

FCC CERTIFICATION TEST REPORT

for

Schlumberger Industries, Inc.
1600 Alabama Highway 229
Tallassee, AL 36078

FCC ID: F9CTALSRFW1

December 21, 1998

WLL PROJECT #: 4823X

This report may not be reproduced, except in full, without the prior written consent of Washington Laboratories, Ltd.

TABLE OF CONTENTS

Letter of Agency

Letter of Confidentiality

Statement of Qualifications

1.0	INTRODUCTION.....	4
1.1	SUMMARY.....	4
2.0	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT).....	4
2.1	ON-BOARD OSCILLATORS	5
3.0	TEST CONFIGURATION.....	5
3.1	TESTING ALGORITHM	5
3.2	CONDUCTED EMISSIONS TESTING.....	5
3.3	RADIATED EMISSIONS TESTING	5
3.3.1	<i>Radiated Data Reduction and Reporting</i>	6
3.4	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS TESTING.....	10
3.5	CARRIER BANDWIDTH TESTING.....	14
3.6	POWER OUTPUT TESTING.....	14
3.7	RADIO FREQUENCY RADIATION EXPOSURE.....	15

TABLES

Table 1.	FCC Part 15.247(c) 3 M Radiated Emissions Data
Table 2.	FCC RF Radiated Spurious Emissions Data
Table 3.	System Under Test
Table 4.	Interface Cables Used
Table 5.	Measurement Equipment Used

EXHIBITS

Exhibit 1. Occupied Bandwidth Plots

 Schlumberger

Chief, Authorizations Branch
Federal Communications Commission
7535 Oakland Mills Road
Columbia, MD 21046

RE: Letter of Agency

This letter is to serve notice that Washington Laboratories, Ltd. is hereby authorized to act on our behalf in connection with the Application for Equipment Authorization attached herewith.

We certify that we are not subject to denial of federal benefits, that includes FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse ACT of 1988, U.S.C. 862. Further, no party, as defined in 47 CFR 1.2002(b), to the application is subject to denial of federal benefits, that includes FCC benefits.

Signed,

Jim Brennan
New Product Development Manager

Resource Management Services, Inc.
1600 Alabama Hwy. 229
Tallassee, AL 36078-1799
Tel.: (334) 283-6555, FAX (334) 283-7299
Schlumberger Industries, Inc.

Schlumberger Industries, Inc.
FCC ID: F9CTALSRFW1
WLL Project #: 4823X

Schlumberger

December 14, 1998

Federal Communication Commission
7435 Oakland Mills Road
Columbia, MD 20146

RE: Request for Confidentiality
FCC ID: F9CTALSRFW1

Dear Sir/Madam:

In accordance with 47 CFR Part 0.495, Schlumberger Resource Management Services, Inc. requests that the following information be held confidential:

Schematics
Technical Description
Hopping Channels

The application contains information which Schlumberger Resource Management Services, Inc. deems to be trade secrets and proprietary. If made public, the information might be used to the disadvantage of the applicant in the market place.

Thank you for your attention to this matter.

Sincerely,

Jim Brennan

Resource Management Services, Inc.
1600 Alabama Hwy. 229
Talladega, AL 36078-1799
Tel.: (334) 283-6555, FAX (334) 283-7299
Schlumberger Industries, Inc.

WASHINGTON LABORATORIES, LTD.

7560 Lindbergh Drive • Gaithersburg, Maryland 20879 • (301) 417-0220 • Fax (301) 417-9069 • (800) 839-1649
website: <http://www.wll.com> • e-mail: info@wll.com

STATEMENT OF QUALIFICATIONS

for

Gregory M. Snyder

Washington Laboratories, Ltd.

I hold a Bachelor of Science in Electronics Engineering Technology and have over nine years of EMI testing experience. I am qualified to perform EMC testing to the methods described in this test report. The measurements taken within this report are accurate within my ability to perform the tests and within the tolerance of the measuring instrumentation.

By: A handwritten signature of 'Gregory M. Snyder' in black ink, placed above the typed name.
Gregory M. Snyder
Compliance Engineer

Date: December 21, 1998

NVIAQ

FCC CERTIFICATION TEST REPORT

for

Schlumberger Industries, Inc.

FCC ID: F9CTALSRFW1

1.0 Introduction

This report has been prepared on behalf of Schlumberger Industries, Inc. to support the attached Application for Equipment Authorization. The test and application are submitted for an Intentional Radiator under Section 15.247 of the FCC Rules and Regulations. The Equipment Under Test was a Schlumberger Industries, Inc. Frequency Hopping Spread Spectrum Transmitter, Model: SURF™ MIU.

All measurements herein were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and field Strength Instrumentation. Calibration checks are made periodically to verify proper performance of the measuring instrumentation.

