V    | FA002976  | —         | NCR         |
| Antenna mast                | SUNAR           | TLT2      | FA003007  | —         | NCR         |
| Receiver/spectrum analyzer  | Rohde & Schwarz | ESR26     | FA002969  | 1 year    | June 04/20  |
| Bilog antenna (30–2000 MHz) | SUNAR           | JB1       | FA003010  | 1 year    | Sept. 17/20 |
| Horn antenna (1–18 GHz)     | ETS-Lindgren    | 3117      | FA002911  | 1 year    | Sept. 11/20 |
| Preamp (1–18 GHz)           | ETS-Lindgren    | 124334    | FA002956  | 1 year    | Sept. 26/20 |
| 50 Ω coax cable             | Huber + Suhner  | None      | FA003047  | 1 year    | Sept 30/20  |
| 50 Ω coax cable             | Huber + Suhner  | None      | FA003044  | 1 year    | Oct. 7/20   |
| Two-Line V-Network          | Rohde & Schwarz | ENV216    | FA002965  | 1 year    | June 20/20  |
| 50 Ω coax cable             | Rohde & Schwarz | None      | FA003074  | 1 year    | Oct. 2/20   |

Notes: NCR - no calibration required

**Table 7.1-2: Test software details**

| Test description  | Manufacturer of Software | Details                                                |
|-------------------|--------------------------|--------------------------------------------------------|
| Radiated spurious | Rohde & Schwarz          | EMC32, Software for EMC Measurements, Version 10.40.10 |

## Section 8. Testing data

---

### 8.1 Radiated emissions

---

#### 8.1.1 Definition and limits

---

##### **FCC § 15.109 Radiated emissions limit**

The field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

**Table 8.1-1: FCC § 15.109 – Radiated emission limits**

| Frequency,<br>MHz | Field strength of emissions<br>μV/m | Field strength of emissions<br>dBμV/m | Measurement distance,<br>m |
|-------------------|-------------------------------------|---------------------------------------|----------------------------|
| 30–88             | 100                                 | 40.0                                  | 3                          |
| 88–216            | 150                                 | 43.5                                  | 3                          |
| 216–960           | 200                                 | 46.0                                  | 3                          |
| above 960         | 500                                 | 54.0                                  | 3                          |

In the emission table above, the tighter limit applies at the band edges. Sections 15.33 and 15.35, which specify the frequency range over which radiated emissions, are to be measured and the detector functions and other measurement standards apply.

For CB receivers, the field strength of radiated emissions within the frequency range of 25–30 MHz shall not exceed 40 μV/m at a distance of 3 meters. The field strength of radiated emissions above 30 MHz from such devices shall comply with the limits in paragraph (a) of this section.

For a receiver which employs terminals for the connection of an external receiving antenna, the receiver shall be tested to demonstrate compliance with the provisions of this section with an antenna connected to the antenna terminals unless the antenna conducted power is measured as specified in §15.111(a). If a permanently attached receiving antenna is used, the receiver shall be tested to demonstrate compliance with the provisions of this section.

##### **FCC § 15.111 Antenna power conduction limits for receivers**

In addition to the radiated emission limits, receivers that operate (tune) in the frequency range 30 to 960 MHz and CB receivers that provide terminals for the connection of an external receiving antenna may be tested to demonstrate compliance with the provisions of §15.109 with the antenna terminals shielded and terminated with a resistive termination equal to the impedance specified for the antenna, provided these receivers also comply with the following: With the receiver antenna terminal connected to a resistive termination equal to the impedance specified or employed for the antenna, the power at the antenna terminal at any frequency within the range of measurements specified in §15.33 shall not exceed 2.0 nW (-57 dBm).

## 8.1.1 Definition and limits, continued

### RSS-215 § 5.1 Receiver Spurious Emissions

The scanner receiver spurious emissions are to be measured when the receiver is in the scanning mode and repeated when the scanning is stopped. Receiver spurious emissions shall comply with the limits specified in RSS-Gen.

### RSS-Gen § 7.3 Receiver radiated emissions limits

Radiated emission measurements shall be performed with the receiver antenna connected to the receiver antenna ports. The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least five times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz. Spurious emissions from receivers shall not exceed the radiated emissions limits shown in following table:

**Table 8.1-2: RSS-Gen – Radiated emission limits**

| Frequency,<br>MHz | Field strength of emissions<br>μV/m | Field strength of emissions<br>dBμV/m | Measurement distance,<br>m |
|-------------------|-------------------------------------|---------------------------------------|----------------------------|
| 30–88             | 100                                 | 40.0                                  | 3                          |
| 88–216            | 150                                 | 43.5                                  | 3                          |
| 216–960           | 200                                 | 46.0                                  | 3                          |
| above 960         | 500                                 | 54.0                                  | 3                          |

Notes: In the emission table above, the tighter limit applies at the band edges.

### RSS-Gen § 7.4 Receiver conducted emissions limits

If the receiver has a detachable antenna of known impedance, an antenna-conducted spurious emissions measurement is permitted as an alternative to radiated measurement. However, the radiated method of section 7.3 is preferred.<sup>4</sup>

The antenna-conducted test shall be performed with the antenna disconnected and with the receiver antenna port connected to a measuring instrument having equal input impedance to that specified for the antenna. The RF cable connecting the receiver under test to the measuring instrument shall also have the same impedance to that specified for the receiver's antenna.

The spurious emissions from the receiver at any discrete frequency, measured at the antenna port by the antenna-conducted method, shall not exceed 2 nW in the frequency range 30-1000 MHz and 5 nW above 1 GHz.

### 8.1.2 Test summary

|           |           |                 |                   |
|-----------|-----------|-----------------|-------------------|
| Verdict   | Pass      | Test location   | Cambridge         |
| Tested by | Alvin Liu | Test start date | December 11, 2019 |

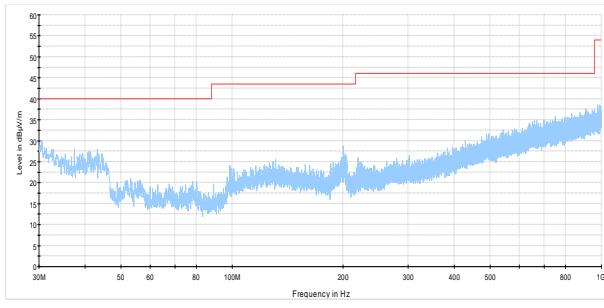
### 8.1.3 Notes

- The spectral plots within this section are a summation of a vertical and horizontal scans. The spectral scans have been corrected with the associated applicable transducer factors.
- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally; where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.
- The spectrum was scanned to 2 GHz according to the EUT highest operating frequency.

