

SUBMITTAL APPLICATION REPORT FOR GRANT OF CERTIFICATION

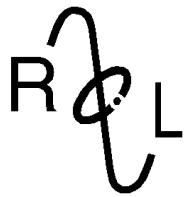
FOR
Model: 8011 STANDARD OBU
915 MHz
Low Power Transmitter

FCC ID: FIH05682
IC: 1584A-05682

FOR
TRANSCORE
AMTECH TECHNOLOGY CENTER
8600 Jefferson Street, NE
Albuquerque, NM 87113

Test Report Number: 080626A15

Authorized Signatory: *Scot D Rogers*
Scot D. Rogers


Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision Preliminary Review 2

Transcore Amtech Technology Center
Model: 8011 STANDARD OBU
Test #: 080626A15
Test to: FCC 15c (15.245), IC RSS-210
File: Transcore TstRpt 05682 15C

FCC ID#: FIH05682
IC: 1584A-05682
SN: ENG1

Page 1 of 24

Date: July 6, 2008

ROGERS LABS, INC.

4405 West 259th Terrace
Louisburg, KS 66053
Phone / Fax (913) 837-3214

Engineering Test Report
For Application Of
Grant Of Certification

FOR

CFR47, PART 15C - Intentional Radiators Paragraph 15.249
and Industry Canada RSS-210
Low Power Transmitter

For

TRANSCORE
Amtech Technology Center
8600 Jefferson Street, NE
Albuquerque, NM 87113

Model: 8011 STANDARD OBU

Frequency 915.0 MHz
FCC ID# FIH05682

Test Date: June 26, 2008

Certifying Engineer:

Scot D. Rogers
ROGERS LABS, INC.
4405 West 259th Terrace
Louisburg, KS 66053
Phone: (913) 837-3214
FAX: (913) 837-3214

This report shall not be reproduced except in full, without the written approval of the laboratory.
This report must not be used by the client to claim product endorsement by NVLAP, NIST, or
any agency of the U.S. Government.

Table of Contents

TABLE OF CONTENTS.....	3
FORWARD	5
OPINION / INTERPRETATION OF RESULTS	5
ENVIRONMENTAL CONDITIONS.....	5
2.1033(B) APPLICATION FOR CERTIFICATION	6
APPLICABLE STANDARDS & TEST PROCEDURES	7
EQUIPMENT TESTED.....	7
EQUIPMENT FUNCTION AND TESTING PROCEDURES	7
EQUIPMENT AND CABLE CONFIGURATIONS	7
Conducted Emission Test Procedure.....	7
Radiated Emission Test Procedure.....	8
UNITS OF MEASUREMENTS	8
TEST SITE LOCATIONS	8
LIST OF TEST EQUIPMENT	8
SUBPART B – UNINTENTIONAL RADIATORS	9
AC Line Conducted Emissions	9
Radiated EMI	10
Figure one Plot of General Radiated Emissions	11
Figure two Plot of General Radiated Emissions	11
Figure three Plot of General Radiated Emissions	12
Figure four Plot of General Radiated Emissions	12
Figure five Plot of General Radiated Emissions.....	13
General Radiated Emissions Data from EUT	13
Summary of Results for Radiated Emissions	13
Statement of Modifications and Deviations	13
SUBPART C - INTENTIONAL RADIATORS	14
15.203 Antenna Requirements	14
15.205 Restricted Bands of Operation.....	14
Radiated Emissions Data in Restricted Bands (15.205)	14
Summary of Results for Radiated Emissions in Restricted Bands	15
15.209 Radiated Emissions Limits; General Requirements	15
Radiated EMI.....	15
General Radiated Emissions Data from EUT (15.209)	16
Summary of Results for Radiated Emissions	16
15.249 Operation in the Band 902 – 928 MHz.....	16
Figure six in Band Emissions Plot.....	17
Radiated Emissions Data per 15.249	17

NVLAP Lab Code 200087-0

Summary of Results for Radiated Emissions of Intentional Radiator	18
Statement of Modifications and Deviations	18
ANNEX.....	19
Annex A Measurement Uncertainty Calculations.....	20
Annex B Test Equipment List For Rogers Labs, Inc.....	22
Annex C Qualifications.....	23
Annex D FCC Site Approval Letter	24

PRELIMINARY REVIEW

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision Preliminary Review 2

Transcore Amtech Technology Center
Model: 8011 STANDARD OBU
Test #: 080626A15
Test to: FCC 15c (15.245), IC RSS-210
File: Transcore TstRpt 05682 15C

FCC ID#: FIH05682
IC: 1584A-05682
SN: ENG1

NVLAP Lab Code 200087-0

Forward

The following information is submitted for consideration in obtaining a Grant of Certification for a license exempt low power intentional radiator operating under CFR47 Paragraph 15.249.

Name of Applicant:

TRANSCORE

8600 Jefferson Street, NE

Albuquerque, NM 87113

Model: 8011 STANDARD OBU

FCC I.D.: FIH05682

Frequency Range: 915.0 MHz.

