FCC Test Report

Equipment : 11n/a&11n/g/b Concurrent Smart model

11n/a,11n/g/b Single Smart model

Brand Name : BUFFALO

Model No. : WAPS-APG600H/WAPS-AG300H

FCC ID : FDI04604022-0

Standard : 47 CFR FCC Part 15.247

Applicant : Buffalo Inc.

AKAMONDORI Bldg, 30-20, Ohsu 3-chome,

Naka-ku, Nagoya,460-8315, Japan

Manufacturer : EDIMAX TECHNOLOGY CO., LTD.

No.3, Wu Chuan 3rd Road, Wu-Ku Industrial

Park. Taipei Hsien, Taiwan

The product sample received on Jun. 27, 2012 and completely tested on Jul. 17, 2012. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

su / Assistant Manager

G MRA

SPORTON INTERNATIONAL INC. Page No. : 1 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	
1.3	Testing Applied Standards	8
1.4	Testing Location Information	9
1.5	Measurement Uncertainty	9
2	TEST CONFIGURATION OF EUT	10
2.1	The Worst Case Modulation Configuration	10
2.2	Test Channel Frequencies Configuration	10
2.3	The Worst Case Power Setting Parameter	11
2.4	The Worst Case Measurement Configuration	12
2.5	Test Setup Diagram	14
3	TRANSMITTER TEST RESULT	16
3.1	AC Power-line Conducted Emissions	16
3.2	6dB Bandwidth	19
3.3	RF Output Power	22
3.4	Power Spectral Density	30
3.5	Transmitter Radiated Bandedge Emissions	34
3.6	Transmitter Radiated Unwanted Emissions	42
4	TEST EQUIPMENT AND CALIBRATION DATA	72
5	CERTIFICATION OF TAF ACCREDITATION	73
APPE	ENDIX A. TEST PHOTOS	A1 ~ A7
ΔΡΡΕ	ENDIX B. PHOTOGRAPHS OF FUT	R1 ~ R21

TEL: 886-3-327-3456 FAX: 886-3-327-0973

Summary of Test Result

Report No. : FR262610AC

		Conforr	nance Test Specifications		
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied
3.1	15.207	AC Power-line Conducted Emissions	0.72MHz: 28.24dBuV (17.76dB) - AV 27.89dBuV (28.11dB) - QP	FCC 15.207	Complied
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 2412-2462MHz: 12.08-DSSS 2412-2462MHz: 17.50-OFDM 2422-2452MHz: 36.04-OFDM	≥500kHz	Complied
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm] 2412-2462MHz: 21.23-DSSS 2412-2462MHz: 24.00-OFDM 2422-2452MHz: 19.27-OFDM	Power [dBm] 2412-2462MHz: 30 2422-2452MHz: 30	Complied
3.4	15.247(d)	Power Spectral Density	PSD [dBm/3kHz] 2412-2462MHz: -8.72-DSSS 2412-2462MHz: -13.88-OFDM 2422-2452MHz: -22.36-OFDM	PSD [dBm/3kHz] 2412-2462MHz: 8 2422-2452MHz: 8	Complied
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2400.00MHz: 31.60dB Restricted Bands [dBuV/m at 3m]: 2483.60MHz: 66.41 (Margin 7.59dB) – PK 52.97 (Margin 1.03dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	Restricted Bands [dBuV/m at 3m]: 7311MHz: 58.72 (Margin 15.28dB) - PK 51.34 (Margin 2.66dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied

SPORTON INTERNATIONAL INC. : 3 of 73
TEL: 886-3-327-3456 : Report Version : Rev. 01

Revision History

Report No. : FR262610AC

Report No.	Version	Description	Issued Date
FR262610AC	Rev. 01	Initial issue of report	Aug. 30, 2012

SPORTON INTERNATIONAL INC. Page No. : 4 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

1 General Description

1.1 Information

1.1.1 RF General Information

RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11 Protocol	Ch. Frequency (MHz)	Channel Number	RF Output Power (dBm)		
2400-2483.5	b	2412-2462	1-11 [11]	21.23		
2400-2483.5	g	2412-2462	1-11 [11]	24.00		
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	21.08		
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	19.27		

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999. Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40.

Note 3: RF output power specifies that Maximum Peak Conducted Output Power.

	Transmitter Chains & Receiver Chains Information							
IEEE Std. 802.11 Protocol	Number of Transmit Chains (N _{TX})	Number of Receive Chains (N _{RX})	Correlation Signals with Multiple N _{TX}	99% Emission Bandwidth (MHz)	Co-location			
b	2	2	N/A	14.33	Yes			
g	2	2	Correlated	16.73	Yes			
n (HT20)	2	2	Uncorrelated	17.61	Yes			
n (HT40)	2	2	Uncorrelated	36.14	Yes			

Note 1: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating 2.4GHz and 5GHz.)

SPORTON INTERNATIONAL INC. : 5 of 73
TEL: 886-3-327-3456 : Report Version : Rev. 01

1.1.2 Antenna Information

	Antenna Category										
	Equipment placed on the market without antennas										
	Integ	ral antenna	(antenna _l	permanen	tly attached	d)					
[Temporary F	RF connec	tor provid	ed						
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.										
⊠ I	Exter	nal antenna	(dedicate	d antenna	ıs)						
		Single powe	r level witl	n correspo	onding ante	enna(s). Pow	er Level (PL):	1			
I	X I	Multiple pow	er level a	nd corresp	onding an	tenna(s). Po	wer Level (PL): 1~2			
		No RF conn	ector prov	ided							
		connec	ted meas ted to the	surement.	In case of	of conducte	d temporary d measureme able attenuate	ents the	transmitte	r shall be	
[RF connecto	or provided	d b							
	[Unique	antenna d	connector.	(e.g., MM	CX, U.FL, IP	X, and RP-SN	1A, RP-1	N type)		
	[Standa	rd antenna	connecto	or. (e.g., SN	ИА, N, BNC,	and TNC type	∍)			
				An	tenna Gen	eral Inform	ation				
Ante	nna l	Port (Total	2 Port)		1(TX/RX),	2(TX/RX)					
Maxi	mum	RF Output	Power L	evel (PL)	1						
Trans	smit	Chains Pov	wer Distri	bution	⊠ symm	etrical distrib	oution 🗌 asy	mmetric	al distribution	on	
Ant. No.	PL	Ant. Port [Ant No. X connect to Ant. Port Y]	Ant. Cat.	Ant.	Туре	Brand	Model	G _{ANT} (dBi)	DG (dBi) [correlated] N _{TX} = 1	DG (dBi) [uncorrelated] N _{TX} = 2	
1	1	1	Internal	Dip	oole	-	-	1.89	4.9	1.9	
2	1	2	Internal	Dip	oole	-	-	1.89	4.9	1.9	
\boxtimes	☐ The equipment is normally installed and point-to-point or point-to-multipoint systems: Ant. No. 1,2										
	Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = G _{ANT} + 10 log(N) dBi All transmit signals are completely uncorrelated, Directional Gain (DG)= G _{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain (DG) = 10 log[(10 ^{G1/20} + 10 ^{G2/20} + + 10 ^{GN/20}) ² /N] dBi All transmit signals are completely uncorrelated, Directional Gain (DG) = 10 log[(10 ^{G1/10} + 10 ^{G2/10} + + 10 ^{GN/10})/N] dBi										

SPORTON INTERNATIONAL INC. Page No. : 6 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

1.1.3 Type of EUT

	Identify EUT			
EU	Γ Serial Number	N/A		
Pre	sentation of Equipment	☐ Production ; ☐ Prototype		
		Type of EUT		
\boxtimes	Stand-alone			
	Combined (EUT where the	ne radio part is fully integrated within another device)		
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.1.4 Test Signal Duty Cycle

	Operated Mode for Worst Duty Cycle					
	Operated normally mode for worst dut	ty cycle				
\boxtimes	Operated test mode for worst duty cyc	cle				
	Test Signal Duty Cycle (x) Power Duty Factor [dB] – Voltage Duty Factor [dB] – (10 log 1/x) (20 log 1/x)					
	100% - IEEE 802.11b	0	0			
\boxtimes	100% - IEEE 802.11g	0	0			
	100% - IEEE 802.11n (HT20)	0	0			
	100% - IEEE 802.11n (HT40)	0	0			

1.1.5 EUT Operational Condition

Supply Voltage	☐ DC	
Type of DC Source	☐ External DC adapter	☐ Battery

SPORTON INTERNATIONAL INC. Page No. : 7 of 73

TEL: 886-3-327-3456 Report Version : Rev. 01

1.2 Accessories and Support Equipment

Accessories					
No.	Equipment	Brand Name	Model Name	Serial No.	
1	AC Adapter	APD	DA-48P12	-	

Support Equipment - Conducted Emissions						
No.	Equipment	Brand Name	Model Name	Serial No.		
1	USB Flash 1	TDK	16G	N/A		
2	USB Flash 2	LITEON	2G	N/A		
3	Notebook	DELL	E5520	DoC		
4	iPod	Apple	A1199	DoC		
5	USB Mouse	Microsoft	1113	DoC		
6	Notebook (Remote Workstation)	DELL	VOSTRO 3350	DoC		
7	POE (Remote Workstation)	D-Link	DWL-P200	DoC		

Support Equipment - Radiated Emissions						
No.	Equipment	Brand Name	Model Name	Serial No.		
1	USB Flash 1	TDK	16G	N/A		
2	USB Flash 2	LITEON	2G	N/A		
3	Notebook	DELL	E5520	DoC		
4	USB Mouse	Microsoft	1113	DoC		
5	iPod	Apple	A1199	DoC		
6	Notebook (Remote Workstation)	DELL	E5520	DOC		
7	POE (Remote Workstation)	D-Link	DWL-P200	DoC		

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 Guidance for Performing Compliance Measurements on DTS
- FCC KDB 662911 Emissions Testing of Transmitters with Multiple Outputs
- FCC KDB 412172 Guidelines for Determining the ERP and EIRP

SPORTON INTERNATIONAL INC. : 8 of 73
TEL: 886-3-327-3456 : Report Version : Rev. 01

1.4 Testing Location Information

Testing Location										
\boxtimes	HWA YA ADD : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C									
	TEL: 886-3-327-3456 FAX: 886-3-327-0973									
1	Test Condit	ion	Test Site No.	Test Engineer	Test Environment	Test Date				
Co	Conducted Emission		CO01-HY	David	25.9°C / 53.6%	30-Jun-12				
RF Conducted		TH01-HY	lan	24.6°C / 44%	21-Jul-12					
Radiated Emission		03CH02-HY	Hsiao	24.1°C / 64%	17-Jul-12					

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty							
Test Item	Uncertainty	Limit					
AC power-line conducted emissions	±2.26 dB	N/A					
Emission bandwidth, 6dB bandwidth	±1.42 %	N/A					
RF output power, conducted		±0.63 dB	N/A				
Power density, conducted	±0.81 dB	N/A					
Unwanted emissions, conducted	30 – 1000 MHz	±0.51 dB	N/A				
	1 – 18 GHz	±0.67 dB	N/A				
	18 – 40 GHz	±0.83 dB	N/A				
	40 – 200 GHz	N/A	N/A				
All emissions, radiated	30 – 1000 MHz	± 2.54 dB	N/A				
	1 – 18 GHz	±3.59 dB	N/A				
	18 – 40 GHz	±3.82 dB	N/A				
	40 – 200 GHz	N/A	N/A				
Temperature		±0.8 °C	N/A				
Humidity	±3 %	N/A					
DC and low frequency voltages	±3 %	N/A					
Time	±1.42 %	N/A					
Duty Cycle		±1.42 %	N/A				

SPORTON INTERNATIONAL INC. : 9 of 73
TEL: 886-3-327-3456 : Report Version : Rev. 01

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

Worst Modulation Used for Conformance Testing									
Power Level IEEE 802.11 Protocol Number of Transmit Chains (N _{TX})		1							
		Data Rate / MCS	Modulation		RF Output Power (dBm)	Power Spectral Density (dBm/3kHz)			
b	2	1-11 Mbps	1 Mbps	11B-20M	21.23	-8.72			
g	2	6-54 Mbps	6Mbps	11G-20M	24.00	-13.88			
n (HT20)	2	MCS 0-15	MCS 8	11N2.4G-20M	21.08	-17.12			
n (HT40)	2	MCS 0-15	MCS 8	11N2.4G-40M	19.27	-22.36			

Note 1: IEEE Std. 802.11-2007 modulation consists of IEEE Std. 802.11g-2003 and IEEE Std. 802.11b-1999.

Note 2: IEEE Std. 802.11n-2009 modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT support HT20 and HT40. Worst modulation mode of Guard Interval (GI) is 400ns.

Note 3: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 4: RF output power specifies that Maximum Peak Conducted Output Power.

