

Engineering and Testing for EMC and Safety Compliance

# APPLICATION FOR A CLASS II PERMISSIVE CHANGE PART 95(B) FRS

Topaz3, LLC 10828 NW Air World Drive Kansas City, MO 64153

MODEL: TK14

FCC ID: F3JTK14
CANADA CERTIFICATION: 1531031991A

CANADA: 1531031991A

June 21, 2001

| STANDARDS REFERENCED FOR THIS | STANDARDS REFERENCED FOR THIS REPORT                                                   |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Part 2; 1999                  | FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS          |  |  |  |  |
| PART 15; 1999                 | RADIO FREQUENCIES DEVICES                                                              |  |  |  |  |
| Part 95; 1998                 | PERSONAL RADIO SERVICES                                                                |  |  |  |  |
| ANSI C63.4-1992               | STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND PERIPHERALS         |  |  |  |  |
| ANSI/TIA/EIA 603-1; 1998      | ADDENDUM TO ANSI/TIA/EIA 603-1992                                                      |  |  |  |  |
| RSS-210; Issue 5; (Draft 3)   | Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands)              |  |  |  |  |
| RSS-102; Issue 1; 1999        | EVALUATION PROCEDURE FOR MOBILE AND PORTABLE RADIO TRANSMITTERS WITH RESPECT TO HEALTH |  |  |  |  |
|                               | CANADA'S SAFETY CODE 6 FOR EXPOSURE OF HUMANS TO RADIO FREQUENCY FIELDS                |  |  |  |  |

| FREQUENCY RANGE MHZ | OUTPUT POWER (W)<br>ERP | FREQUENCY TOLERANCE | EMISSION DESIGNATOR |
|---------------------|-------------------------|---------------------|---------------------|
| 462.5625-467.7125   | 0.457                   | 0.00025%            | 11K0F3E             |

#### **REPORT PREPARED BY:**

Test Engineer: Daniel Baltzell
Administrative/Technical Writer: Melissa Fleming

Rhein Tech Laboratories, Inc.

Document Number: 2001155 / QRTL01-141

No part of this report may be reproduced without the full written approval of Rhein Tech Laboratories, Inc.



# TABLE OF CONTENTS

| 1  | GE               | NERAL INFORMATION                                                               | 3  |
|----|------------------|---------------------------------------------------------------------------------|----|
|    | 1.1              | MODIFICATIONS                                                                   |    |
|    | 1.2<br>1.3       | RELATED SUBMITTAL (S)/GRANT(S)                                                  |    |
|    | 1.4              | PERMISSIVE CHANGE INFORMATION                                                   | 3  |
| 2  | SY               | STEM TEST CONFIGURATION                                                         | 4  |
|    | 2.1              | POWER CAPABILITY                                                                | 4  |
| 3  | СО               | NFORMANCE STATEMENT                                                             | 5  |
| 4  | EM               | IISSIONS EQUIPMENT LIST                                                         | 6  |
| 5  | RA               | DIATED EMISSIONS MEASUREMENTS                                                   | 8  |
|    | 5.1              | RADIATED EMISSION DATA                                                          |    |
|    | 5.1<br>5.1       |                                                                                 |    |
| 6  |                  | C PART 2.1049 & 95.633: EMISSION BANDWIDTH.                                     |    |
| -  |                  | FCC PART 2 \$2.1049 (c) (1): Occupied BANDWIDTH                                 |    |
|    | 6.1<br>6.2       | TEST PROCEDURE                                                                  |    |
| 7  | FC               | C PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH                        | 11 |
| 8  | FC               | C PART 95.635: UNWANTED RADIATION                                               | 12 |
|    | 8.1              | TEST PROCEDURE                                                                  |    |
|    | 8.2              | TEST DATA                                                                       |    |
|    |                  | TABLE INDEX                                                                     |    |
| _  |                  | TABLE INDEX                                                                     |    |
|    | BLE 5-           |                                                                                 | 9  |
|    | BLE 5-<br>BLE 8- | , , , , , , , , , , , , , , , , , , , ,                                         | 12 |
|    | BLE 8-           | -2: UNWANTED RADIATION (FCC 95.635) CHANNEL 7: 462.7125 MHZ {LIMIT = 34.1 DBC}  | 12 |
| IA | BLE 8-           | -3: UNWANTED RADIATION (FCC 95.635) CHANNEL 14: 467.7125 MHZ {LIMIT = 33.8 DBC} | 13 |
|    |                  | PLOTS INDEX                                                                     |    |
| PL | OT 6-1           | 1: EMISSION BANDWIDTH (FCC 2.1049 & 95.633)                                     | 10 |
|    |                  |                                                                                 |    |
| _  |                  | PHOTOGRAPHS INDEX                                                               |    |
|    |                  | GRAPH 1: FRONT VIEW RADIATED CONFIGURATION                                      |    |
| PH | OTOG             | SRAPH 2: REAR VIEW RADIATED CONFIGURATION                                       | 14 |
| _  |                  | APPENDIX INDEX                                                                  |    |
| AP | PENDI            | IX A: TEST CONFIGURATION PHOTOGRAPHS                                            | 14 |



