

Test Report

47CFR Part 90 and Industry Canada RSS-137

Application for Grant of Certification

Model: AI1422E

Location and Monitoring Service Transmitter

902.25 - 903.75, 910.00 - 921.50 MHz

FCC ID: FIHAI1422E

IC: 1584A-AI1422E

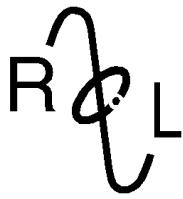
FOR

TRANSCORE

Amtech Technology Center

8600 Jefferson Street, NE

Albuquerque, NM 87113


Report Number 160802

Authorized Signatory: *Scot D. Rogers*
Scot D. Rogers

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 1 of 32

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

Test Report For Application of Certification

For

Transcore Amtech Technology Center

8600 Jefferson Street, NE
Albuquerque, NM 87113
Phone: (505) 856-8101

Model: AI1422E

Location Monitoring Service Transmitter

Frequency: 902.25 - 903.75, 910.00 – 921.50

FCC ID: FIHAI1422E

IC: 1584A-AI1422E

Test Date: August 2, 2016

Certifying Engineer: *Scot D. Rogers*

Scot D. Rogers
Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Telephone / Facsimile: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product certification, approval, or
endorsement by NVLAP, NIST, or any agency of the Federal Government.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 2 of 32

Table Of Contents

TABLE OF CONTENTS.....	3
REVISION HISTORY	5
EXECUTIVE SUMMARY.....	6
OPINION / INTERPRETATION OF RESULTS	6
EQUIPMENT UNDER TEST	6
Equipment Function and Configuration	7
Equipment Configuration	7
APPLICATION FOR CERTIFICATION.....	8
APPLICABLE STANDARDS AND TEST PROCEDURES.....	10
UNITS OF MEASUREMENTS	10
TEST SITE LOCATIONS	10
ENVIRONMENTAL CONDITIONS.....	10
LIST OF TEST EQUIPMENT	11
TRANSMITTER POWER OUTPUT	12
Measurements Required	12
Test Arrangement.....	12
Table 1 Transmitter Power Results.....	13
Figure 1 Transmitter Output across Frequency Band (Uplink)	13
MODULATION CHARACTERISTICS.....	14
Measurements Required	14
Test Arrangement.....	14
Results Modulation Characteristics	14
OCCUPIED BANDWIDTH	15

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 3	Transcore Amtech Technology Center Model: AI1422E Test #: 160802 Test to: 47CFR Parts 2, 90 and RSS-137 File: Transcore AI1422E TstRpt 160802 r3	S/N: 6073834 FCC ID#: FIHAI1422E IC: 1584A-AI1422E Date: September 15, 2016 Page 3 of 32
--	--	--

Measurements Required	15
Test Arrangement	15
Table 2 Occupied Bandwidth Results	15
Figure 2 Occupied Bandwidth (ATA)	16
SPURIOUS EMISSIONS.....	17
Measurements Required	17
Test Arrangement	17
Table 3 Spurious Emissions Results (ATA)	18
EMISSION MASK	19
Measurements Required	19
Test Arrangement	19
Results Emission Mask	19
Figure 3 Emissions Mask (ATA, 902-904 MHz)	20
Figure 4 Emissions Mask (ATA, 909.5-921.75 MHz)	20
FIELD STRENGTH OF SPURIOUS RADIATION.....	21
Measurements Required	21
Test Arrangement	21
Table 4 General Spurious Radiated Emission Results	23
Table 5 Results Spurious Radiation	24
FREQUENCY STABILITY	25
Measurements Required	25
Test Arrangement	25
Table 6 Frequency Stability Results	26
ANNEX.....	27
Annex A Measurement Uncertainty Calculations	28

Annex B Rogers Labs Test Equipment List	29
Annex C Rogers Qualifications.....	30
Annex D FCC Test Site Registration Letter	31
Annex E Industry Canada Test Site Registration Letter	32

Revision History

Revision 3 Issued September 15, 2016 – added temperature stability information

Revision 2 Issued September 10, 2016 – corrected type error page 19/30

Revision 1 Issued August 28, 2016

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 5 of 32

Executive Summary

The following information is submitted for consideration in obtaining Grant of Certification of 47CFR Paragraph 90 (M) and Industry Canada RSS-137 Location Monitoring Service (LMS) transmitter equipment.

Name of Applicant: Transcore - Amtech Technology Center
 8600 Jefferson Street, NE
 Albuquerque, NM 87113
 Phone: (505) 856-8000

Model: AI1422E

FCC ID: FIHAI1422E IC: 1584A-AI1422E

Frequency of Operation: 902.25 - 903.75, 910.00 – 921.50

Transmit Power: 2.0-0.063 watts, occupied bandwidth 460.0 kHz

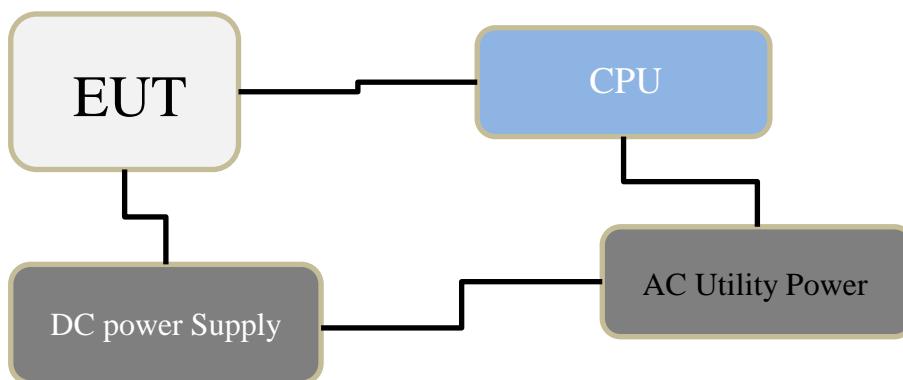
Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Requirements per 47CFR paragraphs 2.1031-2.1057 and RSS-137, Issue 2	Complies
Requirements per 47CFR paragraphs 90.205 and RSS-137	Complies
Requirements per 47CFR paragraphs 90.207 and RSS-137	Complies
Requirements per 47CFR paragraphs 90.209 and RSS-137	Complies
Requirements per 47CFR paragraphs 90.210 and RSS-137	Complies
Requirements per 47CFR paragraphs 90.213 and RSS-137	Complies

Equipment Under Test

<u>Equipment</u>	<u>Model / PN</u>	<u>Serial Number</u>
EUT sample 1	AI1422E	6073834
Serial interface cable	Manufacturer supplied	N/A
Bench DC power supply	BK 1745	209C13
Computer	Dell Studio XPS	921LBN1

Test results in this report relate only to the items tested.