**Table 8.1-3: Maximum frequency test range based on highest digital operating frequency**

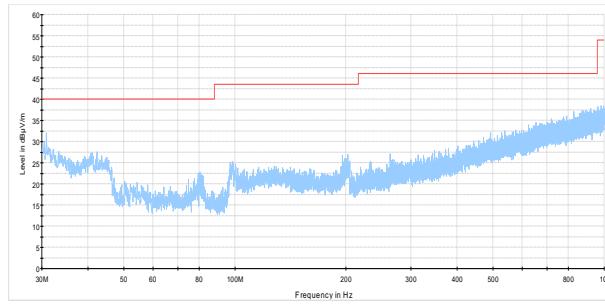
| Highest internal frequency [F <sub>x</sub> ] | Highest measured frequency                                |
|----------------------------------------------|-----------------------------------------------------------|
| F <sub>x</sub> ≤ 108 MHz                     | 1 GHz                                                     |
| 108 MHz < F <sub>x</sub> ≤ 500 MHz           | 2 GHz                                                     |
| 500 MHz < F <sub>x</sub> ≤ 1 GHz             | 5 GHz                                                     |
| F <sub>x</sub> > 1 GHz                       | 5 × F <sub>x</sub> up to a maximum of 40 GHz (ANSI C63.4) |

Notes: Highest internal frequency [F<sub>x</sub>] – highest fundamental frequency generated or used within the EUT or highest frequency at which it operates. This includes frequencies which are solely used within an integrated circuit.  
 For FM and TV broadcast receivers F<sub>x</sub> is determined from the highest frequency generated or used excluding the local oscillator and tuned frequencies.


### 8.1.4 Setup details

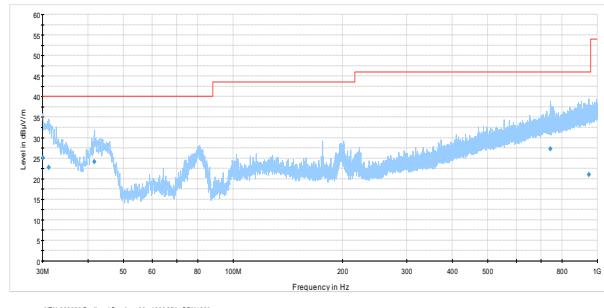
|                          |                                                                                                                                                                                                                                                                                                                                    |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EUT setup configuration  | Table top                                                                                                                                                                                                                                                                                                                          |
| Test facility            | 3 m Semi anechoic chamber                                                                                                                                                                                                                                                                                                          |
| Measuring distance       | 3 m                                                                                                                                                                                                                                                                                                                                |
| Antenna height variation | 1–4 m                                                                                                                                                                                                                                                                                                                              |
| Turn table position      | 0–360°                                                                                                                                                                                                                                                                                                                             |
| Measurement details      | A preview measurement was generated with receiver in continuous scan or sweep mode while the EUT was rotated and antenna adjusted to maximize radiated emission. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. |

Receiver/spectrum analyzer settings:


|                      |                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Resolution bandwidth | Measurements below 1 GHz: 120 kHz, Measurements above 1 GHz: 1 MHz                                                                 |
| Video bandwidth      | Measurements below 1 GHz: 300 kHz, Measurements above 1 GHz: 3 MHz                                                                 |
| Detector mode        | Measurements below 1 GHz: Peak (Preview), Quasi-peak (Final)<br>Measurements above 1GHz: Peak (Preview), Peak and CAverage (Final) |
| Trace mode           | Max Hold                                                                                                                           |
| Measurement time     | 100 ms                                                                                                                             |

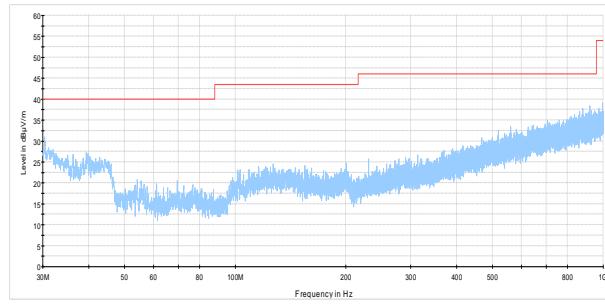
### 8.1.5 Test data




NEX-388352 Radiated Spurious 30 - 1000 MHz low scanning  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

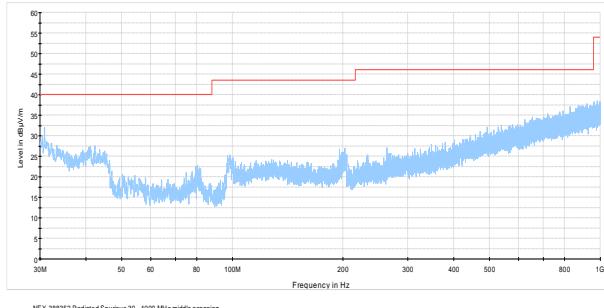
**Figure 8.1-1: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at low frequency, SRX1200**




NEX-388352 Radiated Spurious 30 - 1000 MHz middle scanning  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

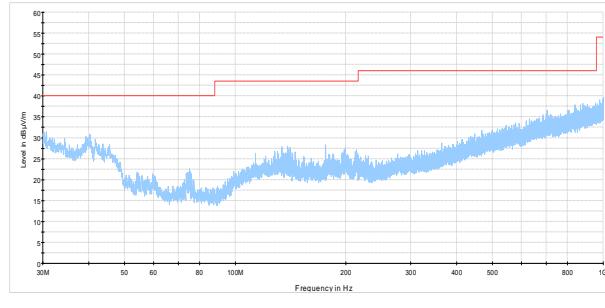
**Figure 8.1-2: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at middle frequency, SRX1200**




NEX-388352 Radiated Spurious 30 - 1000 MHz SRX1200  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m  
 Final Result QPK

**Figure 8.1-3: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at high frequency, SRX1200**

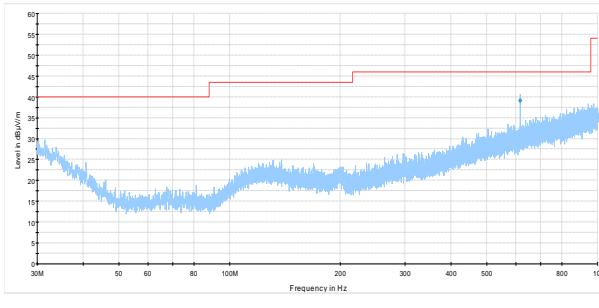



NEX-388352 Radiated Spurious 30 - 1000 MHz low scanning stopped  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

**Figure 8.1-4: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at low frequency, SRX1200**

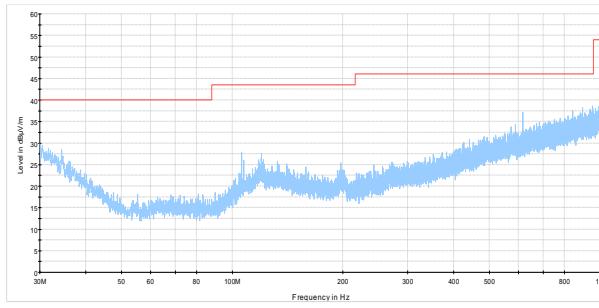


NEX-388352 Radiated Spurious 30 - 1000 MHz middle scanning  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m


**Figure 8.1-5: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at middle frequency, SRX1200**

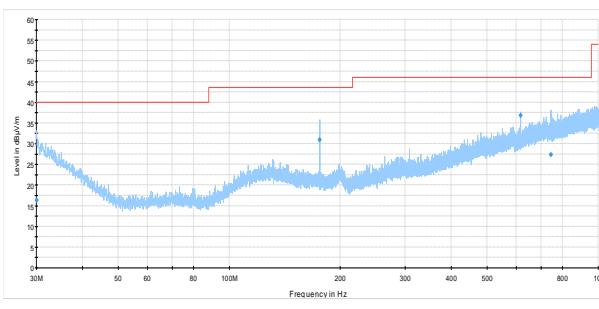


NEX-388352 Radiated Spurious 30 - 1000 MHz Scanning stopped SRX1200  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m