All measurements were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

All results reported herein relate only to the equipment tested. This report shall not be used to claim product endorsement by NVLAP or any agency of the US Government.

1.1 Summary

The Schlumberger Industries, Inc. Frequency Hopping Spread Spectrum Transmitter complies with the limits for an Intentional Radiator under Section 15.247.

2.0 Description of Equipment Under Test (EUT)

The Schlumberger Industries, Inc. Frequency Hopping Spread Spectrum Transmitter, Model: SURF™ MIU is a Wall Meter Interface Unit that is a compact electronic device that collects meter reading data from an encoder register and transmits the data for collection by the meter reader. The EUT is a 900 MHz frequency hopping spread spectrum transmitter that collects meter readings from the encoder register on an hourly basis and transmits the information every four seconds. The unit is powered via an internal 3.6V lithium battery. The frequency range of operation is 911.08147 to 919.07686 MHz and the EUT utilizes 50 channels.

2.1 On-board Oscillators

The Schlumberger Industries, Inc. Frequency Hopping Spread Spectrum Transmitter contains the following oscillators:

32.768 MHz, 5.111808 MHz

3.0 Test Configuration

To complete the test configuration required by the FCC, the Frequency Hopping Spread Spectrum Transmitter was tested with the transmitter being set to transmit at the lowest, highest and mid frequency of its operating range.

3.1 Testing Algorithm

The transmitter was powered on and setup to continuously transmit. The hopping was stopped for the spurious emissions testing. The high, low and middle channels were tested. Worst case emissions are recorded in the data tables.

3.2 Conducted Emissions Testing

Conducted emissions testing was not performed as the unit is battery powered.

3.3 Radiated Emissions Testing

The EUT was placed on an 80 cm high 1 x 1.5 meters non-conductive motorized turntable for radiated testing on a 3 meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Biconical, log periodic, and horn broadband antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-1992. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The output from the antenna was connected, via a preamplifier, to the input of the spectrum analyzer. The detector function was set to quasi-peak, peak or average as appropriate. The measurement bandwidth on the spectrum analyzer system was set to at least 120 kHz, with all post-detector filtering no less than 10 times the measurement bandwidth.

3.3.1 Radiated Data Reduction and Reporting

To convert the raw spectrum analyzer radiated data into a form that can be compared with the FCC limits, it is necessary to account for various calibration factors that are supplied with the antennas and other measurement accessories. These factors are grouped into a composite antenna factor (AFc) and are supplied in the AFc column of Table 1. The AFc in dB/m is algebraically added to the Spectrum Analyzer Voltage in dB μ V to obtain the Radiated Electric Field in dB μ V/m. This level is then compared with the FCC limit.

Example:

Spectrum Analyzer Voltage: $V\text{dB}\mu\text{V}$

Composite Antenna Factor: $\text{AFc}\text{dB/m}$

Electric Field: $E\text{dB}\mu\text{V/m} = V\text{dB}\mu\text{V} + \text{AFc}\text{dB/m}$

To convert to linear units: $E\mu\text{V/m} = \text{antilog} (E\text{dB}\mu\text{V/m}/20)$

Data is recorded in Table 1.

Table 1

FCC Part 15.247(c) 3 M Radiated Emissions Data

CLIENT: Schlumberger Industries, Inc.
 FCC ID: F9CTALSRFW1
 DATE: 12/8/98
 BY: Greg Snyder
 JOB #: 4823X

Channel 1

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (AVG) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	46.5	-15.0	31.5	37.6	500.0	-22.5
2732.80	V	270.00	1.0	35.2	-7.0	28.2	25.7	500.0	-25.8
3643.95	V	0.00	1.0	37.3	-5.5	31.8	38.9	500.0	-22.2
4554.70	V	135.00	1.0	36.3	-3.5	32.8	43.7	500.0	-21.2
1214.70	H	180.00	1.0	36.5	-15.0	21.5	11.9	500.0	-32.5
2732.80	H	270.00	1.0	43.3	-7.0	36.3	65.3	500.0	-17.7
3643.95	H	0.00	1.0	38.5	-5.5	33.0	44.7	500.0	-21.0
4554.70	H	135.00	1.0	35.5	-3.5	32.0	39.8	500.0	-22.0

Peak Measurements Above 1 GHz

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (Peak) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	77.8	-15.0	62.8	1380.4	5000.0	-11.2
1821.90	V	270.00	1.0	68.2	-8.0	60.2	1023.3	5000.0	-13.8
2732.80	V	270.00	1.0	43.2	-7.0	36.2	64.6	5000.0	-37.8
3643.95	V	0.00	1.0	50.6	-5.5	45.1	179.9	5000.0	-28.9
4554.70	V	135.00	1.0	49.8	-3.5	46.3	206.5	5000.0	-27.7
1214.70	H	180.00	1.0	66.0	-15.0	51.0	354.8	5000.0	-23.0
1821.90	H	180.00	1.0	63.7	-8.0	55.7	609.5	5000.0	-18.3
2732.80	H	270.00	1.0	48.0	-7.0	41.0	112.2	5000.0	-33.0
3643.95	H	0.00	1.0	55.0	-5.5	49.5	298.5	5000.0	-24.5
4554.70	H	135.00	1.0	48.6	-3.5	45.1	179.9	5000.0	-28.9

Table 1 Cont'd.