2.2 Test Channel Frequencies Configuration

Test Channel Frequencies Configuration								
IEEE 802.11 Protocol	Worst Modulation Mode	Test Channel Frequencies (MHz) – FX (Frequencies Abbreviations)						
b	11B-20M	2412-(F1), 2437-(F2), 2462-(F3)						
g	11G-20M	2412-(F1), 2437-(F2), 2462-(F3)						
n (HT20)	11N2.4G-20M	2412-(F1), 2437-(F2), 2462-(F3)						
n (HT40)	11N2.4G-40M	2422-(F4), 2437-(F5), 2452-(F6)						

Note 1: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20M/40M

SPORTON INTERNATIONAL INC. Page No. : 10 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

2.3 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter								
Power Level Test Software Version		1						
		RT 3x9x QA_ 1.5.6.8						
Worst Number of Modulation Transmit Chains (N _{TX})		Frequency (MHz)	Power Setting	Worst Data Rate / MCS	RF Output Power (dBm)			
11B-20M	2	2412	16,16	1 Mbps	21.23			
11B-20M	2	2442	1B,1B	1 Mbps	21.14			
11B-20M	2	2472	19,19	1 Mbps	20.28			
11G-20M	2	2412	13,13	6 Mbps	18.01			
11G-20M	2	2442	1A,1A	6 Mbps	24.00			
11G-20M	2	2472	12,12	6 Mbps	20.05			
11N2.4G-20M	2	2412	13,13	MCS 8	20.92			
11N2.4G-20M	2	2442	16,16	MCS 8	21.08			
11N2.4G-20M	2	2472	13,13	MCS 8	19.69			
11N2.4G-40M	2	2422	10,10	MCS 8	17.76			
11N2.4G-40M	2	2437	13,13	MCS 8	19.27			
11N2.4G-40M	2	2452	10,10	MCS 8	17.92			

Note 1: Modulation modes consist of 11B-20M, 11G-20M, 11N2.4G-20M, 11N2.4G-40M: 11B: IEEE 802.11b, 11G: IEEE 802.11g, 11N2.4G: IEEE 802.11n (2.4GHz Band) 20M/40M: Channel Bandwidth 20MHz/40MHz

Note 2: RF output power specifies that Maximum Peak Conducted Output Power.

SPORTON INTERNATIONAL INC. Page No. : 11 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

2.4 The Worst Case Measurement Configuration

The Worst Case Mode for Following Conformance Tests									
Tests Item	AC power-line conducted emissions								
Condition	AC power-line conducted measurement for line and	AC power-line conducted measurement for line and neutral							
Operating Mode	Operating Mode Description	Worst Modulation Mode	Test Freq.	Power Level					
1	Normal TX + Adapter Mode	11N2.4G-20M	F2	1					
2	Normal TX + POE Mode	11N2.4G-20M	F5	1					
For operating	g mode 1 is the worst case and it was record in this t	est report.		•					

The Worst Case Mode for Following Conformance Tests								
Tests Item	RF Output Power Power Spectral Density 6 dB Bandwidth							
Test Condition	Conducted measurer	nent at transmit chains	S					
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level				
11B-20M	2	1 Mbps	F1, F2, F3	1				
11G-20M	2	6Mbps	F1, F2, F3	1				
11N2.4G-20M	2	MCS 8	F1, F2, F3	1				
11N2.4G-40M	2	MCS 8	F4, F5, F6	1				

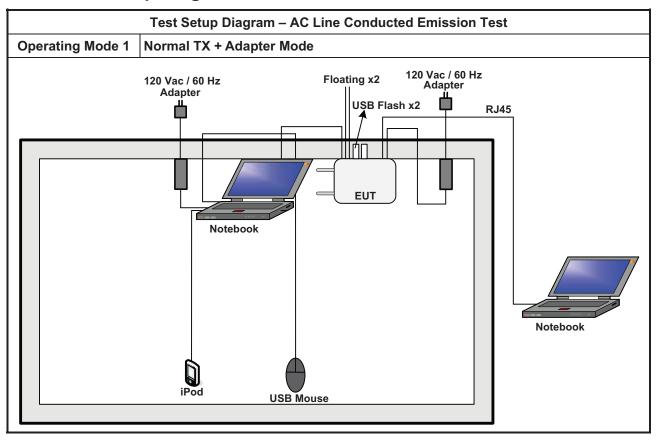
The Worst Case Mode for Following Conformance Tests									
Tests Item	Transmitter Radiated	Transmitter Radiated Bandedge Emissions							
Test Condition	Radiated measureme	Radiated measurement							
Worst Modulation Mode	Number of Transmit Chains (N _{TX})	Worst Data Rate / MCS	Test Frequency	Power Level					
11B-20M	2	1 Mbps	F1, F3	1					
11G-20M	11G-20M 2		F1, F3	1					
11N2.4G-20M	11N2.4G-20M 2		F1, F3	1					
11N2.4G-40M	2	MCS 8	F4, F6	1					

SPORTON INTERNATIONAL INC. Page No. : 12 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

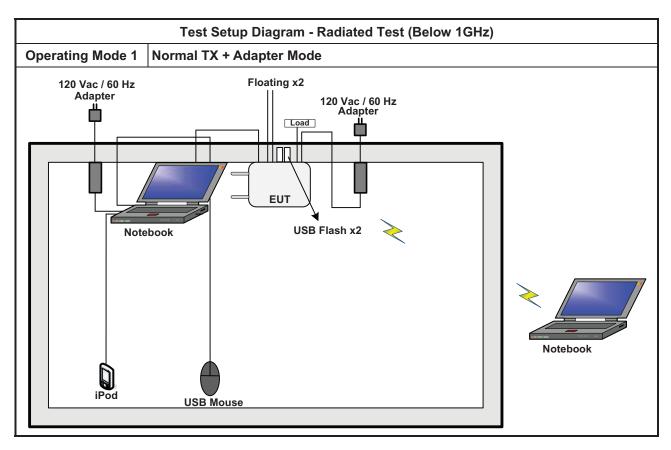
Report No.: FR262610AC

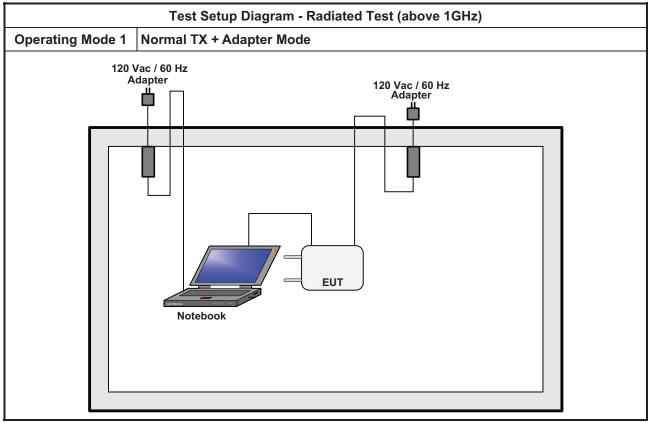
SPORTON INTERNATIONAL INC. Page No. : 13 of 73

Report Version


: Rev. 01

For operating mode 1 is the worst case and it was record in this test report.


TEL: 886-3-327-3456 FAX: 886-3-327-0973


Planes of EUT

2.5 Test Setup Diagram

SPORTON INTERNATIONAL INC. Page No. : 14 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

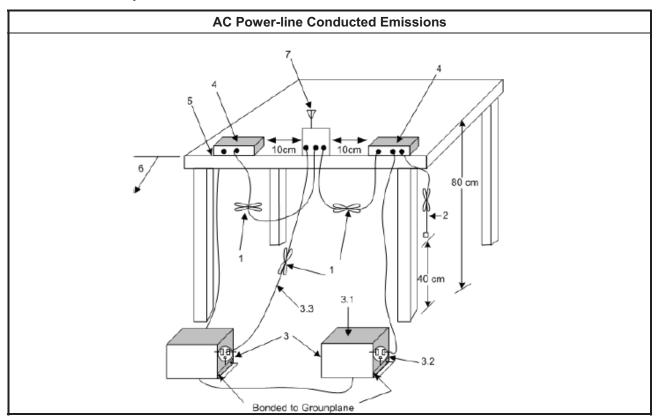
SPORTON INTERNATIONAL INC. Page No. : 15 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Power-line Conducted Emissions Limit							
Frequency Emission (MHz) Quasi-Peak Average							
0.15-0.5	66 - 56 *	56 - 46 *					
0.5-5	56	46					
5-30 60 50							
Note 1: * Decreases with the logarithm of the frequency.							


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

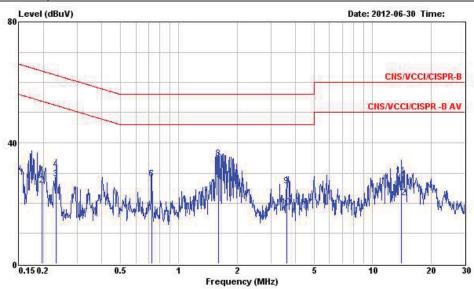
	Test Method
\boxtimes	Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

SPORTON INTERNATIONAL INC. Page No. : 16 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report Report No. : FR262610AC

3.1.5 Test Result of AC Power-line Conducted Emissions


		AC P	ower-l	line Co	onducte	ed En	nission	s Res	ult		
Modulation Mode	11N2	.4G-20N	Л	Pow	er Leve	I 1			Test Freq.	(FX)	F2
Operating Mode	1			Ant.	No.	1,	,2		Power Pha	ise	Neutra
perating Function Normal TX + Adapt				er Mod	le						
Le:	vel (dBuV)	310 310				319		Dat	e: 2012-06-30 Ti	me:	-
									maga		
							100		CNS/VCCI/	CISPR-B	
_									CNS/VCCI/CISP	P B AV	
									CHO/VCCI/CIO	K-DAV	
40											
	3								N.		
		1.	19		The state of the s		11.	4	J. M. L.	1	
J.V.	MAY 1		l s		J. Mahr.		MAL MAT	Michael	אין אין אין אין אין אין	4/10	
7	THITILA	WIN	A Charles	Madelak	Maharata Mah	MALAN	The state of			A. D.	
	18 2.5p W	ale to IV all a	A charman	and an attach	1120	1 11.			l la		
0 0.1	5 0.2	0.5		1	2		5		10 2	20	30
0 0.1	5 0.2	0.5		1	2 Frequency	y (MHz)	5		10 2	20	30
0 0.1	5 0.2	0.5				y (MHz)	5		10 2	20	30
0 0.1	5 0.2	0.5		1		y (MHz)	5		10 2	20	30
0 0.1		0.5		1		y (MHz)	5		10 2	20	30
0 0.1	5 0.2	0.5		1		y (MHz)	5		10 2	20	30
0 0.1	5 0.2	0.5		1		y (MHz)	5		10 2	20	30
0 0.1	50.2		Limit				5		10 2	20	30
	50.2	0ver		Read	Frequency	Cable	5 Remark		10 2	20	30
F		Over 1 Limit		Read	Probe Factor	Cable			10 2	20	30
F	req Leve	Over 1 Limit V dB	Line ——dBuV	Read Level	Probe Factor dB -	Cable Loss	Remark		10 2	20	30
1 0. 2 0.	Treq Leve MHz dBu 175 37.6 175 26.5	0ver 1 Limit V dB 9 -27.03 1 -28.21	dBuV 64.72 54.72	Read Level dBuV 37.47 26.29	Probe Factor dB -	Cable Loss dB 0.10	Remark ———— QP Average		10 2	20	30
1 0. 2 0. 3 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0	Over 1 Limit V dB 9 -27.03 1 -28.21 1 -27.37	dBuV 64.72 54.72 62.38	Read Level dBuV 37.47 26.29 34.79	Probe Factor dB - 0.12 0.12 0.12	Cable Loss dB 0.10 0.10	Remark QP Average		10 2	20	30
1 0. 2 0. 3 0. 4 0.	Treq Leve MHz dBu 175 37.6 175 26.5	0ver 1 Limit 7 dB 9 -27.03 1 -28.21 1 -27.37 8 -25.60	dBuV 64.72 54.72 62.38 52.38	Read Level dBuV 37.47 26.29 34.79 26.56	Probe Factor dB 0.12 0.12 0.12 0.12 0.12	Cable Loss dB 0.10 0.10	Remark QP Average QP Average		10 2	20	30
1 0. 2 0. 3 0. 4 0. 5 0. 6 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0 232 26.7 291 28.5 291 22.7	Over 1 Limit W dB 9 -27.03 1 -28.21 1 -27.37 8 -25.60 7 -31.93 3 -27.77	dBuV 64.72 54.72 62.38 52.38 60.50 50.50	Read Level dBuV 37.47 26.29 34.79 26.56 28.35 22.51	Probe Factor dB - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10	Remark QP Average QP Average QP Average		10 2	20	30
1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0 232 26.7 291 28.5 291 22.7 406 27.9	Over 1 Limit V dB 9 -27.03 1 -28.21 1 -27.37 8 -25.60 7 -31.93 3 -27.77 1 -29.82	dBuV 64.72 54.72 62.38 52.38 60.50 50.50 57.73	Read Level dBuV 37.47 26.29 34.79 26.56 28.35 22.51 27.69	Probe Factor 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.1	Cable Loss 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	Remark OP Average OP Average OP Average OP		10 2	20	30
1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0 232 26.7 291 28.5 291 22.7 406 27.9 406 24.0	Over 1 Limit V dB 9 -27.03 1 -28.21 1 -27.37 8 -25.60 7 -31.93 3 -27.77 1 -29.82 0 -23.73	dBuV 64.72 54.72 62.38 52.38 60.50 50.50 57.73 47.73	Read Level dBuV 37.47 26.29 34.79 26.56 28.35 22.51 27.69 23.78	Probe Factor dB - 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Remark QP Average QP Average QP Average QP Average		10 2	20	30
1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0 232 26.7 291 28.5 291 22.7 406 27.9 406 24.0 720 27.8	Over Limit 0B 9 -27.03 1 -28.21 1 -27.37 8 -25.60 7 -31.93 3 -27.77 1 -29.82 0 -23.73 9 -28.11	dBuV 64.72 54.72 62.38 52.38 60.50 50.50 57.73 47.73 56.00	Read Level dBuV 37.47 26.29 34.79 26.56 28.35 22.51 27.69 23.78 27.65	Probe Factor dB - 0.12	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Remark OP Average QP Average QP Average QP Average QP Average	1	10 2	20	30
1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 0.	Treq Leve MHz dBu 175 37.6 175 26.5 232 35.0 232 26.7 291 28.5 291 22.7 406 27.9 406 24.0	Over Limit 0 dB 9 -27.03 1 -28.21 1 -27.37 8 -25.60 7 -31.93 3 -27.77 1 -29.82 0 -23.73 9 -28.11 4 -17.76	64.72 54.72 62.38 52.38 60.50 50.50 57.73 47.73 56.00	Read Level 37.47 26.29 34.79 26.56 28.35 22.51 27.69 23.78 27.65 28.00	Probe Factor dB - 0.12 0.12 0.12 0.12 0.12 0.12 0.14 0.14	Cable Loss dB 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.	Remark QP Average QP Average QP Average QP Average QP Average		10 2	20	30