**Figure 8.1-6: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at high frequency, SRX1200**

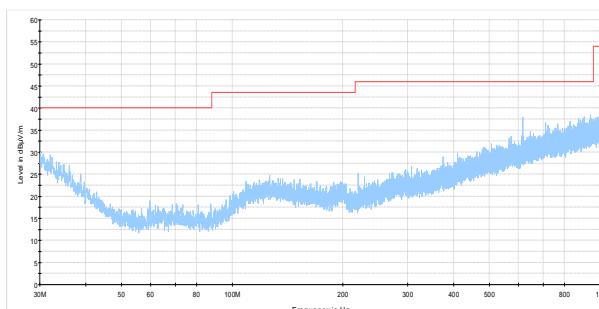
### 8.1.5 Test data, continued




NEC-388352 Radiated Spurious 30 - 1000 MHz low scanning SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m  
 Final Result QPK

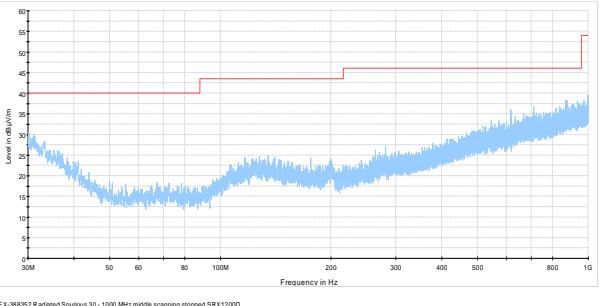
**Figure 8.1-7: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at low frequency, SRX1200-D**




NEC-388352 Radiated Spurious 30 - 1000 MHz middle scanning SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

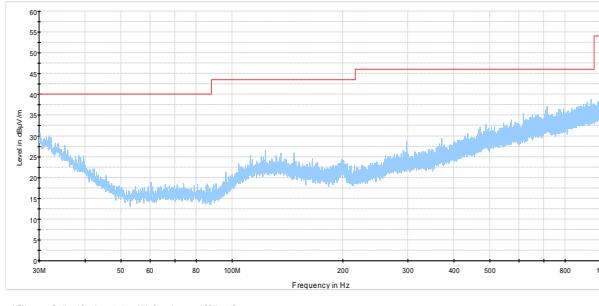
**Figure 8.1-8: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at middle frequency, SRX1200-D**




NEC-388352 Radiated Spurious 30 - 1000 MHz high scanning SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m  
 Final Result QPK

**Figure 8.1-9: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning at high frequency, SRX1200-D**

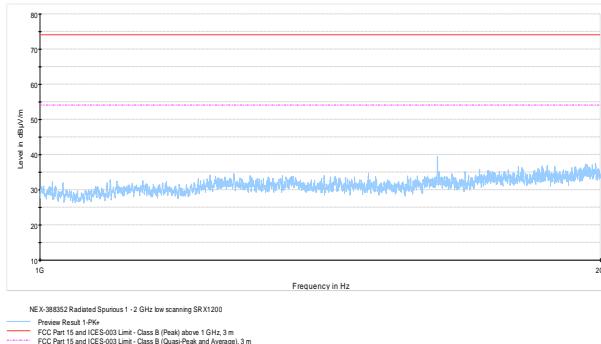



NEC-388352 Radiated Spurious 30 - 1000 MHz low scanning stopped SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

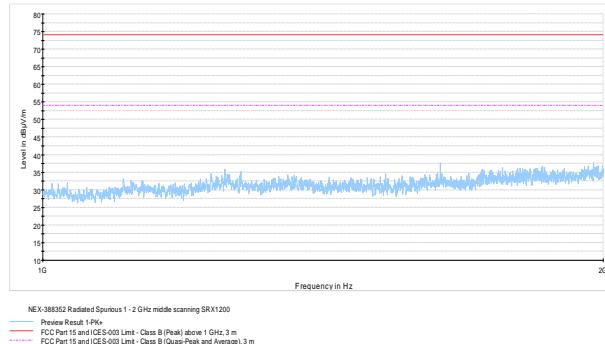
**Figure 8.1-10: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at low frequency, SRX1200-D**



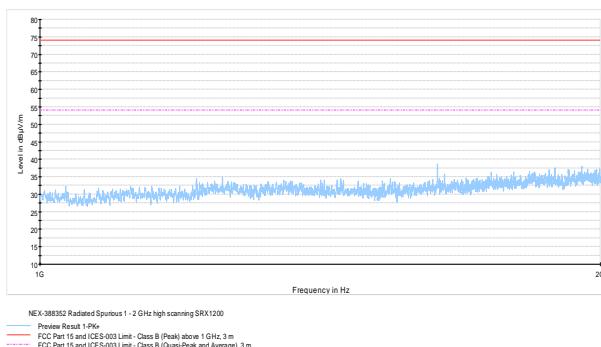
NEC-388352 Radiated Spurious 30 - 1000 MHz middle scanning stopped SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m


**Figure 8.1-11: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at middle frequency, SRX1200-D**

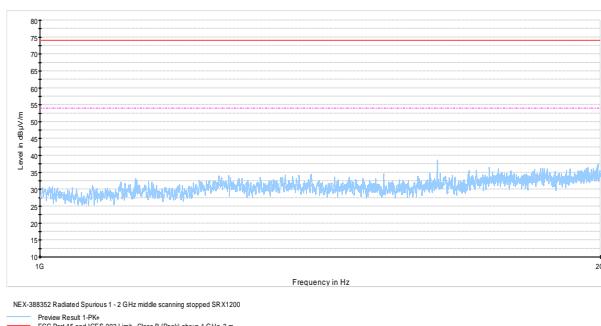
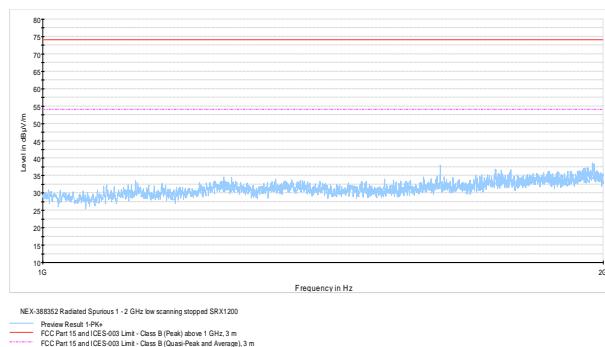



NEC-388352 Radiated Spurious 30 - 1000 MHz Scanning stopped SRX1200D  
 Preview Result 1-Pk  
 FCC Part 15 and ICES-003 Limit - Class B (Quasi-Peak and Average), 3 m