#### 1 GENERAL INFORMATION

The following Application for a Class II Permissive Change is prepared on behalf of **Topaz3**, **LLC** in accordance with Part 2, and Part 95(B) of the Federal Communications Commissions rules and regulations and Industry Canada Standards. The Equipment Under Test (EUT) was the **MODEL: TK14**; **FCC ID: F3JTK14**; **Canada Certification: 1531031991A**. The test results reported in this document relate only to the item that was tested.

#### 1.1 MODIFICATIONS

No modifications were made to the EUT during testing.

### 1.2 RELATED SUBMITTAL(S)/GRANT(S)

This is a Class III change for the original certification on this device.

## 1.3 TEST FACILITY

The open area test site and conducted measurement facility used to collect the radiated data is located on the parking lot of Rhein Tech Laboratories, Inc. 360 Herndon Parkway, Suite 1400, Herndon, Virginia 20170. This site has been fully described in a report, submitted to and approved by the Federal Communication Commission to perform AC line conducted and radiated emissions testing.

## 1.4 PERMISSIVE CHANGE INFORMATION

The primary changes from the TK14 include: Receive WX frequencies 162.400 - 162.550 Voice activated TX (VOX)



# 2 SYSTEM TEST CONFIGURATION

## 2.1 POWER CAPABILITY

The EUT meets the following condition as specified in FCC Rules and Regulation Part 95 Section 95.639:

- 1. The operating power is fixed at the factory less than 0.5 Watt ERP.
- 2. The antenna is fixed and non-adjustable.



# 3 CONFORMANCE STATEMENT

| STANDARDS REFERENCED FOR TH | STANDARDS REFERENCED FOR THIS REPORT                                                   |  |  |  |  |
|-----------------------------|----------------------------------------------------------------------------------------|--|--|--|--|
| Part 2; 1999                | FREQUENCY ALLOCATIONS AND RADIO TREATY MATTERS; GENERAL RULES AND REGULATIONS          |  |  |  |  |
| Part 15; 1999               | RADIO FREQUENCIES DEVICES                                                              |  |  |  |  |
| Part 95; 1998               | Personal Radio Services                                                                |  |  |  |  |
| ANSI C63.4-1992             | STANDARD FORMAT MEASUREMENT/TECHNICAL REPORT PERSONAL COMPUTER AND PERIPHERALS         |  |  |  |  |
| ANSI/TIA/EIA 603-1; 1998    | ADDENDUM TO ANSI/TIA/EIA 603-1992                                                      |  |  |  |  |
| RSS-210; Issue 5; (Draft 3) | Low Power Licence-Exempt Radiocommunication Devices (All Frequency Bands)              |  |  |  |  |
| RSS-102; Issue 1; 1999      | EVALUATION PROCEDURE FOR MOBILE AND PORTABLE RADIO TRANSMITTERS WITH RESPECT TO HEALTH |  |  |  |  |
|                             | CANADA'S SAFETY CODE 6 FOR EXPOSURE OF HUMANS TO RADIO FREQUENCY FIELDS                |  |  |  |  |

| FREQUENCY RANGE MHz | OUTPUT POWER (W) ERP | FREQUENCY TOLERANCE | EMISSION DESIGNATOR |
|---------------------|----------------------|---------------------|---------------------|
| 462.5625-467.7125   | 0.457                | 0.00025%            | 11K0F3E             |

I, the undersigned, hereby declare that the equipment tested and referenced in this report conforms to the identified standard(s) as described above. Modifications were not made during testing to the equipment in order to achieve compliance with these standards.

gnature: \_\_\_\_\_ Date: July 10, 2001

Typed/Printed Name: Desmond A. Fraser Position: President

(NVLAP Signatory)

Accredited by the National Voluntary Accreditation Program for the specific scope of accreditation under Lab Code 200061-0.