Operating Power: 94 dB μ V/m @ 3-meters (3 meter radiated measurement)

Opinion / Interpretation of Results

Tests Performed	Results
Emissions Tests	
Emissions as per CFR47 paragraphs 2 and 15.205	Complies
Emissions as per CFR47 paragraphs 2 and 15.209	Complies
Emissions as per CFR47 paragraphs 2 and 15.245	Complies

Environmental Conditions

Ambient Temperature 23.3° C

Relative Humidity 44%

Atmospheric Pressure 30.10 in Hg

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision Preliminary Review 2

Transcore Amtech Technology Center
Model: 8011 STANDARD OBU
Test #: 080626A15
Test to: FCC 15c (15.245), IC RSS-210
File: Transcore TstRpt 05682 15C

FCC ID#: FIH05682
IC: 1584A-05682
SN: ENG1

2.1033(b) Application for Certification

(1) Manufacturer: TRANSCORE
8600 Jefferson Street, NE
Albuquerque, NM 87113

(2) Identification: Model: 8011 STANDARD OBU
FCC I.D.: FIH05682

(3) Instruction Book:
Refer to Exhibit for Instruction Manual.

(4) Description of Circuit Functions:
Refer to Exhibit of Operational Description.

(5) Block Diagram with Frequencies:
Refer to Exhibit of Operational Description.

(6) Report of Measurements:
Report of measurements follows in this Report.

(7) Photographs: Construction, Component Placement, etc.:
Refer to Exhibit for photographs of equipment.

(8) No Peripheral Equipment was Necessary.

(9) Transition Provisions of 15.37 are not being requested.

(10) Equipment is not a scanning receiver and this section is not applicable.

(11) The equipment does not operate in the 59 – 64 GHz frequency band and this section is not applicable.

(12) The equipment is not software defined and this section is not applicable.

Applicable Standards & Test Procedures

In accordance with the Federal Communications Code of Federal Regulations, dated October 1, 2007, Part 2, Subpart J, Paragraphs 2.907, 2.911, 2.913, 2.925, 2.926, 2.1031 through 2.1057, and applicable parts of paragraph 15, Part 15C Paragraph 15.249 following information is submitted.

Test procedures used are the established Methods of Measurement of Radio-Noise Emissions as described in the ANSI 63.4-2003 document.

Equipment Tested

<u>Equipment</u>	<u>Model</u>	<u>FCC I.D.</u>
EUT	8011 STANDARD OBU	FIH05682

Equipment Function and Testing Procedures

The EUT is a 915 MHz low power transmitter used as an active tag in the location and monitoring service. The product was designed to interact with location and monitoring systems offering data about the tag while in the reader field. The EUT operates from internal 3-volt battery only and offers no provision for connection to auxiliary equipment. Since the EUT is battery operated, no AC line-conducted emissions testing was performed.

Equipment and Cable Configurations

Conducted Emission Test Procedure

The unit operates from DC power only and offers no provision to connect to utility AC power systems. Therefore, no AC line conducted emissions testing was performed. The equipment complies with requirements of CFR47 15.207.

Radiated Emission Test Procedure

Testing for the unintentional radiated emissions was performed as defined in section 13.1.4 of ANSI C63.4. The EUT was placed on a rotating 1 x 1.5-meter wooden platform, 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. EMI energy was maximized by equipment placement, raising and lowering the FSM antenna, changing the antenna polarization, and by rotating the turntable. Each emission was maximized before data was taken using a spectrum analyzer. Refer to photographs in the exhibits for EUT placement.

Units of Measurements

Conducted EMI Data is in dB μ V; dB referenced to one microvolt.

Radiated EMI Data is in dB μ V/m; dB/m referenced to one microvolt per meter.

Test Site Locations

Conducted EMI The AC power line conducted emissions testing performed in a shielded screen room located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Radiated EMI The radiated emissions tests were performed at the 3 meters, Open Area Test Site (OATS) located at Rogers Labs, Inc., 4405 W. 259th Terrace, Louisburg, KS.

Site Approval Refer to Annex for FCC Site Registration Letter, # 90910

List of Test Equipment

A Hewlett Packard 8591EM Spectrum Analyzer was used as the measuring device for the emissions testing of frequencies below 1 GHz. A Hewlett Packard 8562A Spectrum Analyzer was used as the measuring device for testing the emissions at frequencies above 1 GHz. The analyzer settings used are described in the following table. Refer to the appendix for a complete list of test equipment.

HP 8591 EM ANALYZER SETTINGS		
CONDUCTED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
9 kHz	30 kHz	Peak / Quasi Peak
RADIATED EMISSIONS		
RBW	AVG. BW	DETECTOR FUNCTION
120 kHz	300 kHz	Peak / Quasi Peak
HP 8562A ANALYZER SETTINGS		
RBW	VIDEO BW	DETECTOR FUNCTION
100 kHz	100 kHz	PEAK
1 MHz	1 MHz	Peak / Average

EQUIPMENT	MFG.	MODEL	CAL. DATE	DUE.
LISN	Comp. Design	FCC-LISN-2-MOD.CD	10/07	10/08
LISN	Comp. Design	1762	2/08	2/09
Antenna	ARA	BCD-235-B	10/07	10/08
Antenna	EMCO	3147	10/07	10/08
Antenna	EMCO	3143	5/07	5/08
Analyzer	HP	8591EM	5/07	5/08
Analyzer	HP	8562A	2/08	2/09

Subpart B – Unintentional Radiators

AC Line Conducted Emissions

The EUT is battery operated only and has no provision to connect to utility power. Therefore no AC power line-conducted emissions testing were performed.

