MEASUREMENT/TECHNICAL REPORT

Challenger, Division of Wayne Dalton - Model: IRF 01-3036 Rev. 1 FCC ID: FON01-3036 April 1998

This report concerns (check one:) Original Grant	Cla	ass II Chang	geX
Equipment Type: <u>Transmitter</u> (example: computer	printer, modem,	etc.)	
Deferred grant requested per 47 CFR 0.457(d)(1)(ii)?	Ye	s	No_X
If	yes, defer until:		
			date
Company Name agrees to notify the Commission by: _ da			
	te	be issued o	n that date.
da	that the grant can	be issued or	n that date. No X
of the intended date of announcement of the product so	that the grant can	s	No_X
of the intended date of announcement of the product so Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for unintentional race	that the grant can Ye liator - the new 47 Andrew J. 1	s CFR [10-1 Bellezza	No_X -96 Edition]
of the intended date of announcement of the product so Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for unintentional rac provision.	that the grant can Ye liator - the new 47 Andrew J. I	s CFR [10-1 Bellezza sting Service	No_X -96 Edition] es NA Inc.
of the intended date of announcement of the product so Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for unintentional rac provision.	that the grant can Ye iator - the new 47 Andrew J. 1 Intertek Tes 593 Massac	s CFR [10-1 Bellezza sting Service	No_X -96 Edition] es NA Inc.
of the intended date of announcement of the product so Transition Rules Request per 15.37? If no, assumed Part 15, Subpart B for unintentional rac provision.	that the grant can Ye liator - the new 47 Andrew J. I	S CFR [10-1 Bellezza sting Service husetts Ave 1, MA 017	No_X -96 Edition] es NA Inc. enue

Martec Engineering Notice number 001083

Project Number: <u>01-3036 ver 10</u>	Description: IRF		
Initiated By: M.B.	Date: 04/01/98		
Description of Change:	file name: - <u>CH001083</u>		
1. Strip the copper under the anten	na loop.		
Reason for change:			
Transmitter is tuned to 303MHz as the 2. All timing (microprocessor) is derive			
proved By: gineering: rketing:	MERTEK J. Zarnowiel		
ality:			
terials:			
nufacturing:			
ner:			
Old Drawing	New Drawing		
Artwork 38-3036 ver F	Artwork 38-3036 ver I		
Bill of material 02-3036 ver F0,A	Bill of material 02-3036 ver IO A		

1.2 Related Submittal(s) Grants

1.3 Test Methodology

Both AC mains line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (1992). All measurements were performed in Open Area Test Sites. Preliminary scans were performed in the Open Area Test Sites only to determine worst case modes. For each scan, the procedure for maximizing emissions in Appendices D and E were followed. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Justification Section" of this Application.

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located at 593 Massachusetts Avenue, Boxborough, Massachusetts. The East site was used. This test facility has been fully described in a report dated November 20, 1996 submitted to your office. Please reference the site filing number: 31040/SIT 1300F2, dated January 16, 1997. Each test site is accredited by the NVLAP program.

EXHIBIT 2 SYSTEM TEST CONFIGURATION

2.0 **System Test Configuration**

2.1 Justification

The transmitter was configured for testing in a typical fashion (as a customer would normally use it). The device was mounted to a cardboard box, which enabled the engineer to maximize emissions through its placement in the three orthogonal axis.

The device was powered from a new, fully charged 4.5 V battery.

For simplicity of testing, the unit was wired to transmit continuously.

The worst case bit sequence was applied during test.

2.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

2.3 Equipment Modification

A list of changes made to the product since original grant of equipment authorization is included in Exhibit 1 of this application.

Any modifications installed previous to testing by Challenger, Division of Wayne Dalton will be incorporated in each production model sold/leased in the United States.

Confirmed by:

Andrew J. Bellezza

Engineering Team Leader, ITE

Intertek Testing Services NA Inc.