Note: This report may not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.



# 4 EMISSIONS EQUIPMENT LIST

| RTL Asset Number | Manufacturer         | Model                               | Part Type                                           | Serial Number      |
|------------------|----------------------|-------------------------------------|-----------------------------------------------------|--------------------|
| 900969           | Hewlett Packard      | 85650A                              | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2412A00414         |
| 900929           | Hewlett Packard      | 85650A                              | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2811A01276         |
| 900901           | Hewlett Packard      | 85650A                              | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 3145A01599         |
| 900339           | Hewlett Packard      | 85650A                              | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2521A00743         |
| 900042           | Hewlett Packard      | 85650A                              | Quasi-Peak Adapter (30 Hz – 40 GHz)                 | 2521A01032         |
| 900924           | Amplifier Research   | 75A220                              | Amplifier (10 kHz – 220 MHz)                        |                    |
| 900933           | Hewlett Packard      | 11975A                              | Power Amplifier (2 - 8 GHz)                         | 2304A00348         |
| 901067           | Hewlett Packard      | 8903B                               | Audio Analyzer                                      | 2303A00307         |
| 901055           | Hewlett Packard      | 8901A Opt. 002-003                  | Modulation Analyzer                                 | 2545A04102         |
| 900926           | Hewlett Packard      | 8753D                               | RF Vector Network Analyzer                          | 3410A09659         |
| 901089           | Hewlett Packard      | HP875ET                             | Transmission/Reflection Network Analyzer            | US39170052         |
| 900968           | Hewlett Packard      | 8567A                               | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2602A00160         |
| 900903           | Hewlett Packard      | 8567A                               | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2841A00614         |
| 900897           | Hewlett Packard      | 8567A                               | Spectrum Analyzer (10 kHz – 1.5 GHz)                | 2727A00535         |
| 900931           | Hewlett Packard      | 8566B                               | Spectrum Analyzer (100 Hz – 22 GHz)                 | 3138A07771         |
| 900912           | Hewlett Packard      | 8568A                               | RF Spectrum Analyzer (100 Hz – 1.5 GHz)             | 2634A02704         |
| 900824           | Hewlett Packard      | 8591E                               | RF Spectrum Analyzer (9 KHz – 1.8 GHz)              | 3710A06135         |
| 900724           | ARA                  | LPB-2520                            | Log Periodic / Biconical Antenna (25-1000 MHz)      | 1037               |
| 900725           | ARA                  | LPB-2520                            | Log Periodic / Biconical Antenna (25-1000 MHz)      | 1036               |
| 900967           | A.H. Systems         | TDS-206/535-1 through TDS-206/535-4 | Tuned Dipole set (30 – 1000 MHz)                    | 126, 128, 129, 132 |
| 900154           | Compliance Design    | Roberts Dipole                      | Adjustable Elements Dipole antenna (30-1000MHz)     | N/A                |
| 900814           | Electro-Metrics      | RGA-60                              | Double Ridges Guide Antenna (1-18 GHz)              | 2310               |
| 900081           | EMCO                 | 3146                                | Log-Periodic Antenna (200-1000 MHz)                 | 1850               |
| 900800           | EMCO                 | 3301B                               | Active Monopole (Rod antenna) (30 Hz – 50 MHz)      | 9809-4071          |
| 900151           | Rohde and<br>Schwarz | HFH2-Z2                             | Loop Antenna (9kHz-30 MHz)                          | 82825/019          |
| 900791           | Schaffner -Chase     | CSL6112                             | Bilog antenna (30 MHz – 2GHz)                       | 2099               |
| 901053           | Schaffner -Chase     | CBL6112B                            | Bilog Chase antenna (200 MHz – 2 GHz)               | 2648               |
| 900060           | Hewlett Packard      | 86634B                              | Auxiliary Section for External Pulse Modulator      | 1314A02913         |
| 901041           | ACO Pacific          | 511E                                | Sound Level Calibrator                              | 028751             |
| 900970           | Hewlett Packard      | 85662A                              | Spectrum Analyzer Display                           | 254211239          |
| 900930           | Hewlett Packard      | 85662A                              | Spectrum Analyzer Display                           | 3144A20839         |
| 900911           | Hewlett Packard      | 85662A                              | Spectrum Analyzer Display                           | 2542A12739         |
| 900902           | Hewlett Packard      | 85662A                              | Spectrum Analyzer Display                           | 2848A17585         |
| 900896           | Hewlett Packard      | 85662A                              | Spectrum Analyzer Display                           | 2816A16471         |
| 900914           | Hewlett Packard      | 8546OA                              | RF Filter Section, (100 KHz to 6.5 GHz)             | 3330A00107         |
| 901057           | Hewlett Packard      | 3336B                               | Synthesizer/Level Generator                         | 2514A02585         |
| 900059           | Hewlett Packard      | 8660C                               | Signal Generator (9 KHz – 3200 MHz)                 | 1947A02956         |
| 900960           | Hewlett Packard      | 8444A                               | Tracking Generator (0.5 –1500MHz)                   | 2325A07827         |
| 900917           | Hewlett Packard      | 8648C                               | Synthesized. Signal Generator<br>(9 KHz – 3200 MHz) | 3537A01741         |