**Figure 8.1-12: Radiated disturbance spectral plot (30 to 1000 MHz), Scanning stopped at high frequency, SRX1200-D**


### 8.1.5 Test data, continued

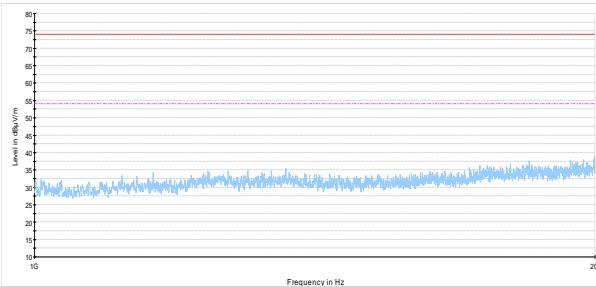




**Figure 8.1-13: Radiated disturbance spectral plot (1 to 2 GHz), Scanning at low frequency, SRX1200**

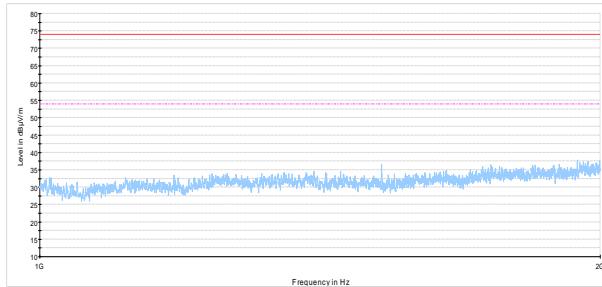


**Figure 8.1-14: Radiated disturbance spectral plot (1 to 2 GHz), Scanning at middle frequency, SRX1200**

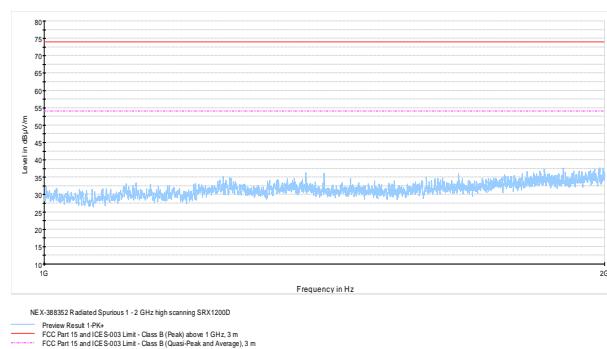



**Figure 8.1-15: Radiated disturbance spectral plot (1 to 2 GHz), Scanning at high frequency, SRX1200**

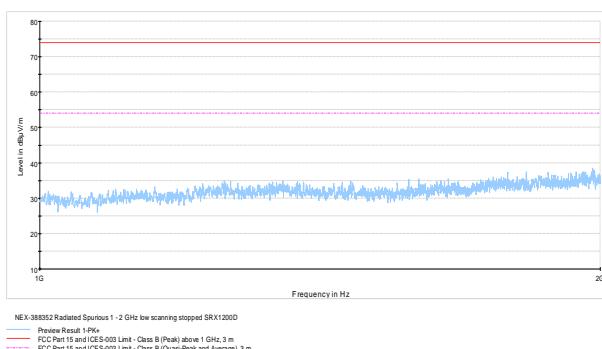



**Figure 8.1-17: Radiated disturbance spectral plot (1 to 2 GHz), Scanning stopped at middle frequency, SRX1200**

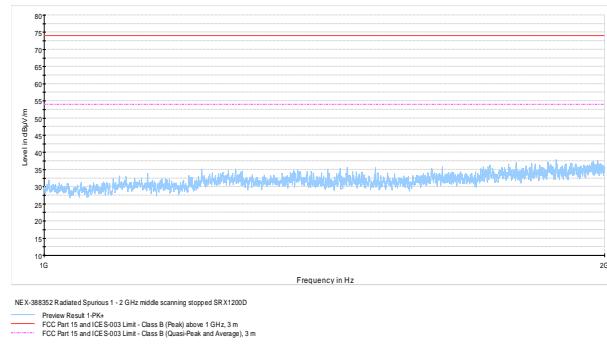



### 8.1.5 Test data, continued

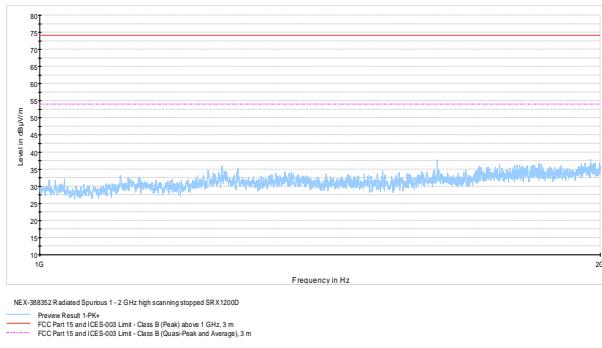



**Figure 8.1-19: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning at low frequency, SRX1200-D**



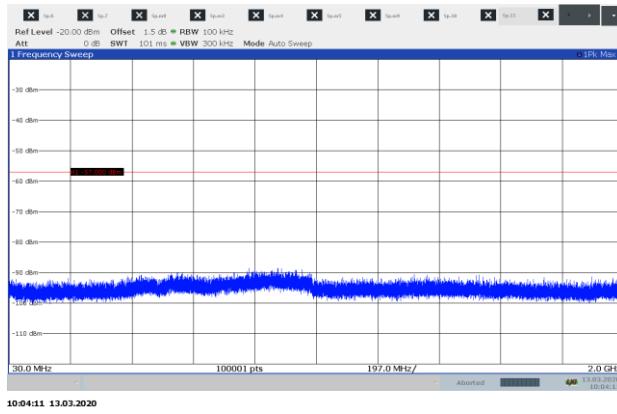

**Figure 8.1-20: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning at middle frequency, SRX1200-D**



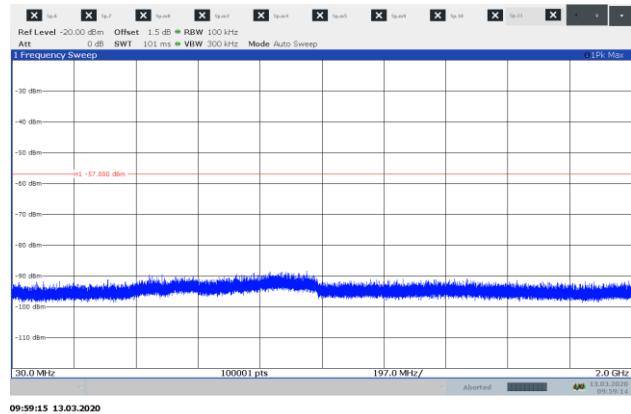