Agent for Challenger, Division of Wayne Dalton

__Signature

4 - 17-98

Date

2.4 Support Equipment List and Description

The FCC ID's for all equipment, plus descriptions of all cables used in the tested system (included inserted cards, which have grants) are:

Not Applicable

EXHIBIT 3 EMISSION RESULTS

3.0 **Emission Results**

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs, data tables and graphical representations of the emissions are included.

3.1 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

```
FS = RA + AF + CF - AG where FS = Field \ Strength \ in \ dB\mu V/m RA = Receiver \ Amplitude \ (including \ preamplifier) \ in \ dB\mu V CF = Cable \ Attenuation \ Factor \ in \ dB AF = Antenna \ Factor \ in \ dB AG = Amplifier \ Gain \ in \ dB
```

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows:

```
FS = RR + LF

where FS = Field Strength in dB\mu V/m

RR = RA - AG in dB\mu V

LF = CF + AF in dB
```

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

```
RA = 52.0~\mathrm{dB}\mu\mathrm{V/m}

AF = 7.4~\mathrm{dB}

RR = 23.0~\mathrm{dB}\mu\mathrm{V}

CF = 1.6~\mathrm{dB}

LF = 9.0~\mathrm{dB}

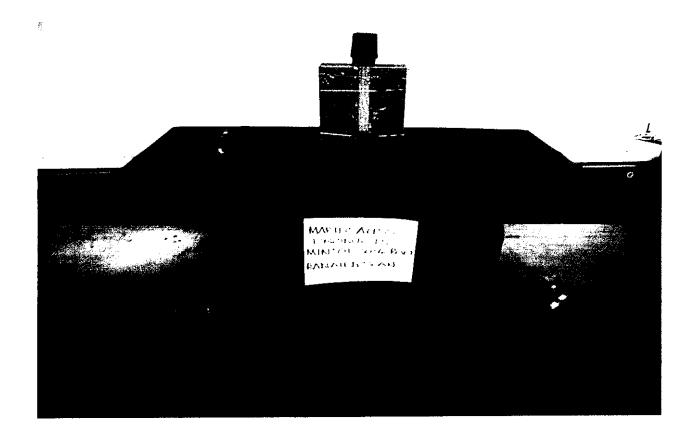
AG = 29.0~\mathrm{dB}

FS = RR + LF

FS = 23~+~9~=~32~\mathrm{dB}\mu\mathrm{V/m}

Level in \mu\mathrm{V/m} = Common Antilogarithm [(32~\mathrm{dB}\mu/\mathrm{V/m})/20] = 39.8~\mu\mathrm{V/m}
```

3.2 Radiated Emission Configuration Photograph


Worst Case Radiated Emission

Front View

909.150 MHz

Company:	Martec Access Products	Model:	01-3036 Rev-1
Date:	March 13, 1998	Engineer:	Kouma Sinn
Notes:			

Worst-Case Radiated Emissions Configuration

Job #: J98006779 Page 10A

3.2 Radiated Emission Configuration Photograph (cont)

Worst Case Radiated Emission

Rear View

909.150 MHz

3.3 Radiated Emission Data

The data on the following page lists the significant emission frequencies, the limit and the margin of compliance. Numbers with a minus sign are below the limit.

Judgement: Passed by 2 dB

*All readings are peak unless stated otherwise

TEST PERSONNEL:

Midw 1. Bellega FOR KPS Tester Signature

Kouma Sinn, Compliance Engineer

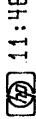
Typed/Printed Name

Date

COMPANY: Martec Access Products MODEL: 01-3036 Rev-1

Radiated scan at 3 meters

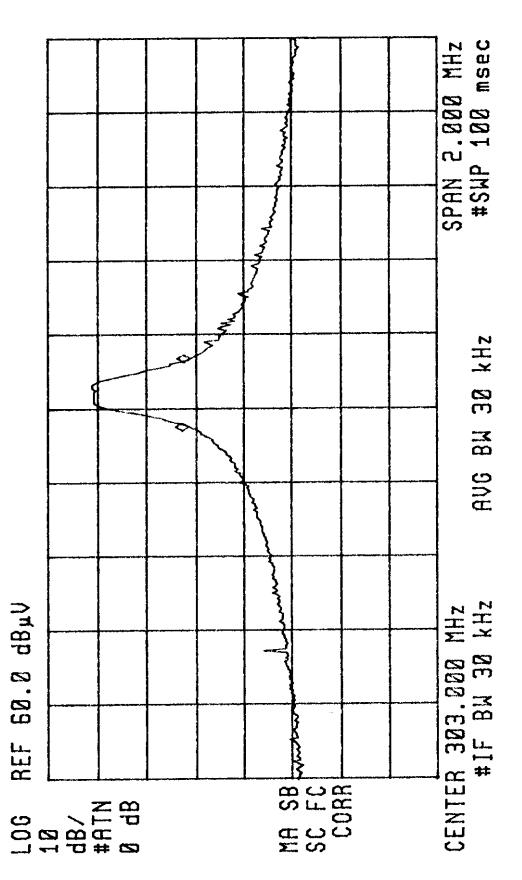
NOTES:

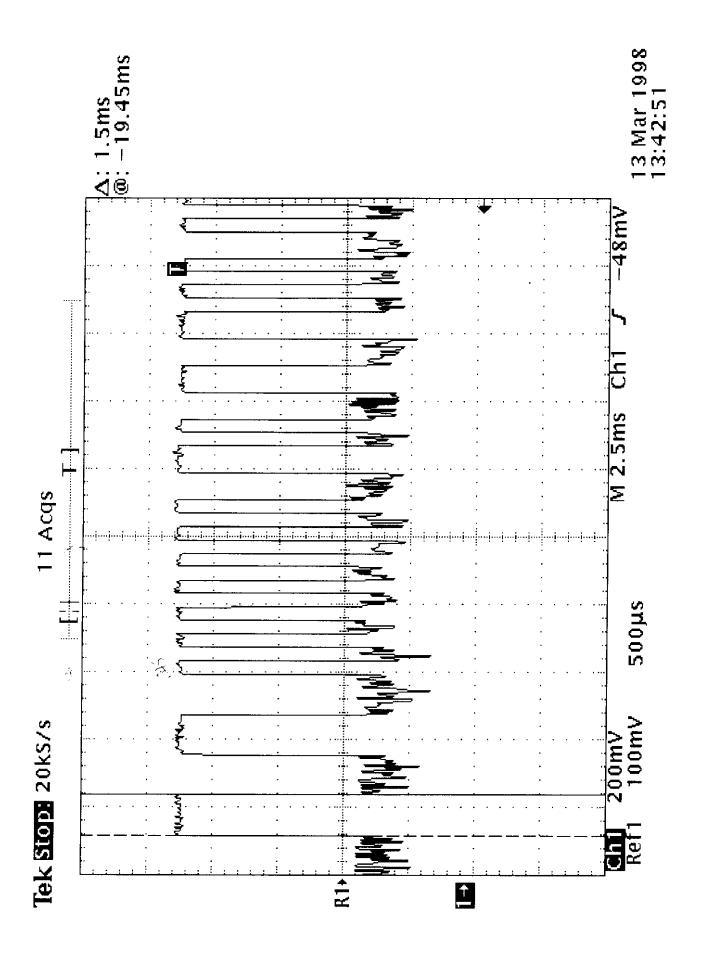

TABLE: 1 Date of Test: 03-13-1998

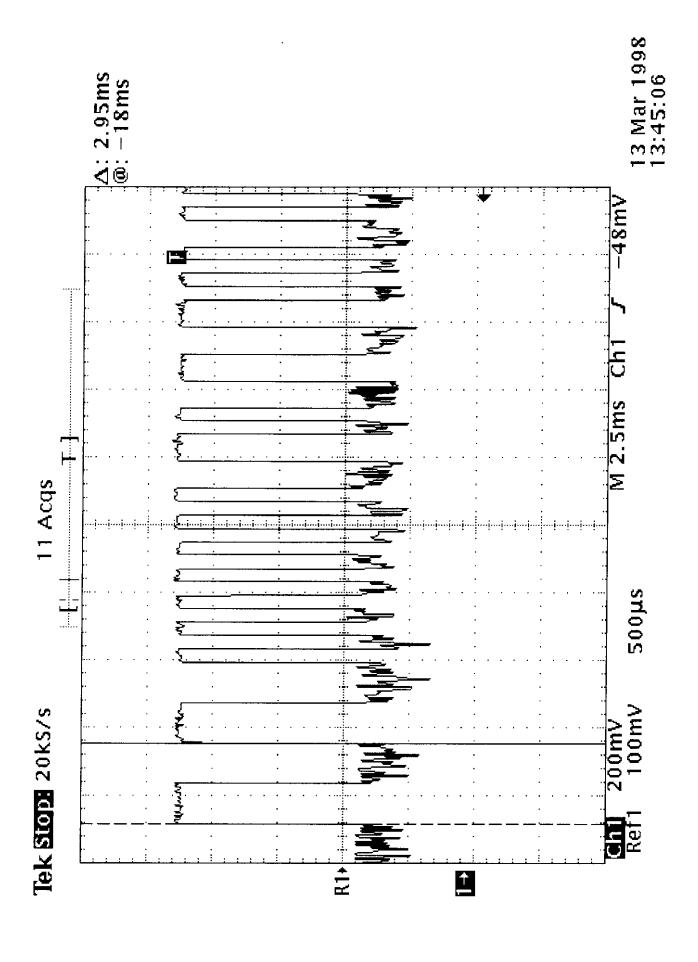
Radiated Emissions

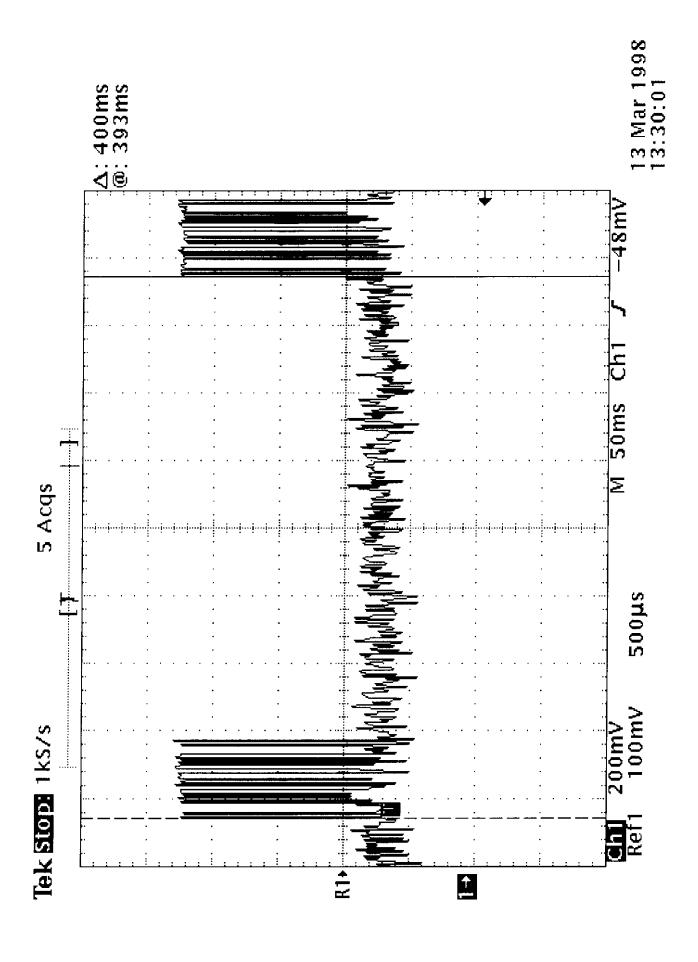
Margin (dB)	9-	-10	2-	- 4	-13	-18	-26	-27
Limits a 3 m (uV/m)	5630	563	563	200	200	563	563	563
Field Strength a 3 m (uV/m)	2818	178	277	316	112	71	28	52
Field Strength a 3 m (dBuV/m)	69	45	53	50	41	37	62	28
Pulse Desensitization (dB)	0	0	0	0	0	0	0	0
Averaging Factor (dB)	-11	÷	-11	-11	-11	-1	-11	-11
Pre-Amp Gain (dB)	0	0	0	0	0	0	0	0
Antenna Factor (dB)	22	56	34	54	92	30	30	34
Distance Factor (dB)	0	0	0	0	0	0	0	0
Reading (dBuV)	58	27	30	37	92	18	10	2
Frequency (MHz)	303.050	906.080	909.150	1212.000	1515.000	2121.000	2424.000	3030.000