| RTL Asset<br>Number | Manufacturer         | Model          | Part Type                                          | Serial Number | Calibration due date |
|---------------------|----------------------|----------------|----------------------------------------------------|---------------|----------------------|
| 900821              | Hewlett Packard      | 33120A         | 15 MHz Function / Arbitrary Waveform Generator     | US36029992    | 11/14/01             |
| 900059              | Hewlett Packard      | 8660C          | Synthesized. Signal Generator<br>(9 kHz –3200 MHz) | 1947A02956    | 11/08/01             |
| 900195              | Tektronix            | CFG280         | Function Generator (0.1 Hz – 11 MHz)               | TW12167       | N/A                  |
| 900927              | Tektronix            | ASG 100        | Audio Signal Generator                             | B03274 V2.3   | N/A                  |
| 900268              | Taylor               | 5565           | Hygrometer / Thermometer                           | N/A           | 09/05/01             |
| 901056              | Hewlett Packard      | 8954A, Opt.H03 | Transceiver Interface                              | 2924A00830    | 06/02/01             |
| 901088              | Hewlett Packard      | 8954A          | Transceiver Interface                              | 2146A00139    | 07/28/01             |
| 901082              | AFJ International    | AFJ LS16       | LISN (9 kHz – 30 MHz)                              | 16010020081   | 06/16/01             |
| 901083              | AFJ International    | AFJ LS16       | LISN (9 kHz – 30 MHz)                              | 16010020082   | 06/16/01             |
| 901084              | AFJ International    | AFJ LS16       | LISN (9 kHz – 30 MHz)                              | 16010020080   | 06/16/01             |
| 901090              | Bajog electronic     | 4V-100/200     | LISN (150 kHz – 30 MHz)                            | 00-44-007     | 08/03/01             |
| 900726              | Solar                | 7225-1         | LISN                                               | N/A           | 03/29/01             |
| 900727              | Solar                | 7225-1         | LISN                                               | N/A           | 03/29/01             |
| 900078              | Solar                | 7225-1         | LISN                                               | N/A           | 03/29/01             |
| 900077              | Solar                | 7225-1         | LISN                                               | N/A           | 03/29/01             |
| 901054              | Hewlett Packard      | HP 3586B       | Selective Level Meter                              | 1928A01892    | 06/08/01             |
| 900793              | Hewlett Packard      | 432A           | Thermistor Power Meter                             | 1848a22632    | N/A                  |
| 900721              | Hewlett Packard      | 8447D          | Preamplifier (0.1-1300 MHz)                        | 2727A05397    | N/A                  |
| 900889              | Hewlett Packard      | 85685A         | RF Preselector for HP 8566B or 8568B (20Hz-2GHz)   | 3146A01309    | 11/14/01             |
| 900566              | Amplifier Research   | FP 2000        | Isotropic Field Probe                              | 20760         | 08/29/01             |
| 900854              | Solar Electronics Co | 9119-IN        | RF Current Probe                                   | 972501        |                      |
| 900849              | Solar Electronics Co | 9121-IN        | Injection Probe (10 MHz – 1 GHz)                   | 953501        |                      |
| 900848              | Solar Electronics Co | 9320-IN        | RF Current Probe                                   | 990521        |                      |
| 900913              | Hewlett Packard      | 85462A         | EMI Receiver RF Section (9 KHz – 6.5 GHz)          | 3325A00159    | 03/29/01             |