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 17 of 73 Report Version : Rev. 01 TEL: 886-3-327-3456

AC Power-line Conducted Emissions Result									
Modulation Mode	11N2.4G-20M	Power Level	1	Test Freq. (FX)	F2				
Operating Mode	1	Ant. No.	1,2	Power Phase	Line				
Operating Function Normal TX + Adapter Mode									

Operating Function | Normal TX + Adapter Mode

			Over.	Limit	Read	Probe	Cable	
	Freq	Level	Limit	Line	Level	Factor	Loss	Remark
3	MHz	dBuV	dB	dBuV	dBuV	dB	dB	
1	0.196	27.24	-36.54	63.78	27.06	0.08	0.10	QP
2	0.196	25.90	-27.88	53.78	25.72	0.08	0.10	Average
3	0.233	27.98	-24.36	52.34	27.80	0.08	0.10	Average
4	0.233	31.13	-31.21	62.34	30.95	0.08	0.10	QP
5	0.724	28.02	-27.98	56.00	27.81	0.11	0.10	QP
6	0.724	28.16	-17.84	46.00	27.95	0.11	0.10	Average
7	1.600	26.90	-19.10	46.00	26.67	0.13	0.10	Average
7 8	1.600	34.90	-21.10	56.00	34.67	0.13	0.10	QP
9	3.620	25.81	-30.19	56.00	25.53	0.18	0.10	QP
10	3.620	18.81	-27.19	46.00	18.53	0.18	0.10	Average
11	14.140	29.08	-30.92	60.00	28.66	0.32	0.10	QP
12	14.140	21.84	-28,16	50.00	21.42	0.32	0.10	Average

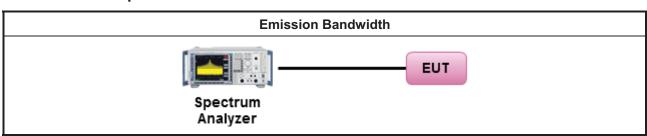
Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

SPORTON INTERNATIONAL INC. Page No. : 18 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit									
Systems using digital modulation techniques:									
6 dB bandwidth ≥ 500 kHz.									

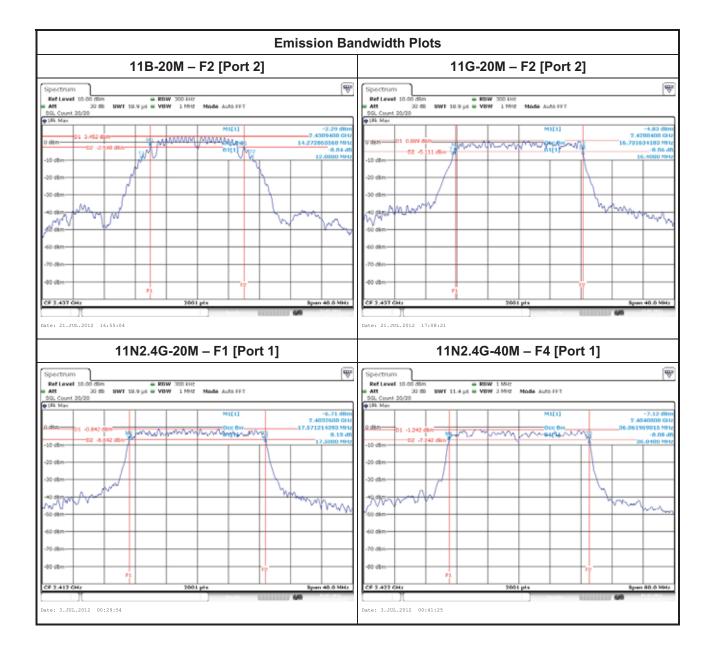

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

		Test Method
\boxtimes	For	the emission bandwidth shall be measured using one of the options below:
	\boxtimes	Refer as FCC KDB 558074, clause 5.1.1 Option 1 for 6 dB bandwidth measurement.
		Refer as FCC KDB 558074, clause 5.1.2 Option 2 for 6 dB bandwidth measurement.
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.
\boxtimes	For	conducted measurement.
	\boxtimes	For conducted measurements on devices with multiple transmit chains using options given below:
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.
		Option 3: A power splitter/combiner shall be used to combine all the transmit chains (antenna outputs) into a single test point and record a single test point EBW.
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.

3.2.4 Test Setup



SPORTON INTERNATIONAL INC. Page No. : 19 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.2.5 Test Result of Emission Bandwidth

			Em	ission Ba	andwidth	Result					
Power Level		1			Emis	sion Bar	ndwidth (MHz)			
Modulation		Errore		99% Ba	ndwidth			6dB Ba	ndwidth		
Mode	N _{TX}	Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Chain- Port 1	Chain- Port 2	-	-	
11B-20M	2	2412	14.21	14.33	-	-	11.18	11.20	-	-	
11B-20M	2	2437	14.25	14.27	-	-	10.30	12.08	-	-	
11B-20M	2	2462	14.17	14.13	-	-	12.02	11.16	-	-	
11G-20M	2	2412	16.37	16.71	-	-	16.20	16.12	-	-	
11G-20M	2	2437	16.33	16.73	-	-	15.60	16.40	-	-	
11G-20M	2	2462	16.47	16.39	-	-	16.36	16.24	-	-	
11N2.4G-20M	2	2412	17.57	17.61	1	-	17.50	17.34	-	-	
11N2.4G-20M	2	2437	17.45	17.49	-	-	16.78	16.98	-	-	
11N2.4G-20M	2	2462	17.47	17.45	-	-	17.44	16.44	-	-	
11N2.4G-40M	2	2412	36.06	36.06	-	-	36.04	35.20	-	-	
11N2.4G-40M	2	2437	36.10	36.14	-	-	35.68	35.64	-	-	
11N2.4G-40M	2	2462	36.06	36.02	-	-	35.80	34.12	-	-	
Lim			N/A ≥500 kHz								
Resu	ılt		Complied								
Note 1: N _{TX} = Nur	nber o	of Transm	it Chains								

SPORTON INTERNATIONAL INC. Page No. : 20 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 21 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

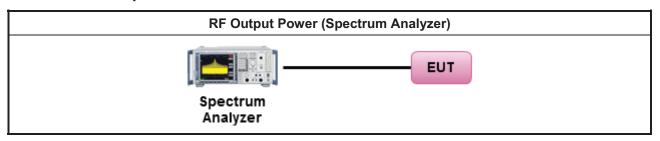
3.3 RF Output Power

3.3.1 RF Output Power Limit

	RF Output Power Limit
Maxin	num Peak Conducted Output Power or Maximum Conducted Output Power Limit
□ 9	02-928 MHz Band:
	If G _{TX} ≤ 6 dBi, then P _{Out} ≤ 30 dBm (1 W)
	If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	400-2483.5 MHz Band:
	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	Smart antenna system (SAS):
	☐ Single beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm
	\square Aggregate power on all beams: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8$ dB dBm
□ 5	725-5850 MHz Band:
	If $G_{TX} \le 6$ dBi, then $P_{Out} \le 30$ dBm (1 W)
	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm
	Point-to-point systems (P2P): If $G_{TX} > 6$ dBi, then $P_{Out} = 30$ dBm
e.i.r.p	. Power Limit:
□ 9	02-928 MHz Band: P _{eirp} ≤ 36 dBm (4 W)
	400-2483.5 MHz Band
	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
	Point-to-point systems (P2P): $P_{eirp} \le MAX(36, [P_{Out} + G_{TX}]) dBm$
	Smart antenna system (SAS)
	☐ Single beam: P _{eirp} ≤ MAX(36, P _{Out} + G _{TX}) dBm
	☐ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$
	☐ Aggregate power on all beams: $P_{eirp} \le MAX(36, [P_{Out} + G_{TX} + 8]) dBm$
□ 5	725-5850 MHz Band
	Point-to-multipoint systems (P2M): P _{eirp} ≤ 36 dBm (4 W)
	Point-to-point systems (P2P): N/A
G _{TX} =	maximum peak conducted output power or maximum conducted output power in dBm, the maximum transmitting antenna directional gain in dBi. e.i.r.p. Power in dBm.

3.3.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.


SPORTON INTERNATIONAL INC. Page No. : 22 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.3 Test Procedures

		Test Method
\boxtimes	Max	imum Peak Conducted Output Power
		Refer as FCC KDB 558074, clause 5.2.1.1 Option 1 (RBW ≥ EBW method).
	\boxtimes	Refer as FCC KDB 558074, clause 5.2.1.2 Option 2 (integrated band power method).
		Refer as ANSI C63.10, clause 6.10.2.1 a) for peak power meter.
		Refer as ANSI C63.10, clause 6.10.2.1 a) for spectrum analyzer - (RBW ≥ EBW).
		Refer as ANSI C63.10, clause 6.10.2.1 b) for spectrum analyzer - BW correction factor.
\boxtimes	Max	imum Conducted (Average) Output Power
		Refer as FCC KDB 558074, clause 5.2.2.1 Option 1 (RMS detection with slow sweep speed).
	\boxtimes	Refer as FCC KDB 558074, clause 5.2.2.2 Option 2 (spectral trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.1 for spectrum analyzer - Method 1 (trace averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 2 (zero-span averaging).
		Refer as ANSI C63.10, clause 6.10.3.2 for spectrum analyzer - Method 3 (band power max-hold).
\boxtimes	Refe	er as FCC KDB 558074, clause 2 for conducted measurement.
		For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods:
		Method 1: EIRP₁ = P₁ + GANT₁; EIRP₂ = P₂ + GANT₂; EIRP₂ = Pn + GANT₂ EIRP₁ = EIRP₁ + EIRP₂ + + EIRP₂ (calculated in linear unit [mW] and transfer to log unit [dBm])
		Method 2: P _{total} = P ₁ + P ₂ + + P _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG
	Refe	er as FCC KDB 558074, clause 2 for radiated measurement.

SPORTON INTERNATIONAL INC. Page No. : 23 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.4 Test Setup

3.3.5 Test Result of Maximum Peak Conducted Output Power

	Maximum Peak Conducted Output Power Result												
Power Leve	l	1			DE	Output I	Power (di	2m\					
Directional Gain	(dBi)	4.9			KF	Output r	Power (ar	3111 <i>)</i>					
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1										
11B-20M	2	2412	19.24	16.88	-	-	21.23	30.0	26.13	36.0			
11B-20M	2	2437	19.08	16.90	1	-	21.14	30.0	26.04	36.0			
11B-20M	2	2462	17.93	16.48	1	-	20.28	30.0	25.18	36.0			
Result Complied													
Note 1: N _{TX} = Nun	nber of	Note 1: N _{TX} = Number of Transmit Chains											

	Maximum Peak Conducted Output Power Result											
Power Level	I	1	RF Output Power (dBm)									
Directional Gain	(dBi)	4.9			KF	Output F	rower (ai))				
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1									
11G-20M	2	2412	15.88	13.89	-	-	18.01	30.0	22.91	36.0		
11G-20M	2	2437	21.80	20.00	-	-	24.00	30.0	28.90	36.0		
11G-20M	2	2462	17.67	16.31	-	-	20.05	30.0	24.95	36.0		
Resu	ılt		Complied									
Note 1: N _{TX} = Num	ber of	Transmit	Chains									

SPORTON INTERNATIONAL INC. Page No. : 24 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

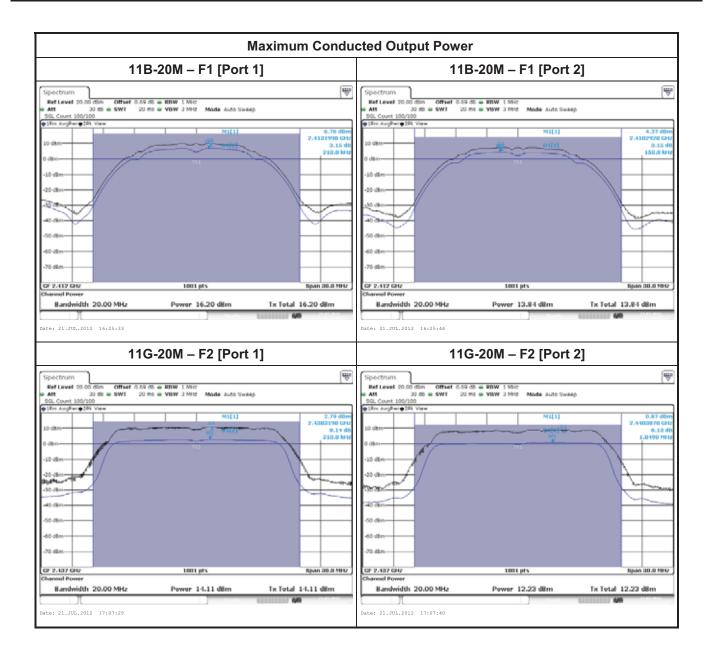
	Maximum Peak Conducted Output Power Result												
Power Leve	I	1			DE	Output F	Dower (di	2m\					
Directional Gain	(dBi)	1.89		RF Output Power (dBm)									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1										
11N2.4G-20M	2	2412	18.92	16.59	-	-	20.92	30.0	22.81	36.0			
11N2.4G-20M	2	2437	18.96	16.96	-	-	21.08	30.0	22.97	36.0			
11N2.4G-20M	2	2462	17.37	15.87	-	-	19.69	30.0	21.58	36.0			
Result Complied													
Note 1: N _{TX} = Nun	nber of	Transmit	Chains										