**Figure 8.1-21: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning at high frequency, SRX1200-D**



**Figure 8.1-22: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning stopped at low frequency, SRX1200-D**

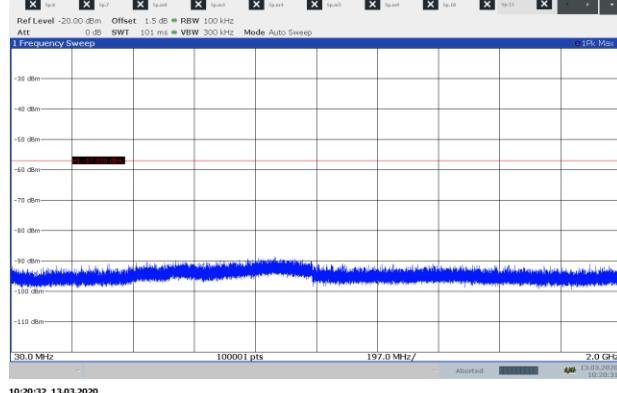



**Figure 8.1-23: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning stopped at middle frequency, SRX1200-D**




**Figure 8.1-24: Radiated disturbance spectral plot (1 to 2 GHz),  
Scanning stopped at high frequency, SRX1200-D**

### 8.1.5 Test data, continued



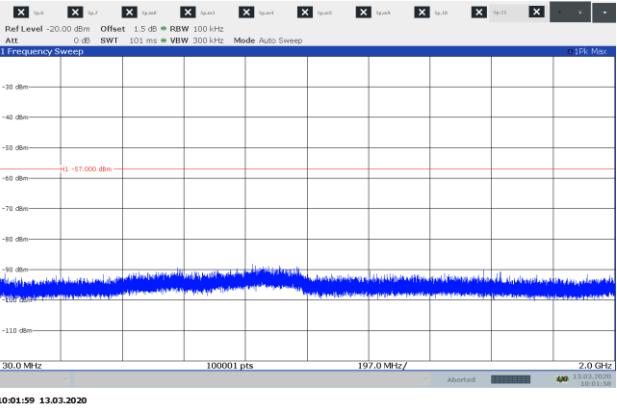

10:04:11 13.03.2020



09:59:15 13.03.2020

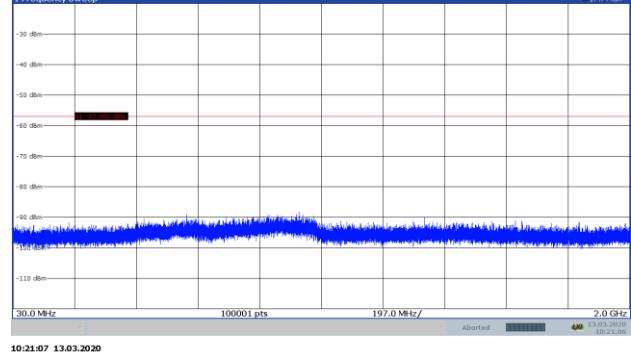
**Figure 8.1-25: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at low frequency, SRX1200**




10:20:32 13.03.2020

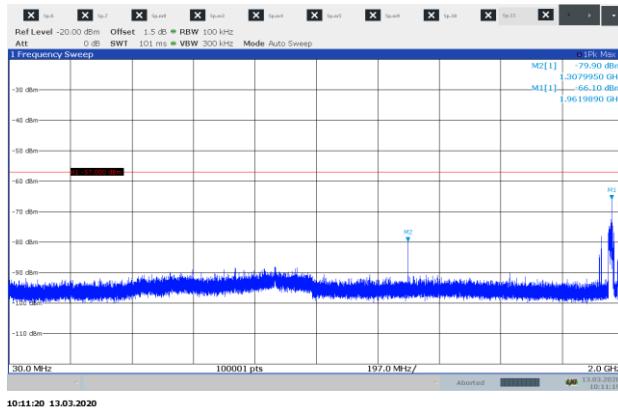
**Figure 8.1-26: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at middle frequency, SRX1200**



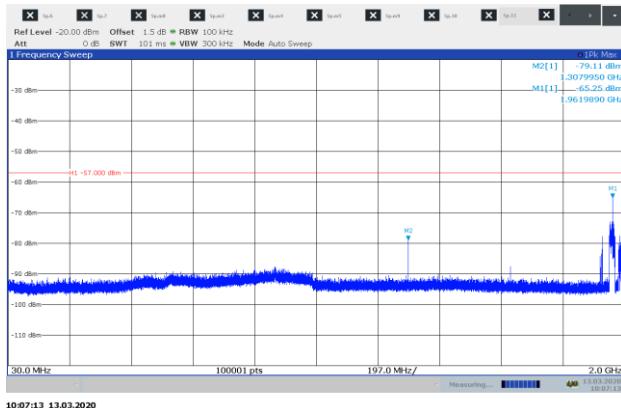

10:05:14 13.03.2020

**Figure 8.1-27: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at high frequency, SRX1200**

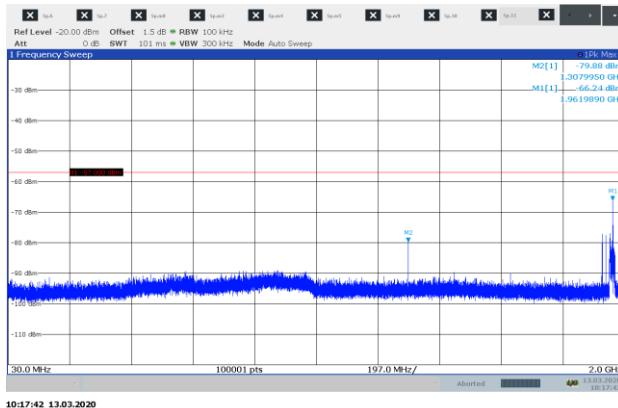



10:01:59 13.03.2020

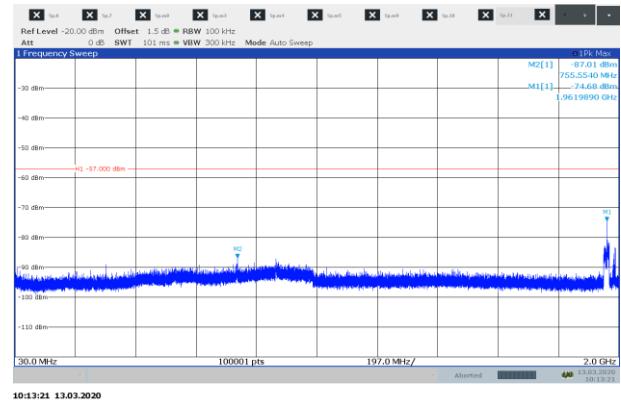
**Figure 8.1-28: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning stopped at low frequency, SRX1200**