Rogers Labs, Inc.	Transcore Amtech Technology Center	S/N: 6073834
4405 W. 259th Terrace	Model: AI1422E	FCC ID#: FIHAI1422E
Louisburg, KS 66053	Test #: 160802	IC: 1584A-AI1422E
Phone/Fax: (913) 837-3214	Test to: 47CFR Parts 2, 90 and RSS-137	Date: September 15, 2016
Revision 3	File: Transcore AI1422E TstRpt 160802 r3	Page 6 of 32

Equipment Function and Configuration

The EUT functions as location and monitoring transceiver equipment. Operation of design utilizes industry standardized modulation scheme offering ability to interface and respond with Industry Radio Frequency Identification Device (RFID) interrogation systems. The system operates from 16-28 V_{dc}, 2.5 amps and provides serial interface for communications. The production design provides female N connector to accommodate remotely located antenna system. This port provided the 50-ohm antenna port which was used for taking antenna port conducted emission measurements.

Software was provided which allowed testing personnel operational control of the transmitter for testing purposes. The test sample was loaded with manufacturing software Version 1.07HF and FPGA MFG test load Version 2.02. The FPGA MFG test load allows access to all operational transmitter modes for complete testing. The EUT was arranged as described by the manufacturer emulating typical use configuration for testing purposes. The EUT offers no other interface connections than those documented in the configuration options presented. The EUT functions as an active transponder operating in the 902-921 MHz LMRS frequency band providing communications with ATA protocol systems. During testing all interface connections were appropriately terminated. As requested by the manufacturer and required by regulations, the equipment was tested for emissions compliance using the available configurations with the worst-case data presented. Test results in this report relate only to the products described in this report.

Equipment Configuration

Application for Certification

1. Manufacturer: Transcore - Amtech Technology Center
8600 Jefferson Street, NE
Albuquerque, NM 87113
2. Identification: **Model:** AI1422E
FCC ID: FIHAI1422E **IC:** 1584A-AI1422E
3. A copy of the installation and operating instructions furnished to the end user. Refer to the instruction manual furnished with this application for details.
4. Emission Types: Continuous wave (N0N)

Frequency (MHz)	Emission Designator
902.25 - 903.75	N0N
910.00 - 921.50	N0N
5. Frequency Range: 902.25 - 903.75, 910.00 – 921.50 MHz
6. Range of operating power values or specific operating power levels, and description of any means provided for variation of operating power. Minimum to maximum Watts (0.060 – 2.0 Watts)
7. Maximum power rating as defined in the applicable part(s) of the rules. As stated in 47CFR, 90.205(k) the maximum permissible output power allowed is 30 watts.
8. The dc voltages applied to and dc currents into the several elements of the final radio frequency amplifying device for normal operation over the power range. In the high power mode, the final amplification stage requires 11.45 volts consuming 0.750 Amps and low power mode operates at 11.45 volts and 0.365 Amps of current.
9. Provide the tune-up procedure over the power range, or at specific operating power levels. Refer to the tune-up procedure furnished with this application for details.
10. A schematic diagram and a description of all circuitry and devices provided for determining and stabilizing frequency, for suppression of spurious radiation, for limiting modulation, and for limiting power. Refer to the schematics and technical exhibits furnished with this application for details.
11. A photograph or drawing of the equipment identification plate, or label showing the information to be placed thereon shall be provided. Refer to the identification label exhibit and information furnished with this application for details.
12. Photographs (8" x 10") of the equipment of sufficient clarity to reveal equipment construction and layout, including meters, if any, and labels for controls and meters and sufficient views of the internal construction to define component placement and chassis assembly. Insofar as these requirements are met by photographs or drawings contained in instruction manuals supplied with the certification request, additional photographs are necessary only to complete the required showing. Refer to the exhibits of this report and or additional information furnished with the application for details.
13. For equipment employing digital modulation techniques, a detailed description of the modulation system to be used, including the response characteristics (frequency, phase,

and amplitude) of any filters provided, and a description of the modulating wave train, shall be submitted for the maximum rated conditions under which the equipment will be operated. Information about modulation is contained in Operational description exhibit.

14. The data required by Sections 2.1046 through 2.1057, inclusive, measured in accordance with the procedures set out in Section 2.1041.
15. The application for certification of an external radio frequency power amplifier under Part 97 of this chapter need not be accompanied by the data required by Paragraph (b)(14) of this section. In lieu thereof, measurements shall be submitted to show compliance with the technical specifications in Subpart C of Part 97 of this chapter and such information as required by Section 2.1060 of this part. This paragraph does not apply to this equipment.
16. An application for certification of an AM broadcast stereophonic exciter generator intended for interfacing with existing certified, or formerly type accepted or notified transmitters must include measurements made on a complete stereophonic transmitter. The instruction book must include complete specifications and circuit requirements for interconnecting with existing transmitters. The instruction book must also provide a full description of the equipment and measurement procedures to monitor modulation and to verify that the combination of stereo exciter generator and transmitter meets the emission limitations of section 73.44. This paragraph does not apply to this equipment.
17. A single application may be filed for a composite system that incorporates devices subject to certification under multiple rule parts; however, the appropriate fee must be included for each device. Separate applications must be filed if different FCC Identifiers will be used for each device.
18. The device is not a software-defined radio and requirements of 2.944 do not apply to this application.
19. Applications for certification of equipment operating under part 27 of this chapter, that a manufacturer is seeking to certify for operation in the:
 - (i) 1755-1780 MHz, 2155-2180 MHz, or both bands shall include a statement indicating compliance with the pairing of 1710-1780 and 2110-2180 MHz specified in §§27.5(h) and 27.75 of this chapter.
 - (ii) 1695-1710 MHz, 1755-1780 MHz, or both bands shall include a statement indicating compliance with §27.77 of this chapter.
 - (iii) 600 MHz band shall include a statement indicating compliance with §27.75 of this chapter.
20. Applications for certification of equipment operating under part 90 of this chapter and capable of operating on the 700 MHz interoperability channels (See §90.531(b)(1) of this chapter) shall include a Compliance Assessment Program Supplier's Declaration of Conformity and Summary Test Report or, alternatively, shall include a document detailing how the applicant determined that its equipment complies with §90.548 of this chapter and that the equipment is interoperable across vendors.
21. Contain at least one drawing or photograph showing the test set-up for each of the required types of tests applicable to the device for which certification is requested. These drawings or photographs must show enough detail to confirm other information contained in the test report. Any photographs used must be focused originals without glare or dark spots and must clearly show the test configuration used.