Radiated EMI

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. Refer to figures one through five showing plots of the radiated emissions spectrum taken in a screen room. The highest radiated emission was then re-maximized at the OATS location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the OATS at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna position between horizontal and vertical polarization. Antennas used were Broadband Biconical from 30 to 200 MHz, Biconilog from 30 to 1000 MHz, Log Periodic from 200 MHz to 5 GHz and or, pyramidal horns and mixers from 4 GHz to 10 GHz.

MARKER
86.0 MHz
19.86 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 86.0 MHz
19.86 dB μ V

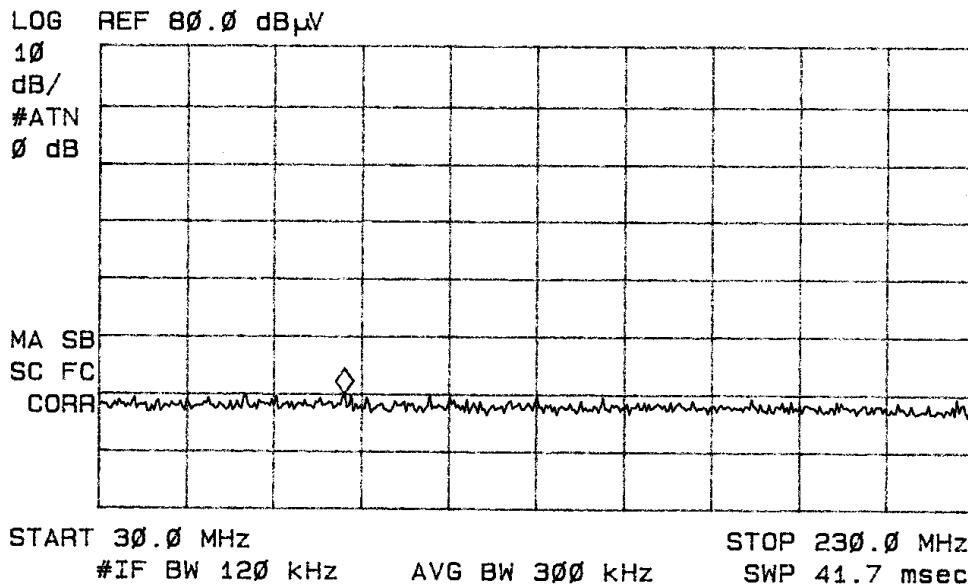


Figure one Plot of General Radiated Emissions

MARKER
918 MHz
62.43 dB μ V

ACTV DET: PEAK
MEAS DET: PEAK QP
MKR 918 MHz
62.43 dB μ V

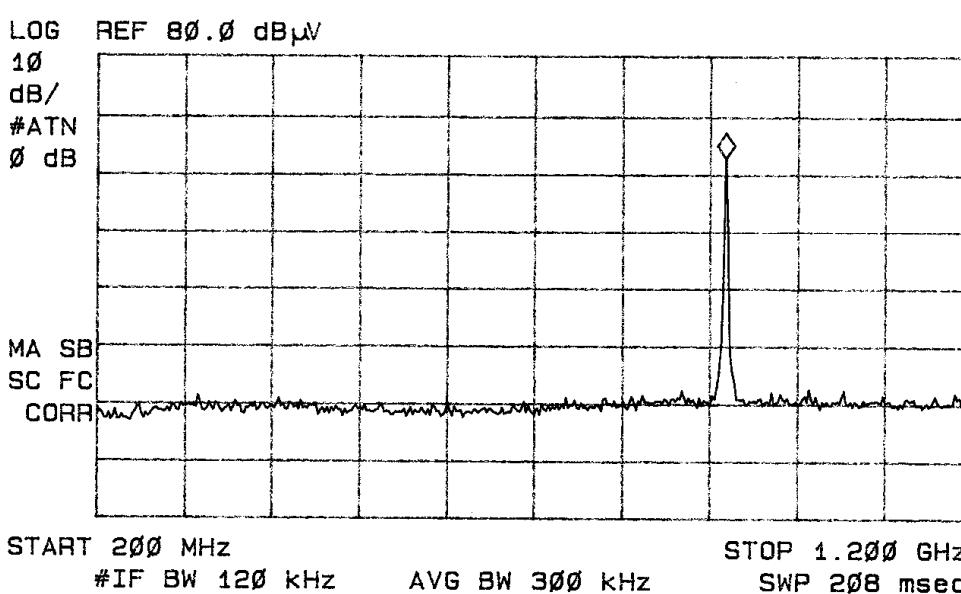


Figure two Plot of General Radiated Emissions

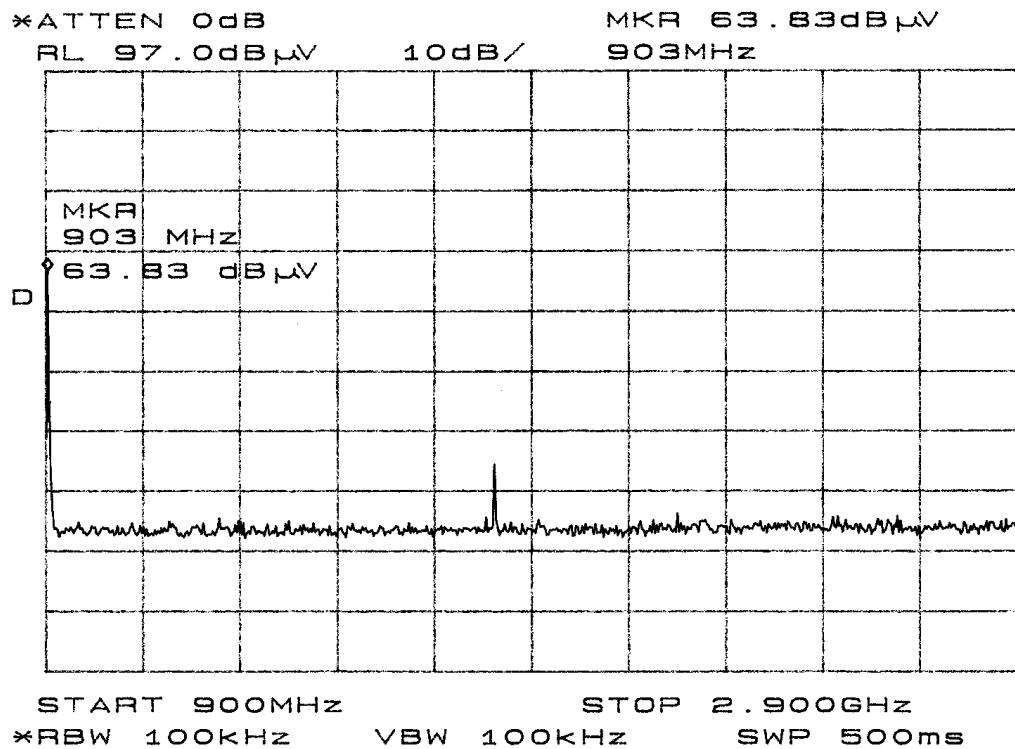


Figure three Plot of General Radiated Emissions

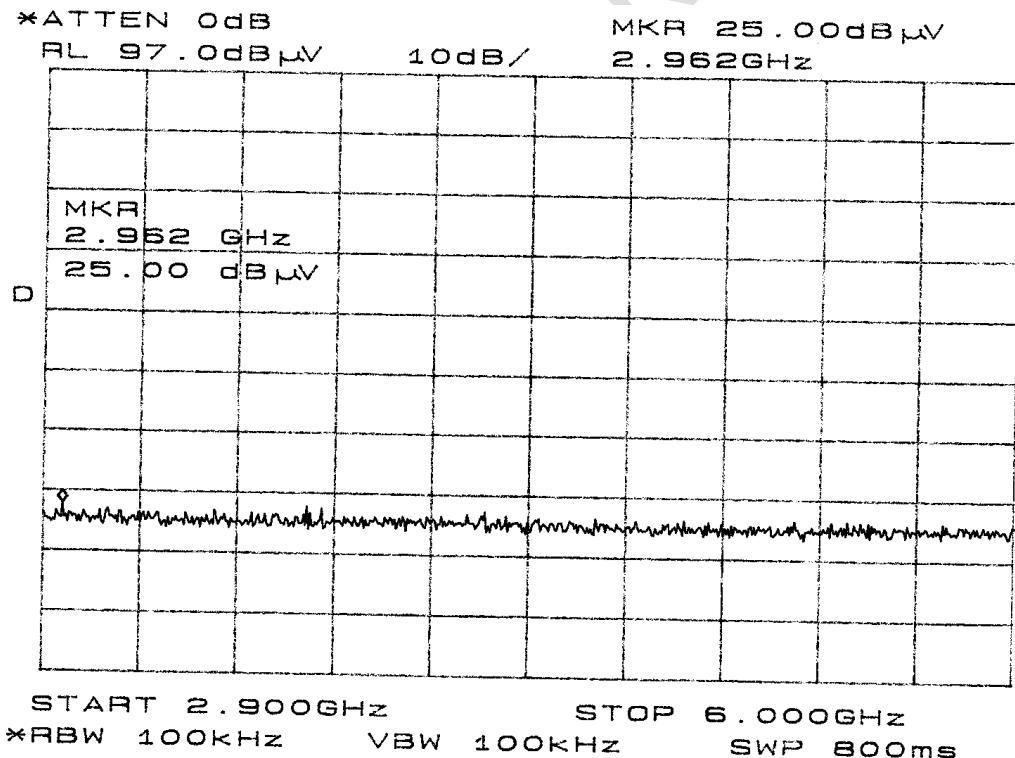
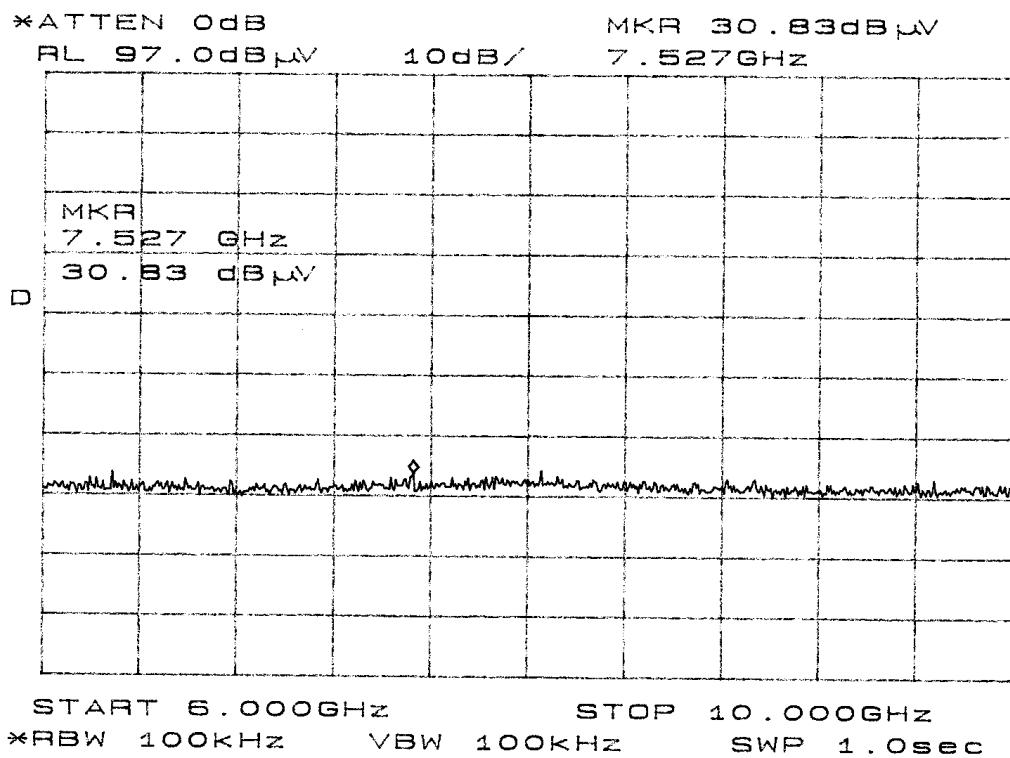