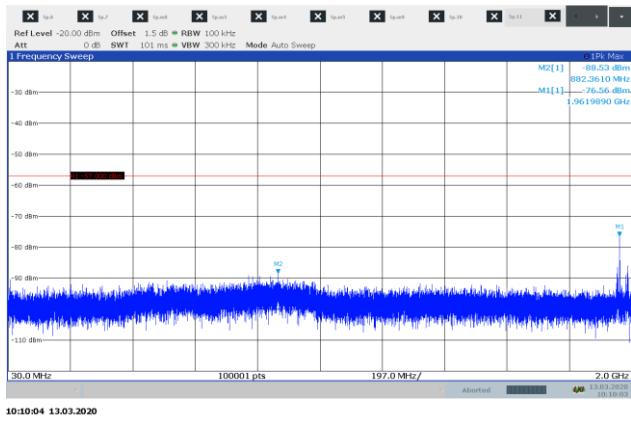

10:21:07 13.03.2020


### 8.1.5 Test data, continued

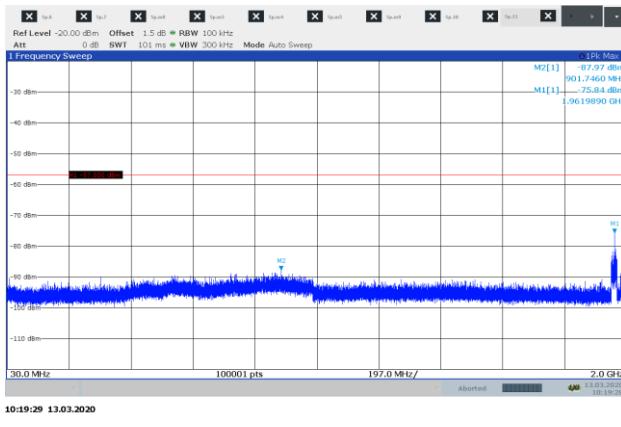



**Figure 8.1-31: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at low frequency, SRX1200-D**




**Figure 8.1-32: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at middle frequency, SRX1200-D**



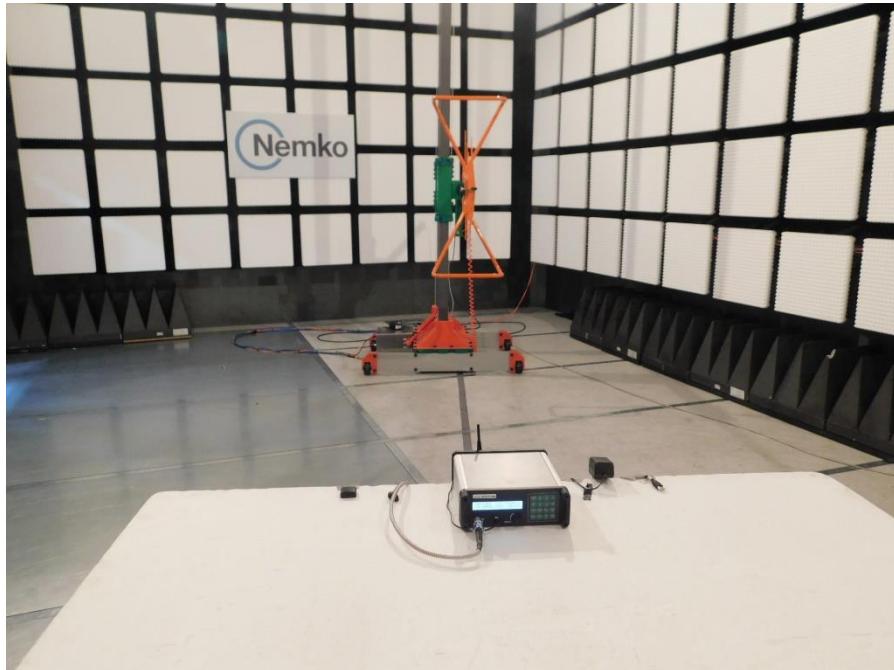

**Figure 8.1-33: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning at high frequency, SRX1200-D**



**Figure 8.1-34: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning stopped at low frequency, SRX1200-D**



**Figure 8.1-35: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning stopped at middle frequency, SRX1200-D**

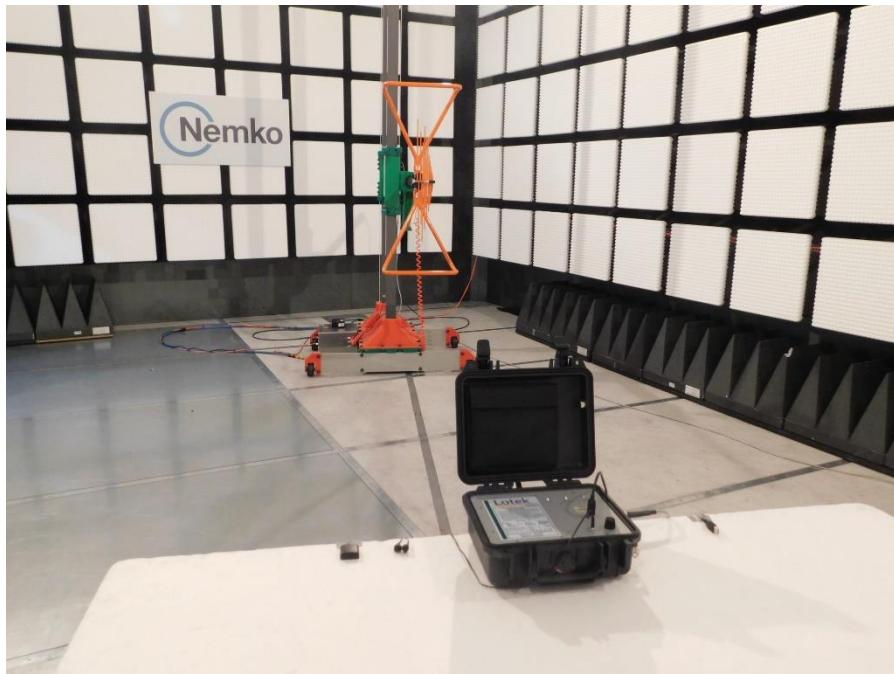



**Figure 8.1-36: Receiver antenna power conducted emission spectral plot (30 to 2000 MHz), Scanning stopped at high frequency, SRX1200-D**

#### 8.1.6 Setup photos



**Figure 8.1-37: Radiated disturbance setup photo (SRX1200)**




**Figure 8.1-38: Radiated disturbance setup photo (SRX1200)**

#### 8.1.6 Setup photos, continued



**Figure 8.1-39: Radiated disturbance setup photo (SRX1200-D)**



**Figure 8.1-40: Radiated disturbance setup photo (SRX1200-D)**

## 8.2 AC power line conducted emissions

### 8.2.1 Definitions and limits

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

**Table 8.2-1: Conducted emissions limit**

| Frequency of emission,<br>MHz | Quasi-peak | Conducted limit, dB $\mu$ V | Average** |
|-------------------------------|------------|-----------------------------|-----------|
| 0.15–0.5                      | 66 to 56*  | 56 to 46*                   | 56 to 46* |
| 0.5–5                         | 56         | 46                          | 46        |
| 5–30                          | 60         | 50                          | 50        |

Note: \* The level decreases linearly with the logarithm of the frequency.

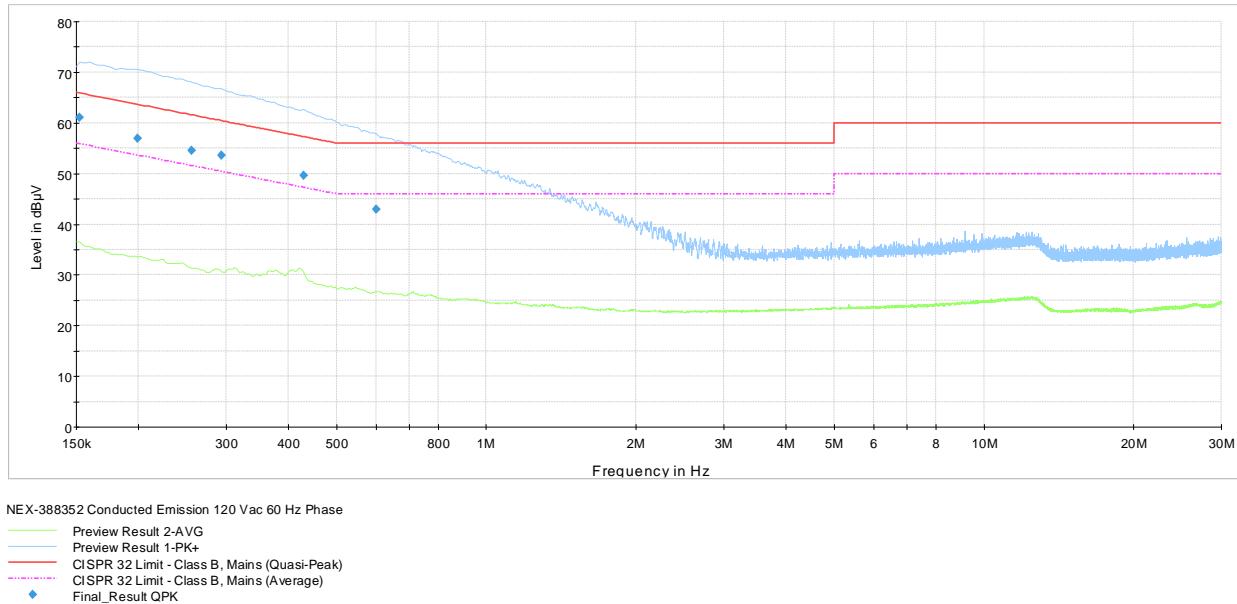
\*\* A linear average detector is required.