FCC Part 15.247 (c) 3 M Radiated Emissions Data

CLIENT: Schlumberger Industries, Inc.
 FCC ID: F9CTALSRFW1
 DATE: 12/8/98
 BY: Greg Snyder
 JOB #: 4823X

Channel 2

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (AVG) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	47.2	-15.0	32.2	40.7	500.0	-21.8
2745.00	V	270.00	1.0	36.2	4.2	40.4	104.7	500.0	-13.6
3660.78	V	0.00	1.0	38.4	4.0	42.4	131.8	500.0	-11.6
4575.52	V	135.00	1.0	35.4	4.7	40.1	101.2	500.0	-13.9
1214.70	H	180.00	1.0	34.6	-15.0	19.6	9.5	500.0	-34.4
2745.00	H	270.00	1.0	38.4	4.2	42.6	134.9	500.0	-11.4
3660.78	H	0.00	1.0	39.4	4.0	43.4	147.9	500.0	-10.6
4575.52	H	135.00	1.0	33.9	4.7	38.6	85.1	500.0	-15.4

Peak Measurements Above 1 GHz

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (PEAK) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	75.2	-15.0	60.2	1023.3	5000.0	-13.8
1821.90	V	270.00	1.0	32.2	30.6	62.8	1380.4	5000.0	-11.2
2745.00	V	270.00	1.0	49.2	4.2	53.4	467.7	5000.0	-20.6
3660.78	V	0.00	1.0	51.8	4.0	55.8	616.6	5000.0	-18.2
4575.52	V	135.00	1.0	50.00	4.7	54.7	543.3	5000.0	-19.3
1214.70	H	180.00	1.0	67.2	-15.0	52.2	407.4	5000.0	-21.8
1821.90	H	180.00	1.0	30.4	30.6	61.0	1122.0	5000.0	-13.0
2745.00	H	270.00	1.0	56.9	4.2	61.1	1135.00	5000.0	-12.9
3660.78	H	0.00	1.0	58.8	4.0	62.8	1380.4	5000.0	-11.2
4575.52	H	135.00	1.0	47.6	4.7	52.3	412.1	5000.0	-21.7

Table 1 Cont'd.**FCC Part 15.247(c) 3 M Radiated Emissions Data**

CLIENT: Schlumberger Industries, Inc.
 FCC ID: F9CTALSRFW1
 DATE: 12/8/98
 BY: Greg Snyder
 JOB #: 4823X

Channel 3

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (AVG) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	48.7	-15.0	33.7	48.4	500.0	-20.3
2758.00	V	270.00	1.0	39.6	4.2	43.8	154.9	500.0	-10.2
3677.00	V	0.00	1.0	35.4	4.0	39.4	93.3	500.0	-14.6
4596.00	V	135.00	1.0	35.3	4.7	40.0	100.0	500.0	-14.0
1214.70	H	180.00	1.0	43.2	-15.0	28.2	25.7	500.0	-25.8
2758.00	H	270.00	1.0	40.1	4.2	44.3	164.1	500.0	-9.7
3677.00	H	0.00	1.0	38.9	4.0	42.9	139.6	500.0	-11.1
4596.00	H	135.00	1.0	37.3	4.7	42.0	125.9	500.0	-12.0

Peak Measurements Above 1 GHz

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (PEAK) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
1214.70	V	180.00	1.0	72.2	-15.0	57.2	724.4	5000.0	-16.8
1838.38	V	270.00	1.0	34.3	30.6	64.9	1757.9	5000.0	-9.1
2758.00	V	270.00	1.0	46.5	4.2	50.7	342.8	5000.0	-23.3
3677.00	V	0.00	1.0	45.6	4.0	49.6	302.0	5000.0	-24.4
4596.00	V	135.00	1.0	45.8	4.7	50.5	335.0	5000.0	-23.5
1214.70	H	180.00	1.0	64.5	-15.0	49.5	298.5	5000.0	-24.5
1838.38	H	180.00	1.0	31.1	30.6	61.7	1216/2	5000.0	-12.3
2758.00	H	270.00	1.0	47.7	4.2	51.9	393.6	5000.0	-22.1
3677.00	H	0.00	1.0	43.0	4.0	47.0	223.9	5000.0	-27.0
4596.00	H	135.00	1.0	43.6	4.7	48.3	260.0	5000.0	-25.7