	Maximum Peak Conducted Output Power Result												
Power Leve	l	1		RE Output Power (dBm)									
Directional Gain	(dBi)	1.89		RF Output Power (dBm)									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1										
11N2.4G-40M	2	2422	15.75	13.45	-	-	17.76	30.0	19.65	36.0			
11N2.4G-40M	2	2437	17.20	15.07	-	-	19.27	30.0	21.16	36.0			
11N2.4G-40M	2	2452	15.76	13.85	-	-	17.92	30.0	19.81	36.0			
Resu	ılt		Complied										
Note 1: N _{TX} = Num	Note 1: N _{TX} = Number of Transmit Chains												

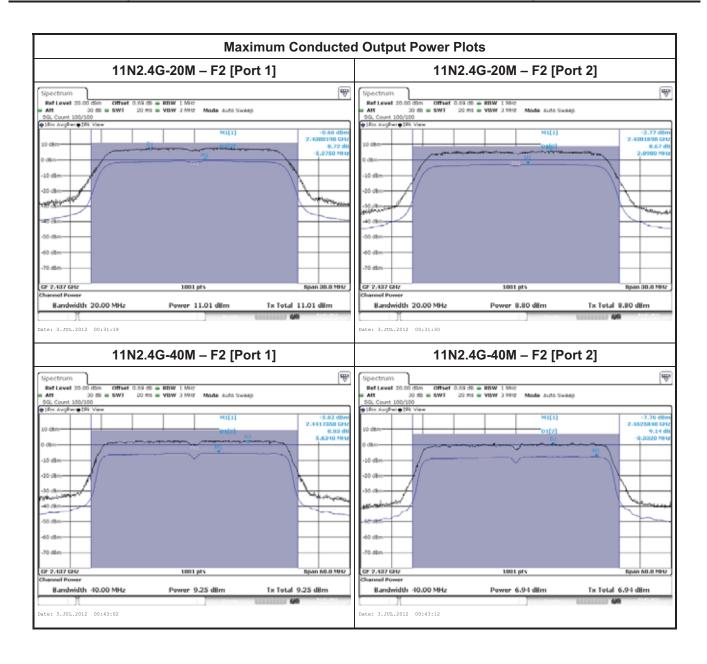
SPORTON INTERNATIONAL INC. Page No. : 25 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.3.6 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power Result												
Power Level	l	1	DE Outrout Douge (dDm)										
Directional Gain	(dBi)	4.9		RF Output Power (dBm)									
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1										
11B-20M	2	2412	16.20	13.84	-	-	18.19	30.0	23.09	36.0			
11B-20M	2	2437	16.03	13.85	ı	-	18.09	30.0	22.99	36.0			
11B-20M	2	2462	14.86	14.86 13.43 17.21 30.0 22.11 36.0									
Resu	ılt		Complied										
Note 1: N _{TX} = Num	ber of	Transmit	Chains										


	Maximum Conducted Output Power Result												
Power Leve	I	1	RF Output Power (dBm)										
Directional Gain	(dBi)	4.9	.9										
Modulation Mode	N _{TX}	Freq. (MHz)	Chain- Port 1										
11G-20M	2	2412	8.07	6.12	-	-	10.21	30.0	15.11	36.0			
11G-20M	2	2437	14.11	12.23	-	1	16.28	30.0	21.18	36.0			
11G-20M	2	2462	9.93	8.57	-	1	12.31	30.0	17.21	36.0			
Res	ult			Complied									
Note 1: N _{TX} = Nun	nber of	Transmit	Chains										

SPORTON INTERNATIONAL INC. Page No. : 26 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01


Maximum Conducted Output Power Result											
Power Leve	I	1		DE Outrot Davier (JDav)							
Directional Gain	(dBi)	1.89		RF Output Power (dBm)							
Modulation N _{TX}		Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit	
11N2.4G-20M	2	2412	10.96	8.45	-	-	12.89	30.0	14.78	36.0	
11N2.4G-20M 2		2437	11.01	8.80	-	-	13.05	30.0	14.94	36.0	
11N2.4G-20M 2		2462	9.48	7.69	-	-	11.69	30.0	13.58	36.0	
Resi	Result				Complied						
Note 1: N _{TX} = Number of Transmit Chains											

Maximum Conducted Output Power Result										
Power Leve	I	1	DE Output Down (dDm)							
Directional Gain	Directional Gain (dBi)			RF Output Power (dBm)						
Modulation Mode N _{TX}		Freq. (MHz)	Chain- Port 1	Chain- Port 2	-	-	Sum Chain	Power Limit	EIRP Power	EIRP Limit
11N2.4G-40M	11N2.4G-40M 2 2422		7.82	5.35	-	-	9.77	30.0	11.66	36.0
11N2.4G-40M		2437	9.25	6.94	-	-	11.26	30.0	13.15	36.0
11N2.4G-40M 2		2452	7.84	5.76	-	-	9.93	30.0	11.82	36.0
Resu	Complied									
Note 1: N _{TX} = Number of Transmit Chains										

SPORTON INTERNATIONAL INC. Page No. : 27 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 28 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

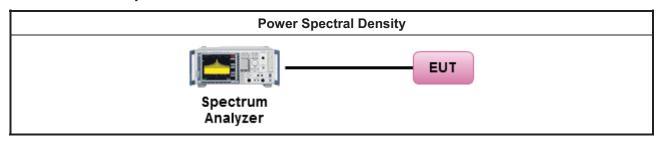
SPORTON INTERNATIONAL INC. Page No. : 29 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4 Power Spectral Density

3.4.1 Power Spectral Density Limit

Power Spectral Density Limit	
Power Spectral Density (PSD) ≤ 8 dBm/3kHz	

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

		Test Method						
	Power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the power spectral density. In addition, the use of a peak PSD procedure will always result in a "worst-case" measured level for comparison to the limit. Therefore, whenever the DTS bandwidth exceeds 500 kHz, it is acceptable to utilize the peak PSD procedure to demonstrate compliance to the PSD limit, regardless of how the fundamental output power was measured. For the power spectral density shall be measured using below options:							
	\boxtimes	Refer as FCC KDB 558074, clause 5.3.1 Option 1 (peak PSD; BWCF=-15.2dB).						
		Refer as FCC KDB 558074, clause 5.3.2 Option 2 (average PSD; BWCF=-15.2dB).						
		Refer as ANSI C63.10, clause 6.11.2.3 for PSD for DTS - (RBW=3kHz; sweep=100s).						
		Refer as ANSI C63.10, clause 6.11.2.4 for Alternative PSD for DTS - (RBW=3kHz; average=100)						
\boxtimes	Refe	r as FCC KDB 558074, clause 2 for conducted measurement.						
		For conducted measurements on devices with multiple transmit chains using options given below:						
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N _{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace. The new data trace samples added 100 kHz segment and found the highest value of each 100 kHz segments. Add the bandwidth correction factor (BWCF) [-15.2 dB] adjusting in power spectral density per 3kHz.						
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.						
	Refe	r as FCC KDB 558074, clause 2 for radiated measurement.						

SPORTON INTERNATIONAL INC. Page No. : 30 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

Power Spectral Density Result								
Power Leve	I	1	Power Spectral Density (dBm/3kHz)					
Directional Gain	(dBi)	4.9						
Modulation N _{TX}		Freq. (MHz)	Sum All Chains			-	PSD Limit	
11B-20M	2 2412 -8.72 -		-	-	8			
11B-20M 2		2437	-8.84	-	-	-	8	
11B-20M 2		2462	-9.57	-	-	-	8	
Resi	ult		Complied					

Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = sum each transmit chains by bin-to-bin PSD [dBm/100kHz] + BWFC [-15.2 dB]

Power Spectral Density Result								
Power Leve	I	1		Dower Sno	otral Danaity /	dDm/2kU=\		
Directional Gain	(dBi)	4.9	Power Spectral Density (dBm/3kHz)					
Modulation Mode N _{TX}		Freq. (MHz)	Sum All		-	PSD Limit		
11G-20M	2	2412	-20.14	-	-	-	8	
11G-20M 2		2437	-13.88	-	-	-	8	
11G-20M 2		2462	-17.85	-	-	-	8	
Resi	ult		Complied					

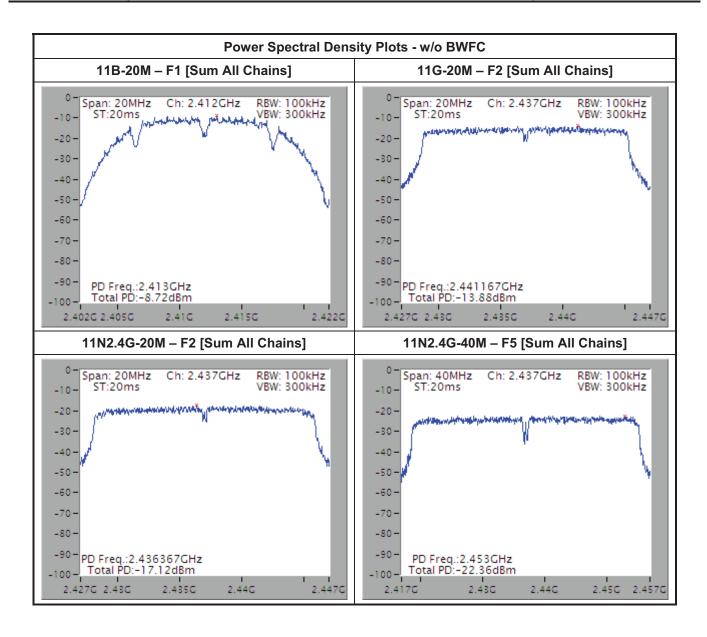
Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = sum each transmit chains by bin-to-bin PSD [dBm/100kHz] + BWFC [-15.2 dB]

SPORTON INTERNATIONAL INC. Page No. : 31 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Power Spectral Density Result								
Power Leve	I	1	Device Chapter Devoite (dDm/2kU-)					
Directional Gain	1.89	Power Spectral Density (dBm/3kHz)						
Modulation Mode N _{TX}		Freq. (MHz)	Sum All				PSD Limit	
11N2.4G-20M	2	2412	-17.52	-	-	-	8	
11N2.4G-20M 2		2437	-17.12	-	-	-	8	
11N2.4G-20M 2		2462	-18.52	-	-	-	8	
Resi	ult		Complied					

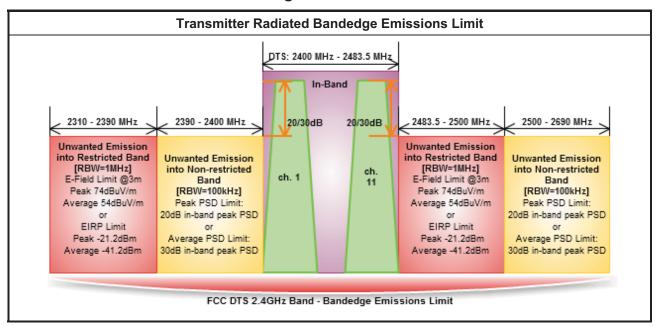
Note 1: N_{TX} = Number of Transmit Chains


Note 2: PSD [dBm/3kHz] = sum each transmit chains by bin-to-bin PSD [dBm/100kHz] + BWFC [-15.2 dB]

Power Spectral Density Result								
Power Leve	I	1	Power Spectral Density (dBm/3kHz)					
Directional Gain	(dBi)	1.89						
Modulation Mode N _{TX}		Freq. (MHz)	Sum All Chains	-	-	-	PSD Limit	
11N2.4G-40M	11N2.4G-40M 2 2422 -23.75 -		-	-	8			
11N2.4G-40M 2		2437	-22.36	-	-	-	8	
11N2.4G-40M 2		2452	-23.33	-	-	-	8	
Resi	ult				Complied			

Note 1: N_{TX} = Number of Transmit Chains

Note 2: PSD [dBm/3kHz] = sum each transmit chains by bin-to-bin PSD [dBm/100kHz] + BWFC [-15.2 dB]


SPORTON INTERNATIONAL INC. Page No. : 32 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

SPORTON INTERNATIONAL INC. Page No. : 33 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5 Transmitter Radiated Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments

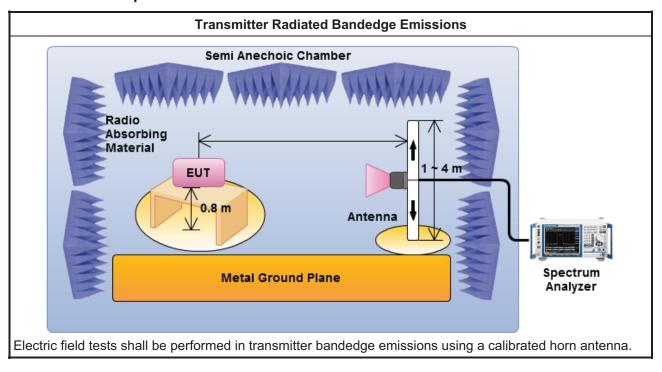
Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 34 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

3.5.3 Test Procedures

		Test Method – General Information								
\boxtimes	The	The average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].								
	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.									
\boxtimes	For the transmitter unwanted emissions shall be measured using following options below:									
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.								
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.								
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).								
		Refer as FCC KDB 558074, clause 5.4.2.2.2.2 Option 2 (Trace Averaging).								
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). – Duty cycle ≥ 98%.								
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.								
		Refer as FCC KDB 558074, clause 5.4.2.2.1.1 measurement procedure peak limit.								
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.								
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:								
		Refer as FCC KDB 558074, clause 5.4.2.2.4 for narrower resolution bandwidth using the band power and summing the spectral levels (i.e., 100 kHz or 1 MHz).								
	\boxtimes	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing.								
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.								