Applicable Standards and Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, 47CFR dated July 12, 2016, Part 2 Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057; 90.201 through 90.217, 90.350 through 90.363 and RSS-137 the following information is submitted. Test procedures used were the established Methods of Measurement of Radio-Noise Emissions as described in ANSI/TIA-603-D-2010 and ANSI 63.4-2014. The product has also been tested and found to comply with other applicable technical standards with relevant data recorded in appropriate reports.

Units of Measurements

AC Line Conducted EMI Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter

Antenna Conducted Data is in dBm, dB referenced to one milliwatt

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI The radiated emissions testing performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Registration Refer to Annex for FCC Site Registration Letter, # 90910, and Industry Canada Site Registration Letter, IC3041A-1.

Environmental Conditions

Ambient Temperature 24.2 ° C

Relative Humidity 45%

Atmospheric Pressure 1017.2 mb

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

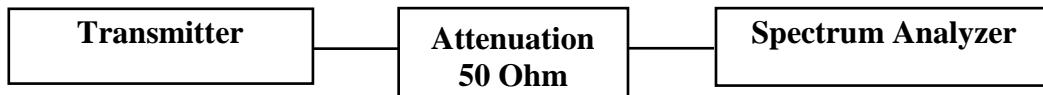
S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 10 of 32

List of Test Equipment

A Rohde and Schwarz ESU40 and/or Hewlett Packard 8591EM was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Rohde and Schwarz ESU40 and/or Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table.

Frequency: 9 kHz-30 MHz	Frequency: 30 MHz- 1 GHZ	Frequency: Above 1 GHz
Loop Antenna	Broadband Biconilog	Horn
RBW = 9 kHz	RBW = 120 kHz	RBW = 1 MHz
VBW = 30 kHz	VBW = 500 kHz	VBW = 3 MHz
Sweep time = Auto	Sweep time = Auto	Sweep time = Auto
Detector = PK, QP	Detector = PK, QP	Detector = PK, AV
Antenna Height 1m	Antenna Height 1-4m	Antenna Height 1-4m

Equipment	Manufacturer	Model (SN)	Band	Cal Date	Due
<input checked="" type="checkbox"/> LISN	FCC	FCC-LISN-50-2-10(1PA) (160611)	.15-30MHz	5/16	5/17
<input checked="" type="checkbox"/> Cable	Time Microwave	750HF290-750 (L10M)	9kHz-40 GHz	10/15	10/16
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L1-CAT3-11509)	9kHz-30 MHz	10/15	10/16
<input checked="" type="checkbox"/> Cable	Belden	RG-58 (L2-CAT3-11509)	9kHz-30 MHz	10/15	10/16
<input type="checkbox"/> Antenna	ARA	BCD-235-B (169)	20-350MHz	10/15	10/16
<input type="checkbox"/> Antenna	EMCO	3147 (40582)	200-1000MHz	10/15	10/16
<input checked="" type="checkbox"/> Antenna	ETS-Lindgren	3117 (200389)	1-18 GHz	5/16	5/18
<input type="checkbox"/> Antenna	Com Power	AH-118 (10110)	1-18 GHz	10/15	10/16
<input type="checkbox"/> Antenna	Com Power	AH-840 (101046)	18-40 GHz	5/16	5/18
<input checked="" type="checkbox"/> Antenna	EMCO	6509 (9502-1374)	.001-30 MHz	10/15	10/16
<input type="checkbox"/> Antenna	Sunol	JB-6 (A100709)	30-1000 MHz	10/15	10/16
<input type="checkbox"/> Antenna	EMCO	3143 (9607-1277)	20-1200 MHz	5/16	5/17
<input type="checkbox"/> Analyzer	HP	8591EM (3628A00871)	9kHz-1.8GHz	5/16	5/17
<input type="checkbox"/> Analyzer	HP	8562A (3051A05950)	9kHz-110GHz	5/16	5/17
<input type="checkbox"/> Analyzer	HP External Mixers	11571, 11970	25GHz-110GHz	5/16	5/17
<input checked="" type="checkbox"/> Analyzer	Rohde & Schwarz	ESU40 (100108)	20Hz-40GHz	5/16	5/17
<input checked="" type="checkbox"/> Amplifier	Com-Power	PA-010 (171003)	100Hz-30MHz	10/15	10/16
<input checked="" type="checkbox"/> Amplifier	Com-Power	CPA-102 (01254)	1-1000 MHz	10/15	10/16
<input checked="" type="checkbox"/> Amplifier	Com-Power	PAM-118A (551014)	0.5-18 GHz	10/15	10/16


Transmitter Power Output

Measurements Required

Measurements shall be made to establish the radio frequency power delivered by the transmitter into the standard output termination. The power output shall be monitored and recorded and no adjustment shall be made to the transmitter after the test has begun, except as noted below:

If the power output is adjustable, measurements shall be made for the highest and lowest power levels.

Test Arrangement

The radio frequency power output was measured at the antenna terminal by placing 10.6-dB attenuation in the antenna line and observing the emission with the spectrum analyzer. The spectrum analyzer offered an impedance of 50Ω to match the impedance of the standard antenna and inline attenuation. A Rohde & Schwarz ESU40 Spectrum Analyzer was used to measure the radio frequency power at the antenna port. Data was taken in dBm and converted to watts as shown in the following Table. Refer to Figure 1 showing maximum output power of the transmitter in both highest output power and lowest power modes. Data was taken per 47CFR Paragraph 2.1046(a) and applicable paragraphs of Part 90 and RSS-137.

P_{dBm}	= power in dB above 1 milliwatt
Milliwatts	$= 10^{(P_{dBm}/10)}$
Watts	$= (\text{Milliwatts})(0.001)(W/mW)$
Milliwatts	$= 10^{(32.98/10)}$
	$= 1,986.1 \text{ mW}$
	$= 1.99 \text{ Watts power}$
	$= 2.0 \text{ Watts power}$

Table 1 Transmitter Power Results

Frequency	P _{dBm}	P _{mw}	Maximum P _w (Attenuation 0 dB)	Minimum P _w (Attenuation 15 dB)
ATA				
902.25	32.75	1883.6	1.9	0.060
903.75	32.70	1862.1	1.9	0.060
910.00	32.98	1986.1	2.0	0.063
921.50	32.77	1892.3	1.9	0.060

The EUT demonstrated compliance with specifications of 47CFR Paragraph 2.1046(a) and applicable Parts of 2 and 90.205 and RSS-137. There are no deviations to the specifications.