3.4 RF Antenna Conducted Spurious Emissions Testing

Since the impedance of the antenna terminal could not be matched by using a piece of a coax, the conducted test could not be performed and therefore the alternate radiated test method was used. The EUT was setup as per Section 3.3 of this report, except the spectrum analyzer resolution bandwidth was set to 100 kHz and the video bandwidth was set to 1 MHz. The amplitude of the EUT carrier was measured to determine the emissions limit (20dB below the carrier frequency amplitude). All of the emissions outside the allocated frequency band of 902 MHz to 928 MHz were scanned up to the 10th harmonic. At each frequency, an external attenuator or filter was used to confirm that the signal was not overloading the spectrum analyzer input.

Data is recorded in Table 2.

Table 2
FCC RF Radiated Spurious Emissions Data
Alternate Method to Confirm Compliance with Section 15.247(c)

CLIENT: Schlumberger Industries, Inc.
FCC ID: F9CTALSRFW1
DATE: 12/8/98
BY: Greg Snyder
JOB #: 4823X

Channel 1

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (QP) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
910.96	V	0.00	1.0	69.3	28.2	97.5	75419.9	N/A	N/A
1214.70	V	180.00	1.0	65.5	-15.0	50.5	335.0	7542.0	-27.0
1821.90	V	270.00	1.0	65.3	-8.0	57.3	732.8	7542.0	-20.2
2732.80	V	270.00	1.0	39.5	-7.0	32.5	42.2	7542.0	-45.0
3643.95	V	0.00	1.0	46.2	-5.5	40.7	108.4	7542.0	-36.8
4554.70	V	135.00	1.0	44.5	-3.5	41.0	112.2	7542.0	-36.5
5465.77	V	0.00	1.0	39.2	-2.0	37.2	72.4	7542.0	-40.3
6376.76	V	0.00	1.0	38.5	3.0	41.5	118.9	7542.0	-36.0
7287.70	V	0.00	1.0	38.2	4.2	42.4	131.8	7542.0	-35.1
8198.70	V	0.00	1.0	37.6	4.8	42.4	131.8	7542.0	-35.1
9108.70	V	0.00	1.0	36.8	5.0	41.8	123.0	7542.0	-35.7
1214.70	H	180.00	1.0	54.2	-15.0	39.2	91.2	7542.0	-38.3
1821.90	H	180.00	1.0	62.5	-8.0	54.5	530.9	7542.0	-23.0
2732.80	H	270.00	1.0	48.0	-7.0	41.0	112.2	7542.0	-36.5
3643.95	H	0.00	1.0	51.7	-5.5	46.2	204.2	7542.0	-31.3
4554.70	H	135.00	1.0	43.3	-3.5	39.8	97.7	7542.0	-37.7
5465.77	H	0.00	1.0	38.0	-2.0	36.0	63.1	7542.0	-41.5
6376.76	H	0.00	1.0	39.1	3.0	42.1	127.4	7542.0	-35.4
7287.70	H	0.00	1.0	39.2	4.2	43.4	147.9	7542.0	-34.1
8198.70	H	0.00	1.0	37.8	4.8	42.6	134.9	7542.0	-34.9
9108.70	H	0.00	1.0	37.7	5.0	42.7	136.5	7542.0	-34.8

Table 2 Cont'd.

FCC RF Radiated Spurious Emissions Data
Alternate Method to Confirm Compliance with Section 15.247(c)

CLIENT: Schlumberger Industries, Inc.
 FCC ID: F9CTALSRFW1
 DATE: 12/8/98
 BY: Greg Snyder
 JOB #: 4823X