SPORTON INTERNATIONAL INC. Page No. : 35 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

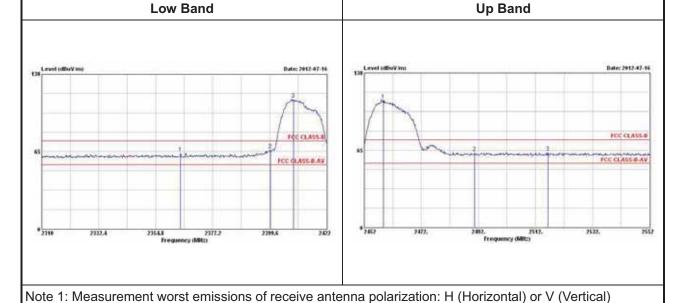

			Test Method							
	Refe	er as	FCC KDB 558074, clause 2 for conducted measurement.							
		For unwanted emissions into non-restricted bands (relative emission limits).								
			For conducted measurements on devices with multiple transmit chains: Refer as FCC KDB 662911, when testing out-of-band and spurious emissions against relative emission limits, tests may be performed on each output individually without summing or adding 10 log(N) if the measurements are made relative to the in-band emissions on the individual outputs.							
			unwanted emissions into restricted bands. Test conducted spurious emissions and radiated by cabinet with the antenna connector(s) terminated by a specified load (cabinet radiation).							
			Refer as FCC KDB 558074, clause 5.4.2.2.1 unwanted emissions in restricted bands on frequencies \leq 1000 MHz							
			Refer as FCC KDB 558074, clause 5.4.2.2.2 unwanted emissions in restricted bands on frequencies > 1000 MHz							
			For conducted measurements on devices with multiple transmit chains using options given below:							
			Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, out-of-band and spurious emission measurement. The trace data for each transmit chain has to be individually recorded and each transmit chain trace data shall be added and compared with the limit.							
			Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.							
\boxtimes	Refe	er as	FCC KDB 558074, clause 2 for radiated measurement.							
		Refe	er as ANSI C63.10, clause 6.4 for radiated emissions from below 30 MHz.							
		Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from 30 MHz to 1000 MHz.							
	\boxtimes	Refe	er as ANSI C63.10, clause 6.5 for radiated emissions from above 1 GHz.							

Report No. : FR262610AC

SPORTON INTERNATIONAL INC. Page No. : 36 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

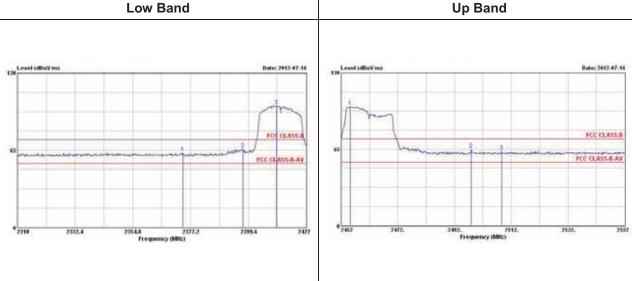
3.5.4 Test Setup



SPORTON INTERNATIONAL INC. Page No. : 37 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

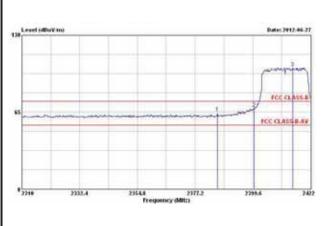
3.5.5 Test Result of Transmitter Radiated Bandedge Emissions

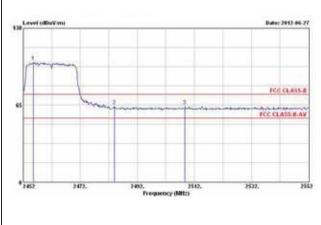

	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	4.9		Non-roetricted Band Emissions						
Modulation	11B-20M			Non-restricted Band Emissions							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Level Type	Pol.		
2390-2400	2	2412	109.25	2399.94	66.31	42.94	20	PK	V		
2500-2690	2	2462	107.33	2536.20	63.19	44.14	20	PK	V		

		Transm	nitter Radiat	ed Bandedg	e Emission	s Result					
Power Level	1	Gain (dBi)	4.9		Dootriet	ad Dand Em	lasiana				
Modulation	11B-20M			Restricted Band Emissions							
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i]	RBE Freq. (MHz) Measure Distance (m) Out-Band Level (dBuV/m) Limit Type Pol. Type note 1							
2310-2390	2	2412	116.31	2368.46	3	63.92	74	PK	V		
2310-2390	2	2412	107.45	2369.02	3	51.84	54	AV	V		
2483.5-2500	2	2462	114.32	2499.00	3	61.83	74	PK	V		
2483.5-2500 2 2462 105.41 2483.50 3 49.91 54 AV V											
Note 1: Measurem	ent w	vorst emissi	ions of receiv	e antenna po	olarization: l	H (Horizontal) or V (Ve	rtical).			

SPORTON INTERNATIONAL INC. Page No. : 38 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	4.9		Non-restricted Band Emissions						
Modulation	11G-20M			Non-restricted band Emissions							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	/MU=\ PSD [0] 'dD\ (dD\ Tyre					Pol.		
2390-2400	2	2412	102.62	2397.	58	65.80	36.82	20	PK	V	
2500-2690	2	2462	101.54	2508.60 63.31 38.23 20 PK				V			
	Law Band										

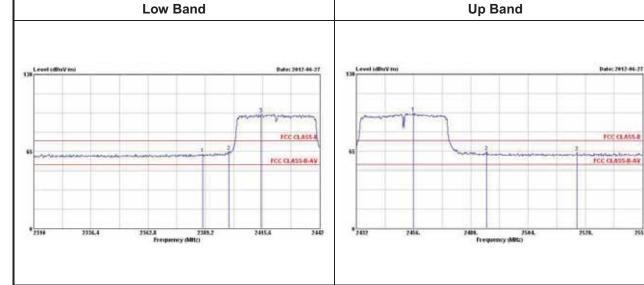



Transmitter Radiated Bandedge Emissions Result											
1	Gain (dBi)	4.9		Dootriet	ad Band Em	lasiana					
	11G-2	0M	Restricted Band Emissions								
N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i]	/MU-7 Distance Level Type					Pol.			
2	2412	111.09	2389.97	3	68.54	74	PK	V			
2	2412	101.64	2390.00	3	52.77	54	AV	V			
2	2462	109.63	2484.30	3	64.66	74	PK	V			
2	2462	100.58	2483.50 3 50.56 54 AV V								
	N _{TX} 2 2 2	1 Gain (dBi) 11G-2 N _{TX} Test Ch. Freq. (MHz) 2 2412 2 2412 2 2462	1 Gain (dBi) 4.9 11G-20M Test Ch. Freq. (MHz) (dBuV/1MHz) 2 2412 111.09 2 2412 101.64 2 2462 109.63	1 Gain (dBi) 4.9 11G-20M Test Ch. Freq. (MHz) (dBuV/1MHz) 2 2412 111.09 2389.97 2 2412 101.64 2390.00 2 2462 109.63 2484.30	1 Gain (dBi) 4.9 Restrict 11G-20M N _{TX} Test Ch. Freq. (MHz) In-band PSD [i] (dBuV/1MHz) RBE Freq. (MHz) Measure Distance (m) 2 2412 111.09 2389.97 3 2 2412 101.64 2390.00 3 2 2462 109.63 2484.30 3	1 Gain (dBi) 4.9 Restricted Band Em 11G-20M N _{TX} Test Ch. Freq. (MHz) In-band PSD [i] (dBuV/1MHz) RBE Freq. (MHz) Measure Distance (m) Out-Band Level (dBuV/m) 2 2412 111.09 2389.97 3 68.54 2 2412 101.64 2390.00 3 52.77 2 2462 109.63 2484.30 3 64.66	1 Gain (dBi) 4.9 11G-20M RBE Freq. (MHz) Measure Distance (m) Out-Band Level (dBuV/m) Limit (dBuV/m) 2 2412 111.09 2389.97 3 68.54 74 2 2412 101.64 2390.00 3 52.77 54 2 2462 109.63 2484.30 3 64.66 74	Test Ch. Freq. (MHz) In-band PSD [i] (dBuV/r1MHz) Restricted Band Emissions 2 2412 111.09 2389.97 3 68.54 74 PK 2 2412 101.64 2390.00 3 52.77 54 AV 2 2462 109.63 2484.30 3 64.66 74 PK			

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 39 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Bandedge Emissions Result										
Power Level	1	Gain (dBi)	1.89	Non-restricted Band Emissions							
Modulation	11N2.4G-20M			Non-restricted band Emissions							
Non-restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	(MU=) PSD [0] (dD) (dD) Type					Pol.		
2390-2400	2	2412	102.37	2400	0.00	68.10	34.27	20	PK	V	
2500-2690	2	2462	101.18	2508.70 64.13 37.05 20 PK				V			
	Lo	w Band					Up Bar	nd			


Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

		Transm	itter Radiat	ed Bandedg	e Emission	s Result			
Power Level	1	Gain (dBi)	1.89		Postriot	od Bond Em	icciono		
Modulation		11N2.4G	i-20M	Restricted Band Emissions					
Restricted Band (MHz)	N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	/MIL-) Distance Level Type					Pol.
2310-2390	2	2412	110.98	2389.63	3	67.74	74	PK	V
2310-2390	2	2412	100.59	2390.00	3	52.94	54	AV	V
2483.5-2500	2	2462	110.40	2483.50	3	67.58	74	PK	V
2483.5-2500	2	2462	99.59	2483.50	3	52.92	54	AV	V

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 40 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Bandedge Emissions Result										
1	Gain (dBi)	1.89		Non-restricted Rand Emissions						
11N2.4G-40M			Non-restricted band Emissions							
N _{TX}	Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	NBE Freq. (MHz) Out-band PSD [o] (dB) Limit Level (dB) Type					Pol.		
2	2422	96.51	2400.00	64.83	31.60	20	PK	V		
2	2452	97.10	2524.52 64.21 32.89 20 PK V							
	2	1 Gain (dBi) 11N2.4G N _{TX} Test Ch. Freq. (MHz) 2 2422	1 Gain (dBi) 1.89 11N2.4G-40M Test Ch. In-band PSD [i] (dBuV/100kHz) 2 2422 96.51	1 Gain (dBi) 1.89 11N2.4G-40M Test Ch. Freq. (MHz) (dBuV/100kHz) 2 2422 96.51 2400.00	1 Gain (dBi) 1.89 Non-restrict 11N2.4G-40M Name of the control of the cont	1 Gain (dBi) 1.89 Non-restricted Band I 11N2.4G-40M Non-restricted Band I N _{TX} Test Ch. Freq. (MHz) In-band PSD [i] (MHz) Out-band PSD [o] (dB) (dBuV/100kHz) [i] - [o] (dB) 2 2422 96.51 2400.00 64.83 31.60	1 Gain (dBi) 1.89 Non-restricted Band Emissions 11N2.4G-40M Non-restricted Band Emissions N _{TX} Test Ch. Freq. (MHz) In-band PSD [i] (MHz) Out-band PSD [o] (dB) [i] - [o] (dB) Limit (dB) 2 2422 96.51 2400.00 64.83 31.60 20	1 Gain (dBi) 1.89 Non-restricted Band Emissions 11N2.4G-40M N _{TX} Test Ch. Freq. (MHz) In-band PSD [i] (MHz) Out-band PSD [o] (dB) (dB) Limit (dB) Level Type 2 2422 96.51 2400.00 64.83 31.60 20 PK		

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical)

	Transmitter Radiated Bandedge Emissions Result										
Gain (dBi)	1.89		Postriot	od Bond Em	issians						
11N2.4G	6-40M	Restricted Band Emissions									
Test Ch. Freq. (MHz)	In-band PSD [i] (dBuV/1MHz)	RBE Freq. (MHz) Measure Distance (m) Out-Band Level (dBuV/m) Limit Type Pol. Type note 1									
2422	105.73	2389.60	3	66.71	74	PK	V				
2422	95.05	2390.00	3	52.96	54	AV	V				
2452	106.29	2483.72	3	66.41	74	PK	V				
2452	95.46	2483.60 3 52.97 54 AV V									
	Test Ch. Freq. (MHz) 2422 2422 2452 2452	Freq. (MHz) PSD [i] (dBuV/1MHz) 2422 105.73 2422 95.05 2452 106.29 2452 95.46	Test Ch. Freq. (MHz) (dBuV/1MHz) RBE Freq. (MHz) 2422 105.73 2389.60 2422 95.05 2390.00 2452 106.29 2483.72 2452 95.46 2483.60	11N2.4G-40M Test Ch. Freq. (MHz) (M	11N2.4G-40M Test Ch. Freq. (MHz) (MHz) 2422 105.73 2389.60 2422 95.05 2390.00 3 66.71 2452 106.29 2483.72 3 66.41 2452 95.46 2483.60 3 52.96	11N2.4G-40M Test Ch. Freq. (MHz)	11N2.4G-40M Test Ch. Freq. (MHz) (MHz) RBE Freq. (MHz) (MHz) Cistance (m) Cistance (dBuV/m) Cigurum C				

Note 1: Measurement worst emissions of receive antenna polarization: H (Horizontal) or V (Vertical).