Figure four Plot of General Radiated Emissions

Figure five Plot of General Radiated Emissions

General Radiated Emissions Data from EUT

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
							40.0
							40.0

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CISPR 22, CFR47, and Industry Canada requirements. The EUT had at least a 20 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CISPR 22, CFR47, and Industry Canada requirements. There were no deviations or exceptions to the specifications.

Rogers Labs, Inc. Transcore Amtech Technology Center
4405 W. 259th Terrace Model: 8011 STANDARD OBU
Louisburg, KS 66053 Test #: 080626A15
Phone/Fax: (913) 837-3214 Test to: FCC 15c (15.245), IC RSS-210
Revision Preliminary Review 2 File: Transcore TstRpt 05682 15C

FCC ID#: FIH05682
IC: 1584A-05682
SN: ENG1
Page 13 of 24
Date: July 6, 2008

Subpart C - Intentional Radiators

As per CFR47 Part 15, Subpart C, paragraphs 15.203, 15.205, 15.209, and 15.249 the following information is submitted.

15.203 Antenna Requirements

The unit is produced with a permanently attached antenna and has no provision for user service, replacement, or antenna modification. The requirements of 15.203 are fulfilled and there are no deviations or exceptions to the specification.

15.205 Restricted Bands of Operation

Spurious emissions falling in the restricted frequency bands of operation were measured at a distance of three meters at the OATS. The EUT utilizes frequency determining circuitry, which generates harmonics falling in the restricted bands. Emissions were checked at the OATS, using appropriate antennas or pyramidal horns, amplification stages, and a spectrum analyzer. No other significant emission was observed which fell into the restricted bands of operation.

Sample Calculation:

$$\begin{aligned}
 \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM (dB}\mu\text{V)} + \text{A.F. (dB)} - \text{Gain (dB)} \\
 &= 28.7 + 7.6 - 30 \\
 &= 6.3
 \end{aligned}$$

Radiated Emissions Data in Restricted Bands (15.205)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
2745.0	27.6	31.6	34.3	30	31.9	35.9	54.0
3660.0	25.8	21.5	38.0	30	33.8	29.5	54.0
4575.0	19.5	21.6	41.7	30	31.2	33.3	54.0

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions in Restricted Bands

The radiated emissions for the EUT meet the requirements for FCC Part 15C Intentional Radiators. The EUT had a 20.2 dB minimum margin below the limits. Both average and peak amplitudes above 1000 MHz were checked for compliance with the regulations. No other emissions were found in the restricted frequency bands. Other emissions were present with amplitudes at least 20 dB below the FCC Limits.

15.209 Radiated Emissions Limits; General Requirements**Radiated EMI**

The EUT was arranged in a typical equipment configuration and operated through all of its various modes. Preliminary testing was performed in a screen room with the EUT positioned 1 meter from the FSM. Radiated emissions measurements were performed to identify the frequencies, which produced the highest emissions. Emissions were checked in the screen room from 30 to 10,000 MHz and plots were made of the frequency spectrum from 30 MHz to 10,000 MHz for the preliminary testing. The highest radiated emission was then re-maximized at this location before final radiated emissions measurements were performed. Final data was taken with the EUT located at the open area test site at a distance of 3 meters between the EUT and the receiving antenna. The frequency spectrum from 30 MHz to 10,000 MHz was searched for radiated emissions. Measured emission levels were maximized by EUT placement on the table, rotating the turntable through 360 degrees, varying the antenna height between 1 and 4 meters above the ground plane and changing antenna polarization between horizontal and vertical. Antennas used were Broadband Biconical from 30 MHz to 200 MHz, Biconilog from 30 MHz to 1000 MHz, Log Periodic from 200 MHz to 5 GHz, and/or Pyramidal Horns and mixers from 4 GHz to 10 GHz.