Channel 2

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (QP) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
915.14	V	0.00	1.0	65.5	28.3	93.8	49086.2	N/A	N/A
1214.70	V	180.00	1.0	65.5	-15.0	50.5	335.0	4909.0	-23.3
1821.90	V	270.00	1.0	31.9	30.6	62.5	1333.5	4909.0	-11.3
2745.00	V	270.00	1.0	43.0	4.2	47.2	229.1	4909.0	-26.6
3660.78	V	0.00	1.0	42.5	4.0	46.5	211.3	4909.0	-27.3
4575.52	V	135.00	1.0	41.8	4.7	46.5	211.3	4909.0	-27.3
5491.00	V	0.00	1.0	41.2	7.7	48.9	278.6	4909.0	-24.9
6406.00	V	0.00	1.0	41.9	10.2	52.1	402.7	4909.0	-21.7
7321.00	V	0.00	1.0	41.7	12.5	54.2	512.9	4909.0	-19.6
8236.00	V	0.00	1.0	42.9	13.0	55.9	623.7	4909.0	-17.9
9151.00	V	0.00	1.0	42.2	13.7	55.9	623.7	4909.0	-17.9
1214.70	H	180.00	1.0	54.2	-15.0	39.2	91.2	4909.0	-34.6
1821.90	H	180.00	1.0	28.7	30.6	59.3	922.6	4909.0	-14.5
2745.00	H	270.00	1.0	48.0	4.2	52.2	407.4	4909.0	-21.6
3660.78	H	0.00	1.0	51.7	4.0	55.7	609.5	4909.0	-18.1
4575.52	H	135.00	1.0	43.3	4.7	48.0	251.2	4909.0	-25.8
5491.00	H	0.00	1.0	38.0	7.7	45.7	192.8	4909.0	-28.1
6406.00	H	0.00	1.0	39.1	10.2	49.3	291.7	4909.0	-24.5
7321.00	H	0.00	1.0	39.2	12.5	51.7	384.6	4909.0	-22.1
8236.00	H	0.00	1.0	37.8	13.0	50.8	346.7	4909.0	-23.0
9151.00	H	0.00	1.0	37.7	13.7	51.4	371.5	4909.0	-22.4

Table 2 Cont'd.

FCC RF Radiated Spurious Emissions Data
Alternate Method to Confirm Compliance with Section 15.247(c)

CLIENT: Schlumberger Industries, Inc.
 FCC ID: F9CTALSRFW1
 DATE: 12/8/98
 BY: Greg Snyder
 JOB #: 4823X

Channel 3

Frequency MHz	Polarity H/V	Azimuth Degree	Antenna Height m	SA Level (QP) dBuV	AFc dB/m	E-Field dBuV/m	E-Field uV/m	Limit uV/m	Margin dB
919.22	V	0.00	1.0	64.2	28.4	92.6	42592.1	N/A	N/A
1214.70	V	180.00	1.0	65.5	-15.0	50.5	335.0	4259.2	-22.1
1838.38	V	270.00	1.0	32.2	30.6	62.8	1380.4	4259.2	-9.8
2758.00	V	270.00	1.0	42.3	4.2	46.5	211.3	4259.2	-26.1
3677.00	V	0.00	1.0	41.5	4.0	45.5	188.4	4259.2	-27.1
4596.00	V	135.00	1.0	41.6	4.7	46.3	206.5	4259.2	-26.3
5515.60	V	0.00	1.0	38.3	7.7	46.0	199.5	4259.2	-26.6
6434.80	V	0.00	1.0	37.2	10.2	47.4	234.4	4259.2	-25/2
7354.00	V	0.00	1.0	40.8	12.5	53.3	462.4	4259.2	-19.3
8273.00	V	0.00	1.0	41.7	13.0	54.7	543.3	4259.2	-17.9
9192.40	V	0.00	1.0	41.3	13.7	55.0	562.3	4259.2	-17.6
1214.70	H	180.00	1.0	54.2	-15.0	39.2	91.2	4259.2	-33.4
1838.38	H	180.00	1.0	28.6	30.6	59.2	912.0	4259.2	-13.4
2758.00	H	270.00	1.0	42.3	4.2	46.5	211.3	4259.2	-26.1
3677.00	H	0.00	1.0	40.4	4.0	44.4	166.0	4259.2	-28.2
4596.00	H	135.00	1.0	41.0	4.7	45.7	192.8	4259.2	-26.9
5515.60	H	0.00	1.0	38.3	7.7	46.0	199.5	4259.2	-26.6
6434.80	H	0.00	1.0	38.1	10.2	48.3	260.0	4259.2	-24.3
7354.00	H	0.00	1.0	39.8	12.5	52.3	412.1	4259.2	-20.3
8273.00	H	0.00	1.0	41.6	13.0	54.6	537.0	4259.2	-18.0
9192.40	H	0.00	1.0	40.6	13.7	54.3	518.8	4259.2	-18.3

3.5 Carrier Bandwidth Testing

Since the impedance of the antenna terminal could not be matched by using a piece of a coax, this test could not be performed as a conducted test and the alternate radiated test method was used. The EUT was placed close to the receive antenna and the spectrum analyzer resolution bandwidth was set to 9 kHz and the video bandwidth was set to 10 kHz. The highest peak of the carrier was centered on the display of the spectrum analyzer display. The 6dB bandwidth of the modulated carrier was measured and compared to the FCC limit.

Spectrum analyzer plots of the bandwidths are located in Exhibit 2. The measured 6dB bandwidth was 100 kHz for the Low Channel, 113 kHz for the Mid Channel, and 120 kHz for the High Channel.