SPORTON INTERNATIONAL INC. Page No. : 41 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

3.6 Transmitter Radiated Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

	Restricted Band	Emissions Limit	
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

- Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).
- Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Un-restricted Band Emissions Limit						
RF output power procedure	Limit (dB)					
Peak output power procedure	20					
Average output power procedure	30					

- Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.
- Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

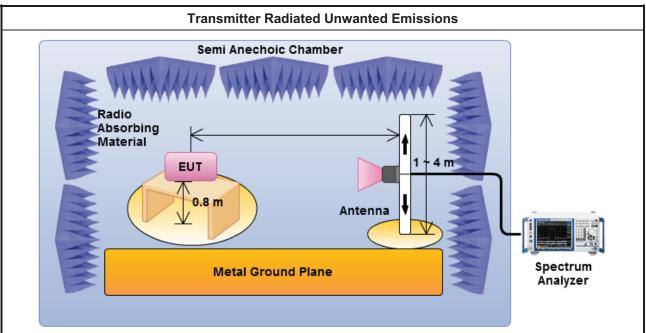
Refer a test equipment and calibration data table in this test report.

SPORTON INTERNATIONAL INC. Page No. : 42 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

3.6.3 Test Procedures

		Test Method – General Information								
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).									
		Measurements in the frequency range 10 GHz - 18GHz are typically made at a closer distance 1m, because the instrumentation noise floor is typically close to the radiated emission limit.								
		Measurements in the frequency range above 18 GHz - 25GHz are typically made at a closer distance 0.5m, because the instrumentation noise floor is typically close to the radiated emission limit.								
\boxtimes	The	average emission levels shall be measured in [duty cycle ≥ 98 or duty factor].								
\boxtimes	For t	the transmitter unwanted emissions shall be measured using following options below:								
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.1 for unwanted emissions into non-restricted bands.								
	\boxtimes	Refer as FCC KDB 558074, clause 5.4.2 for unwanted emissions into restricted bands.								
		Refer as FCC KDB 558074, clause 5.4.2.2.2.1 Option 1 (Power Averaging).								
		Refer as FCC KDB 558074, clause 5.4.2.2.2.2 Option 2 (Trace Averaging).								
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW) – Duty cycle ≥ 98%.								
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.								
		Refer as FCC KDB 558074, clause 5.4.2.2.1.1 measurement procedure peak limit.								
		Refer as ANSI C63.10, clause 4.2.3.2.2 measurement procedure peak limit.								

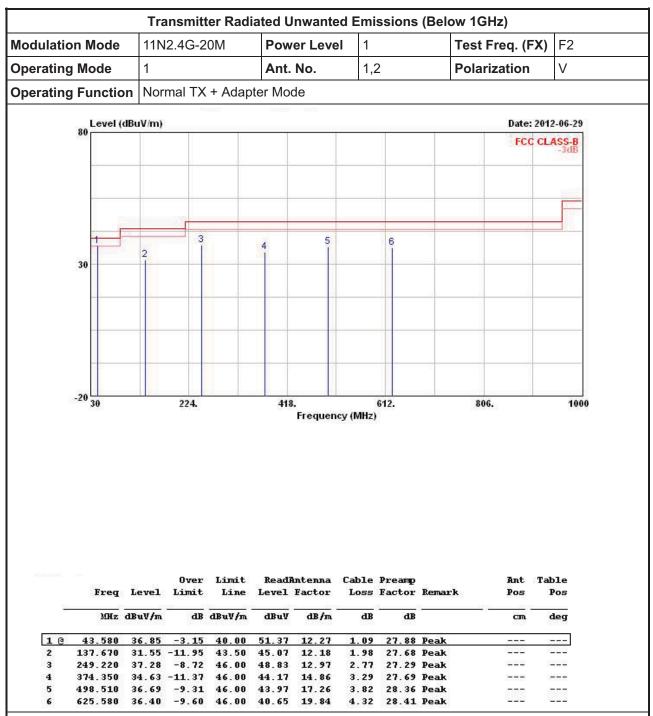

SPORTON INTERNATIONAL INC. Page No. : 43 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No.: FR262610AC

SPORTON INTERNATIONAL INC. Page No. : 44 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

3.6.4 Test Setup



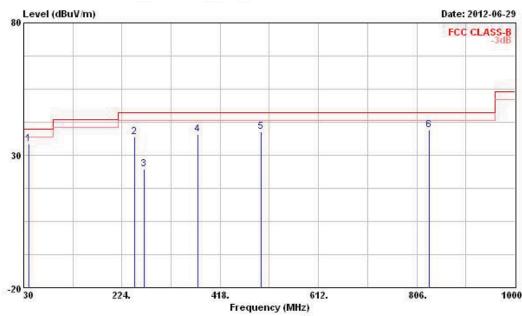
Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna.

SPORTON INTERNATIONAL INC. Page No. : 45 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

3.6.5 Test Result of Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

SPORTON INTERNATIONAL INC. Page No. : 46 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Below 1GHz)										
Modulation Mode11N2.4G-20MPower Level1Test Freq. (FX)F2											
Operating Mode 1 Ant. No. 1,2 Polarization H											
Operating Function Normal TX + Adapter Mode											

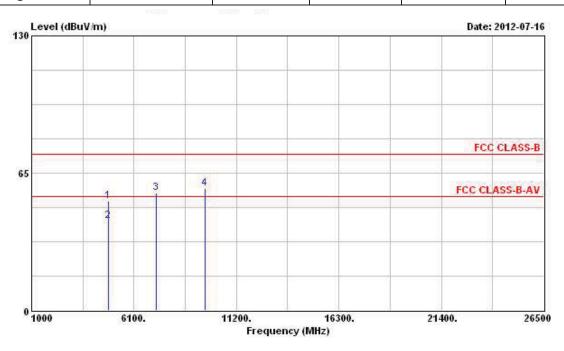
Level (dBuV/m)

	Freq	Freq	Level	Over Limit	4350		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
2	MKz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-	cm.	deg	
1	40.670	34.18	-5.82	40.00	48.02	13.01	1.05	27.90	Peak			
2	249.220	36.87	-9.13	46.00	48.42	12.97	2.77	27.29	Peak	12132	222	
3	268.620	24.81	-21.19	46.00	35.94	13.26	2.85	27.24	Peak	222		
4	374.350	37.83	-8.17	46.00	47.37	14.86	3.29	27.69	Peak	2440		
5	498.510	38.96	-7.04	46.00	46.24	17.26	3.82	28.36	Peak		10000	
6	831.220	39.59	-6.41	46.00	42.24	20.19	4.99	27.83	Peak			

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)


SPORTON INTERNATIONAL INC. Page No. : 47 of 73 Report Version TEL: 886-3-327-3456 : Rev. 01

FCC Test Report

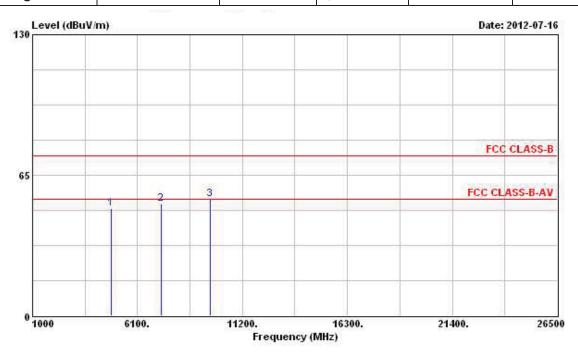
3.6.6 Test Result of Transmitter Radiated Unwanted Emissions (Above 1GHz)

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	11B-20M	Power Level	1	Test Freq. (FX)	F1						
Operating Function	Transmit	Ant. No.	1,2	Polarization	V						

Report No.: FR262610AC

	200 20 <u>0</u> 03	20 02	0ver			Antenna		2015 His 140	2 2	Ant	Table
	Freq	Level	Limit	Line	rever	Factor	Loss	Factor	Remark	Pos	Pos
3	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		- cm	deg
1	4824.000	51.82	-22.18	74.00	46.91	35.13	4.58	34.80	Peak		
2	4824.000	42.34	-11.66	54.00	37.43	35.13	4.58	34.80	Average		
3	7221.000	55.58			48.14	36.89	5.63	35.08	Peak	222	22004
4	9650.000	57.89			48.43	38.59	6.34	35.47	Peak	-	

Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit.


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

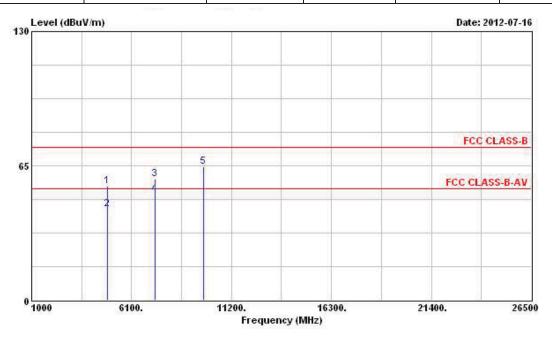
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3 and 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 48 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F1											
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

	Freq	Freq	Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MKz	dBuV/m	BuV/m dB	dBuV/m dBuV	dB/m dB	dB	ž 	cm.	deg			
1	4824.000	49.53	-4.47	54.00	43.99	35.76	4.58	34.80	PK		1000	
2	7236.000	51.76			43.36	37.85	5.63	35.08	Peak	12132		
3	9648.000	53.73			43.47	39.39	6.34	35.47	Peak		2000	


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

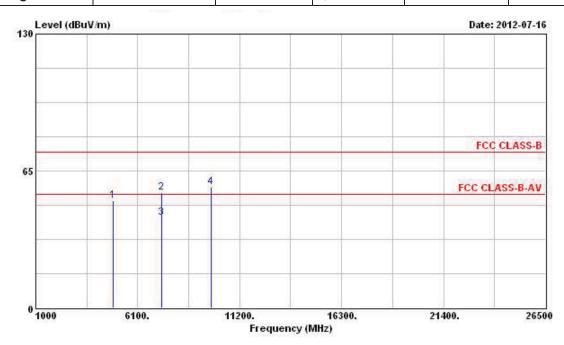
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3 and 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 49 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F2											
Operating Function Transmit Ant. No. 1,2 Polarization V											

			0ver	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB		cm.	deg
1	4874.000	55.20	-18.80	74.00	50.19	35.18	4.61	34.78	Peak	7.00	1000
2	4874.000	44.22	-9.78	54.00	39.21	35.18	4.61	34.78	Average		2000
3	7311.000	58.72	-15.28	74.00	51.26	36.92	5.64	35.10	Peak		2000
4	3 7311.000	51.34	-2.66	54.00	43.88	36.92	5.64	35.10	Average	-	
5	9748.000	64.59			55.00	38.71	6.36	35.48	Peak	576740	17000


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

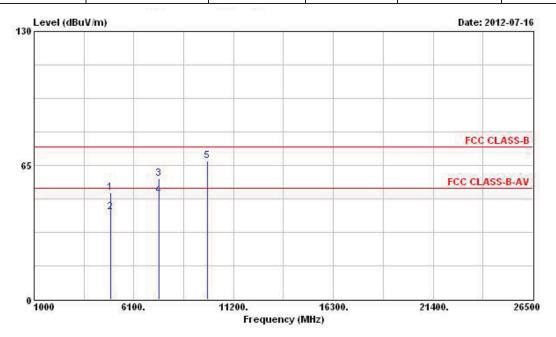
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 50 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F2											
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

	Freq	Level	Over Limit	4350		Antenna Factor		1975 THE 1975	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB	·	cm.	deg
1	4874.000	50.76	-3.24	54.00	45.10	35.83	4.61	34.78	PK		1000
2	7311.000	54.62	-19.38	74.00	46.22	37.86	5.64	35.10	Peak	1213-81	
3	7311.000	42.61	-11.39	54.00	34.21	37.86	5.64	35.10	Average	222	22774
4	9748.000	57.18			46.79	39.51	6.36	35.48	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

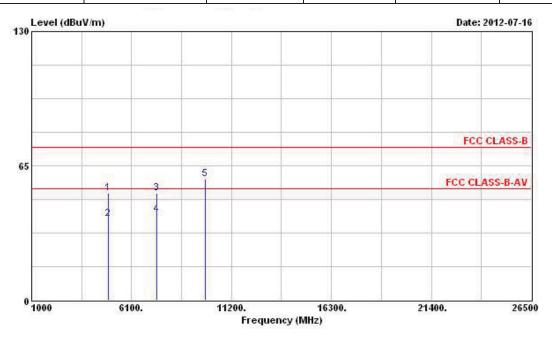
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 51 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F3										
Operating Function	Transmit	Ant. No.	1,2	Polarization	V						