General Radiated Emissions Data from EUT (15.209)

Frequency in MHz	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	A.F. (dB/m)	Amp. Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	FCC Class B Limit @ 3m (dB μ V/m)
							40.0
							40.0

Other emissions present had amplitudes at least 20 dB below the limit.

Summary of Results for Radiated Emissions

The radiated emissions for the EUT meet the requirements for CFR47 Part 15C, and Industry Canada requirements. The EUT had at least a 20 dB minimum margin below the limit. Other emissions were present with amplitudes at least 20 dB below the limit.

15.249 Operation in the Band 902 – 928 MHz

The power output was measured on an Open Area Test Site at a 3 meters distance. The EUT was placed on a wooden turntable 0.8 meters above the ground plane at a distance of 3 meters from the FSM antenna. The peak and quasi-peak amplitude of the frequencies including carrier frequency was measured using a spectrum analyzer. The peak and average amplitude of emissions above 1000 MHz including spurious emissions were measured using a spectrum analyzer then data was recorded from the analyzer display. Emissions radiated outside of the specified bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in 15.209, whichever is the lesser attenuation. The amplitude of each emission was maximized by varying the FSM antenna height, polarization, and by rotating the turntable. A Biconilog Antenna was used for measuring emissions from 30 to 1000 MHz, a Log Periodic Antenna for 200 to 5000 MHz, and Pyramidal Horn Antennas from 4 GHz to 25 GHz. Emissions were measured in dB μ V/m @ 3 meters.

The power output was measured at the open area test site at a three-meter distance. Data was taken per Paragraph 2.1046(a), 15.249 and RSS-210. The 902 and 928 MHz band edges are protected due to the 915 MHz frequency of operation. Refer to figure six for a plot of the in band radiated emissions.

Sample Calculation

$$\begin{aligned}
 \text{RFS (dB}\mu\text{V/m @ 3m)} &= \text{FSM (dB}\mu\text{V)} + \text{A.F. (dB)} - \text{Gain (dB)} \\
 &= 100.6 + 23.3 - 3.0 \\
 &= 93.9
 \end{aligned}$$

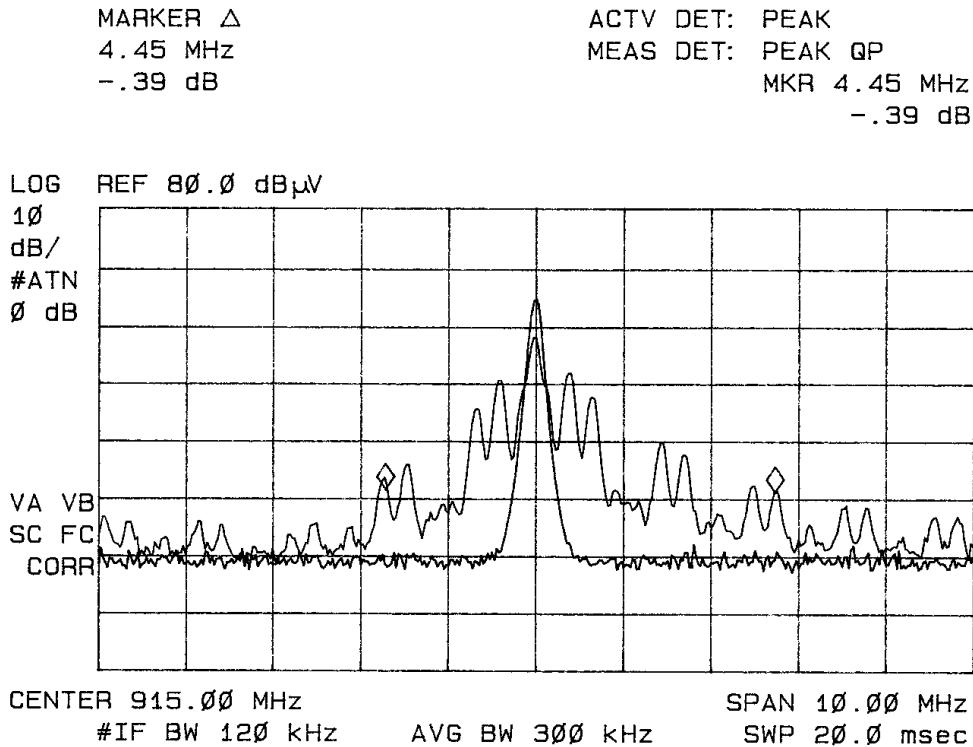


Figure six in Band Emissions Plot

Radiated Emissions Data per 15.249

Emission Frequency (GHz)	FSM Horz. (dB μ V)	FSM Vert. (dB μ V)	Ant. Factor (dB)	Amp Gain (dB)	RFS Horz. @ 3m (dB μ V/m)	RFS Vert. @ 3m (dB μ V/m)	Limit @ 3m (dB μ V/m)
915.0	100.6	92.5	23.3	30	93.9	85.8	94.0
1830.0	45.0	42.8	29.5	30	44.5	42.3	54.0
2745.0	27.6	31.6	34.3	30	31.9	35.9	54.0
3660.0	25.8	21.5	38.0	30	33.8	29.5	54.0
4575.0	19.5	21.6	41.7	30	31.2	33.3	54.0

Other emissions present had amplitudes at least 20 dB below the margin.