3.6 Power Output Testing

Since the impedance of the antenna terminal could not be matched by using a piece of a coax, the conducted test could not be performed and therefore the alternate radiated test method was used. The EUT was setup as per Section 3.3 of this report, except the spectrum analyzer resolution bandwidth was set to 3 MHz (maximum) and the video bandwidth was set to 3 MHz (maximum). The amplitude of the EUT carrier was measured and the following formula was used to calculate the output power:

$$P = (Ed)^2/30G$$

P = Power in Watts

E = Maximum field strength in V/m

d = Measurement distance in meters

G = Numeric gain of transmitting antenna.

For this EUT G = 1 and the measurement distance was 3 meters. Therefore;

$$\text{Channel 1 Power} = (0.0907*3)^2/(30*1) = 2.5\text{mW}$$

$$\text{Channel 2 Power} = (0.059*3)^2/(30*1) = 1.445\text{mW}$$

$$\text{Channel 3 Power} = (0.05*3)^2/(30*1) = 0.762\text{mW}$$

3.7 Radio Frequency Radiation Exposure

Based on the above data, the worst case RF output power of the unit occurs at the Low Channel, 910.96 MHz. According to Section 1.1310 of the FCC rules, the uncontrolled RF exposure limit for this frequency range is 0.607mW/cm². The gain of the antenna is 0 dBi. To comply with the exposure limits for this section, humans must not be too close to the transmit antenna. The following formula was used to calculate the minimum distances:

$$S = (PG)/(4\pi R^2)$$

Where,

S = Power Density

P = Output Power at the Antenna Terminals

G = Gain of Transmit Antenna (linear gain)

R = Distance from Transmitting Antenna

For this device, the calculation is as follows:

S = FCC Limit = 0.607mW/cm²

P = Output Power = 2.5 mW

G = Worst Case Gain = 0 dBi = INVLOG(0/10) = 1

Therefore the minimum distance is 0.43 cm. This minimum distance requirement is maintained via the enclosure of the device as well as the device is not located near where people are likely to be.

Table 3

System Under Test

FCC ID: F9CTALSRFW1

EUT: Schlumberger Industries, Inc. Wall Meter Interface Unit; M/N: SURF™ MIU; S/N: N/A;
FCC ID: F9CTALSRFW1

Table 4

Interface Cables Used

Non-shielded, 20 gauge wires (one meter long) were attached to the encoder terminals during testing.

Table 5

Measurement Equipment Used

The following equipment is used to perform measurements:

Hewlett-Packard Spectrum Analyzer: HP 8568B

Hewlett-Packard Quasi-Peak Adapter: HP 85650A

Hewlett-Packard Preselector: HP 85685A

Hewlett-Packard Spectrum Analyzer: HP 8564E

Hewlett-Packard Pre-Amplifier: HP 8449A

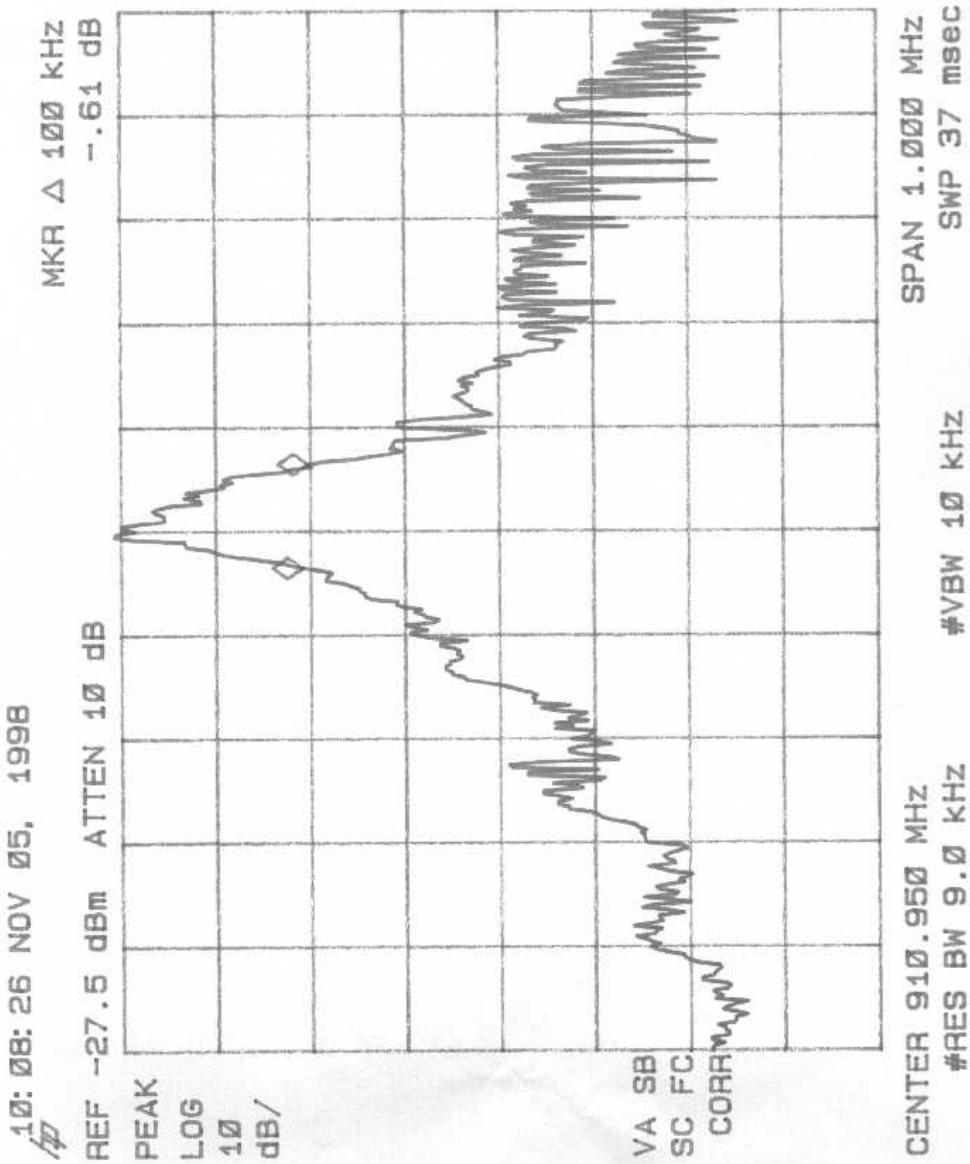
Antenna Research Associates, Inc. Biconical Log Periodic Antenna: LPB-2520A (Site 2)

Antenna Research Associates, Inc. Horn Antenna: DRG-118/A

Solar 50 Ω/50 μH Line Impedance Stabilization Network: 8012-50-R-24-BNC

Solar 50 Ω/50 μH Line Impedance Stabilization Network: 8028-50-TS-24-BNC

AH Systems, Inc. Portable Antenna Mast: AMS-4 (Site 2)


AH Systems, Inc. Motorized Turntable (Site 2)