#### 5 RADIATED EMISSIONS MEASUREMENTS

Before final measurements of radiated emissions were made on the open-field three/ten meter range, the EUT was scanned indoors at one meter and three meter distances, in order to determine its emissions spectrum signature. The physical arrangement of the test system and associated cabling was varied in order to determine the effect on the EUT's emissions in amplitude, direction and frequency. This process was repeated during final radiated emissions measurements on the open-field range, at each frequency, in order to insure that maximum emission amplitudes were attained.

Final radiated emissions measurements were made on the three-meter, open-field test site. The EUT was placed on a nonconductive turntable approximately 0.8 meters above the ground plane. The spectrum was examined from 30 MHz to 1000 MHz using a Hewlett Packard 8566B spectrum analyzer, a Hewlett Packard 85650A quasi-peak adapter, and EMCO log periodic and biconical antenna. In order to gain sensitivity, a HP8447 preamplifier was connected in series between the antenna and the input of the spectrum analyzer.

At each frequency, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters in order to determine the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarizations. The spectrum analyzer's 6 dB bandwidth was set to 120 kHz, and the analyzer was operated in the CISPR quasi-peak detection mode. No video filter less than 10 times the resolution bandwidth was used. When any clock exceeds 108 MHz, the EUT was tested between 1 to 2 Gigahertz in peak mode with the resolution bandwidth set at 1 MHz as stated in ANSI C63.4. The highest emission amplitudes relative to the appropriate limit were measured and recorded in this report.

Note: Rhein Tech Laboratories, Inc. has implemented procedures to minimize errors that occur from test instruments, calibration, procedures, and test setups. Test instrument and calibration errors are documented from the manufacturer or calibration lab. Other errors have been defined and calculated within the Rhein Tech quality manual, section 6.1. Rhein Tech implements the following procedures to minimize errors that may occur: yearly as well as daily calibration methods, technician training, and emphasis to employees on avoiding error.



#### 5.1 RADIATED EMISSION DATA

# 5.1.1 FCC PART 95.639: MAXIMUM TRANSMITTER POWER {EFFECTIVE RADIATED POWER}

TABLE 5-1: RADIATED EMISSIONS MAXIMUM TRANSMITTER POWER (FCC 95.639)

| Emission<br>Frequency<br>(MHz) | Signal Generator<br>Reading<br>(dBm) | Cable Loss and TX Antenna Gain<br>Correction<br>(dB) | Corrected Signal Generator<br>Level<br>(dBm) ERP | Watt  | Limit 95.639<br>(d)<br>Watt |
|--------------------------------|--------------------------------------|------------------------------------------------------|--------------------------------------------------|-------|-----------------------------|
| 462.5625                       | 27.7                                 | -1.1                                                 | 26.6                                             | 0.457 | 0.5                         |
| 462.7125                       | 27.6                                 | -1.1                                                 | 26.5                                             | 0.446 | 0.5                         |
| 467.7125                       | 27.1                                 | -1.1                                                 | 26.0                                             | 0.398 | 0.5                         |