	100 18 <u>20</u> 0	25 52	0ver	X3E-0.		Antenna		Service and the service of the servi	2 0	- 20	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB		- cm	deg
1	4924.000	51.70	-22.30	74.00	46.56	35.23	4.68	34.77	Peak		
2	4924.000	42.51	-11.49	54.00	37.37	35.23	4.68	34.77	Average	121320	
3	7386.000	58.78	-15.22	74.00	51.29	36.96	5.65	35.12	Peak		
4	7386.000	50.26	-3.74	54.00	42.77	36.96	5.65	35.12	Average		
5	9848.000	67.18			57.48	38.81	6.38	35.49	Peak	570,000	10000


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

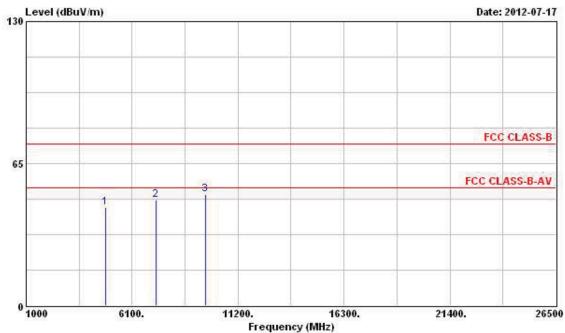
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 52 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11B-20M Power Level 1 Test Freq. (FX) F3											
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

			0ver	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	evel Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MKz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	ав	dB	÷	cm	deg
1	4924.000	51.64	-22.36	74.00	45.83	35.90	4.68	34.77	Peak	777	1000
2	4924.000	39.53	-14.47	54.00	33.72	35.90	4.68	34.77	Average	1210.01	
3	7386.000	51.82	-22.18	74.00	43.41	37.88	5.65	35.12	Peak		22772
4	7386.000	41.61	-12.39	54.00	33.20	37.88	5.65	35.12	Average		
5	9848.000	58.73			48.23	39.61	6.38	35.49	Peak	5701410	3555


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

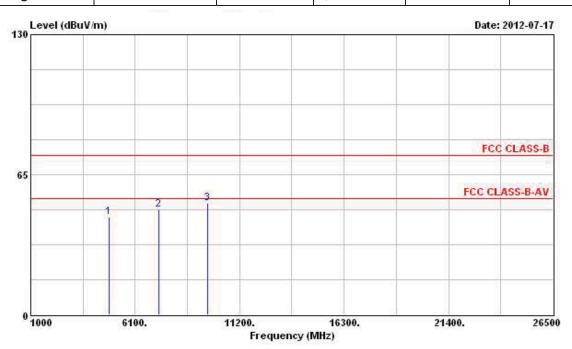
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 53 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F1									
Operating Function	Transmit	Ant. No.	1,2	Polarization	V				

	Freq	Level	Over Limit	4353		Antenna Factor			Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	- dB	ž <u></u> i	cm	deg
1	4824.000	44.81	-9.19	54.00	39.90	35.13	4.58	34.80	PK	0	0
2	7236.000	48.41			40.96	36.90	5.63	35.08	Peak	0	0
3	9648.000	50.76			41.30	38.59	6.34	35.47	Peak	0	0


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

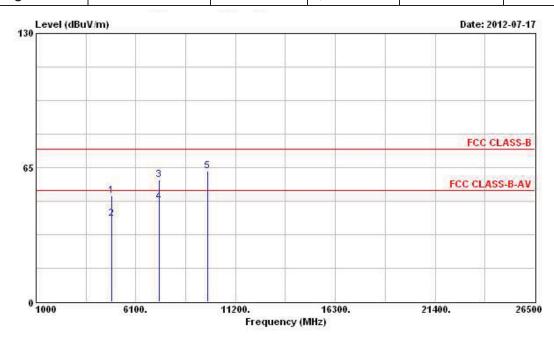
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 2 and 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 54 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F1										
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

	Freq	Level		Limit Line		Antenna Factor			Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB	ž <u>. </u>	cm	deg
1	4824.000	45.50	-8.50	54.00	39.96	35.76	4.58	34.80	PK		(2000)
2	7236.000	48.58			40.18	37.85	5.63	35.08	Peak		
3	9648.000	51.68			41.42	39.39	6.34	35.47	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

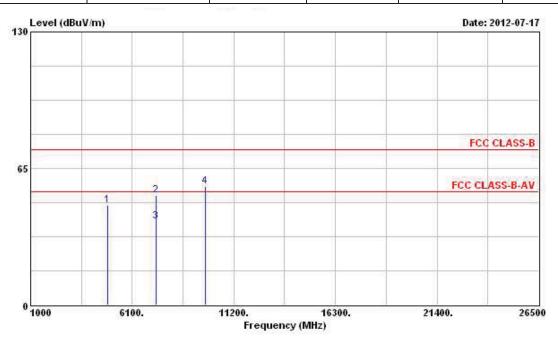
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 2 and 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 55 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2										
Operating Function	Transmit	Ant. No.	1,2	Polarization	V						

			0ver	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	ав	dB	***************************************		deg
1	4874.000	51.50	-22.50	74.00	46.49	35.18	4.61	34.78	Peak		1000
2	4874.000	40.38	-13.62	54.00	35.37	35.18	4.61	34.78	Average		
3	7311.000	59.19	-14.81	74.00	51.73	36.92	5.64	35.10	Peak		1201124
4	7311.000	48.20	-5.80	54.00	40.74	36.92	5.64	35.10	Average		
5	9748.000	63.22			53.63	38.71	6.36	35.48	Peak	777	2550


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

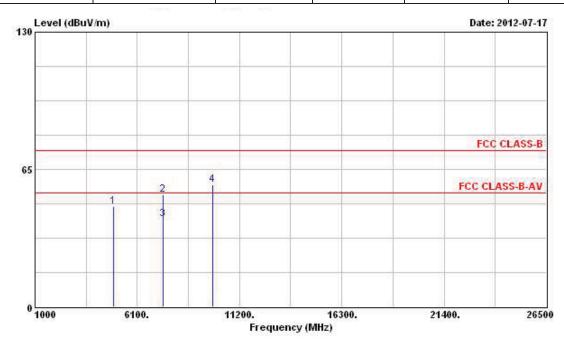
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 56 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function Transmit Ant. No. 1,2 Polarization H										

	Freq	Level	Over Limit			Antenna Factor		27% Ell 37%	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm.	deg
1	4874.000	47.46	-6.54	54.00	41.80	35.83	4.61	34.78	PK		1000
2	7311.000	52.05	-21.95	74.00	43.65	37.86	5.64	35.10	Peak		
3	7311.000	39.80	-14.20	54.00	31.40	37.86	5.64	35.10	Average		222
4	9748.000	56.49			46.10	39.51	6.36	35.48	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

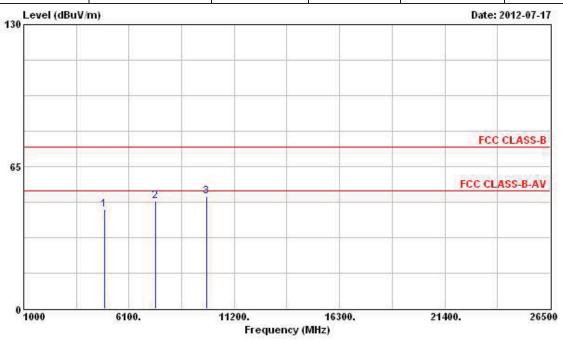
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 57 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F3									
Operating Function Transmit Ant. No. 1,2 Polarization V										

			0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dВ	dBuV/m	dBuV	dB/m	дв	dB	-	cm.	deg
1	4924.000	47.49	-6.51	54.00	42.35	35.23	4.68	34.77	Average		(5.55
2	7386.000	52.88	-21.12	74.00	45.39	36.96	5.65	35.12	Peak		
3	7386.000	41.55	-12.45	54.00	34.06	36.96	5.65	35.12	Average		227
4	9848.000	57.91			48.21	38.81	6.38	35.49	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

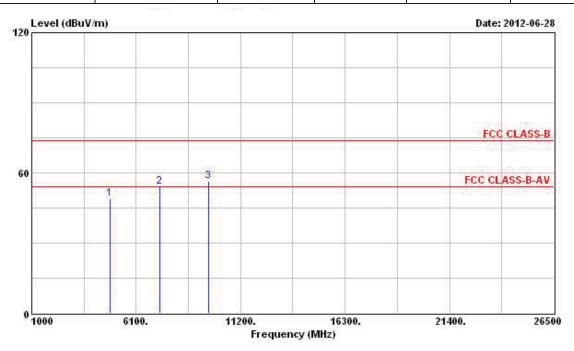
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 58 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode	Modulation Mode 11G-20M Power Level 1 Test Freq. (FX) F3								
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н				

	<u> </u>	Level	Over Limit			Antenna Factor			Remark	Ant Pos	Table Pos
		dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	Ť <u></u>	- cm	deg
1	4924.000	45.18	-8.82	54.00	39.37	35.90	4.68	34.77	PK		(5.5.5
2	7386.000	49.02	-4.98	54.00	40.61	37.88	5.65	35.12	PK	15105001	
3	9848.000	51.45			40.95	39.61	6.38	35.49	Peak	222	2222


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

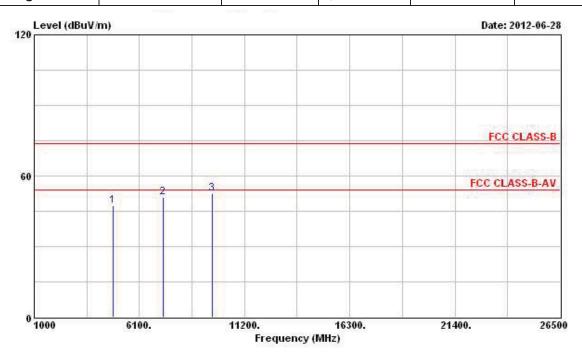
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 59 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F1												
Operating Function	Transmit	Ant. No.	1,2	Polarization	V							

	Freq	Freq	Level	Over Limit	4354		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
		dBuV/m	BuV/m dB	dBuV/m dBuV	dB/m	dВ	dB	H	cm	deg		
1	4824.000	48.96	-5.04	54.00	44.05	35.13	4.58	34.80	PK			
2	7236.000	54.16			46.71	36.90	5.63	35.08	Peak	12/0/20		
3	9648.000	56.25			46.79	38.59	6.34	35.47	Peak		22274	


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

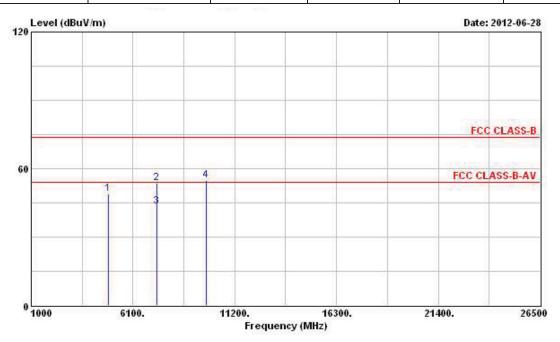
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 2 and 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 60 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	1	Test Freq. (FX)	F1								
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

	Freq		Level	Over Limit			Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
		dBuV/m	BuV/m dB	dBuV/m dBuV	dB/m dB	dB	¥ 	cm.	deg			
1	4824.000	47.42	-6.58	54.00	41.88	35.76	4.58	34.80	PK	775		
2	7236.000	50.99			42.59	37.85	5.63	35.08	Peak	200		
3	9648.000	52.65			42.39	39.39	6.34	35.47	Peak	-		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

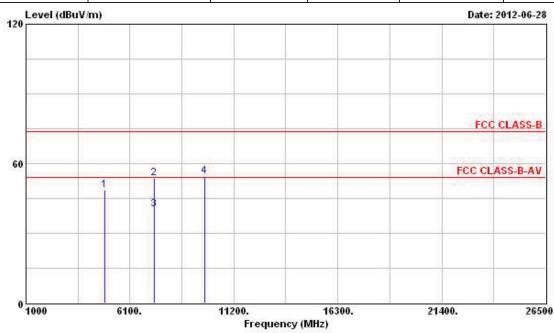
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 2 and 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 61 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F2												
Operating Function	Transmit	Ant. No.	1,2	Polarization	V							

		Level	Over Limit	43847		Antenna Factor				Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	**	cm.	deg
1	4874.000	48.92	-5.08	54.00	43.91	35.18	4.61	34.78	PK		
2	7311.000	53.69	-20.31	74.00	46.23	36.92	5.64	35.10	Peak		
3	7311.000	43.58	-10.42	54.00	36.12	36.92	5.64	35.10	Average	94.404	2000
4	9748.000	54.74			45.15	38.71	6.36	35.48	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

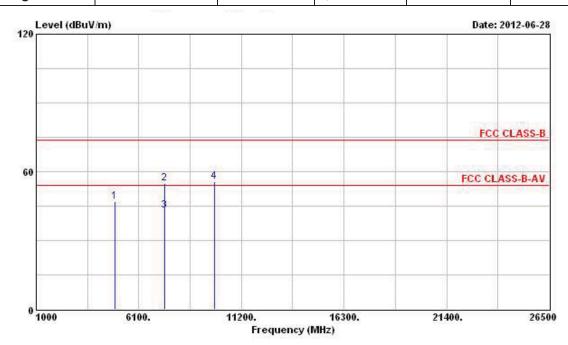
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 62 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode 11N2.4G-20M Power Level 1 Test Freq. (FX) F2									
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н				