Summary of Results for Radiated Emissions of Intentional Radiator

The EUT had the highest emission of 93.9 dB μ V/m at 3 meters at the fundamental frequency of operation. The EUT had a worst-case of 9.5 dB margin below the limit for the harmonic emissions. The radiated emissions for the EUT meet the requirements for CFR47 Part 15.249 Intentional Radiators and RSS-210. There are no measurable emissions in the restricted bands other than those recorded in this report. Other emissions were present with amplitudes at least 20 dB below the limits. The specifications of 15.249 and RSS-210 were met; there are no deviations or exceptions to the requirements.

Statement of Modifications and Deviations

No modifications to the EUT were required for the unit to meet the CFR47 Part 15C and RSS-210 emissions standards. There were no deviations to the specifications.

NVLAP Lab Code 200087-0

Annex

- Annex A, Measurement Uncertainty Calculations
- Annex B, Test Equipment List
- Annex C, Rogers Qualifications
- Annex D, FCC Site Approval Letter

PRELIMINARY REVIEW

Rogers Labs, Inc.
4405 W. 259th Terrace
Louisburg, KS 66053
Phone/Fax: (913) 837-3214
Revision Preliminary Review 2

Transcore Amtech Technology Center
Model: 8011 STANDARD OBU
Test #: 080626A15
Test to: FCC 15c (15.245), IC RSS-210
File: Transcore TstRpt 05682 15C

FCC ID#: FIH05682
IC: 1584A-05682
SN: ENG1
Page 19 of 24
Date: July 6, 2008

Annex A Measurement Uncertainty Calculations

Radiated Emissions Measurement Uncertainty Calculation

Measurement of vertically polarized radiated field strength over the frequency range 30 MHz to 1 GHz on an open area test site at 3m and 10m includes following uncertainty:

Contribution	Probability	Uncertainty
	Distribution	(dB)
Antenna factor calibration	normal ($k = 2$)	± 0.58
Cable loss calibration	normal ($k = 2$)	± 0.2
Receiver specification	rectangular	± 1.0
Antenna directivity	rectangular	± 0.1
Antenna factor variation with height	rectangular	± 2.0
Antenna factor frequency interpolation	rectangular	± 0.1
Measurement distance variation	rectangular	± 0.2
Site Imperfections	rectangular	± 1.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{1.0}{2}\right]^2 + \left[\frac{0.2}{2}\right]^2 + \left[\frac{1.0^2 + 0.1^2 + 2.0^2 + 0.1^2 + 0.2^2 + 1.5^2}{3}\right]}$$

$$U_c(y) = \pm 1.6 \text{ dB}$$

It is probable that $u_c(y) / s(q_k) > 3$, where $s(q_k)$ is estimated standard deviation from a sample of n readings unless the repeatability of the EUT is particularly poor, and a coverage factor of $k = 2$ will ensure that the level of confidence will be approximately 95%, therefore:

$$s(q_k) = \sqrt{\frac{1}{(n-1)} \sum_{k=1}^n (q_k - \bar{q})^2}$$

$$U = 2 U_c(y) = 2 \times \pm 1.6 \text{ dB} = \pm 3.2 \text{ dB}$$

Notes:

- 1.1 Uncertainties for the antenna and cable were estimated, based on a normal probability distribution with $k = 2$.
- 1.2 The receiver uncertainty was obtained from the manufacturer's specification for which a rectangular distribution was assumed.
- 1.3 The antenna factor uncertainty does not take account of antenna directivity.
- 1.4 The antenna factor varies with height and since the height was not always the same in use as when the antenna was calibrated an additional uncertainty is added.
- 1.5 The uncertainty in the measurement distance is relatively small but has some effect on the received signal strength. The increase in measurement distance as the antenna height is increased is an inevitable consequence of the test method and is therefore not considered a contribution to uncertainty.
- 1.6 Site imperfections are difficult to quantify but may include the following contributions:
 - Unwanted reflections from adjacent objects.
 - Ground plane imperfections: reflection coefficient, flatness, and edge effects.
 - Losses or reflections from "transparent" cabins for the EUT or site coverings.
 - Earth currents in antenna cable (mainly effect biconical antennas).

The specified limits for the difference between measured site attenuation and the theoretical value (± 4 dB) were not included in total since the measurement of site attenuation includes uncertainty contributions already allowed for in this budget, such as antenna factor.