Measurement uncertainty = 1.5 dB

## 5.1.2 FCC PART 15.109: RADIATED EMISSIONS FOR DIGITAL DEVICES

# TABLE 5-2: RADIATED EMISSIONS (FCC 15.109): (RECEIVER/DIGITAL)

Combined data of Weather Channel 1 and FRS Channel 1

| Emission<br>Frequency<br>(MHz) | Test<br>Detector* | Antenna<br>Polarity<br>(H/V) | Turntable<br>Azimuth<br>(deg) | Antenna<br>Height<br>(m) | Analyzer<br>Reading<br>(dBuV) | Site<br>Correction<br>Factor<br>(dB/m) | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) |
|--------------------------------|-------------------|------------------------------|-------------------------------|--------------------------|-------------------------------|----------------------------------------|-------------------------------|-------------------|----------------|
| 141.150                        | Qp                | V                            | 180                           | 1.0                      | 35.8                          | -16.2                                  | 19.6                          | 43.5              | -23.9          |
| 282.300                        | Qp                | Н                            | 180                           | 1.0                      | 51.6                          | -13.9                                  | 37.7                          | 46.0              | -8.3           |
| 423.450                        | Qp                | V                            | 180                           | 1.0                      | 53.5                          | -9.2                                   | 44.3                          | 46.0              | -1.7           |
| 441.163                        | Qp                | V                            | 125                           | 1.0                      | 55.0                          | -9.4                                   | 45.6                          | 46.0              | -0.4           |
| 564.600                        | Qp                | Н                            | 350                           | 1.6                      | 50.3                          | -6.6                                   | 43.7                          | 46.0              | -2.3           |
| 705.750                        | Qp                | Н                            | 180                           | 1.2                      | 48.3                          | -5.0                                   | 43.3                          | 46.0              | -2.7           |
| 988.050                        | Qp                | V                            | 120                           | 1.2                      | 54.4                          | -2.9                                   | 51.5                          | 54.0              | -2.5           |

<sup>\*</sup>All readings are quasi-peak, unless stated otherwise.

TEST PERSONNEL:

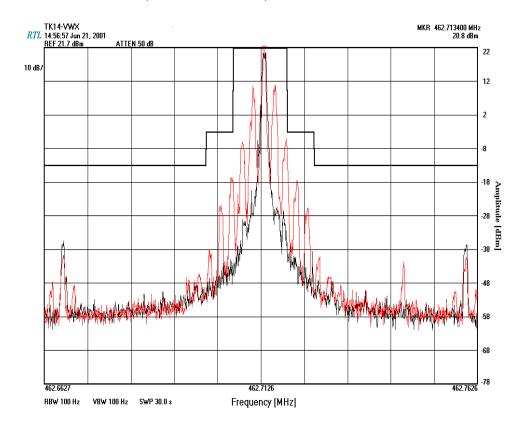
Signature: \_\_\_\_\_ Date: June 27, 2001

Typed/Printed Name: Daniel Baltzell



### 6 FCC PART 2.1049 & 95.633: EMISSION BANDWIDTH

# 6.1 FCC PART 2 §2.1049 (C) (1): OCCUPIED BANDWIDTH


OCCUPIED BANDWIDTH - COMPLIANCE WITH THE EMISSION MASKS

## 6.2 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.11

Device with audio modulation: Transmitter is modulated with a 2500 Hz sine wave at an input level of 16 dB greater than that required to produce 50% of rated system deviation at 1000 Hz.

PLOT 6-1: EMISSION BANDWIDTH (FCC 2.1049 & 95.633)





## 7 FCC PART 2.202: NECESSARY BANDWIDTH AND EMISSION BANDWIDTH

## FCC Part 95.631 and FCC 95.193:

FCC Part 95.631 (d): Emission Types

"An FRS unit may transmit only emission type F3E."

Type of Emission: F3E

Necessary Bandwidth and Emission Bandwidth:

12.5kHz (NB channel) : Bn = 11K0F3E

Calculation:

Max modulation(M) in kHz : 3 Max deviation (D) in kHz: 2.5 (NB)

Constant factor (K): 1 Bn = 2xM+2xDK

# FCC Part 95.633 (c) Emission Bandwidth

"The authorized bandwidth for emission type F3E transmitted by a FRS unit is 12.5 kHz."



## 8 FCC PART 95.635: UNWANTED RADIATION

### 8.1 TEST PROCEDURE

ANSI/TIA/EIA-603-1992, section 2.2.12

The transmitter is terminated with a 50  $\Omega$  load and is modulated with a 2,500 Hz sine wave at an input level 16 dB greater than that required to produce 50% of the rated system deviation at 1000 Hz.