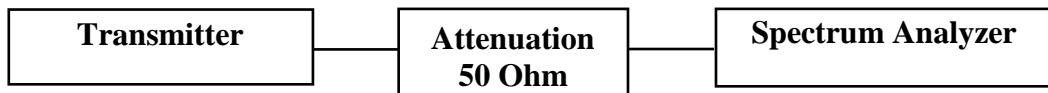


Figure 1 Transmitter Output across Frequency Band (Uplink)

Modulation Characteristics

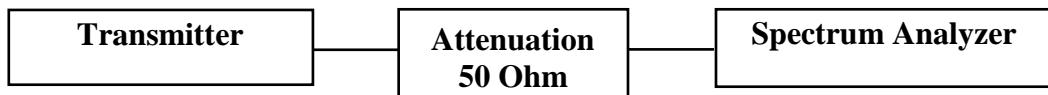
Measurements Required

A curve or equivalent data that shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed shall be submitted.

Test Arrangement

The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in its normal mode.

Results Modulation Characteristics


The transmitter operates providing digital data, transmitted signals modulated in amplitude/width/duration. The EUT demonstrated compliance with the specifications of Paragraphs 2.1046(a), 90.205 and RSS-137. There are no deviations to the specifications.

Occupied Bandwidth

Measurements Required

The occupied bandwidth, that is the frequency bandwidth such that below its lower and above its upper frequency limits, the mean powers radiated are equal to 0.5 percent of the total mean power radiated by a given emission. Refer to figures nine through fourteen displaying plot of the occupied bandwidth measurements.

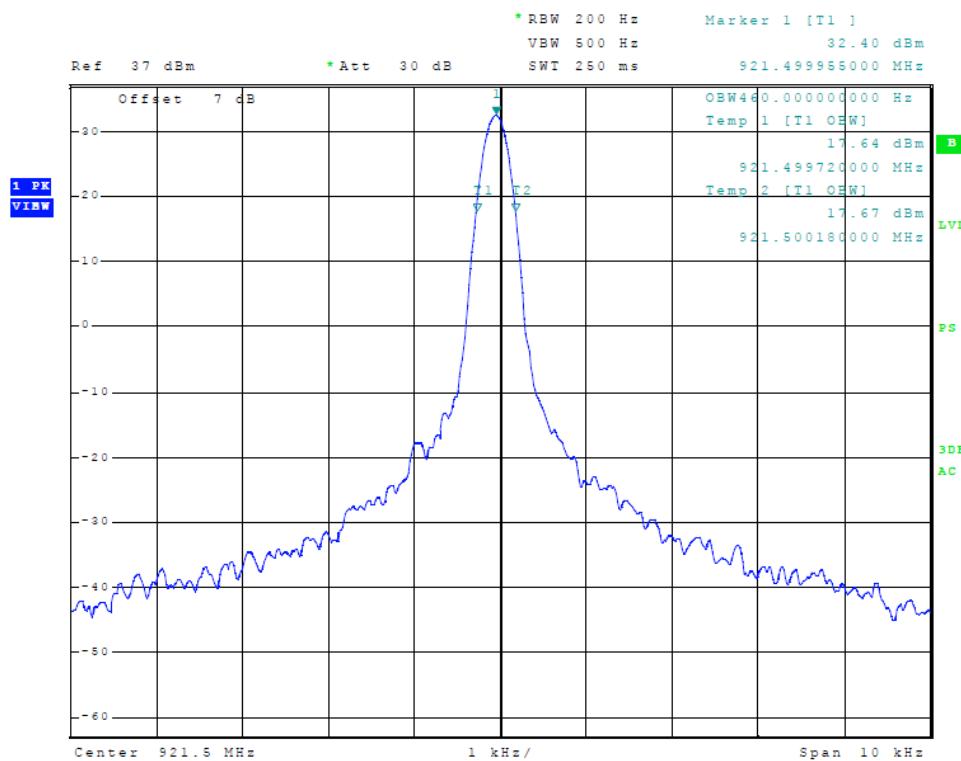

Test Arrangement

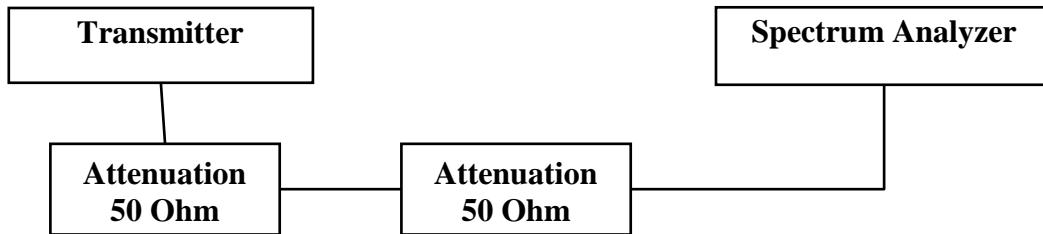
Table 2 Occupied Bandwidth Results

Mode	Operational Frequency Band (MHz)	Occupied Bandwidth (kHz)
ATA	921.5	460.0

The EUT demonstrated compliance with the requirements of Paragraphs 2.1046(a) 90.209 and RSS-137 paragraph 6.1. There are no deviations to the specifications.

Rogers Labs, Inc.
 4405 W. 259th Terrace
 Louisburg, KS 66053
 Phone/Fax: (913) 837-3214
 Revision 3

Transcore Amtech Technology Center
 Model: AI1422E
 Test #: 160802
 Test to: 47CFR Parts 2, 90 and RSS-137
 File: Transcore AI1422E TstRpt 160802 r3


S/N: 6073834
 FCC ID#: FIHAI1422E
 IC: 1584A-AI1422E
 Date: September 15, 2016
 Page 16 of 32

Spurious Emissions

Measurements Required

The radio frequency voltage or power generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. To gain dynamic range in the test equipment, a high pass filter attenuated the fundamental frequency of operation was used to observe the harmonic emissions.

Test Arrangement

The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating in its normal mode. The frequency spectrum from 9 kHz to 10 GHz was observed. Data was taken per 47CFR 2.1051 and applicable paragraphs of Part 90 and RSS-137.

Limit: Spurious emissions must be attenuated below the peak output power by the at least $55 + 10 \log(P_o)$ dB.