No other harmonic or spurious emissions were detected at a test distance of 0.3 meter.


Kouma Sinn Test Engineer:




1998 (A) 11:45:19 MAR 13,


MARKER A -185 kHz .48 dB

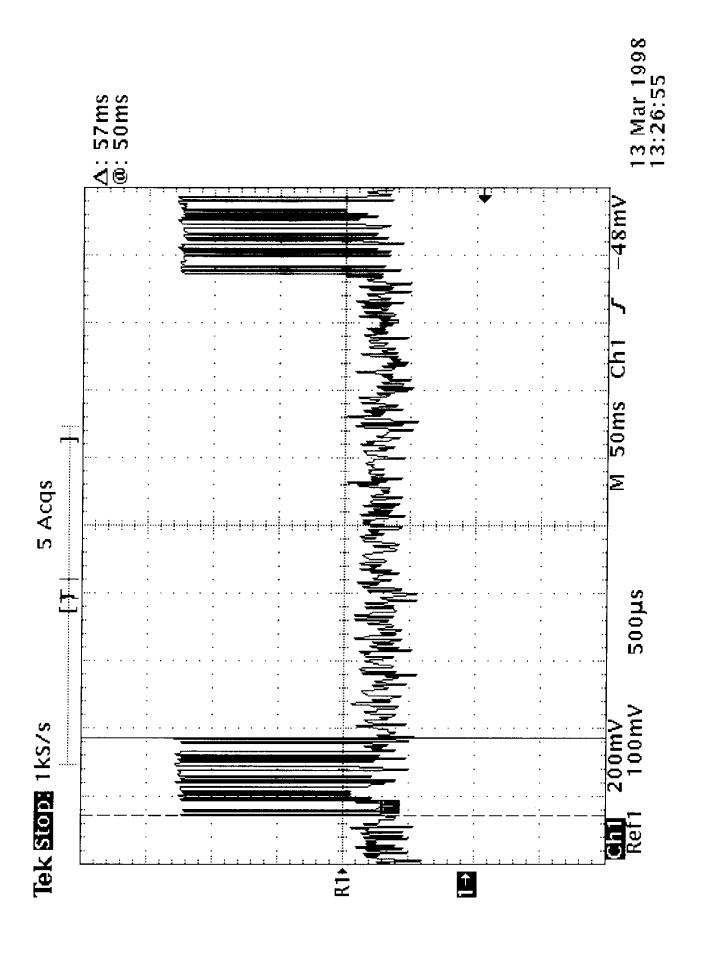

PEAK QP AVG PEAK QP AVG MKRA -185 kHz DET: DET: ACTU MEAS

EXHIBIT 4 EQUIPMENT PHOTOGRAPHS

4.0 **Equipment Photographs**

Photographs of the modifications made to the EUT (since original grant and during testing, if applicable) are attached.

3.4 Line Conducted Emission Configuration Data

No line-conducted emissions measurements were performed as the unit is battery powered.

TEST PERSONNEL:

Tester Signature

Kouma Sinn, Compliance Engineer

Typed/Printed Name

Data

(M) 11:46:19 MAR m س 1998

MARKER A -185 kHz . HB <u>п.</u>

> ACTV MEAS PEAK

-185 kHz .48 dB

BEF 60. Z dBuV

MA SB SC FC CORR

CENTER 303.000 #IF BW 30 WH2

51

ANG BM 30 KHz

SPAN #SWP 'n 100 msec MHz