### 8.2.2 Test summary

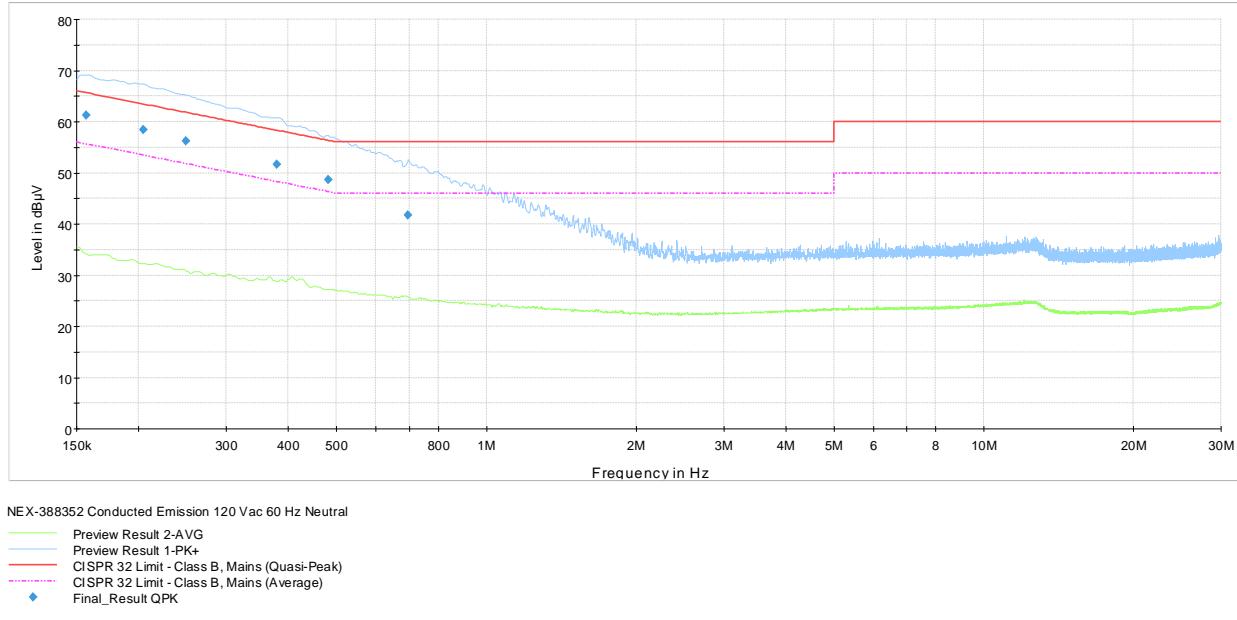
|           |           |               |                   |
|-----------|-----------|---------------|-------------------|
| Verdict   | Pass      | Test location | Cambridge         |
| Tested by | Alvin Liu | Test date     | December 11, 2019 |

### 8.2.3 Notes

- The spectral plots within this section have been corrected with applicable transducer factors.
- Where tabular data has not been provided, no emissions were observed within 10 dB of the specified limit when measured with the appropriate detector. Additionally, where less than 6 measurements per detector has been provided, fewer than 6 emissions were observed within 10 dB of the specified limit when measured with the appropriate detector.


### 8.2.4 Setup details

|                                   |                                                                                                                                                                                                                                                       |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Port under test – Coupling device | AC Mains – Artificial Mains Network (AMN)                                                                                                                                                                                                             |
| EUT power input during test       | SRX1200: 120 V <sub>AC</sub> , 60 Hz (via power adapter)                                                                                                                                                                                              |
| EUT setup configuration           | Table top                                                                                                                                                                                                                                             |
| Measurement details               | A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 10 dB or above the limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement. |


Receiver settings:

|                      |                                                             |
|----------------------|-------------------------------------------------------------|
| Resolution bandwidth | 9 kHz                                                       |
| Video bandwidth      | 30 kHz                                                      |
| Detector mode        | Peak and Average (Preview), Quasi-peak and CAverage (Final) |
| Trace mode           | Max Hold                                                    |
| Measurement time     | 100 ms (Preview), 160 ms (Final)                            |