2.0-watt transmitter limit requires the out of band emissions must be suppressed by at least 58.0 dBc for full high power

$$\begin{aligned}
 \text{Attenuation} &= 55 + 10 \log_{10}(P_w) \\
 &= 55 + 10 \log_{10}(2) \\
 &= 58.0 \text{ dBc}
 \end{aligned}$$

Rogers Labs, Inc.
 4405 W. 259th Terrace
 Louisburg, KS 66053
 Phone/Fax: (913) 837-3214
 Revision 3

Transcore Amtech Technology Center
 Model: AI1422E
 Test #: 160802
 Test to: 47CFR Parts 2, 90 and RSS-137
 File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
 FCC ID#: FIHAI1422E
 IC: 1584A-AI1422E
 Date: September 15, 2016
 Page 17 of 32

Table 3 Spurious Emissions Results (ATA)

Channel MHz	Spurious Freq. (MHz)	Measured Level (dBm)	Level Below Carrier (dBc)
902.25	1804.5	-32.75	65.5
	2706.8	-40.83	73.6
	3609.0	-41.20	74.0
	4511.3	-40.18	72.9
	5413.5	-40.67	73.4
	6315.8	-41.31	74.1
903.75	1807.5	-32.52	65.2
	2711.3	-40.95	73.7
	3615.0	-40.73	73.4
	4518.8	-41.19	73.9
	5422.5	-41.13	73.8
	6326.3	-40.37	73.1
910.00	1820.0	-31.59	64.6
	2730.0	-41.04	74.0
	3640.0	-41.68	74.7
	4550.0	-41.16	74.1
	5460.0	-40.55	73.5
	6370.0	-41.43	74.4
921.50	1843.0	-32.62	-65.6
	2764.5	-40.83	-73.8
	3686.0	-41.48	-74.5
	4607.5	-41.33	-74.3
	5529.0	-41.16	-74.1
	6450.5	-40.68	-73.7

Data was taken per 2.1051 and applicable parts of 47CFR 90.210 and RSS-137. The EUT demonstrated compliance with the specifications of Paragraphs 47CFR 2.1051, 2.1057 and 90.210(k) and RSS-137 paragraph 6.5. There are no deviations to the specifications.

Rogers Labs, Inc.

4405 W. 259th Terrace

Louisburg, KS 66053

Phone/Fax: (913) 837-3214

Revision 3

Transcore Amtech Technology Center

Model: AI1422E

Test #: 160802

Test to: 47CFR Parts 2, 90 and RSS-137

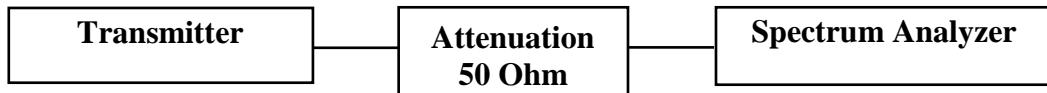
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834

FCC ID#: FIHAI1422E

IC: 1584A-AI1422E

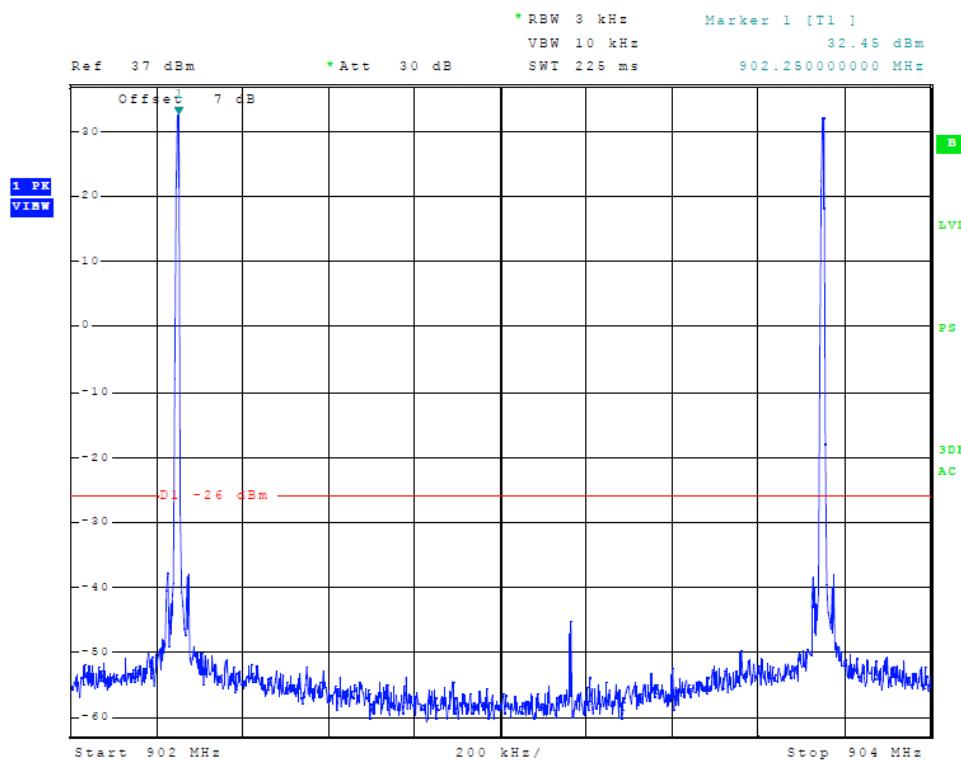
Date: September 15, 2016

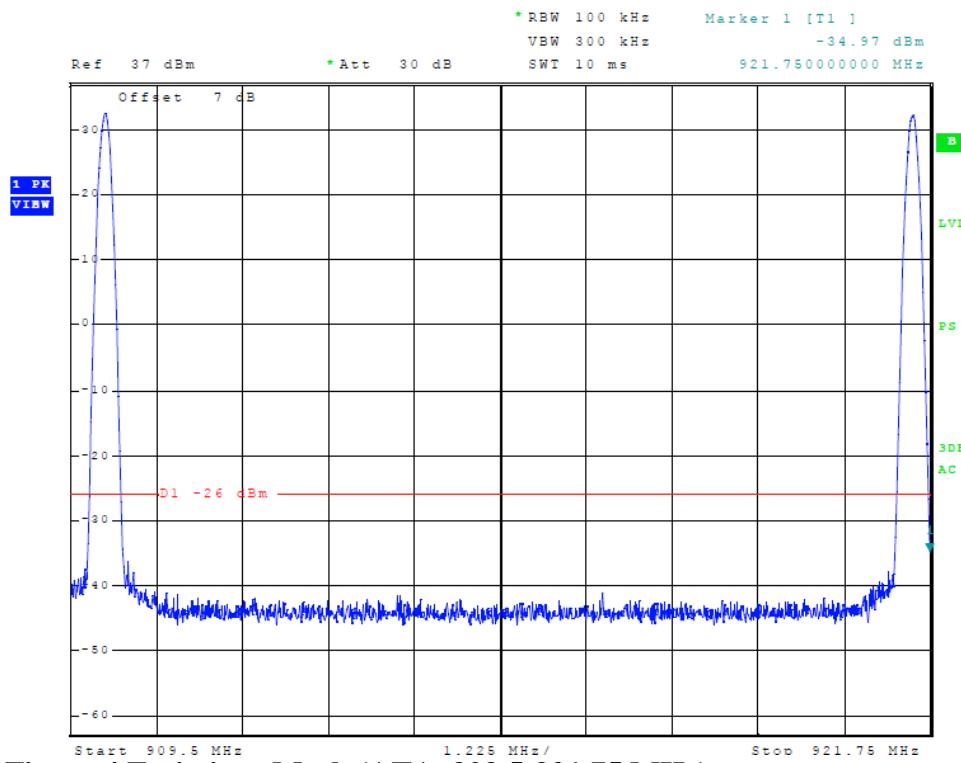

Page 18 of 32

Emission Mask

Measurements Required

Transmitters used in the radio services governed by this part must comply with the emissions masks outlined in this section. Paragraph 90.210(K) specifies the out of band emission limitations for this equipment. The spurious emissions for the device were measured at the maximum output power condition.