	Freg	Fred	22 12	0ver	4354		Antenna		BASE WEEK AND AND		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos	
	MZ	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm	deg	
1	4874.000	48.44	-5.56	54.00	42.78	35.83	4.61	34.78	PK	777		
2	7311.000	53.65	-20.35	74.00	45.25	37.86	5.64	35.10	Peak			
3	7311.000	40.16	-13.84	54.00	31.76	37.86	5.64	35.10	Average		2000	
4	9748.000	54.58			44.19	39.51	6.36	35.48	Peak			


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

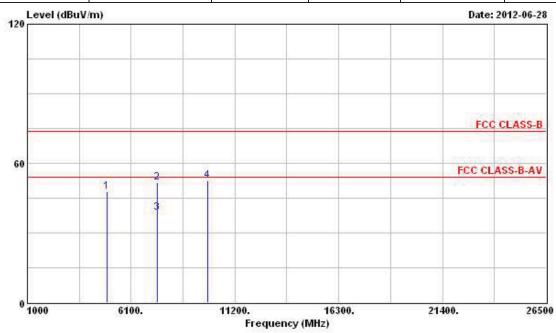
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 5) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 63 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Test Freq. (FX)	F3									
Operating Function	Transmit	Ant. No.	1,2	Polarization	V						

			0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	- дв	<u> </u>	cm.	deg
1	4924.000	47.16	-6.84	54.00	42.02	35.23	4.68	34.77	PK		100000
2	7386.000	54.69	-19.31	74.00	47.20	36.96	5.65	35.12	Peak	1213-21	
3	7386.000	43.13	-10.87	54.00	35.64	36.96	5.65	35.12	Average		222
4	9848.000	55.78			46.08	38.81	6.38	35.49	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

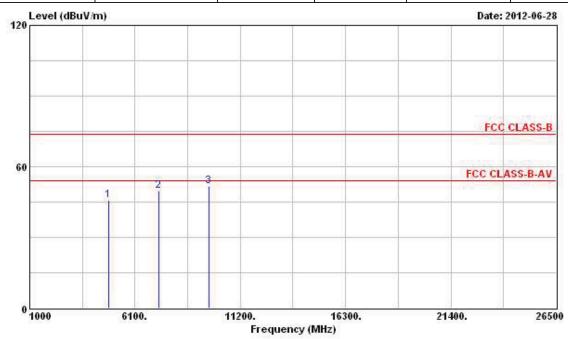
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 64 of 73 TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)									
Modulation Mode11N2.4G-20MPower Level1Test Freq. (FX)F3									
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н				

			0ver	Limit	Readi	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		cm.	deg
1	4924.000	47.65	-6.35	54.00	41.84	35.90	4.68	34.77	PK	-	
2	7386.000	51.85	-22.15	74.00	43.44	37.88	5.65	35.12	Peak	1213-21	
3	7386.000	38.86	-15.14	54.00	30.45	37.88	5.65	35.12	Average		2222
4	9848.000	52.40			41.90	39.61	6.38	35.49	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

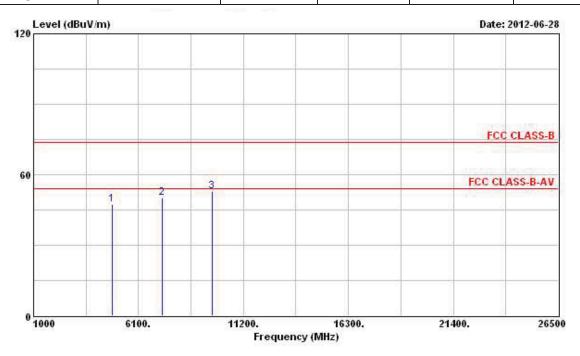
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 4) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 65 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F4										
Operating Function	Transmit	Ant. No.	1,2	Polarization	V					

	7820		0ver	Limit	Read	Antenna	Cable	Preamp		Ant	Table
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark	Pos	Pos
	MHz	dBuV/m	IBuV/m dB	dBuV/m	dBuV	dB/m		dB		cm	deg
1	4844.000	45.80	-8.20	54.00	40.84	35.14	4.61	34.79	PK		1000
2	7266.000	49.90	-4.10	54.00	42.45	36.91	5.63	35.09	PK	12122	
3	9688.000	51.84			42.34	38.63	6.35	35.48	Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

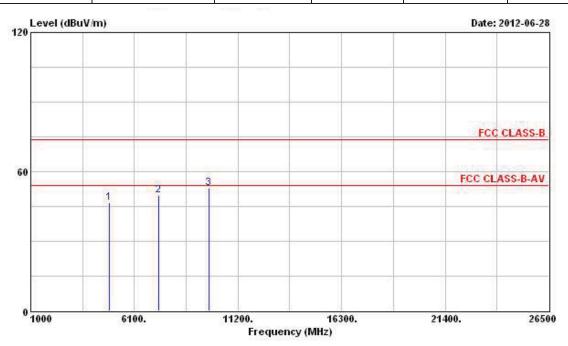
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 66 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F4										
Operating Function Transmit Ant. No. 1,2 Polarization H										

	Freq	Level	Over Limit			Antenna Factor			Remark	Ant Pos	Table Pos
		dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	<u>ав</u>		cm.	deg
1	4844.000	47.52	-6.48	54.00	41.92	35.78	4.61	34.79	PK	555	
2	7266.000	50.00	-4.00	54.00	41.60	37.86	5.63	35.09	PK		
3	9688.000	52.90			42.60	39.43	6.35	35.48	Peak		100000


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

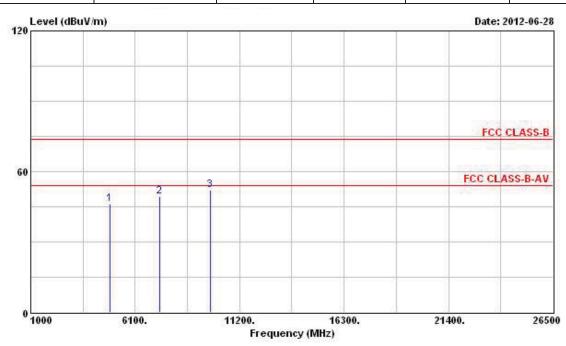
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 67 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)											
Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F5												
Operating Function Transmit Ant. No. 1,2 Polarization V												

	<u> </u>	Level		Limit Line		Antenna Factor				Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dВ	dB		cm.	deg
1	4874.000	46.49	-7.51	54.00	41.48	35.18	4.61	34.78	PK		
2	7311.000	49.86	-4.14	54.00	42.40	36.92	5.64	35.10	PK		
3	9748.000	52.90			43.31	38.71	6.36	35.48	Peak		12000
3	9748.000		(m2,ma)						Peak		


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

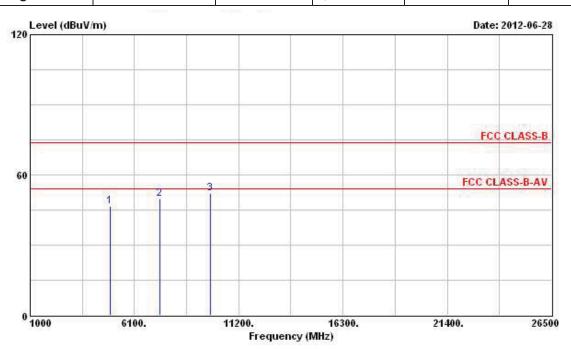
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 68 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode	Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F5										
Operating Function Transmit Ant. No. 1,2 Polarization H											

	Freq	Level	Over Limit	43547		Antenna Factor				Ant Pos	Table Pos
		dBuV/m	BuV/m dB	dBuV/m dBuV	dB/m dB	- dB		cm.	deg		
1	4874.000	46.32	-7.68	54.00	40.66	35.83	4.61	34.78	PK		(
2	7311.000	49.17	-4.83	54.00	40.77	37.86	5.64	35.10	PK	12(3:2)	
3	9748.000	52.09			41.70	39.51	6.36	35.48	Peak	222	


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

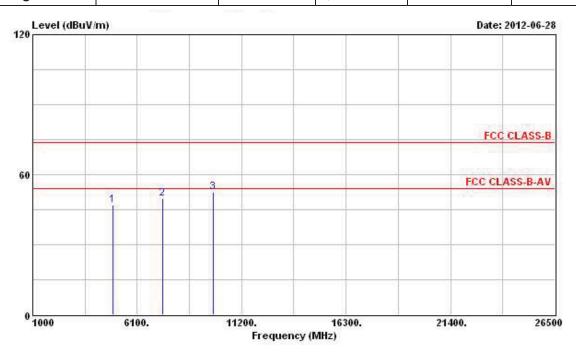
Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 69 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode 11N2.4G-40M Power Level 1 Test Freq. (FX) F6											
Operating Function Transmit Ant. No. 1,2 Polarization V											

	Freq	Level	Over Limit	4354		Antenna Factor		Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	- dB	·	cm	deg
1	4904.000	46.51	-7.49	54.00	41.44	35.21	4.64	34.78	PK		1000
2	7356.000	49.78	-4.22	54.00	42.31	36.94	5.64	35.11	PK	2000	
3	9808.000	52.27			42.61	38.77	6.37	35.48	Peak		22332


Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 70 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

	Transmitter Radiated Unwanted Emissions (Above 1GHz)										
Modulation Mode11N2.4G-40MPower Level1Test Freq. (FX)F6											
Operating Function	Transmit	Ant. No.	1,2	Polarization	Н						

	Freq	Over Level Limit			30% J. 131 . 144		Ant Pos	Table Pos			
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	- дв	- dB	·	cm	deg
1	4904.000	47.13	-6.87	54.00	41.39	35.88	4.64	34.78	PK		(5,50
2	7356.000	49.80	-4.20	54.00	41.40	37.87	5.64	35.11	PK		
3	9808.000	52.31			41.85	39.57	6.37	35.48	Peak		-

Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.)

Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical)

Note 4: For un-restricted bands, unwanted emissions (item 3) shall be attenuated by at least 20 dB relative to the maximum measured in-band level.

SPORTON INTERNATIONAL INC. Page No. : 71 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9 kHz ~ 2.75 GHz	Mar. 23, 2012	Conduction (CO04-HY)
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz – 30MHz	Feb. 08, 2012	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9 kHz ~ 30 MHz	Apr. 20, 2012	Conduction (CO04-HY)
RF Cable-CON	HUBER+SUHNER	RG213/U	CB049	9 kHz ~ 30 MHz	Apr. 25, 2012	Conduction (CO04-HY)

Report No. : FR262610AC

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP 40	100305	9 KHz ~ 40 GHz	Feb. 21, 2012	Conducted (TH01-HY)
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20~100℃	Dec. 07, 2011	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100302	10MHz ~ 40GHz	Nov. 22, 2011	Conducted (TH01-HY)
Power Sensor	Anritsu	MA2411B	1027452	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
Power Meter	Anritsu	ML2495A	1124009	300MHz ~ 40GHz	Jan. 12, 2012	Conducted (TH01-HY)
RF Cable-1m	Jye Bao	RG142	CB034-1m	20 MHz ~ 7 GHz	Dec. 03, 2011	Conducted (TH01-HY)
RF Cable-2m	Jye Bao	RG142	CB035-2m	20 MHz ~ 1 GHz	Dec. 03, 2011	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jun. 09, 2011*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Sep. 01, 2011	Radiation (03CH02-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 10, 2012	Radiation (03CH02-HY)
Amplifier Agilent		8447D	2944A11146	100kHz ~ 1.3GHz	Jul. 25, 2011	Radiation (03CH02-HY)
Amplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	Aug. 08, 2011	Radiation (03CH02-HY)
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz ~ 18GHz	Nov. 15, 2011	Radiation (03CH02-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30MHz ~ 1GHz	Nov. 11, 2011	Radiation (03CH02-HY)
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1GHz ~ 40GHz	Mar. 06, 2012	Radiation (03CH02-HY)
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Oct. 22, 2011	Radiation (03CH02-HY)
Turn Table	HD	DS 420	420/649/00	0~ 360 degree	N/A	Radiation (03CH02-HY)
Antenna Mast	HD	MA 240	240/559/00	1 ~ 4 m	N/A	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH02-HY)

Note: Calibration Interval of instruments listed above is two year.

SPORTON INTERNATIONAL INC. Page No. : 72 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01

FCC Test Report No.: FR262610AC

5 Certification of TAF Accreditation

Certificate No.: L1190-120405

財團法人全國認證基金會 Taiwan Accreditation Foundation

Certificate of Accreditation

This is to certify that

Sporton International Inc.

EMC & Wireless Communications Laboratory

No.52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

is accredited in respect of laboratory

Accreditation Criteria : ISO/IEC 17025:2005

Accreditation Number : 1190

Originally Accredited : December 15, 2003

Effective Period : January 10, 2010 to January 09, 2013

Accredited Scope : Testing Field, see described in the Appendix

Specific Accreditation : Accreditation Program for Designated Testing Laboratory

Program for Commodities Inspection

Accreditation Program for Telecommunication Equipment

Testing Laboratory

Accreditation Program for BSMI Mutual Recognition

Arrangment with Foreign Authorities

Jay-San Chen

President, Taiwan Accreditation Foundation

Date: April 05, 2012

P1, total 24 pages

SPORTON INTERNATIONAL INC. Page No. : 73 of 73
TEL: 886-3-327-3456 Report Version : Rev. 01