### 8.2.5 Test data



**Figure 8.2-1: Conducted emissions – from AC mains power ports spectral plot on phase line (SRX1200)**

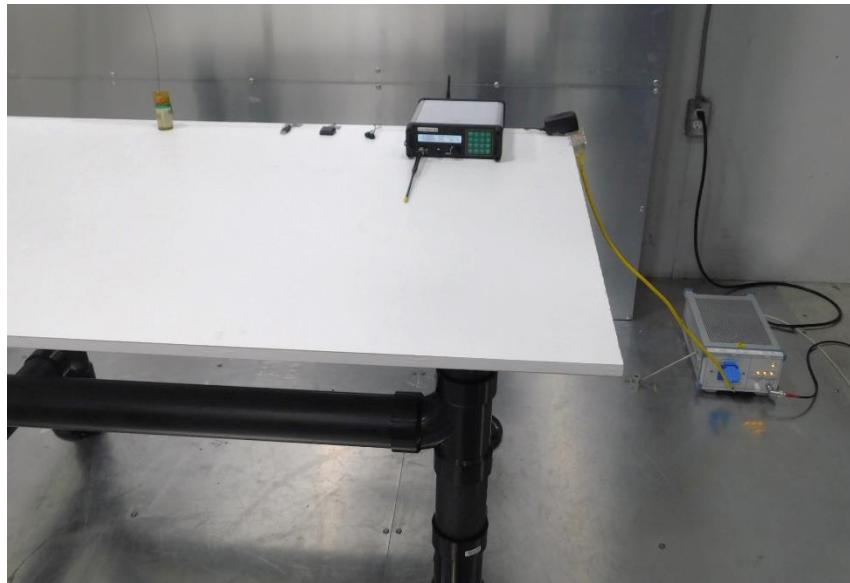


**Figure 8.2-2: Conducted emissions – from AC mains power ports spectral plot on neutral line (SRX1200)**

### 8.2.5 Test data, continued

**Table 8.2-2: Conducted emissions – from AC mains power ports results**

| Frequency (MHz) | Quasi-Peak result <sup>1 and 3</sup> (dB $\mu$ V) | Quasi-Peak limit (dB $\mu$ V) | Quasi-Peak margin (dB) | Conductor | Correction factor <sup>2</sup> (dB) |
|-----------------|---------------------------------------------------|-------------------------------|------------------------|-----------|-------------------------------------|
| 0.152           | 61.2                                              | 65.9                          | 4.7                    | L1        | 15.4                                |
| 0.200           | 56.9                                              | 63.6                          | 6.7                    | L1        | 15.4                                |
| 0.256           | 54.6                                              | 61.6                          | 7.0                    | L1        | 15.5                                |
| 0.294           | 53.6                                              | 60.4                          | 6.8                    | L1        | 15.5                                |
| 0.429           | 49.7                                              | 57.3                          | 7.6                    | L1        | 15.5                                |
| 0.600           | 42.9                                              | 56.0                          | 13.1                   | L1        | 15.5                                |
| 0.157           | 61.2                                              | 65.6                          | 4.4                    | N         | 15.4                                |
| 0.204           | 58.4                                              | 63.4                          | 5.0                    | N         | 15.4                                |
| 0.249           | 56.2                                              | 61.8                          | 5.6                    | N         | 15.5                                |
| 0.380           | 51.7                                              | 58.3                          | 6.6                    | N         | 15.5                                |
| 0.481           | 48.7                                              | 56.3                          | 7.6                    | N         | 15.5                                |
| 0.697           | 41.8                                              | 56.0                          | 14.2                   | N         | 15.5                                |


Notes: <sup>1</sup> Result (dB $\mu$ V) = receiver/spectrum analyzer value (dB $\mu$ V) + correction factor (dB)

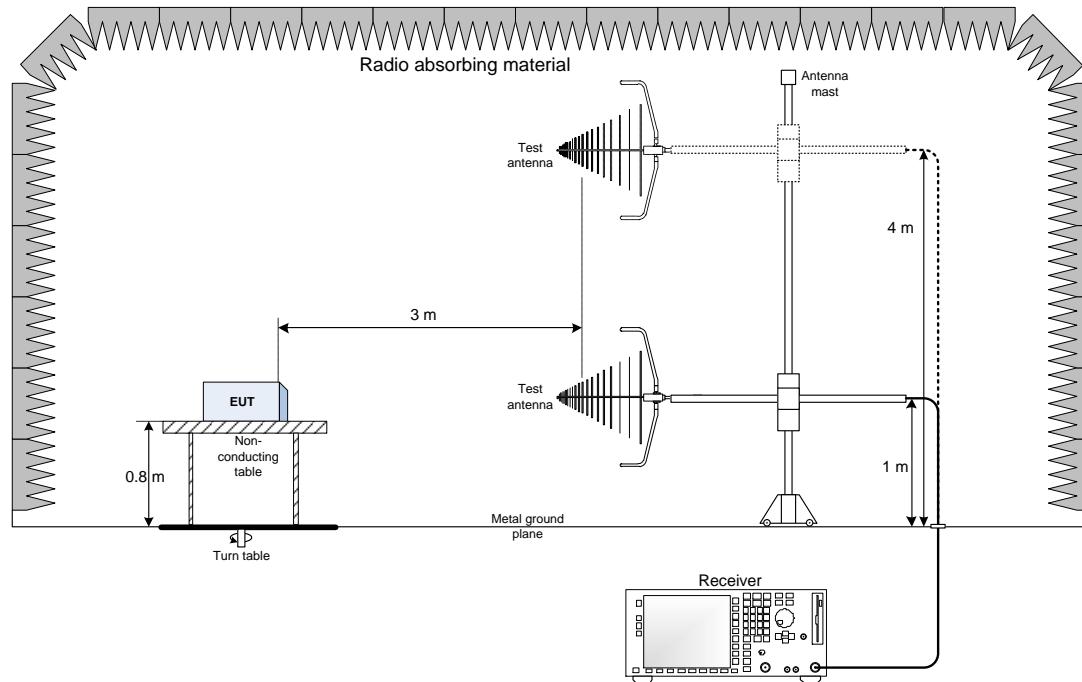
<sup>2</sup> Correction factor (dB) = LISN factor IL (dB) + cable loss (dB) + attenuator (dB)

<sup>3</sup> Emissions that were continuously present for a minimum of 1 second and occurred more than once for every 15 seconds observation period were considered valid emissions. The maximum value of valid emissions has been recorded.

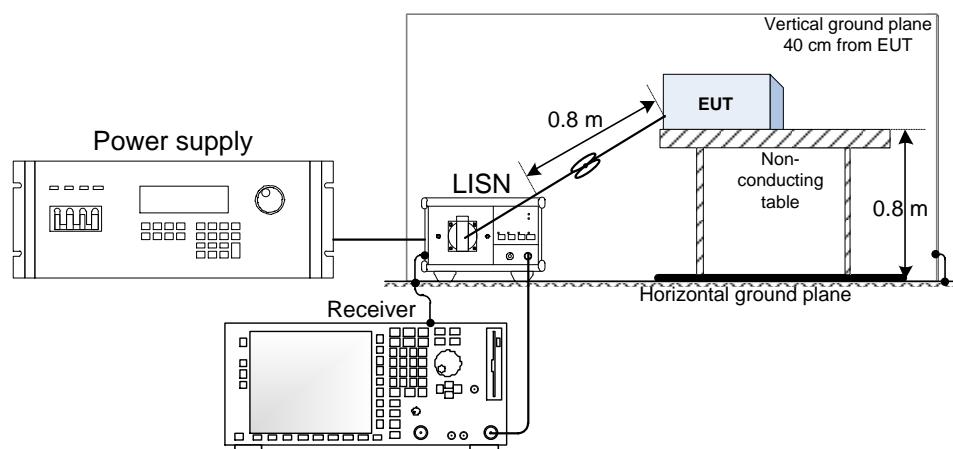
Sample calculation: 41.8 dB $\mu$ V (result) = 26.3 dB $\mu$ V (receiver reading) +15.5 dB (Correction factor)

#### 8.2.6 Setup photos

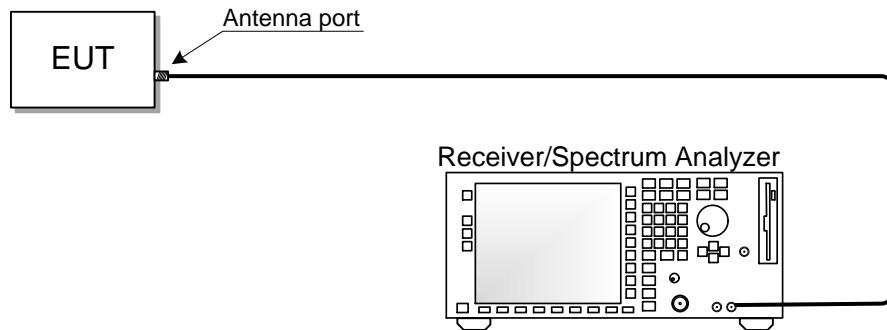



*Figure 8.2-3: Conducted emissions – from AC mains power ports setup photo (SRX1200)*




*Figure 8.2-4: Conducted emissions – from AC mains power ports setup photo (SRX1200)*

## Section 9. Block diagrams of test set-ups


### 9.1 Radiated emissions set-up



### 9.2 Conducted emissions set-up



## 9.3 Antenna port set-up