Test Arrangement


The radio frequency output was coupled to a Rohde & Schwarz ESU40 Spectrum Analyzer through 50-ohm attenuation and coaxial cable. The spectrum analyzer was used to observe the radio frequency spectrum with the transmitter operating through normal modes with maximum output power. The frequency spectrum at the band edges were observed and plots produced. Refer to figures fifteen through twenty for plots presenting compliance with emission mask requirements at the band edges. Data was taken per 47CFR 2.1051 and applicable parts of Part 90.210 (k) and RSS-137.

Results Emission Mask

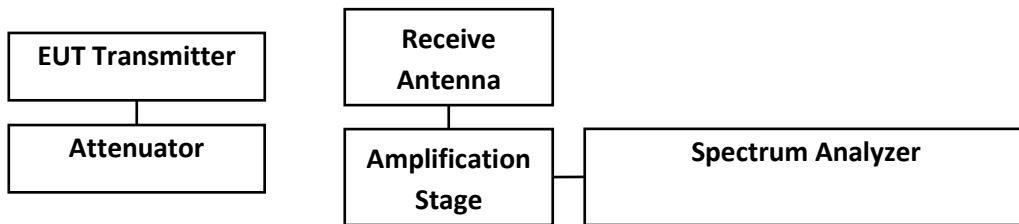
The EUT demonstrated compliance with the specifications of Paragraphs 47CFR 2.1051, 2.1057 and 90.210(k) and RSS-137 paragraph 6.5. There are no deviations to the specifications.

Figure 3 Emissions Mask (ATA, 902-904 MHz)

Figure 4 Emissions Mask (ATA, 909.5-921.75 MHz)

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3


S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 20 of 32

Field Strength of Spurious Radiation

Measurements Required

Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation.

Test Arrangement

Preliminary radiated emissions investigation was made in a screen room to determine frequencies of emissions for investigation on the Open Area Test Site (OATS). The transmitter spurious emissions were measured on the OATS. The antenna port was loaded with 50-ohm attenuation for testing purposes. The EUT was placed on a turntable elevated as required above the ground plane at a distance of 3 meters from the FSM antenna. The turntable was rotated through 360 degrees to locate the position registering the highest amplitude emission. The frequency spectrum was then searched for spurious emissions generated from the transmitter. Raising and lowering the FSM antenna and rotating the turntable to maximize the emission. Data was measured and recorded for the maximum amplitude of each spurious emission. A Loop antenna was used for measuring emissions from 0.009 to 30 MHz, Biconilog Antenna for 30 to 1000 MHz, Double-Ridge, and/or Pyramidal Horn Antennas above 1 GHz. Emissions were measured in dB μ V/m @ 3 meters. The substitution method was used to measure harmonic emissions. Harmonic emission levels from the EUT were measured and amplitude levels were recorded. The EUT transmitter was then removed and replaced with a substitution antenna, which was powered from a signal generator. The output signal from the generator was then adjusted such that the amplitude received was the same as that previously recorded for each

frequency. This step was repeated for both horizontal and vertical polarizations. The power in dBm required to produce the desired signal level was then recorded from the signal generator. The power in dBm was then calculated by reducing the previous readings by the gain in the substitution antenna.

The limits for the spurious radiated emissions are defined by the following equation.

Limit = Amplitude of the spurious emission must be attenuated by this amount below the level of the fundamental. On any frequency removed from the assigned frequency outside the assigned sub-band edges: at least $55 + 10 \log(P_o)$ dB.

2.0-watt transmitter limit specifies the level below the carrier must be suppressed more than 58.0 dB.

$$\begin{aligned}\text{Attenuation} &= 55 + 10 \log_{10}(P_w) \\ &= 55 + 10 \log_{10}(2) \\ &= 58.0 \text{ dBc}\end{aligned}$$

Therefore emissions must be less than $33 - 58 = -25$ dBm

Data was taken per 2.1051 and applicable parts of 47CFR 90. The EUT demonstrated compliance with the specifications of Paragraphs 47CFR 2.1051, 2.1057 and 90.210(k) and RSS-137 paragraph 6.5. There are no deviations to the specifications.

Table 4 General Spurious Radiated Emission Results

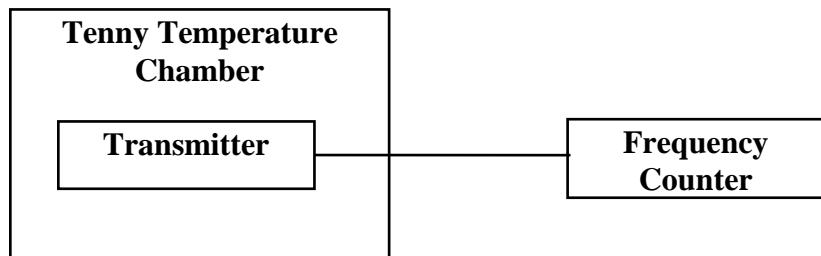
Frequency	Amplitude of Emission (dB μ V)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBc)
MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	
48.9	23.2	22.1	-72.03	-73.13	-105.03	-106.13	-25
51.0	22.9	23.4	-72.33	-71.83	-105.33	-104.83	-25
63.7	22.7	26.9	-72.53	-68.33	-105.53	-101.33	-25
80.7	32.6	33.2	-62.63	-62.03	-95.63	-95.03	-25
97.7	44.2	46.6	-51.03	-48.63	-84.03	-81.63	-25
125.0	32.7	30.0	-62.53	-65.23	-95.53	-98.23	-25
128.3	32.5	28.2	-62.73	-67.03	-95.73	-100.03	-25
136.4	22.1	22.3	-73.13	-72.93	-106.13	-105.93	-25
161.9	26.6	29.5	-68.63	-65.73	-101.63	-98.73	-25
197.7	30.5	23.6	-64.73	-71.63	-97.73	-104.63	-25
206.2	25.5	22.3	-69.73	-72.93	-102.73	-105.93	-25
218.8	25.9	23.9	-69.33	-71.33	-102.33	-104.33	-25
238.2	36.1	33.7	-59.13	-61.53	-92.13	-94.53	-25
252.4	33.1	30.7	-62.13	-64.53	-95.13	-97.53	-25
272.9	34.6	28.4	-60.63	-66.83	-93.63	-99.83	-25

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.