RG-214 semi-rigid coaxial cable

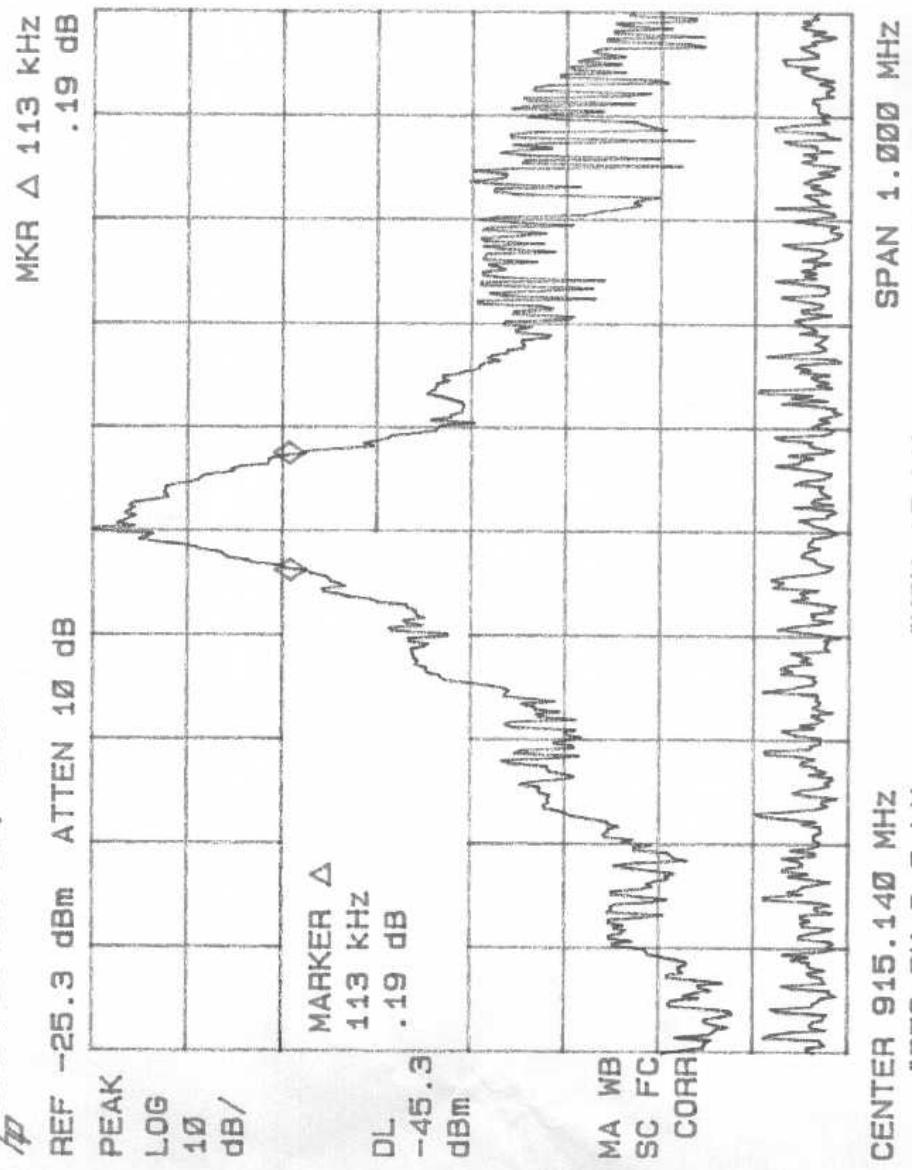
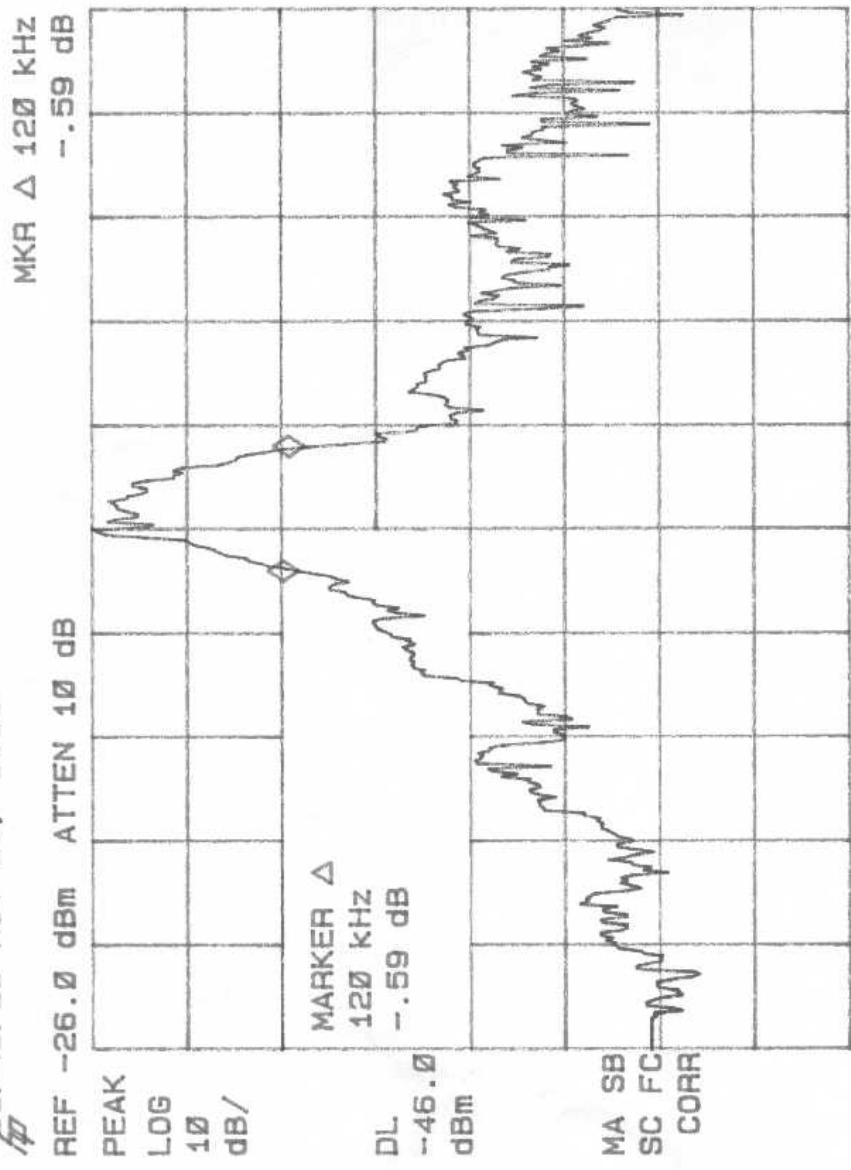

RG-223 double-shielded coaxial cable

EXHIBIT 1
OCCUPIED BANDWIDTH PLOTS


Low Channel

09:57:16 NOV 05, 1998

09: 45: 53 NOV 05, 1998