Conducted Measurements Uncertainty Calculation

Measurement of conducted emissions over the frequency range 9 kHz to 30 MHz includes following uncertainty:

Contribution	Probability	Uncertainty
Receiver specification	Distribution	(dB)
LISN coupling specification	rectangular	±1.5
Cable and input attenuator calibration	rectangular	±1.5
	normal (k=2)	±0.5

Combined standard uncertainty $u_c(y)$ is

$$U_c(y) = \pm \sqrt{\left[\frac{0.5}{2}\right]^2 + \frac{1.5^2 + 1.5^2}{3}}$$

$$U_c(y) = \pm 1.2 \text{ dB}$$

As with radiated field strength uncertainty, it is probable that $u_c(y) / s(qk) > 3$ and a coverage factor of $k = 2$ will suffice, therefore:

$$U = 2 U_c(y) = 2 \times \pm 1.2 \text{ dB} = \pm 2.4 \text{ dB}$$

Annex B Test Equipment List For Rogers Labs, Inc.

The test equipment used is maintained in calibration and good operating condition. Use of this calibrated equipment ensures measurements are traceable to national standards.

List of Test Equipment	Calibration Date
Oscilloscope Scope: Tektronix 2230	2/08
Wattmeter: Bird 43 with Load Bird 8085	2/08
Power Supplies: Sorensen SRL 20-25, SRL 40-25, DCR 150, DCR 140	2/08
H/V Power Supply: Fluke Model: 408B (SN: 573)	2/08
R.F. Generator: HP 606A	2/08
R.F. Generator: HP 8614A	2/08
R.F. Generator: HP 8640B	2/08
Spectrum Analyzer: HP 8562A, Mixers: 11517A, 11970A, 11970K, 11970U, 11970V, 11970W HP Adapters: 11518, 11519, 11520	5/08
Spectrum Analyzer: HP 8591EM	5/08
Frequency Counter: Leader LDC825	2/08
Antenna: EMCO Biconilog Model: 3143	5/08
Antenna: EMCO Log Periodic Model: 3147	10/07
Antenna: Antenna Research Biconical Model: BCD 235	10/07
Antenna: EMCO Dipole Set 3121C	2/08
Antenna: C.D. B-101	2/08
Antenna: Solar 9229-1 & 9230-1	2/08
Antenna: EMCO 6509	2/08
Audio Oscillator: H.P. 201CD	2/08
R.F. Power Amp 65W Model: 470-A-1010	2/08
R.F. Power Amp 50W M185- 10-501	2/08
R.F. PreAmp CPPA-102	2/08
LISN 50 μ Hy/50 ohm/0.1 μ f	10/07
LISN Compliance Eng. 240/20	2/08
LISN Fischer Custom Communications FCC-LISN-50-16-2-08	2/08
Peavey Power Amp Model: IPS 801	2/08
Power Amp A.R. Model: 10W 1010M7	2/08
Power Amp EIN Model: A301	2/08
ELGAR Model: 1751	2/08
ELGAR Model: TG 704A-3D	2/08
ESD Test Set 2010i	2/08
Fast Transient Burst Generator Model: EFT/B-101	2/08
Current Probe: Singer CP-105	2/08
Current Probe: Solar 9108-1N	2/08
Field Intensity Meter: EFM-018	2/08
KEYTEK Ecat Surge Generator	2/08

Annex C Qualifications**SCOT D. ROGERS, ENGINEER****ROGERS LABS, INC.**

Mr. Rogers has approximately 17 years experience in the field of electronics. Six years working in the automated controls industry and 6 years working with the design, development and testing of radio communications and electronic equipment.

POSITIONS HELD:

Systems Engineer: A/C Controls Mfg. Co., Inc. 6 Years

Electrical Engineer: Rogers Consulting Labs, Inc. 5 Years

Electrical Engineer: Rogers Labs, Inc. Current

EDUCATIONAL BACKGROUND:

- 1) Bachelor of Science Degree in Electrical Engineering from Kansas State University.
- 2) Bachelor of Science Degree in Business Administration Kansas State University.
- 3) Several Specialized Training courses and seminars pertaining to Microprocessors and Software programming.

Scot D. Rogers

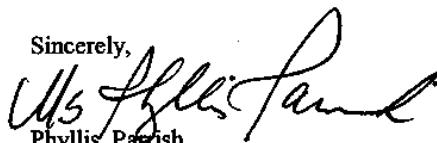
Annex D FCC Site Approval Letter**FEDERAL COMMUNICATIONS COMMISSION**

**Laboratory Division
7435 Oakland Mills Road
Columbia, MD 21046**

June 18, 2008

Registration Number: 90910

**Rogers Labs, Inc.
4405 West 259th Terrace,
Louisburg, KS 66053**


Attention: Scot Rogers

**Re: Measurement facility located at Louisburg
3 & 10 meter site
Date of Renewal: June 18, 2008**

Dear Sir or Madam:

Your request for renewal of the registration of the subject measurement facility has been received. The information submitted has been placed in your file and the registration has been renewed. The name of your organization will remain on the list of facilities whose measurement data will be accepted in conjunction with applications for Certification under Parts 15 or 18 of the Commission's Rules. Please note that the file must be updated for any changes made to the facility and the registration must be renewed at least every three years.

Measurement facilities that have indicated that they are available to the public to perform measurement services on a fee basis may be found on the FCC website www.fcc.gov under E-Filing, OET Equipment Authorization Electronic Filing, Test Firms.

Sincerely,

Phyllis Parish
Industry Analyst