Table 5 Results Spurious Radiation

Frequency	Amplitude of Emission (dB μ V)		Signal Level to dipole required to Reproduce(dBm)		Emission level below carrier (dBc)		Limit (dBc)
	MHz	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
902.25							
1804.50	29.0	32.6	-66.23	-62.63	-99.2	-95.6	-25
2706.75	27.9	28.3	-67.33	-66.93	-100.3	-99.9	-25
3609.00	35.1	47.1	-60.13	-48.13	-93.1	-81.1	-25
4511.25	30.5	34.9	-64.73	-60.33	-97.7	-93.3	-25
5413.50	32.2	37.4	-63.03	-57.83	-96.0	-90.8	-25
6315.75	31.0	31.1	-64.23	-64.13	-97.2	-97.1	-25
910.00							
1820.00	29.6	34.8	-65.63	-60.43	-98.6	-93.4	-25
2730.00	27.6	30.0	-67.63	-65.23	-100.6	-98.2	-25
3640.00	32.0	35.5	-63.23	-59.73	-96.2	-92.7	-25
4550.00	30.3	30.4	-64.93	-64.83	-97.9	-97.8	-25
5460.00	33.8	36.4	-61.43	-58.83	-94.4	-91.8	-25
6370.00	31.2	31.1	-64.03	-64.13	-97.0	-97.1	-25
921.50							
1843.00	29.8	33.1	-65.43	-62.13	-98.4	-95.1	-25
2764.50	27.9	28.9	-67.33	-66.33	-100.3	-99.3	-25
3686.00	31.5	30.5	-63.73	-64.73	-96.7	-97.7	-25
4607.50	30.2	30.9	-65.03	-64.33	-98.0	-97.3	-25
5529.00	30.7	36.9	-64.53	-58.33	-97.5	-91.3	-25
6450.50	32.1	32.6	-63.13	-62.63	-96.1	-95.6	-25

Other emissions present had amplitudes at least 20 dB below the limit. Peak and Quasi-Peak amplitude emissions are recorded above for frequency range of 30-1000 MHz. Peak and Average amplitude emissions are recorded above for frequency range above 1000 MHz.


Frequency Stability

Measurements Required

The frequency stability shall be measured with variations of ambient temperature from -30° to +50° centigrade. Measurements shall be made at the extremes of the temperature range and at intervals of not more than 10° centigrade through the range. A period sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. In addition to temperature stability, the frequency stability shall be measured with variation of primary supply voltage as follows:

- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value.
- (2) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Test Arrangement

The measurement procedure outlined below shall be followed.

Step 1: The transmitter shall be installed in an environmental test chamber whose temperature is controllable. Provision shall be made to measure the frequency of the transmitter.

Step 2: With the transmitter inoperative (power switched “OFF”), the temperature of the test chamber shall be adjusted to +25°C. After a temperature stabilization period of one hour at +25°C, the transmitter shall be switched “ON” with standard test voltage applied.

Step 3: The carrier shall be keyed “ON”, and the transmitter shall be operated at full radio frequency power output at the duty cycle, for which it is rated, for duration of at least 5 minutes. The radio frequency carrier frequency shall be monitored and measurements shall be recorded.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 25 of 32

Step 4: The test procedures outlined in Steps 2 and 3, shall be repeated after stabilizing the transmitter at the environmental temperatures specified, -30°C to +50°C in 10-degree increments.

The frequency stability was measured with variations in the power supply voltage from 85 to 115 percent of the nominal value. A Sorenson DC Power Supply was used to vary the DC voltage for the power input from 10.20 V_{dc} to 172.5 V_{dc}. The frequency was measured and the variation in parts per million calculated. Data was taken per 47CFR Paragraphs 2.1055 and applicable paragraphs of part 90.213 and RSS-137.

Table 6 Frequency Stability Results

Frequency 915.0000 MHz		Frequency Stability Vs Temperature							
Temperature °C	-30	-20	-10	0	+10	+20	+30	+40	+50
Change (Hz)	100	60	40	50	10	-20	-10	-80	-130
PPM	0.109	0.066	0.044	0.055	0.011	-0.022	-0.011	-0.087	-0.142
%	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Limit (PPM)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Frequency 915.00000 MHz		Frequency Stability Vs Voltage Variation 24.0 volts nominal; Results In Hz change		
Voltage V _{dc}	10.20	24.0	172.5	
Change (Hz)	10.0	20.0	10.0	

The EUT demonstrated compliance with specifications of 47CFR Paragraph 2.1046(a) and applicable Parts of 90.213 and RSS-137. There are no deviations or exceptions to the specifications.

Pursuant to 90.213(a), Note 13, frequency stability testing is not required for this equipment.

The equipment design incorporates frequency-determining components with acceptable operational frequency and tolerances rating. The equipment complies with the requirements of 47CFR part 90 and RSS-137 paragraph 6.3.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 26 of 32

Annex

- Annex A Measurement Uncertainty Calculations
- Annex B Rogers Labs Test Equipment List
- Annex C Rogers Qualifications
- Annex D FCC Site Registration Letter
- Annex E Industry Canada Site Registration Letter

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 27 of 32

Annex A Measurement Uncertainty Calculations

Measurement uncertainty calculations were made for the laboratory. Result of measurement uncertainty calculations are recorded below for AC line conducted and radiated emission measurements.

Measurement Uncertainty	U _(E)	U _(lab)
3 Meter Horizontal 30-200 MHz Measurements	2.08	4.16
3 Meter Vertical 30-200 MHz Measurements	2.16	4.33
3 Meter Vertical Measurements 200-1000 MHz	2.99	5.97
10 Meter Horizontal Measurements 30-200 MHz	2.07	4.15
10 Meter Vertical Measurements 30-200 MHz	2.06	4.13
10 Meter Horizontal Measurements 200-1000 MHz	2.32	4.64
10 Meter Vertical Measurements 200-1000 MHz	2.33	4.66
3 Meter Measurements 1-6 GHz	2.57	5.14
3 Meter Measurements 6-18 GHz	2.58	5.16
AC Line Conducted	1.72	3.43