## 8.2 TEST DATA

TABLE 8-1: UNWANTED RADIATION (FCC 95.635) CHANNEL 1: 462.5625 MHz {LIMIT = 39.6 DBC}

| Frequency<br>(MHz) | Signal<br>Generator<br>(dBm) | Cable Loss<br>(dB) | Corrected<br>Antenna<br>Gain<br>(dB) | Corrected<br>Signal<br>Generator<br>Level (dBc) | Margin (dB) |
|--------------------|------------------------------|--------------------|--------------------------------------|-------------------------------------------------|-------------|
| 925.1250           | -29.7                        | 1.1                | -1.2                                 | 58.6                                            | 19.0        |
| 1387.6875          | -42.0                        | 1.1                | 3.6                                  | 66.1                                            | 26.6        |
| 1850.2500          | -42.6                        | 1.6                | 4.8                                  | 66.0                                            | 26.4        |
| 2312.8125          | -33.1                        | 1.6                | 5.0                                  | 56.3                                            | 16.6        |
| 2775.3750          | -31.7                        | 3.1                | 5.8                                  | 55.6                                            | 16.0        |
| 3237.9375          | -30.5                        | 3.2                | 6.2                                  | 54.1                                            | 14.6        |
| 3700.5000          | -38.5                        | 4.3                | 5.9                                  | 63.5                                            | 23.9        |
| 4163.0625          | -39.0                        | 5.0                | 6.2                                  | 64.4                                            | 24.7        |
| 4625.6250          | -35.6                        | 6.5                | 7.1                                  | 61.6                                            | 22.1        |

TABLE 8-2: UNWANTED RADIATION (FCC 95.635) CHANNEL 7: 462.7125 MHz {LIMIT = 39.5 DBC}

| Frequency<br>(MHz) | Signal<br>Generator<br>(dBm) | Cable Loss<br>(dB) | Corrected<br>Antenna<br>Gain<br>(dB) | Corrected<br>Signal<br>Generator<br>Level (-dBc) | Margin (dB) |
|--------------------|------------------------------|--------------------|--------------------------------------|--------------------------------------------------|-------------|
| 925.4250           | -29.0                        | 1.1                | -1.2                                 | 57.8                                             | 18.3        |
| 1388.1375          | -42.3                        | 1.1                | 3.6                                  | 66.3                                             | 26.8        |
| 1850.8500          | -42.2                        | 1.6                | 4.8                                  | 65.5                                             | 26.0        |
| 2313.5625          | -35.2                        | 1.5                | 5.0                                  | 58.2                                             | 18.7        |
| 2776.2750          | -30.7                        | 3.0                | 5.8                                  | 54.4                                             | 15.0        |
| 3238.9875          | -32.4                        | 3.2                | 6.2                                  | 55.9                                             | 16.5        |
| 3701.7000          | -36.5                        | 4.2                | 5.9                                  | 61.3                                             | 21.8        |
| 4164.4125          | -38.1                        | 4.9                | 6.2                                  | 63.3                                             | 23.7        |
| 4627.1250          | -34.6                        | 6.0                | 7.1                                  | 60.0                                             | 20.5        |



TABLE 8-3: UNWANTED RADIATION (FCC 95.635) CHANNEL 14: 467.7125 MHz {LIMIT = 39.0 DBC}

| Frequency<br>(MHz) | Signal<br>Generator<br>(dBm) | Cable Loss<br>(dB) | Corrected<br>Antenna<br>Gain<br>(dB) | Corrected<br>Signal<br>Generator<br>Level (-dBc) | Margin (dB) |
|--------------------|------------------------------|--------------------|--------------------------------------|--------------------------------------------------|-------------|
| 935.4250           | -32.3                        | 1.0                | -1.2                                 | 60.5                                             | 21.5        |
| 1403.1375          | -39.3                        | 1.4                | 3.7                                  | 63.0                                             | 24.0        |
| 1870.8500          | -47.3                        | 1.5                | 4.8                                  | 70.0                                             | 31.0        |
| 2338.5625          | -27.8                        | 1.0                | 5.1                                  | 49.7                                             | 10.7        |
| 2806.2750          | -31.3                        | 3.0                | 5.8                                  | 54.5                                             | 15.4        |
| 3273.9875          | -34.5                        | 3.1                | 6.2                                  | 57.4                                             | 18.4        |
| 3741.7000          | -34.4                        | 3.9                | 5.9                                  | 58.4                                             | 19.4        |
| 4209.4125          | -38.8                        | 4.9                | 6.4                                  | 63.3                                             | 24.3        |
| 4677.1250          | -37.0                        | 5.8                | 7.1                                  | 61.7                                             | 22.7        |