Annex B Rogers Labs Test Equipment List

List of Test Equipment	Calibration	Date	Due
Spectrum Analyzer: Rohde & Schwarz ESU40	5/16	5/17	
Spectrum Analyzer: HP 8562A, HP Adapters: 11518, 11519, and 11520	5/16	5/17	
Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W			
Spectrum Analyzer: HP 8591EM	5/16	5/17	
Antenna: EMCO Biconilog Model: 3143	5/16	5/17	
Antenna: Sunol Biconilog Model: JB6	10/15	10/16	
Antenna: EMCO Log Periodic Model: 3147	10/15	10/16	
Antenna: Com Power Model: AH-118	10/15	10/16	
Antenna: Com Power Model: AH-840	5/16	5/18	
Antenna: Antenna Research Biconical Model: BCD 235	10/15	10/16	
Antenna: EMCO 6509	10/15	10/16	
LISN: Compliance Design Model: FCC-LISN-2.Mod.cd, 50 µHy/50 ohm/0.1 µf	10/15	10/16	
R.F. Preamp CPPA-102	10/15	10/16	
Attenuator: HP Model: HP11509A	10/15	10/16	
Attenuator: Mini Circuits Model: CAT-3	10/15	10/16	
Attenuator: Mini Circuits Model: CAT-3	10/15	10/16	
Cable: Belden RG-58 (L1)	10/15	10/16	
Cable: Belden RG-58 (L2)	10/15	10/16	
Cable: Belden 8268 (L3)	10/15	10/16	
Cable: Time Microwave: 4M-750HF290-750	10/15	10/16	
Cable: Time Microwave: 10M-750HF290-750	10/15	10/16	
Frequency Counter: Leader LDC825	2/16	2/17	
Oscilloscope Scope: Tektronix 2230	2/16	2/17	
Wattmeter: Bird 43 with Load Bird 8085	2/16	2/17	
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/16	2/17	
R.F. Generators: HP 606A, HP 8614A, HP 8640B	2/16	2/17	
R.F. Power Amp 65W Model: 470-A-1010	2/16	2/17	
R.F. Power Amp 50W M185- 10-501	2/16	2/17	
R.F. Power Amp A.R. Model: 10W 1010M7	2/16	2/17	
R.F. Power Amp EIN Model: A301	2/16	2/17	
LISN: Compliance Eng. Model 240/20	2/16	2/17	
LISN: Fischer Custom Communications Model: FCC-LISN-50-16-2-08	2/16	2/17	
Antenna: EMCO Dipole Set 3121C	2/16	2/17	
Antenna: C.D. B-101	2/16	2/17	
Antenna: Solar 9229-1 & 9230-1	2/16	2/17	
Audio Oscillator: H.P. 201CD	2/16	2/17	
ELGAR Model: 1751	2/16	2/17	
ELGAR Model: TG 704A-3D	2/16	2/17	
ESD Test Set 2010i	2/16	2/17	
Fast Transient Burst Generator Model: EFT/B-101	2/16	2/17	
Field Intensity Meter: EFM-018	2/16	2/17	
KEYTEK Ecat Surge Generator	2/16	2/17	
Shielded Room 5 M x 3 M x 3.0 M			

Rogers Labs, Inc. 4405 W. 259th Terrace Louisburg, KS 66053 Phone/Fax: (913) 837-3214 Revision 3	Transcore Amtech Technology Center Model: AI1422E Test #: 160802 Test to: 47CFR Parts 2, 90 and RSS-137 File: Transcore AI1422E TstRpt 160802 r3	S/N: 6073834 FCC ID#: FIHAI1422E IC: 1584A-AI1422E Date: September 15, 2016 Page 29 of 32
--	--	---

Annex C Rogers Qualifications**Scot D. Rogers, Engineer****Rogers Labs, Inc.**

Mr. Rogers has approximately 17 years' experience in the field of electronics. Work experience includes six years working in the automated controls industry and remaining years working with the design, development and testing of radio communications and electronic equipment.

Positions Held:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

Educational Background:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University
- 2) Bachelor of Science Degree in Business Administration Kansas State University
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 30 of 32

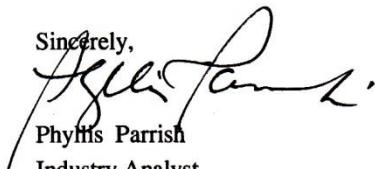
Annex D FCC Test Site Registration Letter**FEDERAL COMMUNICATIONS COMMISSION****Laboratory Division**

**7435 Oakland Mills Road
Columbia, MD 21046**

April 16, 2015

Registration Number: 90910

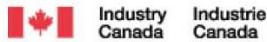
Rogers Labs, Inc.
4405 West 259th Terrace
Louisburg, KS 66053


Attention: Scot Rogers,

Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: April 16, 2015

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.


Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parrish
Industry Analyst

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 31 of 32

Annex E Industry Canada Test Site Registration Letter

June 08, 2015

OUR FILE: 46405-3041
Authorization No: 010277847-001

Rogers Labs Inc.
4405 West 259th Terrace
Louisburg, KS
USA
66053

Attention: Mr. Scot D. Rogers

Dear Sir:

The Bureau has received your application for the renewal of 3m OATS. Be advised that the information received was satisfactory to Industry Canada. The following number(s) is now associated to the site(s) for which registration / renewal was sought (**Site# 3041A-1**). Please reference the appropriate site number in the body of test reports containing measurements performed on the site. In addition, please keep for your records the following information;

- The company address code associated to the site(s) located at the above address is: **3041A**

Furthermore, to obtain or renew a unique site number, the applicant shall demonstrate that the site has been accredited to ANSI C63.4-2009 or later. A scope of accreditation indicating the accreditation by a recognized accreditation body to ANSI C63.4-2009 or later shall be accepted. Please indicate in a letter the previous assigned site number if applicable and the type of site (example: 3 metre OATS or 3 metre chamber). If the test facility is not accredited to ANSI C63.4-2009 or later, the test facility shall submit test data demonstrating full compliance with the ANSI standard. The Bureau will evaluate the filing to determine if recognition shall be granted.

The frequency for re-validation of the test site and the information that is required to be filed or retained by the testing party shall comply with the requirements established by the accrediting organization. However, in all cases, test site re-validation shall occur on an interval not to exceed **three years**. There is no fee or form associated with an OATS filing. OATS submissions are encouraged to be submitted electronically to the Bureau using the following URL; http://strategis.ic.gc.ca/epic/internet/inceb-bhst.nsf/en/h_tt00052e.html.

If you have any questions, you may contact the Bureau by e-mail at certification.bureau@ic.gc.ca Please reference our file and submission number above for all correspondence.

Yours sincerely,

Bill Payn
For: Wireless Laboratory Manager
Certification and Engineering Bureau
3701 Carling Ave., Building 94
P.O. Box 11490, Station AH@
Ottawa, Ontario K2H 8S2
Email: certification.bureau@ic.gc.ca

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision 3

Transcore Amtech Technology Center
Model: AI1422E
Test #: 160802
Test to: 47CFR Parts 2, 90 and RSS-137
File: Transcore AI1422E TstRpt 160802 r3

S/N: 6073834
FCC ID#: FIHAI1422E
IC: 1584A-AI1422E
Date: September 15, 2016
Page 32 of 32